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Abstract—This paper studies the problem of joint edge cache
placement and content delivery in cache-enabled small cell
networks in the presence of spatio-temporal content dynamics
unknown a priori. The small base stations (SBSs) satisfy users’
content requests either directly from their local caches, or by
retrieving from other SBSs’ caches or from the content server.
In contrast to previous approaches that assume a static content
library at the server, this paper considers a more realistic non-
stationary content library, where new contents may emerge over
time at different locations. To keep track of spatio-temporal
content dynamics, we propose that the new contents cached
at users can be exploited by the SBSs to timely update their
flexible cache memories in addition to their routine off-peak main
cache updates from the content server. To take into account the
variations in traffic demands as well as the limited caching space
at the SBSs, a user-assisted caching strategy is proposed based
on reinforcement learning principles to progressively optimize
the caching policy with the target of maximizing the weighted
network utility in the long run. Simulation results verify the
superior performance of the proposed caching strategy against
various benchmark designs.

Index Terms—non-stationary bandit; cache placement; content
delivery; time-varying popularity; dynamic content library

I. INTRODUCTION

Global mobile data traffic is growing at an unprecedented
rate and is predicted to account for more than 63 percent
of total data traffic, reaching 48.3 Exabytes per month by
2021 [2]. The content delivery network (CDN) that has been
widely adopted for traffic congestion reduction, is expected
to carry 71 percent of all internet traffic by 2021, of which
82 percent will be video traffic. However, the backhaul data
rate demand between the base stations (BSs) and the core
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network incurred by such rapid traffic growth has become
the major revenue and technical bottlenecks for the network
operators, especially during peak traffic periods [3]. Due to
the fact that a large portion of backhaul traffic is contributed
by transmitting duplicate data from the core network to
multiple users [4], caching popular contents, e.g., video, social
media, news and maps, that are repeatedly requested by a
large number of users in local memories installed at BSs to
eliminate duplicate data transmission, has recently attracted
significant attention of researchers [5]. The integration of
content caching with small base stations (SBSs) that provide
short-range and low-cost transmission underlaying the existing
macrocell cellular networks, allows popular mobile data to
be prefetched from the core network during off-peak traffic
hours and to be delivered to edge users at peak times. Such
integration provides opportunities not only to offload the
backhaul traffic load, but also to improve system performance
such as energy efficiency and transmission delay, and hence,
significantly alleviates the backhaul and latency bottlenecks in
conventional wireless CDN [6]. Considering the fact that the
capacity of cache storage is highly limited at the individual
SBSs as compared to the massive content library at the content
server, efficient caching mechanisms are advocated to be
developed for the network operators to maximally benefit from
caching techniques. Recently, cooperative caching with joint
optimization of different caching locations, e.g., central cloud
caching and SBSs caching, has been proposed as a potential
solution to the enhancement of content caching performance
in dynamic mobile networks [3]. By coordinating content
caching at different locations, the individual SBSs may cache
differentiated contents and retrieve the requested content from
other cache locations, rather than from the content server, at
a lower cost. However, provided that the individual SBSs can
only observe the instantaneous content requests of their users,
the content popularity distribution and/or users’ preference
may be unknown a priori and may vary with time and
locations. Hence, a timely estimation of users’ content requests
is challenging but essential for the effective caching policy
design as well as for the reliable and cost-efficient operation
of networks under the uncertainty of traffic demands.

A. Related Works
Most approaches in the literature assume finite cache storage

with time-invariant content popularity distribution perfectly
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known at the BSs [5]–[15], and design either content place-
ment strategies [6]–[11] or content delivery strategies [12]–
[15] in various network scenarios. Joint consideration of
content placement and delivery strategies have been studied
in recent years based on either coded [16]–[19] or uncoded
[20]–[23] data. The assumption of a priori knownledge of
content popularity distribution, nevertheless, is not realistic in
practical scenarios. In recent years, using machine learning
techniques to predict the unknown content popularity, and
proactively cache the popular contents at the BSs in advance of
users’ requests, has attracted the attention of the researchers
[24]. In [25], the authors propose a Lyapunov optimization
approach to hybrid content caching design to tackle spatial
dynamics in traffic demands, where the content popularity is
not required. The authors in [3] and [26] relax this assumption
and introduce the multi-armed bandit (MAB) based learning
approaches to estimate the content popularity distribution over
time horizon. However, [3] only considers spatial diversity of
the static content popularity, whilst [26] assumes unknown and
time-invariant content popularity. The authors in [27] model
the cache replacement problem as a Markov decision process
and propose a Q-learning algorithm to trade-off the global
and local popularity demands in heterogeneous networks.
Assuming a Poisson request model, [28] develops a transfer
learning based approach with a finite training time to improve
the estimation of the content popularity in a heterogenous
network based on a training set of ratings. The work in [28],
nevertheless, deals with content caching only in a single BS for
one period in time, while an online learning approach may be
more suitable for the estimation of content popularity over the
time horizon. The authors in [29] propose a regret learning
based per-BS caching strategy to learn the spatio-temporal
traffic demands and to capture the trade-off of the local and the
global content popularity. However, the aforementioned works
simply ignore the fact that the contents can be dynamic over
time: new contents are constantly introduced to the content
library and their popularity distribution may change over time.
For instance, the popularity of some contents such as news
vanishes within a limited time whilst others such as music and
movies may attract sustained requests for a long period of time.
Hence, those works without considering the dynamic content
library in the nature of their designs, may not be able to catch
up with the rapid variations of the content demands in practice.
The authors in [30] propose an ON-OFF traffic model to
capture the impact of dynamic contents on cache performance
based on Che’s approximation, whereas, they have sacrificed
the key fact that the request processes at different caches are
independent.

B. Contributions

This paper focuses on joint design of edge cache placement
and content delivery in small cell networks. In contrast to
the existing caching designs that assume stationary content
library and/or time-invariant content popularity, we consider
a non-stationary content library with spatiotemporal content
dynamics unknown a priori. The novel contribution of this
paper is the development of a reinforcement learning (RL)

based user-assisted caching algorithm that aims to keep track
of the spatio-temporal content dynamics and maximize an
average weighted utility of the network in the long run. The
main contributions of this paper are summarized as follows:

• We propose to exploit users’ caches to improve caching
performance at the SBSs during peak hours. This is
inspired by the fact that some users may have cached new
contents through other networks, for example wireless
local area networks (WLAN). To be specific, a portion
of the cache unit at each SBS is allocated as the flexible
cache memory, which can be timely updated with the new
contents cached at the users in addition to the routine off-
peak main cache update from the content server.

• A user-assisted caching algorithm is proposed based on
a non-stationary bandit model to adaptively track the
spatio-temporal variations of users’ content demands and
sequentially optimize the content caching and delivery
policies over a long time horizon.

