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Abstract

Complexity of voting manipulation is a prominent topic in computational social choice. In this

work, we consider a two-stage voting manipulation scenario. First, a malicious party (an attacker)

attempts to manipulate the election outcome in favor of a preferred candidate by changing the vote

counts in some of the voting districts. Afterwards, another party (a defender), which cares about

the voters’ wishes, demands a recount in a subset of the manipulated districts, restoring their vote

counts to their original values. We investigate the resulting Stackelberg game for the case where

votes are aggregated using two variants of the Plurality rule, and obtain an almost complete picture

of the complexity landscape, both from the attacker’s and from the defender’s perspective.

1 Introduction

Democratic societies use elections to select their leaders. However, in societies without a strong demo-

cratic tradition, elections may be used as a way to legitimize the status quo: voters are asked to cast

their ballots, but the election authorities do not count these ballots correctly, in order to produce an out-

come that favors a specific candidate. There are multiple reports of such cases in Russia1, Congo2 and

Colombia3, as well as a number of other countries. Even when the election authorities are trustworthy,

election results may be corrupted by an external party, for instance, by means of hacking electronic

voting machines [Springall et al., 2014; Halderman and Teague, 2015].

There are several ways to counteract electoral fraud. One approach is to send observers to polling

stations, to ensure that only eligible voters participate in the elections and their ballots are counted

correctly. However, it may be infeasible for the party that wants to protect the elections (the defender)

to send observers to all polling stations. Consequently, the election manipulator (the attacker) may

observe which polling stations remain unprotected, and focus their effort on these stations. Thus, under

this approach the attacker benefits from the second-mover advantage.

An alternative approach that the defender can explore is to request recounts in some of the voting

districts. While recounts cannot protect from all forms of attacks on election integrity (e.g., a recount

is of limited use if voters have been bribed to vote in a specific way, or if the polling station has been

burned down), they are feasible in a range of settings and offer the defender the second-mover advantage.
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Plurality over Voters (PV) Plurality over Districts (PD)

Unweighted Weighted

REC

NP-c, Thm. 3.1 (i) 3 P, Thm. 4.3 NP-c, Thm. 4.1 (i) 3

NP-c, Thm. 3.1 (ii) U NP-c, Thm. 4.1 (ii) U

O(nm+2), Thm. 3.2 O(nm+2), Thm. 4.2

MAN
NP-h, Thm. 3.3 (i) 3 0 ∞ NP-c, Thm. 4.8 U ΣP

2 -c, Thm. 4.6 3

NP-h, Thm. 3.3 (ii) U 0 ∞ NP-h, Thm. 4.7 U 0

Table 1: Summary of our complexity results. MAN denotes the attacker’s problem, and REC denotes the defender’s

problem. Hardness results with U hold even when the input is given in unary (the default is binary); with 3 hold

even for three candidates; with 0 hold even when the defender’s budget is zero; with ∞ hold even when the

attacker can change as many votes as she wants in each district.

Indeed, there are several examples where a recount changed the election outcome. For instance, in

the 2008 United States Senate election in Minnesota the Democratic candidate Al Franken won the

seat after a recount revealed that 953 absentee ballots were wrongly rejected4, and in the 2004 race

for governor in Washington the Democratic candidate Gregoire was declared the winner after three

consecutive recounts5 .

However, recounts can be costly. In Gregoire’s case, the Democratic party paid $730000 for a

statewide manual recount, and in the 2016 US Presidential Election the fee to initiate a recount in

Wisconsin was $3.5 million. Thus, a party that would like to initiate a recount in order to rectify the

election results should allocate its budget carefully. Of course, the attacker also incurs costs to carry

out the fraud: local election officials may need to be bribed or intimidated, and the more districts are

corrupted, the higher is the risk that the election results will not be accepted.

Our Contribution. In this paper we analyze the strategic game associated with vote recounting. In

our model, there are two players: the attacker, who modifies some of the votes in order to make his

preferred candidate p the election winner, and the defender, who observes the attacker’s actions and tries

to restore the correct outcome (or, more broadly, to ensure that a candidate who is better than p wins

the election) by means of recounting some of the votes. We assume that the set of voters is partitioned

into electoral districts, and both the defender and the attacker make their choices at the level of districts

rather than individual votes. The attacker selects a subset of at most BA districts and changes the vote

counts in the selected districts, and the defender can then restore the vote counts in at most BD districts

to their original values. We assume that both players have full information about the true votes and

each other’s budgets, and the defender can observe the attacker’s actions. While the full information

assumption is not entirely realistic, we note that in a district-based model both parties only need to know

the vote counts in each district rather than individual votes, and one can get fairly accurate district-level

information from independent polls. Also, verifying whether the votes in a district have been tampered

with is possible using risk-limiting audits Lindeman and Stark [2012]; Schürmann [2016].

For simplicity, we focus on the Plurality voting rule, where each voter votes for a single candidate.

We consider two implementations of this rule: (1) Plurality over Voters, where districts are only used

for the purpose of collecting the ballots and the winner is selected among the candidates that receive the

largest number of votes in total, and (2) Plurality over Districts, where each district selects a preferred

candidate using the Plurality rule, and the overall winner is chosen among the candidates supported by

the largest number of districts; we also consider a variant of the latter rule where districts have weights,

4https://bit.ly/2S2PMxY
5https://bit.ly/2tnO4gG
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and the measure of a candidate’s success is the total weight of districts that support her. Both of these

rules are widely used in practice. For example, Plurality over Voters is commonly used in gubernatorial

elections in the US, while Plurality over Districts is used in the US Presidential elections.

We provide a detailed analysis of the computational complexity of the algorithmic problems faced

by the attacker and the defender. Our main results are summarized in Table 1. Briefly, assuming that the

vote counts and the weights of the districts are specified in binary, most of the problems we consider are

computationally hard; however, the defender’s problem appears to be easier than that of the attacker, and

we also get some tractability results for the former. Towards the end of the paper, we consider a variant

of our model where the attacker is limited to only transferring votes to his preferred candidate; we show

that, while this assumption reduces the attacker’s ability to achieve his goals, it lowers the complexity

of some of the problems we consider.

Related Work. There is a very substantial literature on voting manipulation and bribery; we point

the readers to the excellent surveys of Conitzer and Walsh [2016] and Faliszewski and Rothe [2016].

In much of this literature it is assumed that the malicious party can change some of the votes subject

to various constraints, and the challenge is to determine whether the attacker’s task is computationally

feasible; there is no defender that can counteract the attacker’s actions.

While there is a number of papers that apply game-theoretic analysis to the problem of voting ma-

nipulation, they typically consider interactions between several manipulators, with possibly conflicting

goals (e.g., see the recent book by Meir [2018]), rather than a manipulator and a socially-minded actor.

An important exception, which is similar in spirit to our paper, is the recent work of Yin et al. [2018],

who investigate a pre-emptive approach to protecting elections. In their model the defender allocates

resources to guard some of the electoral districts, so that the votes there cannot be corrupted; notably, in

this model the defender has to commit to its strategy first, and the attacker can observe the defender’s

actions before deciding on its response. The leader-follower (defender-attacker) structure of this model

is in the spirit of a series of successful applications of Stackelberg games to security resource allocation

problems [Tambe, 2011]. Li et al. [2017] analyze a variant of the model of Yin et al. where the goal is to

minimize resource consumption, and Chen et al. [2018] study a similar scenario, in which manipulation

is achieved through bribing the voters. The key difference between our work and the above papers is the

action order of the players: in all prior work on election protection that we are aware of the defender

makes the first move.