• We introduce a three-phase procedure at different time
scales for joint cache placement and content delivery in
small cell networks. Phase I is the content delivery phase
at the individual time slots, where the content demand of
each user is satisfied from one of the caching locations
with different serving rewards. Phase II is the SBSs’
flexible cache update phase, where the flexible caches
of the SBSs can be more frequently updated with users’
cached new contents. Phase III is the SBSs’ main cache
update phase at off-peak times, where the cache units of
the SBSs are updated from the content server.

• To take into account the limited caching space at the
SBSs, content caching coordination is employed among
SBSs and a near-optimal constrained cross-entropy (C-
CE) method is adopted in Phase III to solve the cache
placement optimization problem with low-complexity.

C. Organization and Notations

The rest of this paper is organized as follows. Section II
introduces the system model. In section III, the joint cache
placement and content delivery problem is formulated and then
decomposed into RL assisted content placement optimization
problems that can be solved via the near-optimal CCE method.
In section IV, a non-stationary bandit-inspired user-assisted
caching algorithm is proposed to cope with the spatio-temporal
content dynamics. Numerical simulation results are presented
and analyzed in section V. Finally, section VI concludes the
paper.

Notations: Throughout the paper, w and w, respectively,
indicate a scalar w and a vector w. E(·) is the expected
value, Bn×m denotes the binary space of n-by-m matrices and
CN(0, 1) is the zero-mean complex Gaussian random variables
with unit variance. ‖.‖0 is the l0-norm indicating the number of
non-zero entries in the vector, and I{�} is an indicator function
that returns one if {�} holds true and zero otherwise.
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Fig. 1. Illustration of system scenario and three-phase procedure at different
time scales for joint cache placement and content delivery.

II. SYSTEM MODEL

A. System Scenario

As illustrated in Fig. 1, we consider a time-slotted downlink
small cell network consists of Nb SBSs serving K users over
a shared frequency band. Let us denote by Lb = {1, · · · , Nb},
Lu = {1, · · · ,K} and T = {1, · · · , T}, respectively, the
index sets of the SBSs, the users and the discrete time
slots. The individual SBSs have a circular coverage area with
communication radius of Rb. Each user may identify and
communicate with its neighboring SBSs, whilst only one SBS
will serve the user. Let us denote by Lbu = {1, · · · ,Kb} the
index set of users associated with SBS b. Featuring cache units,
the individual SBSs are connected with each other via inter-
SBS links, to the central processing unit (CU) via capacity-
limited fronthaul links and to the content server via backhaul
links. The CU coordinates all content caching and delivery
strategies for the SBSs. A three-phase procedure at different
time scales of t ∈ T , τ [flex] and τ [main], is proposed for joint
cache placement and content delivery, namely, Phase I: the
content delivery phase; Phase II: the SBSs’ flexible cache
update phase; and Phase III: the SBSs’ main cache update
phase. The notations in this paper are listed in Table I.

1) Non-stationary Content Library: Let us consider a re-
alistic scenario, where the new contents are constantly in-
troduced into the system and the finite content library at
the content server is thus non-stationary. Let us denote by
F = {1, · · · , F, · · · , F [max]} the finite content library with
individual content sizes of {Sf}f∈F , where F and F [max],
respectively, denote the initial and the maximum numbers
of contents in the content library. Let us denote by F t =
{1, · · · , F ′} the content library at the t-th time slot, t ∈ T ,
where F ′ indicates the current number of contents in the
library and it is evident that F ≤ F ′ ≤ F [max]. Once the
content library is full, i.e., F ′ = F [max], the least recently
used contents at the content server will be evicted and re-
placed by the newly emerged contents. Note that the content
refreshment at the content server takes into consideration the

TABLE I
NOTATION

Symbol Definition
Lb and Lu Index sets of SBSs and users
Lbu Index set of users associated with SBS b
T Index set of discrete time slots in Phase I
τ [flex] and τ [main] Respective time scales of Phase II and Phase III
F Index set of finite content library at the server
Ft Index set of current content library at time t
Sf Size of content f
N [new] Number of new contents added to the content server

in Phase II
{∆u}u∈Lu The spatial shifts of content popularity among users
{θtu,f}f∈Ft The unknown content popularities of user u at time t
dtu Binary content demand vector of user u at time t
dtuf ∈ {0, 1} Whether content f is requested by user u at time t
π[local] Gross gain per unit content size of an SBS serving

users from its local cache
π[SBS] Gross gain per unit content size of an SBS serving

users by fetching content from other SBSs’ caches
π[server] Gross gain per unit content size of an SBS serving

users by fetching content from the content server
κ[user] Per-unit average discount rate for users’ uploading

incentives offered by an SBS
Mb Capacity of cache unit at SBS b with a portion ξMb

being allocated for flexible cache memory
ctp Content caching placement policy at time t
ctb,f ∈ {0, 1} Whether content f is cached at SBS b at time t
ctr Content retrieving policy at time t
ct
b,b′,f ∈ {0, 1} Whether content f is retrieved by SBS b from SBS

b′at time t
ctb,s,f ∈ {0, 1} Whether content f is retrieved by SBS b from the

content server at time t
ctu Content uploading policy at time t
ctb,u,f ∈ {0, 1} Whether content f is uploaded from user u to SBS

b at time t
Gu,tb,f Net gain for SBS b serving user u with content f

directly from its local cache at time t
Gu,tb,s,f Net gain for SBS b serving user u by fetching

content f from the content server at time t
Gu,t
b,b′,f Net gain for SBS b serving user u by fetching

content f from SBS b′ at time t
Rb(d

t
uf ) Instantaneous serving reward for SBS b serving

user u with content f at time t
Ῡt = {ῡtb,f} Estimated joint reward distribution of contents at

individual SBSs at time t

content lifetime, and the dynamic content library adopted in
the considered scenario naturally results in the time-varying
content popularities, which are unknown a priori.

2) New Contents at Users: Each individual user is equipped
with a capacity-limited local cache memory and can only
cache one content at each time. At the end of time slot
t, t ∈ T , each user updates its cache memory with its re-
quested content. In addition, the newly emerged contents may
be cached at some random users either via being generated
by the local users themselves, or by being brought in through
other networks such as WLAN or due to users’ mobility. The
users are motivated to upload these potentially popular new
contents to their neighboring SBSs for the incentive payments.
The incentives for users to upload new contents can be earning
extra data rate, extra bandwidth, and some discounts on their
mobile data charges. Let us denote by κ[user] the per-unit
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average discount rate offered by an SBS for users’ uploading
incentives. For simplicity, an identical κ[user] ∈ [0, 1] at all
SBSs is assumed.

3) Users’ Content Demands: We assume that the users’
content request arrival processes are independent homogenous
Poisson point processes with request rate of 1, i.e., each
individual user on average may request one content that is
not cached by itself from its neighboring SBSs at each time
slot. Let the content demands of user u, u ∈ Lu, at time t be
denoted by dtu = {dtu1, · · · , dtuf , · · · , dtuF ′}, where the binary
scalar dtuf ∈ {0, 1} indicates whether or not the content f is
requested by user u at time t. Let us denote by {θtu,f}f∈Ft
the actual content popularities of user u that is unknown to
the SBSs or the CU at time t. In addition to the temporal
variability, we further consider the spatial diversity of the
content popularity distributions among individual users, i.e.,
the users at different geographical locations may have diverse
preferences for the contents. To this end, we model the spatial
diversity by circularly shifting the content popularity distribu-
tion at user u by ∆u with respect to user u− 1. We further
assume that the number of contents at the content library
is usually much higher than the number of locally served
users, hence the averaging effect over aggregated local users is
unlikely to occur in our considered caching problem. Without
loss of generality, it is assumed that the longest delay for
retrieving the largest content from the content server does not
exceed a prescribed slot duration. If multiple content requests
have been raised by a user at a time slot, those requests that
can not be served within the given time slot will be dropped.
The instantaneous content demands of the users at time slot
t, i.e., {dtu}, can be satisfied directly from the local cache
of the serving SBS, or by retrieving from one of the caches
of the other SBSs or from the content server with different
gross gains per unit content size of π[local], π[SBS] and π[server],
respectively. Given the fact that the corresponding latency is
the longest for retrieving content from the content server while
the shortest for fetching data from SBSs’ local caches, the
per-unit gross gains are set to be inversely proportional to the
latency, i.e., π[server] � π[SBS] < π[local]. For simplicity, let
us assume identical π[local], π[SBS] and π[server] ∈ [0, 1] at all
SBSs.

4) Cache Units at the SBSs: Each individual SBS is e-
quipped with a cache unit with capacity of Mb, b ∈ Lb. To
fully exploit the contents cached at the local users, a portion
with capacity of ξMb of each cache unit is allocated as the
flexible cache memory. The flexible cache memory that is
made up of expensive and high-speed static random access
memory (RAM), can be timely updated from the caches of
the local users, whilst the remainder of the cache unit that
is made up of cheaper and slower RAM, will be updated at
a more infrequent pace, for instance, from the content server
during off-peak traffic hours.

5) Three Phases of Different Time Scales: Recall that we
consider a three-phase procedure at different time scales of
t ∈ T , τ [flex] and τ [main], for joint cache placement and content
delivery.
• In Phase I, i.e., at each time slot t, t ∈ T , the SBS

associated with the highest serving reward will be chosen

by the CU as the serving SBS. The individual serving
SBSs then satisfy the instantaneous content requests of
their scheduled users.

• In Phase II, i.e., for every τ [flex] time slots, N [new] number
of new contents are added to the content server and might
be cached by some random users. Each user broadcasts its
cached content directory to its neighboring SBSs, and the
CU will then make a decision on whether or not to update
SBS’s flexible cache with the user’s cached content.

• In Phase III, i.e., for every τ [main] time slots, the CU
designs cache placement policy for the SBSs based on
the reward information. The main cache replacements are
executed accordingly from the content server to the SBSs
via backhaul links.

B. Downlink Transmission

Let us denote by Ψt
bu the channel gain between SBS b and

user u at the t-th time slot, t ∈ T , and denote by P
[Tx]
b the

transmit power of SBS b. The signal-to-interference-plus-noise
ratio (SINR) for user u served by SBS b at time slot t, t ∈ T ,
can be expressed as

SINRtbu =
P

[Tx]
b Ψt

bu∑
b′∈Lb,b′ 6=b

P
[Tx]
b′ Ψt

b′u + σ2
u

, (1)

where σ2
u is the variance of the additive white Gaussian noise

at user u. With the normalized bandwidth, the instantaneous
data rate for user u served by SBS b at time slot t, is given
by

Rtbu = log2(1 + SINRtbu). (2)

C. Content Caching and Retrieving

Let us define the binary vector ctp = {ctb,f ∈ {0, 1}, ∀b ∈
Lb, f ∈ F t} as the content caching policy at time t, t ∈ T ,
where ctb,f = 1 and ctb,f = 0 indicate that the content f is
cached and is not cached at SBS b, respectively. This caching
policy will be designed every τ [main] time slots in Phase III
for SBSs’ main cache update, and, might be updated every
τ [flex] time slots in Phase II for the portion of flexible cache
memory. Let us denote by ctr = {ctb,b′,f , ctb,s,f ∈ {0, 1}, ∀b′ 6=
b, b ∈ Lb, b′ ∈ Lb, f ∈ F t} the content retrieving policy at
time t, where ctb,b′,f = 1 and ctb,b′,f = 0 indicate that the
content f is fetched and is not fetched by SBS b from SBS b′,
respectively. ctb,s,f ∈ {0, 1} denotes whether or not the content
f is retrieved from the content server by SBS b at time t. The
user demand of content f, f ∈ F t at each time slot t, t ∈ T ,
will either be satisfied by serving from the content server or
from one of the SBSs, or be dropped, as

ctb,s,f +
∑
b′∈Lb

ctb,b′,f ≤ 1. (3)

Let us denote the content uploading policy at time t as ctu =
{ctb,u,f ∈ {0, 1}, ∀b ∈ Lb, u ∈ Lbu, f ∈ F t}, where ctb,u,f = 1
and ctb,u,f = 0, respectively, represent that the content f is
uploaded and is not uploaded from user u to SBS b. Then,
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the net gain of SBS b storing content f and serving user u at
time slot t, can be defined as

Gu,tb,f =(π[local] − κ[user]
∑

u′∈Lbu,u
′ 6=u

ctb,u′,f )Sfd
t
ufc

t
b,f ,

∀t ∈ T , u ∈ Lbu, b ∈ Lb, f ∈ F t,
(4)

which indicates that the discount rate offered by SBS b need
to be subtracted from the gross gain if SBS b serves user u
with content f directly from its local cache and its cached
content f is uploaded from the other local users. The net gain
of SBS b for serving user u by retrieving content f from SBS
b′ at time slot t, is given by

Gu,tb,b′,f = (π[SBS] − κ[user]
∑
u′∈Lb

′
u

ctb′,u′,f )Sfd
t
ufc

t
b,b′,f ,

∀b′ 6= b, b ∈ Lb, b′ ∈ Lb, u ∈ Lbu, t ∈ T , f ∈ F t,
(5)

which denotes that if the content f cached at SBS b′ and
retrieved by SBS b is uploaded from the local users of SBS
b′, the corresponding discount rate need to be subtracted. The
net gain of SBS b for serving user u by retrieving content f
from the content server at time slot t, is given by

Gu,tb,s,f = π[server]Sfd
t
ufc

t
b,s,f ,∀t ∈ T , u ∈ Lbu, b ∈ Lb, f ∈ F t.