2 The Model

We consider elections over a candidate set C , |C| = m. There are n voters who are partitioned into k
pairwise disjoint districts D1, . . . ,Dk, k ≤ n; for each i ∈ [k], let ni = |Di|. For each i ∈ [k], district

Di has a weight wi, which is a positive integer; we say that an election is unweighted if wi = 1 for all

i ∈ [k]. Each voter votes for a single candidate in C . For each i ∈ [k] and each a ∈ C let via denote the

number of votes that candidate a gets from voters in Di; we refer to the list v = (via)i∈[k],a∈C as the

vote profile.

Let ≻ be a linear order over C; a ≻ b indicates that a is favored over b. We consider the following

two voting rules, which take the vote profile v as their input.

• Plurality over Voters (PV). We say that a candidate a beats a candidate b under PV if
∑

i∈[k] via >
∑

i∈[k] vib or
∑

i∈[k] via =
∑

i∈[k] vib and a ≻ b; the winner is the candidate that beats all other

candidates. Note that district weights wi are not relevant for this rule.

• Plurality over Districts (PD). For each i ∈ [k] the winner ai in Di is chosen from the set

argmaxa∈C via, with ties broken according to ≻. Then, for each i ∈ [k], a ∈ C , we set wia = wi

3



if a = ai and wia = 0 otherwise. We say that a candidate a beats a candidate b under PD if
∑

i∈[k]wia >
∑

i∈[k]wib or
∑

i∈[k]wia =
∑

i∈[k]wib and a ≻ b; the winner is the candidate that

beats all other candidates.

For PV and PD, we define the social welfare of a candidate a ∈ C as the total number of votes that

a gets and the total weight that a gets, respectively:

SWPV(a) =
∑

i∈[k]

via, SWPD(a) =
∑

i∈[k]

wia.

Hence, the winner under each voting rule is a candidate with the maximum social welfare.

We consider scenarios where an election may be manipulated by an attacker, who wants to change

the election result a∗ in favor of his preferred candidate p ∈ C . The attacker has a budget BA ∈ [k],
which means that he can manipulate at most BA districts. For each i ∈ [k], we are given an integer

γi, 0 ≤ γi ≤ ni, which indicates how many votes the attacker can change in district i if he chooses

to manipulate it. Formally, a manipulation is described by a set M ⊆ [k], |M | ≤ BA, and a vote

profile ṽ = (ṽia)i∈[k],a∈C such that ṽia = via for all i 6∈ M , a ∈ C , and for all i ∈ [k] it holds that
∑

a∈C ṽia = ni and
∑

a∈C max{0, ṽia − via} ≤ γi.
After the attack, a defender with budget BD ∈ {0}∪[k] can demand a recount in at most BD districts.

Formally, a defender’s strategy is a set R ⊆ M with |R| ≤ BD; after the defender acts, the vote counts

in all districts in R are restored to their original values, i.e., the resulting vote profile u = (uia)i∈[k],a∈C
satisfies uia = via for each i ∈ R, a ∈ C and uia = ṽia for each i ∈ [k]\R, a ∈ C . Then the underlying

voting rule R ∈ {PV,PD} is applied to u with ties broken according to ≻; let a′ denote the candidate

selected in this manner. The defender chooses her strategy R so as to maximize SWR(a′), breaking ties

using ≻.

We say that the attacker wins if he has a strategy (M, ṽ) such that, once the defender responds

optimally, candidate p is the winner in the resulting vote profile u; otherwise we say that the attacker

loses. We note that if BD ≥ BA, the defender can always ensure that a′ = a∗, i.e., the winner at u is the

winner at the original vote profile v, so in what follows we assume that the attacker’s strategy satisfies

|M | > BD.

Example 2.1. Consider an election with five districts D1, . . . ,D5 over a candidate set C = {a, b, p},
where p is the attacker’s preferred candidate; suppose that ties are broken according to the priority order

p ≻ a ≻ b. In each of D1 and D2 there are 7 voters who vote for a, and in each of D3, D4 and D5

there are 3 voters who vote for b. Suppose that γi = ni and wi = (ni)
2 for each i ∈ [5], and BA = 2,

BD = 1.

If the voting rule is PV, then the attacker does not have a winning strategy. Indeed, consider an

attacker’s strategy (M, ṽ). If M 6= {1, 2}, the defender can set R = M ∩ {1, 2}; in the recounted vote

profile a gets at least 14 votes, so it is the election winner. If M = {1, 2}, the defender can set R = {1}:
in the recounted vote profile p gets at most 7 votes, while b gets at least 9 votes, so the winner is a or b
(a can win if, e.g., the attacker chooses to transfer exactly 4 votes from a to p in D2, in which case a
gets 10 votes after the recount). Note that even if the winner in u is b rather than a, the defender still

prefers recounting D1 to no recounting: even though she cannot restore the correct result, she prefers b
to p, since SWPV(b) = 9 > 0 = SWPV(p).

If the voting rule is PD, then the attacker can win by choosing M = {1, 2} and transferring a

majority of votes from a to p in both districts. Indeed, even if the defender demands a recount in one of

these districts, p still wins the remaining district, leading to a vote weight of 49 in the recounted profile.

Since a’s vote weight is 49 and b’s vote weight is 27, p wins by the tie-breaking rule.

We assume that both the defender and the attacker have full information about the game. Both parties

know the true vote profile v, the parameters wi and γi for each district i ∈ [k] and each others’ budgets.

Moreover, the defender observes the strategy (M, ṽ) of the attacker.
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We can now define the following decision problems for each R ∈ {PV,PD}:

• R-MAN: Given a vote profile v, the attacker’s preferred candidate p, budgets BA and BD, and

district parameters (wi, γi)i∈[k], does the attacker have a winning strategy?

• R-REC: Given a vote profile v, a distorted vote profile ṽ with winner b, a candidate a 6= b,
a budget BD, and district weights (wi)i∈[k], can the defender recount the votes in at most BD

districts so that a gets elected?

We will also consider an optimization version ofR-REC, where c is not part of the input and the goal is

to maximize the social welfare of the eventual winner.

Unless specified otherwise, we assume that the vote counts via and the district weights wi are given

in binary; we explicitly indicate which of our hardness results still hold if these numbers are given in

unary. All problems considered in this paper admit straightforward greedy algorithms for m = 2, so in

what follows we focus on the case m ≥ 3. When the voting rule R ∈ {PV,PD} is clear from context,

we write SW(a) instead of SWR(a).
Next, we give formal definitions of the decision problems that are used throughout the paper to show

hardness ofR-REC and R-MAN for R ∈ {PV,PD}, under various constraints.

Definition 2.2 (SUBSET SUM). An instance of SUBSET SUM is given by a multiset X of integers. It

is a yes-instance if there exists a non-empty subset X ′ ⊆ X such that
∑

x∈X′ x = 0, and a no-instance

otherwise.

Definition 2.3 (EXACT COVER BY 3-SETS (X3C)). An instance of X3C is given by a set E of size 3ℓ
and a collection S of 3-element subsets of E. It is a yes-instance if there exists a sub-collection Q ⊆ S
of size ℓ such that ∪S∈QS = E, and a no-instance otherwise.

Definition 2.4 (INDEPENDENT SET). An instance of INDEPENDENT SET is a graph G = (V,E) and

an integer ℓ. It is a yes-instance if there exists a subset V ′ ⊆ V of size ℓ that forms an independent set,

i.e., {a, b} 6∈ E for all a, b ∈ V ′, and a no-instance otherwise.

Definition 2.5 (PARTITION). An instance of PARTITION is given by a multiset X of positive integers.

It is a yes-instance if there exists a subset X ′ ⊆ X such that
∑

x∈X′ x = 1
2

∑

x∈X x, and a no-instance

otherwise.

All of these problems are NP-complete [Garey and Johnson, 1979]. However, SUBSET SUM and

PARTITION are NP-hard only when the input is given in binary; for unary input, these problems can be

solved in time polynomial in the size of the input.

3 Plurality over Voters

In this section we focus on Plurality over Voters. We first take the perspective of the defender, and then

the perspective of the attacker.