(6)
Per time slot t, t ∈ T , the content demand f of user u is either
dropped or satisfied from one of the locations with one of the
net gains of {Gu,tb,f , G

u,t
b,b′,f , G

u,t
b,s,f}. Recall that the gross gains

are inversely proportional to the latency of content fetching. By
assigning different net gains with no units, i.e., Gu,tb,f , Gu,tb,b′,f ,
or Gu,tb,s,f , as the weighting factors to the transmission data
rate, the backhaul traffic offloading, the cache hits as well
as the content retrieving and content delivery can be jointly
considered. Let us define the instantaneous serving reward,
i.e., the weighted data rate, of SBS b for serving user u with
content f at time slot t, t ∈ T , as

Rb(dtuf ) =


Gu,tb,fR

t
bu, if ctb,f = 1,

Gu,tb,b′,fR
t
bu, if ctb,b′,f = 1,

Gu,tb,s,fR
t
bu, if ctb,s,f = 1,

0, if ctb,s,f +
∑
b′∈Lb c

t
b,b′,f = 0,

∀b′ 6= b, b ∈ Lb, b′ ∈ Lb, u ∈ Lbu, f ∈ F t, t ∈ T .
(7)

This serving reward can be regarded as the equivalent or
effective data rate and will be useful in designing cache
placement policy as well as content delivery policy in the
subsequent sections.

III. PROBLEM FORMULATION AND
DECOMPOSITION

A. Problem Formulation

Let us denote by wt = {ctp, ctr, ctu} the joint content
caching, retrieving and delivery policy of the SBSs at time
slot t, t ∈ T . The objective of the CU is to design this policy
{wt} with joint consideration of backhaul traffic offloading,
cache hit ratio, as well as content retrieving and delivery in
the presence of the non-stationary content library. Hence, the
problem of interest can be formulated as the maximization of

the long-term average reward of the network, i.e., the average
weighted network utility, as

max
{wt}

 1

T

∑
t∈T

∑
b∈Lb

∑
f∈Ft

∑
u∈Lbu

Rb(dtuf )

 (8)

s.t. C1 :
∑
f∈Ft

Sfc
t
b,f ≤Mb, ∀b ∈ Lb, t ∈ T ,

C2 : ctb,s,f +
∑
b′∈Lb

ctb,b′,f ≤ 1,∀b ∈ Lb, f ∈ F t, t ∈ T ,

C3 : ctb,b′,f ≤ ctb′,f ,
∀b 6= b′, b ∈ Lb, b′ ∈ Lb, f ∈ F t, t ∈ T ,

C4 : ctb,s,f ∈ {0, 1},∀b ∈ Lb, f ∈ F t, t ∈ T ,
C5 : ctb,b′,f ∈ {0, 1},

∀b 6= b′, b ∈ Lb, b′ ∈ Lb, f ∈ F t, t ∈ T ,
C6 : ctb,u,f ∈ {0, 1},∀b ∈ Lb, f ∈ F t, u ∈ Lbu, t ∈ T ,
C7 : ctb,f ∈ {0, 1},∀b ∈ Lb, f ∈ F t, t ∈ T .

where the constraint C1 guarantees that the total size of the
cached contents cannot exceed the capacity of cache units at
the individual SBSs. C2 indicates that the content demands of
the users will either be dropped or be satisfied from one of
the SBSs’ caches or from the content server. C3 denotes that
SBS b can only retrieve content f from SBS b′ if b′ caches
the requested content. C4 - C7 specify that the joint content
caching, retrieving and delivery policy wt is a binary vector.

1) Problem Analysis: The cross-time scale optimization
problem in (8) is difficult to solve directly since we aim to
maximize the long-term weighted network utility while the
statistics of the system dynamics are unknown in advance.
In general, the difficulties raised by the considered scenario
are: the spatio-temporal unknown dynamics in users’ content
demands and channel conditions; the limited knowledge of
new changes in the environment, e.g. limited samples of users’
content requests, and the constrained caching space at the
SBSs. In other words, at different time scales, the CU has to
make decisions on which contents to cache as well as when
and where to cache them, based on limited information of
new changes in the presence of non-stationary environment.
Hence, we are motivated to use RL technique to cope with
these spatio-temporal uncertainties as it aims to maximize
the cumulative reward via continually interacting with the
environment and making sequential decisions of actions based
on the reward (and state) information through the trial-and-
error procedure.

2) Explanation of Non-Stationary MAB: The MAB prob-
lem that is regarded as a stateless RL problem [33], models a
system of multiple arms (content library), each is associated
with an unknown and stationary reward distribution. The agent
(CU, on behalf of SBSs) makes sequential decisions on which
contents to cache and aims to maximize the accumulated
reward over time via exploring the environment by caching
not frequently cached but potentially popular contents, while
exploiting the current knowledge by caching contents associ-
ated with the highest rewards so far [33]. Here we consider a
non-stationary variant of the MAB problem for our considered
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scenario with non-stationary content library, where the reward
distributions of arms may vary across time.

B. Problem Decomposition and the Constrained Cross-
Entropy Method

In the sequel, the cross-time scale optimization problem
in (8) will be decomposed into RL-assisted optimization
problems, and the joint cache placement, content retrieving and
delivery policy {wt} will be gradually optimized at different
time scales through the proposed three-phase procedure in Sec-
tion IV. More specifically, the content retrieving and delivery
policy, i.e., {ctr} in constraints C2 - C5 of problem (8), will
be satisfied at each individual time slot t, t ∈ T , in Phase
I of our proposed caching algorithm. The learning processes
in Phase II and Phase III of the proposed algorithm, on the
other hand, aim at tracking as much as possible the variations
in user demands in order to design {ctu} in constraint C6 at
every τ [flex] time slots, and design {ctp} at every τ [main] time
slots, respectively.