Unfortunately, the defender’s problem turns out to be computationally hard, even if there are only

three candidates or if the input vote counts are given in unary.

Theorem 3.1. PV-REC is NP-complete even when

(i) m = 3, or

(ii) the input vote profile is given in unary.

Proof. This problem is clearly in NP. We give separate hardness proofs for the case m = 3 (part (i)) and

for the case where the input is given in unary (part (ii)).
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Part (i). To prove that PV-REC is NP-hard for m = 3, we provide a reduction from SUBSET SUM;

see Definition 2.2.

Given an instance X of SUBSET SUM with |X| = ℓ, we construct an instance of PV-REC as

follows. Without loss of generality, we assume that x 6= 0 for every x ∈ X and
∑

x∈X x > 0, and let

X+ = {x ∈ X : x > 0}, X− = {x ∈ X : x < 0}, y =
∑

x∈X 2|x|. We set C = {a, b, p}, where p is

the attacker’s preferred candidate. In what follows, we describe each district Di by a tuple (via, vib, vip).
There are n = 12yℓ+1 voters distributed over ℓ+3 districts, which are further partitioned into two sets

I1 and I2 as follows:

• For each x ∈ X+ there is a district in I1 with votes (0, 2x, 0), which are distorted to (0, 0, 2x), and

for each x ∈ X− there is a district in I1 with votes (0, 0,−2x), which are distorted to (0,−2x, 0).
Note that |I1| = ℓ.

• I2 contains three districts with votes (y+1, 0, 0), (0, y−
∑

x∈X+ 2x, 0), and (0, 0, y+
∑

x∈X− 2x),
respectively. The votes in these districts are not distorted.

Finally, BD = ℓ− 1.

Before the manipulation, a gets y + 1 votes and b and p get y votes each. After the manipulation,

a gets y + 1 votes, b gets y −
∑

x∈X 2x and p gets y +
∑

x∈X 2x votes; thus, by our assumption that
∑

x∈X x > 0, candidate p is the winner in the manipulated profile. The goal is to restore the true winner

a.

Now, assume that there exists a subset X ′ ⊆ X with |X ′| ≥ 1 such that
∑

x∈X′ x = 0. Then, by

recounting the ℓ− |X ′| districts of I1 that correspond to the integers in X \X ′, the defender can ensure

that both b and p get y votes. Since a always gets y + 1 votes from the non-manipulated districts, she is

successfully restored as the winner.

Conversely, assume that there is no non-empty subset X ′ ⊆ X such that
∑

x∈X′ x = 0. Then, since

the votes of b and p always add up to exactly 2y, and each of them gets an even number of votes from

each district, one of them must get at least y + 2 votes. Therefore, a cannot be restored as the winner.

Part (ii). We give a reduction from EXACT COVER BY 3-SETS (X3C); see Definition 2.3. Given an

instance of X3C, we construct the following PV-REC instance. Without loss of generality, we assume

that ∪S∈SS = E, and let s = |S|.

• Let C = {je : e ∈ E} ∪ {a, b}, |C| = 3ℓ+ 2.

• For each subset S ∈ S , there is a district DS , where a gets 2 votes, b gets 6 votes, for each e /∈ S
candidate je gets 2 votes, and for each e ∈ S candidate je gets 0 votes. The attacker distorts

the votes in DS by transferring two votes from b to each candidate je with e ∈ S, so that in the

distorted profile b gets 0 votes in DS and every other candidate gets 2 votes in DS .

• There is a district D0 where a receives 6ℓs votes, b receives 0 votes and for every e ∈ E candidate

je receives 6ℓs+ 1 votes; the votes in this district are not distorted.

• The budget of the defender is BD = ℓ.

Candidate a is the true winner with 2s + 6ℓs votes, compared to the 6s votes of b and the 2|{S ∈ S :
e /∈ S}| + 6ℓs + 1 ≤ 2s + 6ℓs − 1 votes of je for every e ∈ E. In the distorted profile ṽ candidate a
gets 2s+ 6ℓs votes, candidate b gets 0 votes, and each candidate in C \ {a, b} gets 2s+ 6ℓs+ 1 votes.

Recounting a district DS reduces by 2 the votes of each candidate je such that e ∈ S, leading to a
getting more votes than these candidates; b cannot get more than 6s votes no matter what the defender

does. Therefore, a can be restored as the winner by recounting ℓ districts if and only if E can be covered

by ℓ sets from S .
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If the number of candidates is bounded by a constant and the input is given in unary, an optimal

set of districts to recount can be identified in time polynomial in the input size by means of dynamic

programming.

Theorem 3.2. PV-REC can be solved in time O(k · BD · (n+ 1)m).

Proof. Consider an instance of PV-REC with a candidate set C , |C| = m, and n voters that are dis-

tributed over k districts. For each i ∈ [k], let vi = (via)a∈C and ṽi = (ṽia)a∈C denote, respectively, the

true and distorted votes in district i. Let BD be the budget of the defender.

We present a dynamic programming algorithm that given a candidate c ∈ C , decides whether c
can be made the election winner by recounting at most BD districts. Our algorithm fills out a table

T containing entries of the form T (i, ℓ,u), for each i ∈ {0, 1, . . . , k}, ℓ ∈ {0, 1, . . . , BD}, and u =
(ua)a∈C ∈ {0, . . . , n}

m; thus, |T | = O(k · BD · (n + 1)m). We define T (i, ℓ,u) = true if we can

recount at most ℓ of the first i districts so that the vote count of candidate a equals ua for each a ∈ C;

otherwise we define T (i, ℓ,u) = false. There exists a recounting strategy that restores c if and only if

there exists a u such that T (k,BD,u) = true, uc ≥ ua for all a ∈ C , and for all a ∈ C \ {c} such that

uc = ua the tie-breaking rule favors c over a.

For each a ∈ C , let ũa =
∑

i∈[k] ṽia be the number of votes that candidate a gets after manipulation,

and let ũ = (ũa)a∈C . We fill out T according to the following rule:

T (i, ℓ,u) =























true, if u = ũ

false, if i = 0 or ℓ = 0, and u 6= ũ

T (i− 1, ℓ,u) ∨ (u− vi + ṽi ∈ {0, . . . , n}
m and

T (i− 1, ℓ− 1,u− vi + ṽi)), otherwise.

This completes the proof.

We obtain similar hardness results for the attacker’s problem. However, it is not clear if PV-MAN

is in NP. Indeed, it may belong to a higher level of the polynomial hierarchy: it is not hard to see that

PV-MAN is in ΣP
2 , and it is plausible that this problem is hard for this complexity class.

Theorem 3.3. PV-MAN is NP-hard even when BD = 0, γi = ni for all i ∈ [k] and

(i) m = 3, or

(ii) the input vote profile is given in unary.

Proof. We prove the two claims separately.

Part (i). To prove that PV-MAN is NP-hard for m = 3, we provide a reduction from SUBSET SUM;

see Definition 2.2.

Given an instance X of SUBSET SUM with |X| = ℓ, we construct an instance of PV-MAN as

follows. We can assume without loss of generality that ℓ ≥ 2 and x 6= 0 for every x ∈ X, and let

y = maxx∈X 2|x|; by our assumptions, y ≥ 2. We set C = {a, b, p}, where p is the attacker’s preferred

candidate. In what follows, we describe each district Di by a tuple (via, vib, vip). There are n = 12yℓ+1
voters distributed over k = 4ℓ + 2 districts, which are further partitioned into four sets I1, I2, I3, I4 as

follows:

• For each x ∈ X there is a district in I1 with votes (2y + 4x, 2y − 4x, 0). Thus, |I1| = ℓ.

• Set I2 consists of ℓ− 1 districts with votes (2y, 2y, 0) in each district.

• For each x ∈ X there are two districts in I3 with votes (y − 2x, y + 2x, 0). Thus, |I3| = 2ℓ.
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• Set I4 consists of three districts with votes (y, y, 0), (y, y, 0), and (0, 0, 1).

We set BA = ℓ, BD = 0 and γi = ni for each i ∈ [k].
We have SW(a) = SW(b) = 6yℓ and SW(p) = 1. Hence, the true winner is a or b, depending

on the tie-breaking rule. We claim that the attacker can make p the winner if and only if there exists a

non-empty subset X ′ ⊆ X such that
∑

x∈X′ x = 0.

To see this, assume first that there exists a subset X ′ ⊆ X such that |X ′| ≥ 1 and
∑

x∈X′ x = 0.

Then the attacker can distort the votes in the |X ′| districts of I1 corresponding to the elements of X ′,

and in arbitrary ℓ − |X ′| districts of I2, by transferring all votes to p in each of these districts. In the

resulting election, p gets 4yℓ+ 1 votes, while a and b get 4yℓ votes each, so p becomes the winner.

Conversely, suppose that the attacker has a successful manipulation (M, ṽ) with |M | ≤ ℓ. For each

c ∈ C , let sc denote the number of votes that c receives in ṽ. For p to be the winner in ṽ, it must hold

that sp ≥ n/3 = (12yℓ+ 1)/3; since sp is an integer and SW(p) = 1, this means that the manipulation

transfers at least 4yℓ votes to p. On the other hand, in every district there are at most 4y voters who

vote for a or b, so p can gain at most 4yℓ votes from the manipulation. It follows that sp = 4yℓ + 1,

sa + sb = 8yℓ. If these 8yℓ votes are not split evenly between a and b, at least one of these candidates

would get strictly more than 4yℓ points; since each district allocates an even number of votes to both a
and b, this further means that one of them would get at least 4yℓ+ 2 votes, a contradiction with p being

the winner at ṽ. Thus, it must be the case that sa = sb = 4yℓ.
Further, sp = 4yℓ + 1, |M | = ℓ implies that M ⊆ I1 ∪ I2 and M ∩ I1 6= ∅. Moreover, we have

ṽia = ṽib = 0 for every district i ∈M . Hence,

sa = 4yℓ− 4
∑

i∈M∩I1

xi, sb = 4yℓ+ 4
∑

i∈M∩I1

xi,

where xi is the integer in X that corresponds to district Di. Thus,
∑

i∈M∩I1
xi = 0, and hence X ′ =

{xi ∈ X : i ∈M ∩ I1} is a witness that X is a yes-instance of SUBSET SUM.

Part (ii). To prove that PV-MAN is NP-hard when the input is given in unary, we provide a reduction

from X3C; see Definition 2.3.

Given an instance 〈E,S〉 of X3C with |E| = 3ℓ, |S| = s, we construct an instance of PV-MAN as

follows. We set C = {je : e ∈ E} ∪ {p}, where p is the attacker’s preferred candidate. The districts are

partitioned into three sets I1, I2, I3:

• For each subset S ∈ S the set I1 contains a district DS . In this district each candidate je such that

e ∈ S gets 3ℓ votes, and all other candidates get no votes. Thus, |DS | = 9ℓ.

• For each element e ∈ E, the set I2 contains 3ℓs + 9ℓ2 − 3ℓ · |{S ∈ S : e ∈ S}| districts; each of

these districts consists of a single voter who votes for je.

• The set I3 contains a single district D∗ that consists of 3ℓs− 2ℓ voters who vote for p.

We set BA = ℓ, BD = 0 and γi = ni for all i ∈ [k].
We have SW(je) = 3ℓs + 9ℓ2 for all e ∈ E and SW(p) = 3ℓs − 2ℓ. Hence, the true winner is the

candidate in C \ {p} who is favored by the tie-breaking rule. We show that the attacker is able to make

p the winner if and only if E admits an exact cover by sets from S .

Suppose that Q ⊆ S is an exact cover for E; note that |Q| = ℓ. The attacker can manipulate the ℓ
districts in I1 that correspond to sets in Q by reassigning all the 9ℓ votes in each of them to p. In the

resulting election, p gets 3ℓs+9ℓ2− 2ℓ votes, while every other candidate je gets 3ℓs+9ℓ2− 3ℓ votes,

as every e is covered by exactly one set in Q.

Conversely, suppose the attacker has a successful manipulation (M, ṽ) with |M | ≤ ℓ. For each

c ∈ C , let sc denote the number of votes that c receives in ṽ. As p can gain at most 9ℓ votes for each
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district in M , we have sp ≤ 3ℓs+9ℓ2 − 2ℓ. LetQ = {S ∈ S : DS is manipulated}; note that |Q| ≤ ℓ.
We claim that Q is a cover for E. Indeed, if for some e ∈ E no district in {DS : e ∈ S} is manipulated,

the manipulation lowers the score of je by at most ℓ, so sje ≥ 3ℓs + 9ℓ2 − ℓ > sp, a contradiction.

In the hardness reductions in the proof of Theorem 3.3 the defender’s budget is 0. This indicates that

the attacker’s problem remains NP-hard even if the defender is known to use a heuristic (e.g., a greedy

algorithm) to compute her response.

We remark that PV-REC and PV-MAN with BD = 0 are very similar in spirit to combinatorial

(shift) bribery [Bredereck et al., 2016]. In both models, a budget-constrained agent needs to select a set

of vote-changing actions, with each action affecting a group of voters. However, there are a few technical

differences between the models. For instance, in our model different actions are associated with non-

overlapping groups of voters, which is not the case in combinatorial shift bribery. On the other hand, in

shift bribery under the Plurality rule votes can only be transferred to/from the manipulator’s preferred

candidate p, while our model does not impose this constraint (see, however, Section 5). Consequently,

it appears that the technical results in our paper cannot be derived from known results for combinatorial

shift bribery.

4 Plurality over Districts

In this section we study Plurality over Districts. For the defender’s problem, we can replicate the results

we obtain for Plurality over Voters, by using similar techniques.

Theorem 4.1. PD-REC is NP-complete even when

(i) m = 3, or

(ii) the input vote profile and district weights are given in unary.

Proof. This problem is clearly in NP. We give separate hardness proofs for the case m = 3 (part (i)) and

for the case where the input is given in unary (part (ii)).

Part (i). We use the same reduction as in the proof of the first part of Theorem 3.1. An important

feature of this reduction is that all voters in each district vote for the same candidate. Thus, if we set

the weight of each district to be equal to the number of voters therein, the proof goes through without

change.

Part (ii). We provide a reduction from INDEPENDENT SET; see Definition 2.4. Given an instance

〈G, ℓ〉 of INDEPENDENT SET, where G = (V,E), we construct an instance of PD-REC as follows. Let

ν = |V |, µ = |E|; we can assume without loss of generality that µ ≥ 1. We set C = {ju : u ∈
V } ∪ {je : e ∈ E} ∪ {a, p}, where p is the attacker’s preferred candidate; thus, |C| = ν + µ + 2. We

create the following districts. For our argument, the district sizes and the values of γi do not matter; for

concretness, we assume that each district consists of a single voter, whose vote can be changed by the

manipulator.

• For each edge e = {x, y} ∈ E, there are two districts De,x and De,y with weight 2 each. In each

such district De,u the winner before manipulation is je, and the winner after manipulation is ju.

• For each node u ∈ V , there is a district Du with weight 2µ; in this district the winner before

manipulation is ju, and the winner after manipulation is p.
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• There is a set I of 2(ν + µ) + 1 districts with weight 2
2(ν+µ)+1 each6; in each such district the

winner before manipulation is a, and the winner after manipulation is p.

• There is a district of weight 2(ν − ℓ)µ+ 3 with winner a; this district is not manipulated.

• For each e ∈ E, there is a district of weight 2(ν − ℓ)µ with winner je; this district is not manipu-

lated.