Next, let us focus on Phase III for cache placement policy
design, i.e., {ctp}, at every τ [main] time slots. As per (7), it
is obvious that in order to maximize the long-term average
reward of the network, the user will be served from the local
cache of its serving SBS with the top priority, and by retrieving
from the content server with the least priority. Hence, we can
rewrite ctb,s,f ≤ 1 − max

b∈Lb
ctb,f , ctb,b′,f = ctb′,f (1 − ctb,f ), and

the objective function of problem (8) as the expected overall
reward among all SBSs, as

S(ctp) = E
[ ∑
b∈Lb

∑
f∈Ft

∑
u∈Lbu

Rb(dtuf )

]
≤
∑
b∈Lb

∑
f∈Ft

Sfυ
t
b,f[

(π[local] − κ[user]
∑

u′∈Lbu,
u′ 6=u

ctb,u′,f )ctb,f + π[server](1−max
b∈Lb

ctb,f )

+ max
b′∈Lb,
b′ 6=b

(π[SBS] − κ[user]
∑
u′∈Lb

′
u

ctb′,u′,f )ctb′,f (1− ctb,f )

],
(9)

where υtb,f is the expected value of {dtufRtbu}u∈Lbu for content
f at SBS b.

Due to the fact that {υtb,f} is unknown and involves tem-
poral dynamics, the non-stationary bandit technique will be
employed in the following section to progressively improve the
estimation of this value in Phase III of our proposed strategy.
Let us denote by Ῡt = {ῡtb,f , ∀b ∈ Lb, f ∈ F t} the estimated
joint reward distribution of the SBSs over the non-stationary
library of contents, and denote by S̄(ctp) the corresponding
estimated expected overall reward among all SBSs, where
S̄(ctp) can be obtained by replacing the unknown actual value
υtb,f in the right hand side of (9) with the estimated value of
ῡtb,f . As will be introduced in Section IV, Ῡt will be estimated
at every τ [main] time slots in Phase III of our proposed strategy,
based on the past observations of the content demands and
the transmission data rates. Then, with the estimated (learned)
value of Ῡt, the main content caching policy, i.e., {ctp}, will

be designed via the following content placement optimization
problem, as

max
ctp
S̄(ctp) (10)

s.t. C1 :
∑
f∈Ft

Sfc
t
b,f ≤Mb, ∀b ∈ Lb,

C2 : ctb,f ∈ {0, 1}, ∀b ∈ Lb, f ∈ F t.

The problem in (10) can be regarded as a 0-1 knap-
sack problem with weights of {Sf}f∈Ft . The 0-1 knap-
sack problem is a well-known NP-complete combinatorial
optimization problem and the constraints satisfy monotonic
property. Solving problem in (10) via either the branching
algorithms such as the branch and bound (B&B) algorithm, or
the semidefinite relaxation (SDR) approach [3] will generally
require high computational complexity. Hence, we propose to
solve problem in (10) with a near-optimal solution ct∗p via the
low-complexity CCE method. The cross-entropy (CE) method
solves the maximization problem to the optimal or near-
optimal solution by alternating between generating samples of
random data according to a specified mechanism, and updating
the parameters of the random mechanism based on the data
in order to produce better samples in the next iteration [34].
However, the original CE method for unconstrained optimiza-
tion cannot be applied directly to (10) in the presence of
constraints, as many sample points might not be in the feasible
region. Given the monotonic property of the constraints, we
adopt the CCE method with the penalty approach1 to solve
the constrained problem in (10). The penalty approach relaxes
the constraints in (10) in a similar fashion of the Lagrangian
relaxation and artificially penalizes the evaluation of infeasible
solutions via modifying the objective function in (10) as
follows:

z∗ = max
ctp∈C

S̃(ctp)

= max
ctp

S̄(ctp)−
∑
b∈Lb

Hb max(
∑
f∈Ft

Sfc
t
b,f −Mb, 0)

 ,

(11)
where the penalty parameter Hb � 0 indicates the importance
of the penalty function and C ⊂ BNbF ′ denotes the feasible
region. The CCE method associates a stochastic estimation
problem, i.e.,

P(S̃(ctp) ≥ z) =
∑
ctp∈C

I{S̃(ctp)≥z}f(ctp,p), (12)

where z is the worst value of S̃(ctp) among N elite elite (good-
performing) samples in the previous iteration and is used as
a threshold in the current iteration in order to generate better

1By empirically adjusting the penalty parameter, the samples associated
with infeasible solutions will be discarded accordingly in each iteration. The
elite samples that violate the constraints can simply be projected onto the
feasible region [35].
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samples, and f(ctp,p) is a Bernoulli distribution characterized
by a parameter vector p, as

f(x,p) =
n∏
j=1

(pj)
xj (1− pj)1−xj , xj ∈ {0, 1}, j = 1, · · · , n.

(13)
Hence, with increasing threshold value of z and via importance
sampling, the estimated P(S̃(ctp) ≥ z) converges either to the
global optimum z∗ or a value close to it. The steps and the
computational complexity of each step of the CCE method
are detailed in Algorithm 1. To be specific, at each iteration

Algorithm 1 CCE method for solving problem in (10) given
the estimated Ῡt [35]

1: Initialize: Stopping criteria δ, iteration index n = 1,
number of random samples Ns (Ns < NbF

′), number
of elite samples N elite (N elite � Ns, typically 5%-
10%), smoothing parameter α (0.4 ≤ α ≤ 0.9), initial
probabilities p[0] = {p[0]

j }j ∈ (0, 1). L99 O(NbF
′)

2: REPEAT
3: Sample: Generate Ns random samples
{x1, · · ·xj , · · ·xNs} from probability density function
f(·,p[n−1]). L99 O(NbF

′Ns)
4: Penalty Approach: Modify the objective function in

(10) as per (11).
5: Select: Sort samples in descending order with respect

to values of S̃(ctp). L99 O(NslogNs)
Select N elite elite (best-performing) samples that yield

the top greatest values of S̃(ctp).
6: Update: For j = 1 : NbF

′, compute p[n] as follows

p
[n]
j =

∑Ns
j=1 I{S̃(xj)≥z}xij∑Ns
j=1 I{S̃(xj)≥z}

=
∑
i∈I

xij/N
elite, where I is

the index of N elite elite samples. L99 O(N elite)
7: Smooth: Update parameter vector p[n], as

p[n] = αp[n] + (1− α) p[n−1]. L99 O(N elite)
8: Update n = n+ 1.
9: UNTIL max

f∈Ft
(|p[n] − p[n−1]|) < δ

10: Output: Optimal main caching policy ct∗p = p[n].

n, the new value of z obtained from iteration n− 1 is used to
update p[n], whilst the updated vector p[n] in turn, is used for
generating better samples in iteration n+1 as per steps 6 and 3
of Algorithm 1, respectively. The application of the smoothing
parameter α in step 7 is to prevent the occurrences of all zeros
or all ones sub-optimal solutions, and the convergence in step
9 of Algorithm 1 can be achieved at a polynomial speed [35].