• For each u ∈ V , there is a district of weight 2(ν − ℓ)µ − 2µ + 2 with winner ju; this district is

not manipulated.

The budget of the defender is BD = ν + µ. The candidates’ weights before and after manipulation are

given in the following table:

true weight distorted weight

a 2(ν − ℓ)µ+ 5 2(ν − ℓ)µ+ 3

p 0 2νµ+ 2

je, e ∈ E 2(ν − ℓ)µ+ 4 2(ν − ℓ)µ

ju, u ∈ V 2(ν − ℓ)µ+ 2 ≤ 2(ν − ℓ)µ+ 2

Hence, the true winner is candidate a and the winner after manipulation is p.

If V ′ ⊆ V is an independent set of size ℓ in G, the defender can proceed as follows. For each u ∈ V ′,

she demands a recount in Du and in each district De,u such that e is incident to u. Since V ′ forms an

independent set, this requires recounting at most ν + µ districts. Moreover, after the recount the weight

of p is 2(ν− ℓ)µ+2, the weight of a is 2(ν− ℓ)µ+3, the weight of each candidate ju such that u ∈ V ′

is 2(ν − ℓ)µ + 2, the weight of each candidate ju such that u ∈ V \ V ′ is at most 2(ν − ℓ)µ + 2, and

the weight of each candidate je such that e ∈ E is at most 2(ν − ℓ)µ+2. Thus, this recounting strategy

successfully restores a as the election winner.

Conversely, suppose that the defender has a recounting strategy R that results in making a the elec-

tion winner. Since |R| ≤ BD, at most ν + µ districts in I can be recounted, so a’s weight after the

recount is at most 2(ν − ℓ) + 3 + 2(ν+µ)
2(ν+µ)+1 < 2(ν − ℓ) + 4. Now, if R contains at most ℓ− 1 districts

in {Du : u ∈ V }, then p’s weight after the recount is at least 2(ν − ℓ + 1)µ + 2 ≥ 2(ν − ℓ) + 4,

a contradiction with a becoming the winner after the recount. Hence, R contains at least ℓ districts in

{Du : u ∈ V }; let V ′ be the subset of nodes corresponding to these districts. We claim that V ′ forms an

independent set in G.

Indeed, consider a node u ∈ V ′. If the defender does not recount some district De,u such that

u is incident to e then after the recount the weight of ju is at least 2(ν − ℓ)µ + 4, a contradiction

with a becoming the winner after the recount. Thus De,u is necessarily recounted. Now, suppose that

e = {x, y} ∈ E for some x, y ∈ V . We have just argued that both De,x and De,y have to be recounted.

But this means that the score of je is at least 2(ν− ℓ)µ+4 after the recount, a contradiction again. Thus,

V ′ is an independent set.

Theorem 4.2. PD-REC can be solved in time O(k · BD · (n+ 1)m).

Proof. The algorithm is a simple adaptation of the dynamic program presented in the proof of Theo-

rem 3.2.

We also obtain a positive result that does not have an analogue in the PV setting; if all districts have

the same weight, the recounting problem can be solved efficiently.

6For convenience, we use fractional weights. We can turn all weight into integers, by multiplying them by 2(ν + µ) + 1.
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Theorem 4.3. PD-REC can be solved in polynomial time if wi = 1 for all i ∈ [k].

Proof. We reduce our problem to nonuniform bribery [Faliszewski, 2008]. An instance of nonuniform

bribery under the Plurality rule is given by a set of voters and a set of candidates; for each voter i and

each candidate c there is a price πic for making voter i vote for c, and the briber’s goal is to make her

preferred candidate the Plurality winner7 while staying within a budget B. This problem is known to be

in P [Faliszewski, 2008]. To reduce PD-REC to nonuniform bribery, we map each district Di to a single

voter i; if the true winner in Di is x, and in the distorted profile the winner in Di is y, we set πiy = 0,

πiz = +∞ for z ∈ C \ {x, y}, and if x 6= y (i.e., if the attacker has changed the outcome in Di), we

set πix = 1. Then for any candidate c ∈ C it holds that in PD-REC the defender can make c win by

recounting at most BD districts if and only if in our instance of nonuniform bribery the briber can make

c win by spending at most BD.

We now consider the attacker’s problem. It turns out that for the PD rule we can obtain a stronger

hardness result than for PV: we will now argue that when weights and vote counts are given in binary,

PD-MAN is ΣP
2 -complete even for m = 3. Our reduction uses a variant of the SUBSET SUM problem,

which we term SUB-SUBSET SUM (SSS); this problem may be of independent interest.

Definition 4.4 (SUB-SUBSET SUM). An instance of SUB-SUBSET SUM is a set X ⊆ Z and a positive

integer ℓ. It is a yes-instance if there is a subset X ′ ⊆ X with |X ′| = ℓ such that
∑

x∈X′′ x 6= 0 for

every non-empty subset X ′′ ⊆ X ′, and a no-instance otherwise.

Our proof proceeds by establishing that SSS is ΣP
2 -complete (Lemma 4.5; the proof can be found in the

appendix), and then reducing this problem to PD-MAN.

Lemma 4.5. SSS is ΣP
2 -complete.

Theorem 4.6. PD-MAN is ΣP
2 -complete, even when m = 3.

Proof. Clearly, PD-MAN is in ΣP
2 . To prove hardness, we reduce from SSS. Given an instance 〈X, ℓ〉 of

SSS, we construct an instance of PD-MAN with three candidates {a, b, p}. Let X+ = {x ∈ X : x > 0}
and X− = X \X+. Set y =

∑

x∈X 3|x|. In what follows we describe the votes in each district Di as a

list (via, vib, vip). The districts are partitioned into three sets I1, I2 and I3:

• I1 has a district with votes (0, 3x, 0) for each x ∈ X+, and a district with votes (0, 0,−3x) for

each x ∈ X−.

• I2 consists of a single district with votes (0, y + 3, 0).

• I3 consists of three districts with votes (2y + 5, 0, 0), (0, y −
∑

x∈X+ 3x, 0), and (0, 0, 2y + 4 +
∑

x∈X− 3x).

For every district Di we set wi = ni. The attacker is allowed to change all votes in each district in I1
and I2, but none in I3. Finally, let BA = ℓ+ 1 and BD = ℓ. The true winner in this profile is candidate

a with weight 2y + 5, compared to the weight 2y + 3 of b and 2y + 4 of p.

Given a set of integers Y ⊆ X, let I1(Y ) be the corresponding set of districts in I1. Assume that

there is a subset X ′ ⊆ X with |X ′| = ℓ such that no X ′′ ⊆ X ′ has sum equal to 0. The attacker can then

exchange the weights of b and p in the districts in I1(X
′) and the district in I2. This way, p becomes the

winner with weight 3y + 7 +
∑

x∈X′ 3x ≥ 2y + 7, compared to the weight 2y + 5 of a and the weight

y −
∑

x∈X′ 3x ≤ 2y of b.
Since SW(p) > SW(b), to defeat the attacker, the defender needs to restore a as the winner. To

this end, she must recount the district in I2, as otherwise p’s weight will remain at least 2y + 7. Hence

7Faliszewski [2008] assumes that ties are broken in favor of the briber, but his results extend to lexicographic tie-breaking.
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she can recount at most ℓ− 1 manipulated districts in I1. Let the set of non-recounted districts in I1 be

I1(X
′′) for some X ′′ ⊆ X ′; note that X ′′ 6= ∅, so by assumption,

∑

x∈X′′ x 6= 0. Then, the weight of

b is 2y + 3 −
∑

x∈X′′ 3x and the weight of p is 2y + 4 +
∑

x∈X′′ 3x. At least one of these numbers is

greater than or equal to 2y + 6; thus, a cannot be restored as the winner.

Conversely, suppose that for every subset X ′ ⊆ X of size ℓ there exists a non-empty X ′′ ⊆ X ′ such

that
∑

x∈X′′ x = 0. Then, the attacker cannot win. Indeed, let M be the set of manipulated districts. If

a district is changed in favor of a, the defender can recount all other districts in M . On the other hand,

if all districts in M are won by b or p, the defender can identify a non-empty subset of M ∩ I1 such that

the corresponding integers sum up to 0, and request a recount of all other districts in M . Such a recount

recovers the correct weights of b and p, and a is restored as the winner.

We conjecture that PD-MAN remains ΣP
2 -complete when the input is given in unary; however, for

this setting we are only able to prove that this problem is NP-hard.

Theorem 4.7. PD-MAN is NP-hard, even when BD = 0 and the input vote profile and district weights

are given in unary.

Proof. To show that PD-MAN is NP-hard even when the input votes and district weights are given in

unary, we provide a reduction from INDEPENDENT SET; see Definition 2.4.

Given an instance 〈G, ℓ〉 of INDEPENDENT SET with G = (V,E), we construct the following

instance of PD-MAN. Let ν = |V |, µ = |E|. We set C = {ju : u ∈ V } ∪ {je : e ∈ E} ∪ {a, p}, where

p is the attacker’s preferred candidate; thus, |C| = ν + µ + 2. Then, we create the following districts;

the weight of each district is equal to the number of voters therein.

• For every edge e = {x, y} ∈ E, we create two districts De,x and De,y with 5 voters each; thus,

we,x = we,y = 5. In each such district De,u there are two voters who vote for je and three voters

who vote for ju. We set γe,u = 1; thus, the attacker can change the winner in this district from ju
to je.

• For every node u ∈ V , we create a district Du with 5µ voters; thus, wu = 5µ. In each such

district there are 2µ voters who vote for ju and 3µ voters who vote for a. We set γu = µ; thus, the

attacker can change the winner in this district from a to ju.

• There are also some districts that cannot be manipulated (i.e., γ = 0). We specify the weights and

the winners of these districts.

– For each e ∈ E, there is a district with weight 5µ(ν − ℓ)− 5 and winner je.

– For each u ∈ V , there is a district with weight 5µ(ν − ℓ− 1) and winner ju.

– Finally, there is a district with weight 5µ(ν − ℓ) + 1 and winner p.

The budgets are BA = ν + µ and BD = 0.

We have SW(a) = 5µν, SW(p) = 5µ(ν − ℓ) + 1, SW(je) = 5µ(ν − ℓ) − 5 for each e ∈ E, and

SW(ju) = 5µ(ν − ℓ− 1) + 5 |{e ∈ E : u ∈ e}| ≤ 5µ(ν − ℓ) for each u ∈ V . Hence, the true winner

of the election is candidate a. We show that the attacker can make p the winner if and only if 〈G, ℓ〉 is a

yes-instance of INDEPENDENT SET, i.e., there is an independent set of size ℓ in G.

Suppose first that there is an independent set V ′ ⊆ V , |V ′| = ℓ, in G. The following manipulation

strategy makes p the winner. For every u ∈ V ′, change the winner of district Du from a to ju, and for

every e ∈ E such that u ∈ e, change the winner of district De,u from ju to je. Note that since V ′ is

an independent set, the weight of each candidate je, e ∈ E, increases by at most 5. Let ωc denote the

weight of each candidate c ∈ C after manipulation. We have ωa = 5µ(ν − ℓ), ωp = 5µ(ν − ℓ) + 1,

ωje ∈ {5µ(ν− ℓ)− 5, 5µ(ν − ℓ)} for each e ∈ E, and ωju = 5µ(ν− ℓ) for each u ∈ V ; thus, candidate

p becomes the winner of the election.
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Conversely, suppose that the attacker has a manipulation that makes p the election winner; for each

c ∈ C , let ωc be the weight of candidate c after this manipulation. Since p cannot be made the winner

in any additional district, we have ωp = 5µ(ν − ℓ) + 1. Let V ′ be the set of all nodes u ∈ V such

that the attacker changes the winner of Du from a to ju. Since ωa ≤ ωp, we have |V ′| ≥ ℓ; we will

now argue that V ′ is an independent set. Indeed, consider a node u ∈ V ′. Changing the winner in

Du from a to ju increases the weight of ju by 5µ. As we have ωju ≤ ωp, the manipulation needs to

reduce the weight of ju by 5|{e ∈ E : u ∈ e}|. The only way to do so is to change the winner from

ju to je in all districts De,u with u ∈ e, thereby increasing the weight of je by 5. Now, suppose that

x, y ∈ V ′ and e = {x, y} ∈ E. Then the manipulation increases the weight of je by 10, so we have

ωje = 5µ(ν − ℓ) + 5 > ωp, a contradiction. Thus, V ′ is an independent set.

PD-MAN remains NP-hard even if all districts have the same weight; however, under this assump-

tion this problem can be placed in NP, i.e., the unweighted variant of PD-MAN is strictly easier than its

weighted variant unless NP= ΣP
2 (which is believed to be highly unlikely).

Theorem 4.8. PD-MAN is NP-complete when wi = 1 for all i ∈ [k].

Proof. To see that PD-MAN is in NP when wi = 1 for all i ∈ [k], it suffices to note that PD-REC is in

P under this assumption (Theorem 4.3). To prove that PD-MAN remains NP-hard even in this case, we

again provide a reduction from INDEPENDENT SET; see Definition 2.4.

Given an instance 〈G, ℓ〉 of INDEPENDENT SET, where G = (V,E), we construct an instance of

PD-MAN as follows. Let ν = |V |, µ = |E|, and for each u ∈ V let deg(u) denote the degree of

vertex u in G; without loss of generality, we can assume that µ > 0 and deg(u) > 0 for all u ∈ V . Let

AV = {au : u ∈ V }, A′
V = {bu : u ∈ V }, AE = {ae : e ∈ E}, and set C = AV ∪ A′

V ∪ AE ∪ {p},
where p is the attacker’s preferred candidate; thus, |C| = 2ν+µ+1. The tie-breaking order≻ is defined

so that p ≻ c for all c ∈ C \ {p}, and c ≻ c′ for all c ∈ AV , c′ ∈ AE . We create the following districts

(note that the weight of each district is 1).

• For every edge e = {x, y} ∈ E, we create two districts De,x and De,y with 5 voters each. In each

such district De,u there are two voters who vote for au and three voters who vote for ae. We set

γe,u = 1; thus, the attacker can change the winner in this district from ae to au.

• For every vertex u ∈ V , we create a district Du with two voters who vote for au and three voters

who vote for bu. We set γu = 1; thus, the attacker can change the winner in this district from bu
to au.

• There are also some districts that cannot be manipulated (i.e., γ = 0); for concreteness, we assume

that each such district has five voters, and they all vote for the same candidate:

– For each e ∈ E, there are µ− 1 districts where the winner is ae;

– For each u ∈ V , there are µ− deg(u) districts where the winner is au;

– There are µ districts where the winner is p.

The budgets are BA = 2µ + ℓ and BD = ℓ. Thus, we have SW(p) = µ, SW(ae) = µ + 1 for each

e ∈ E, SW(au) = µ − deg(u) < µ and SW(bu) = 1 for each u ∈ V . Consequently, the true winner is

one of the candidates in AE .

We will now argue that G admits an independent set of size ℓ if and only if there is a winning strategy

for the attacker.

Suppose first that V ′ ⊆ V is an independent set of size ℓ. Consider the following strategy for the

attacker, which changes votes in exactly BA districts:

• For each e = {x, y} ∈ E, change the winner of De,x from ae to ax, and the winner of De,y from

ae to ay .
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• For each u ∈ V ′, change the winner of Du from bu to au.