IV. THE PROPOSED FORESIGHTED CACHING STRATEGY

In this section, the proposed RL-based user-assisted caching
strategy is introduced to take joint consideration of the back-
haul traffic offloading, the cache hits, as well as the content
retrieving and content delivery, with the aims of keeping track
of the dynamic content library and maximizing the long-
term average reward as much as possible. Recall that the
considered scenario raises challenges of the spatio-temporal
unknown dynamics in user demands and channel conditions;

the limited knowledge of new changes in the environment, and
the constrained caching space at the SBSs. These difficulties
involving temporal dynamics are handled in the following
way. First of all, the caching problem is modelled as a non-
stationary bandit problem, where the CU (on behalf of the
SBSs) can be regarded as the agent, F ′ arms correspond to
the current library of F ′ contents at the content server, and the
associated reward of playing (requesting) the f -th arm can be
defined as the aggregated content delivery rate for satisfying
users’ content demand of f . The standard upper confidence
bound (UCB) algorithm [33] is modified to emphasize more
on the recent observations. Secondly, we propose that SBSs’
flexible cache memory can be updated by implementing a
trade-off between caching new content from user cache di-
rectly (exploration), and updating flexible cache based on the
knowledge of recent content demands (exploitation). Finally,
content caching coordination among SBSs is enabled and the
caching policy of SBSs is jointly designed at the CU to take
full advantage of the capacity-constrained SBS cache units.
The details of the proposed caching strategy are described
in Algorithm 2 and Fig. 2, where a three-phase procedure at
different time scales for joint content caching and delivery is
proposed and explained below:

Fig. 2. Flowchart of the proposed RL-based user-assisted caching algorithm.

1) Phase I: At each time slot t, t ∈ T , the users request
contents from their neighboring SBSs. The SBS with the
highest serving reward will be chosen as the serving SBS
and the instantaneous content demands are satisfied according
to the delivery policy in step 15 of Algorithm 2. Then, the
estimated mean rewards of the individual requested contents
are updated as per step 17 of Algorithm 2. To be specific,
step 17 calculates the average discounted accumulated content
delivery rate for satisfying users’ content demands of f at SBS
b, which jointly considers user demand of content f as well
as channel quality and user scheduling at SBS b.

2) Phase II: For every τ [flex] time slots, the contents in
SBSs’ flexible caches will be replaced by the potentially more
popular new contents cached at the users. More specifically,
with the probability of 1 − εt, the flexible cache will be
updated accordingly as per step 10 of Algorithm 2, based on
the following content demand vector:

Φ̄b = (1− µt)Φc + µtΦb, ∀b ∈ Lb, (14)
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Algorithm 2 User-assisted foresighted caching algorithm
1: Initialize: T time slots, temporary reward matrix rb =
{rtb,f , ∀f ∈ F t, t ∈ T } = 0, estimated mean reward r̄tb =
{r̄tb,f , ∀f ∈ F t} = 0, Ῡt = {ῡtb,f , ∀b ∈ Lb, f ∈ F t} = 0,
exploration/exploiation trade-off εt, global/local trade-off µt,
discount factor β, weighting factor ρt=1

b = 1.
2: For t = 1 : T
3: If t = τ [main], Phase III. Main Cache Placement
4: CU updates Ῡt as ῡtb,f = r̄tb,f + ρtb

√
2log nt
Tb,f

, where ρtb ∝
t∑

t′=1

∑
u∈Lbu

β(t−t′)Sfd
[t′]
uf , Tb,f =

t∑
t′=1

β(t−t′)I
{c[t
′]

b,f
=1}

is the

discounted number of times content f has been cached so far
and nt =

∑
f∈Ft Tb,f .

5: Design cache placement policy via Algorithm 1 based on Ῡt

and update SBSs’ cache units in a sorted order.
6: End If
7: If t = τ [flex], Phase II. Flexible Cache Update
8: If A new content f ′ is cached by the local user u within the

coverage area of SBS b
9: -with probability εt, update SBS b’s flexible cache with content
f ′ directly;

10: -with probability 1− εt, update Φ̄b as per (14), and replace the
flexible cache only if Φ′b(f

′) is larger than that of the contents
in the flexible cache of SBS b.

11: End if
12: End If
13: Phase I. Content Delivery at Each Time Slot t
14: Users request contents {dtu}u∈Lu from their neighboring SBSs.
15: If no SBS caches the requested content f

-The SBS with the highest data rate serves the user by fetching
content f from the content server.
Else If the requested content f is cached at the SBS associated

with the highest data rate
-The SBS serves the user directly from its local cache.
Else
-The SBS associated with the highest weighted data rate (serving
reward) serves the user.
End if

16: Update {rb} as rtb,f =
∑
u∈Lbu

Rtbud
t
uf , ∀f ∈ F t, b ∈ Lb.

17: Update {r̄tb} as r̄tb,f =
∑t
t′=1

rt
′
b,fβ

(t−t′)∑t
t′=1

β(t−t′) , ∀f ∈ F t, b ∈ Lb.
18: End For

where Φb denotes the recent local content demand vector
at SBS b and Φc =

∑
b∈Lb Φb is the network wide recent

content demand vector accumulated at the CU. The glob-
al/local trade-off µt, 0 ≤ µt ≤ 1, is employed to capture
the spatial diversity of the content demands, such that the
content caching coordination among SBSs can be capitalized.
With the probability of εt, we explore new contents cached
by local users and update SBSs’ flexible caches directly. The
exploration/exploiation trade-off εt is tunable with respect to
the temporal evolution rate of contents. More specifically, with
a larger value of N [new] and the limited knowledge of new
changes, a larger value of εt will be adopted to cache (explore)
the new contents that may yield a better accumulated reward.

3) Phase III: For every τ [main] time slots, a perturbation
procedure is applied to the estimated mean reward r̄tb accord-
ing to step 4 in Algorithm 2. Such adjustment implements a
trade-off between exploring the contents that are not frequently
cached and may yield a better accumulated reward in the

future by artificially increasing their estimated mean reward,
and exploiting the contents associated with the highest mean
reward so far based on the past observations. Due to the fact
that the content library is massive and evolving, the standard
soft-max and UCB algorithms that are designed based on the
assumption of stationary and unknown reward distribution of
individual arms may not be able to catch up with such rapid
variations [36]. Hence, we modified the UCB-1 algorithm by
adding a discount factor β [36] as well as a weighting factor
ρtb that is proportional to the long-term discounted content
demands. Such modification will encourage the SBSs to cache
those contents that are frequently requested in recent times but
are not cached that often. Specifically, a smaller value of β
will be applied to emphasize more on the recent observations
when content evolution rate increases.