Let ωc denote the weight of each candidate c ∈ C after this manipulation. We have ωp = µ, ωae = µ−1
for each e ∈ E, ωau = µ for each u ∈ V \ V ′, ωau = µ + 1 for each u ∈ V ′, and ωbu = 0 each

u ∈ V . Hence, in the manipulated instance the winner is chosen from {au : u ∈ V ′} according to the

tie-breaking rule.

Even though p does not win the election at this point, we will now show that p becomes the winner

once the defender respond optimally to this manipulation.

First, we show that the defender can make p win. To this end, for each u ∈ V ′ the defender can

pick one edge eu such that u ∈ eu and demand a recount in district Deu,u; altogether, this strategy

requires recounting ℓ = BD districts. Since V ′ is an independent set, after the recount the weight of

each candidate ae, e ∈ E, is at most µ, and also the weight of each candidate au, u ∈ V , is at most µ.

Since ωp = µ and p is favored by the tie-breaking rule, p becomes the election winner.

We will now argue that for every candidate a that can be made the election winner by recounting

at most ℓ districts we have SW(a) ≤ SW(p); since defender breaks ties according to ≻, this proves

that the defender will choose a recounting strategy that makes p win. To see this, suppose for the sake

of contradiction that there is a recounting strategy that results in a candidate a with SW(a) > SW(p)
becoming the election winner. Note that SW(a) > SW(p) implies that a ∈ AE and hence ωa = µ − 1.

Let ω′
c denote the weight of each candidate c ∈ C after the recount. The attacker does not transfer any

district to a, which implies that ω′
a ≤ SW(a) = µ + 1. On the other hand, since ω′

p = µ, and the

tie-breaking rule favors p over all other candidates, we have ω′
a ≥ µ+1. Thus, ω′

a = µ+1. This means

that ω′
a − ωa = 2, i.e., if a = ae and e = {x, y}, both De,x and De,y are recounted. We will now argue

that x, y ∈ V ′. Indeed, for each u ∈ V ′ we have ωau = µ + 1; on the other hand, au ≻ a and hence

ω′
au

< ω′
a = µ + 1. Thus, the defender must demand that for each u ∈ V ′ the district Du is recounted;

since BD = ℓ, the set of recounted districts is exactly V ′, and hence x, y ∈ V ′, as claimed. But this is a

contradiction, since {x, y} ∈ E, and V ′ is an independent set. This proves that if 〈G, ℓ〉 is a yes-instance

of INDEPENDENT SET, there is a winning strategy for the attacker.

Conversely, suppose that G has no independent set of size ℓ. Consider an attack that changes votes

in at most BA districts. For each c ∈ C , let ωc denote the weight of candidate c after the attack. Note

that ωp = µ; moreover, any attack can only increase the weight of candidates in AV , and the weight

of any such candidate after the attack is at most µ + 1. Let V ′ = {u ∈ V : ωau = µ + 1} and

C ′ = {au ∈ C : u ∈ V ′}. We consider three cases:

• |V ′| > BD. Since recounting a district only reduces the weight of one candidate, the weight of

some candidate au ∈ C ′ will still be µ+ 1 after the recount, so p will be beaten by au.

• |V ′| ≤ BD, V ′ is not an independent set. Pick an edge e∗ = {x, y} such that x, y ∈ V ′, and

consider the following recounting strategy. For each u ∈ V ′ \ {x, y}, the defender picks one edge

eu such that u ∈ eu, and demands a recount in districts Deu,u for each u ∈ V ′ \ {x, y} as well as

in De∗,x and in De∗,y. This recounting strategy requires recounting |V ′| ≤ BD districts, reduces

the weight of every candidate c ∈ C ′ by 1 and increases the weight of ae∗ by 2. Thus, after the

recount the weight of ae∗ is µ+1, whereas the weights of all candidates in C \AE do not exceed

µ, so the winner is a candidate a ∈ AE . Since SW(a) > SW(p), this means that p cannot win

after the recount.

• |V ′| ≤ BD, V ′ is an independent set. Then by our assumption |V ′| < ℓ = BD. Consider an edge

e∗ = {x, y} with x ∈ V ′, y 6∈ V ′. For each u ∈ V ′ \ {x}, the defender can pick one edge eu such

that u ∈ eu, and demand a recount in districts Deu,u for each u ∈ V ′ \ {x} as well as in De∗,x

and in De∗,y. This strategy requires recounting |V ′|+ 1 ≤ BD districts and ensures that after the

recount the weight of e∗ is µ + 1, whereas the weights of all candidates in C \ AE are at most µ,
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so the winner is a candidate a ∈ AE . Since SW(a) > SW(p), this means that p cannot win after

the recount.

Hence, the attacker cannot win in any case. This completes the proof.

Theorem 4.7 holds even for BD = 0, but for Theorems 4.6 and 4.8 this is not the case. Indeed, PD-

MAN is in NP when BD = 0, since the attacker simply needs to guess a manipulation and check whether

it makes p the winner. The unweighted problem (Theorem 4.8) can be shown to be in P when BD = 0;

the argument uses a reduction to nonuniform bribery similar to the one in the proof of Theorem 4.3.

Thus, recounting has a clear impact on the complexity of the attacker’s problem.

5 Regular Manipulations

In our model, the attacker does not have to transfer votes to his preferred candidate p in the manipulated

districts; indeed, he may even choose to transfer votes from p to another candidate. However, manip-

ulations that give additional votes to candidates other than p are counter-intuitive and may be difficult

to implement in practice. Therefore, in this section we study what happens if the attacker is limited to

transferring votes (in case of PV) or vote weight (in case of PD) to his preferred candidate p.

Definition 5.1 (Regular manipulation). Let p be the preferred candidate of the attacker. A manipulation

(M, ṽ) is said to be regular if for every district i ∈M it holds that

• the voting rule is PV and ṽia ≤ via for all a ∈ C \ {p};

• the voting rule is PD and in ṽ candidate p is the winner in each district in M .

The difference between our general model and the one where the attacker is limited to using regular

manipulations is similar to the difference between swap bribery and shift bribery [Elkind et al., 2009]:

in swap bribery the attacker can change the vote in any way he likes subject to budget constraints, while

in shift bribery he is limited to shifting his preferred candidate in voters’ rankings.

One may expect that the restriction to regular manipulations is without loss of generality: indeed,

why would the attacker want to transfer votes to candidates other than p? However, our next example

shows that this intuition is incorrect.

Example 5.2. We show an example for PV; the example also works for PD by setting wi = ni for

every i ∈ [k]. Consider an instance with 3 candidates {a, b, p} and 19 voters who are distributed to 12
districts. The vote profile is as follows:

Candidate D1 D2 D3, . . . , D8 D9, . . . , D12

a 0 3 1 0

p 6 0 0 0

b 0 0 0 1

Also, BA = 2, BD = 1, and γi = ni for all i ∈ {1, . . . , 12}. The true winner is candidate a with 9
votes, compared to the 6 votes of p and the 4 votes of b. No regular manipulation can make p win: no

matter what the attacker does, by recounting at most one district the defender can ensure that a gets at

least 8 votes and p gets at most 7 votes.

Now, consider a non-regular manipulation that distorts all votes in D1 in favor of b, and all votes in

D2 in favor of p. Then in the distorted profile a has 6 votes and p has 3 votes, and b wins with 10 votes.

If the defender does not recount D1, b remains the winner after recounting, and if she does recount it, p
becomes the winner. Crucially, since SW(b) < SW(p), the defender prefers the latter option, so p wins

after the recount.
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Example 5.2 shows that only considering regular manipulations may be suboptimal for the attacker.

However, the attacker may be limited to regular manipulations by practical considerations. For instance,

the election officials in the manipulated districts may find it difficult to follow complex instructions.

Thus, it is interesting to understand if focusing on regular manipulations affects the complexity of the

problems we consider.