A. Computational Complexity Analysis
The computational burden of the proposed algorithm mainly

lies in optimizing the cache placement policy in step 5 of
Algorithm 2 via Algorithm 1. As stated in the previous section,
the optimal or near optimal solution of problem in (10) can
be found via the B&B algorithm, the SDR approach [3] or
the CCE method. The worst case complexity of the B&B
algorithm is O(F

′
∑
b∈Lb

Mb), which is the same as that of the
exhaustive search [26]. The SDR approach relaxes problem in
(10) as a semidefinite programming problem, which can be
solved via the interior-point algorithm with a worst-case com-
putational complexity of O(max{τs, Nb(F ′+1)}4τ0.5

s log( 1
σ ))

[3], where σ is the solution accuracy and τs denotes the
problem size of (10). In addition, a recovery approach is
necessary to recover the rank-one solution and to reconstruct
the optimal caching decisions ctp, which will further increase
the computational complexity of the problem. The overall
computational complexity of the CCE method in Algorithm
1 is O(NbF

′MbNslogNs), and the main complexity lies in
the performance evaluation of Ns samples for the modified
objective function S̃(ctp) as per step 5 of Algorithm 1. Thus,
the complexity is low and can be further reduced through a
trade-off between the complexity and solution accuracy.

B. Signalling Overhead Analysis
Recall that the CU coordinates all content caching and deliv-

ery strategies based on channel gain and user content demand
information uploaded at each individual time slot from the
SBSs. In general, the signalling overhead of the proposed de-
sign consists of the following information exchanges between
the CU and the SBSs at each time slot t: (1) channel gain
information {Ψt

bu} uploaded from the SBSs to the CU; (2) user
content demand information uploaded from the SBSs to the
CU; and (3) decisions on serving SBSs for the individual users
dispatched from the CU to the SBSs. The average signalling
overheads incurred by the above information exchanges at
each time slot are, respectively, O(NbK), O(K) and O(K). In
addition, the users’ cached content directory is updated from
the SBSs to the CU at every τ [flex] time slots, and the CU will
then send control commands on flexible cache update to the
corresponding SBSs. The resulting signalling overheads are,
respectively, O(K) and O(2ξMbNb) at the most.
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C. Performance Discussion

The dynamic regret analysis [31] of the standard discounted
UCB algorithm has been conducted in [36], where an upper-
bound of the expected regret is established by upper-bounding
the expected number of times the suboptimal arms are selected.
However, the regret analysis is more challenging for our
considered scenario, due to the fact that we consider multiple
time scales for main cache update from the content server,
flexible cache update from the user caches, and content deliv-
ery. Unlike standard MAB problem where one arm is played
at each time, we cache multiple (differentiated) contents at
multiple SBSs via content caching coordination among SBSs
during Phase III and replace some of the cached content with
user cache during Phase II. Hence, the regret analysis and/or
the establishment of performance guarantee is challenging but
will be considered as future work.

V. SIMULATION RESULTS
Consider a downlink small cell network comprising 3 neigh-

bouring SBSs that serve K = 12 randomly deployed users.
The non-stationary content library has an initial library of
F = 200 contents and a finite capacity of F [max] = 250.
The Phase III for SBSs’ main cache update occurs every
τ [main] = 8 time slots, where the capacity of caching unit at
each SBS is Mb = 15 with ξ = 0.2. The Phase II for flexible
cache update takes place every τ [flex] = 3 time slots, where
N [new] = 2 new contents will be added to the content server
and might be cached by at most 2 random users. The per-
unit gross gains for SBSs to serve users directly from their
local caches, by fetching contents from caches of the other
SBSs and by retrieving contents from the content server are,
respectively, π[local] = 1, π[SBS] = 0.5 and π[server] = 0.1,
whilst the per-unit average discount rate for users’ uploading
incentives is κ[user] = 0.1. The users’ content request arrival
processes are modeled as independent homogenous Poisson
point processes with request rate of 1 [32]. We adopt a classical
independent reference model, i.e., the commonly used power-
law Zipf distribution [7], given by

θtu→∆u,f =
f−γ

t∑F ′

f=1 f
−γt

, f ∈ F t, u ∈ Lu, (15)

to model the actual content popularities of the users at time
t that are unknown to the SBSs, where γt = 2.5 is the
Zipf exponent indicating the popularity skewness. The shift of
content popularity distribution at user u with respect to user
u − 1, i.e., ∆u, is randomly drawn from {0, 1, 2}. Note that
we employ the Zipf distribution in the simulation just as an
illustration to evaluate our proposed caching algorithm, and
the choice of the content popularity distribution model will
not affect the effectiveness of our proposed algorithm. The
channel gain is modelled as Ψt

bu = ht
2

buGaLbue
−0.5

(σs ln10)2

100 ,
where htbu ∼ CN(0, 1), Lbu(dB) = 128.1 + 37.6log10(`) [37]
is the path loss model over a distance of ` km between SBS b
and user u, Ga = 15 dBi and σs = 10 dB denote, respectively,
the antenna gain and the log-normal shadowing standard de-
viation. The other simulation parameters are described, unless
otherwise stated, as follows: coverage radius Rb = 500 m,

transmit power P [Tx]
b = 20 dBm, N = 100 random samples,

N elite = 10 elite samples, smoothing parameter α = 0.9,
exploration/exploitation trade-off εt = 0.6, discount factor
β = 0.93 and global/local trade-off µt = 0.7. The proposed
strategy is evaluated with T = 1000 time slots for each set of
parameter setting. Five designs that consider no user cache
are chosen as the benchmark designs, namely, the algorithm in
[3], the algorithm in [26], the EXP3-based caching design, the
local popularity-based caching design and the random caching
design. All benchmark designs follow similar procedures of
main cache update (Phase III) and content delivery (Phase I) as
for our proposed strategy, whereas, no user cache exploitation
(Phase II) is considered in the benchmark designs. For fair
comparison, identical constraints have been applied and the
performance metrics, i.e., the average weighted network utility,
are the same for all strategies.

1) Benchmark design in [3]: The content popularity dis-
tribution is estimated via the standard UCB-1 algorithm [33].
The estimated mean reward is set as the estimated popularity
distribution, given by Θ̄t

b,f =
Otb,f
Ntb,f

, where Otb,f and N t
b,f

denote, respectively, the long-term observation of the request
number of content f in SBS b, and the total number of time
slots the requests of content f are satisfied by local SBSs’
caches.

2) Benchmark design in [26]: The content popularity dis-
tribution is learned via the combinatorial UCB algorithm based
on the past observation of user content demands. The estimated

mean reward is given by Θ̄t
b,f =

∑t
t′=1

∑
u∈Lbu

Sfd
t′
uf

Tb,f
.

3) EXP3-based caching design: The Exponential-weight
algorithm for Exploration and Exploitation (EXP3)-based
caching design caches contents via softmax action selection
policy [38]. More specifically, a list of weights are assigned
to the individual contents and are adjusted based on the
instantaneous reward rtb,f . These weights are then utilized
in a softmax-weighted manner to decide randomly which
contents to cache during the main cache update phase. For fair
comparison, the above three benchmark designs are embedded
with a sliding-window [36], which emphasizes more on the
local empirical average of the recent observed rewards, so as
to better adapt to our considered scenario.

4) Local popularity-based caching design: It estimates the
content popularity distribution at the individual SBSs in a
distributed way without any signalling with the CU, and
caches contents merely based on recent local content demand
observations.

5) Random caching design: It randomly caches contents at
the individual SBSs without considering any content caching
coordination among SBSs. This design is employed to indicate
the lower bound and to demonstrate the advantage of the
cooperative caching and joint optimization of different caching
locations.

6) Optimal caching design: For better evaluation of the
proposed caching strategy, we further adopt a user-aided
optimal caching design to show the performance upper bound.
The optimal caching design has perfect prior knowledge of the
actual content popularity distributions {θtu,f}f∈Ft , and allows
the SBSs to update their cache units in Phase III from the
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Fig. 3. Comparison of average weighted network utility for different strategies
at individual time slots.

content server as well as their flexible caches in Phase II with
local users’ cached contents based on {θtu,f}f∈Ft .

Fig. 3 illustrates the comparison of average reward, i.e.,
the weighted network utility, of the proposed caching strategy
against various benchmark designs at the individual time slots.
As seen in Fig. 3, our proposed caching strategy outperforms
all of the five benchmark designs due to the fact that the
benchmark designs neglect both the evolution of the content
library and the potentiality of user caches in the nature of
their designs. To be specific, the benchmark designs in
[3], [26] and the EXP3-based caching design, respectively,
employ the standard UCB and EXP3 algorithms that are
originally designed for stationary reward distributions, thus
suffer from poorer adaptation to the non-stationary content
library. Furthermore, they merely focus on designing the
content placement policies, whilst ignoring the network utility
for content delivery, thus have worse performance than our
proposed design under the performance metric of average
weighted network utility. Meanwhile, the local popularity
based caching design and the random caching design have
the worst performance among all designs. The reason is that
they do not involve any signalling with the CU, hence have
no centralized content caching coordination among SBSs. The
former caches contents merely based on recent local content
demand observations, whilst the latter simply caches contents
randomly at the SBSs without any learning process to estimate
the unknown variations in user demands. In contrast, our
proposed strategy, at the cost of light signalling overhead, takes
into account the spatio-temporal variations in users’ content
demands, and maximally benefits from the user caches through
timely updating the SBS’s flexible cache in addition to the
main cache update from the server, thus provides a better
adaptation to the user demand variations.

Fig. 4 provides an illustration of the evolution of content
placement policy of SBS 1 at the 1st, the 8th, the 15th, the 25th

and the 30th iterations of Algorithm 1 at the 9th time slot. It
is clear from the figure that by updating and smoothing the
parameter vector p[n] as per step 6 and step 7 in Algorithm
1, respectively, better random samples can be produced in
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Fig. 4. Evolution of content placement policy via the CCE method.

the subsequent iterations. Furthermore, the CCE method in
Algorithm 1 converges within approximately 30 iterations and
the outputs at the 25th iteration are close to the converged
solutions, which indicates a much lower complexity and a
faster convergence speed as compared to the B&B algorithm.

Fig. 5(a) and Fig. 5(b) respectively, compares the average
overall reward, i.e., the overall weighted network utility av-
eraged over T = 1000 time slots, of the proposed strategy
against all benchmark designs for different initial sizes of con-
tent library and for various storage capacity at the SBSs. The
initial size of library ranges from F = 50 to F = 400, with
the finite content library capacity set to be F [max] = F + 50,
and the storage capacity at the SBSs ranges from 5 to 40. As
can be observed from Fig. 5, the proposed strategy has a better
average overall reward as compared to the benchmark designs,
since neither the time-varying content popularity nor the non-
stationary content library has been taken into consideration
in their designs. Furthermore, one may conclude from Fig.
5(a) that the average performance of all strategies degrades
with the increasing number of initial contents, due to the
fact that larger content library naturally results in more users’
content requests being satisfied by the content server. On the
other hand, the performance of all strategies improves with the
increasing capacity of the individual SBSs’ cache units in Fig.
5(b). The reason is that with larger caching space, the SBSs
can cache more (differentiated) popular contents locally and
reduce duplicate data transmission from the content server, and
thus, offload more traffic from the content server to the edge.

Fig. 6(a) and Fig. 6(b) present the average overall re-
wards of all strategies for various actual content popularity
variations and different number of emerged new contents
N [new], respectively. It is evident from Fig. 6(a) that both the
proposed strategy and the learning based benchmark designs
have improved performance with the increasing value of γt,
whilst less influence is observed for the random caching design
under different values of γt. More specifically, with larger
value of γt and more diverse content popularities, the majority
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Fig. 5. Comparison of average overall reward for (a) various number of initial
contents, (b) different capacity of individual cache units at the SBSs.

of the content demands of the users are occupied by fewer
most frequently requested contents, hence is more favourable
for the learning based caching designs. As can be concluded
from Fig. 6(b), though having better performance as compared
to the random caching design, the average overall rewards
of the proposed strategy as well as other benchmark designs
decrease with the increasing number of N [new]. This is due
to the fact that with a larger value of N [new], it is more
challenging for the learning process to catch up with such
rapid changes in users’ content demands, especially when the
knowledge of new changes is limited, e.g. limited samples of
users’ new content requests, and when the local caching space
is constrained. However, the proposed strategy, as compared
to the benchmark designs, is more robust in coping with the
spatio-temporal variations of user demands. On the contrary,
the variations in N [new] have less impacts on the random
caching design as it fails to satisfy users’ content requests
for most of the time.

VI. CONCLUSION

The joint cache placement and content delivery problem in
small cell networks is studied in this paper, where the spatio-
temporal dynamic content popularity is unknown a priori and
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Fig. 6. Comparison of average overall reward for different (a) content
popularity variations, (b) number of new contents.

the content library evolves over time. To take the capacity-
constrained cache units at the SBSs into account, content
caching coordination among SBSs is adopted to improve the
caching performance. To keep track of the dynamic content
library, a portion of each cache unit is assigned as the flexible
cache that can be timely updated with the contents cached by
users in addition to the routine off-peak main cache update
from the content server. Considering three phases of different
time scales for the content delivery, the flexible cache update
and the main cache update, the problem of interest is modelled
as a RL-assisted optimization problem and a user-assisted
caching algorithm is proposed to maximize the long-term
average weighted utility of the network. Simulation results
confirm the superiority of the proposed caching strategy in
achieving a significant performance improvement over various
benchmark designs.
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