The following observation will be useful for our analysis.

Proposition 5.3. Let R ∈ {PV,PD}, and let (M, ṽ) be a winning regular manipulation. Then for

every recounting strategy R ⊆M it holds that after the recount p is the election winner.

Proof. Let B = {b ∈ C \ {p} : SWR(b) < SWR(p) or SWR(b) = SWR(p), p ≻ b}. Since M is a

winning manipulation, the winner after recounting is either p or some candidate in B; we will show that,

since M is regular, the latter case is, in fact, impossible. For each c ∈ C , let sc denote the number of

votes/vote weight of c after the recount. Since M is a regular manipulation, for each candidate b ∈ B

sb ≤ SWR(b) ≤ SWR(p) ≤ sp,

and if b ≻ p, the second inequality is strict. Thus, p beats every candidate in B after recounting, so no

such candidate can be the election winner.

By setting R = ∅ in Proposition 5.3, we observe that p is the winner at ṽ, i.e., the situaiton described

in Example 5.2, where p does not win after the manipulation, but the defender is forced to make p the

election winner, cannot occur if the attacker is limited to regular manipulations.

In what follows, we consider the complexity of R-REC and R-MAN for R ∈ {PV,PD} under

the assumption that the attacker is limited to regular manipulations; we denote these versions of our

problems by R-REC-REG and R-MAN-REG, respectively. We first consider the defender’s problem

(R-REC-REG) and then the attacker’s problem (R-MAN-REG).

5.1 The Defender’s Problem

LetR ∈ {PV,PD}, and consider a regular manipulation (M, ṽ). Recall that we assume that |M | > BD.

Note that if p is not a winner at ṽ, the attacker necessarily By Proposition 5.3, we can assume that p
is the winner at ṽ. The defender can then try the following greedy strategy. Initially, it defines the set

of provisional winners to consist of p. Then, for each a ∈ C \ {p} such that SWR(a) > SWR(p) or

SWR(a) = SWR(p) and a ≻ p the algorithm sorts the districts in M in non-increasing order in terms

of the quantity (via− vip)− (ṽia− ṽip) for PV, and the quantity (wia−wip)− (w̃ia− w̃ip) for PD; ties

are broken arbitrarily. Next, it checks what happens if the first BD districts in this order are recounted; if

this results in a candidate b ∈ C \{p} with SWR(b) > SWR(p) or SWR(b) = SWR(p), b ≻ p, winning

the election, the defender adds b to the set of provisional winners. Finally, it outputs the provisional

winner with the maximum social welfare, breaking ties according to ≻. We refer to this algorithm as

greedy recounting; note that its running time is polynomial in the input size.

Lemma 5.4. Let R ∈ {PV,PD}. Suppose that the attacker uses a regular manipulation (M, ṽ). Then

greedy recounting outputs p if and only if (M, ṽ) is a winning strategy for the attacker.

Proof. We provide the proof for R = PV; the proof for R = PD is obtained by replacing candidates’

vote counts with weights. Consider the attacker’s strategy (M, ṽ). Given a set of districts R ⊆ M
and a candidate a ∈ C , let sa(R) denote the number of votes that candidate a gets after the attacker

manipulates according to (M, ṽ) and the defender recounts the districts in R. Given two candidates

a, b ∈ C and a subset of districts R ⊂M , we write sa(R)⊲ sb(R) if sa(R) > sb(R) or sa(R) = sb(R)
and a ≻ b.
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Since (M, ṽ) is a regular manipulation, for every R ⊆M we have

sp(R) ≥ SW(p) and sc(R) ≤ SW(c) for all c ∈ C \ {p}.

Suppose that (M, ṽ) is not a winning strategy for the attacker. Then there exists a subset R∗ of

at most BD districts such that after recounting R∗ the winner is a candidate a ∈ C \ {p} such that

SW(a) > SW(p) or SW(a) = SW(p), a ≻ p. We can assume without loss of generality that |R∗| = BD.

Indeed, suppose that |R∗| < BD and a wins after recounting the districts in R∗. Let Q be an arbitrary

set of BD districts such that R∗ ⊂ Q ⊆ M , and suppose that once the votes in Q are recounted, the

winner is c. Since (M, ṽ) is a regular manipulation, we have

SW(c) ≥ sc(Q) ≥ sa(Q) ≥ sa(R
∗) ≥ sp(R

∗) ≥ SW(p).

If any of these inequalities is strict, we have SW(c) > SW(p). Otherwise, the second inequality implies

c ≻ a and the fourth inequality implies a ≻ p, so we have SW(c) = SW(p), c ≻ p. In either case,

recounting the districts in Q results in an outcome that the defender prefers to p.

We will argue that the greedy recounting algorithm does not output p. Let Ra be the set of districts

recounted by this algorithm when it considers candidate a (i.e., Ra contains the first BD districts in

non-increasing order of the quantity (via − vip)− (ṽia − ṽip)), and let b be the winner after recounting

the districts in Ra. Consider the following possibilities.

• b 6= p. If SW(b) > SW(p) or SW(b) = SW(p), b ≻ p, the algorithm adds b to the set of

provisional winners and thus does not output p. Otherwise, we have

sp(Ra) ≥ SW(p) ≥ SW(b) ≥ sb(Ra);

if b ≻ p, the second inequality is strict. Consequently, sp(Ra)⊲sb(Ra), so b cannot be the winner

after recounting the districts in Ra, a contradiction.

• b = p. By our choice of Ra and the fact that |Ra| = |R
∗| we have

0 ≤ sa(R
∗)− sp(R

∗)

=
∑

i 6∈R∗

(ṽia − ṽip) +
∑

i∈R∗

(via − vip)

=
∑

i∈[k]

(ṽia − ṽip) +
∑

i∈R∗

(via − vip − ṽia + ṽip)

≤
∑

i∈[k]

(ṽia − ṽip) +
∑

i∈Ra

(via − vip − ṽia + ṽip)

=
∑

i 6∈Ra

(ṽia − ṽip) +
∑

i∈Ra

(via − vip)

= sa(Ra)− sp(Ra).

Combining this with the fact that sp(Ra)⊲sa(Ra), we conclude that sp(Ra) = sa(Ra) and p ≻ a.

Thus, all inequalities above are, in fact, equalities, so in particular sp(R
∗) = sa(R

∗). Together

with p ≻ a this implies that sp(R
∗) ⊲ ra(R

∗), a contradiction with our assumption that a is the

winner after recounting R∗.

This completes the proof.

Notably, greedy recounting does not constitute an algorithm forR-REC-REG: it is unable to decide

whether there is a recounting strategy that results in a specific candidate becoming the election winner.

However, it serves as a 1/2-approximation algorithm for the defender: it outputs a candidate a such

that for every candidate a′ that can be made a winner by recounting at most BD districts it holds that

SW(a) ≥ SW(a′)/2.
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Theorem 5.5. Greedy recounting is a 1/2-approximation algorithm for the optimization versions of

PV-REC-REG and PD-REC-REG.

Proof. We focus on PV; the analysis can be adapted for PD, by modifying the notation so as to take into

account the weights of the candidates rather than their vote counts.

Consider an instance with a set of candidates C , |C| = m, and let p be the attacker’s preferred

candidate. Suppose that the attacker uses a regular manipulation (M, ṽ); we will assume that p is the

winner in the manipulated instance, as otherwise the attacker does not have an incentive to manipulate.

For each c ∈ C , let sc denote the vote count of candidate c in the manipulated instance. If p is the winner

before the manipulation or if no recounting strategy can change the outcome, then greedy recounting is

trivially optimal. Hence, in the remainder of the proof we assume that there is a candidate b 6= p such

that SW(b) > SW(p) or SW(b) = SW(p), b ≻ p, such that the defender can make b win; let c be the

defender’s most preferred candidate with this property, and let R be a recounting strategy that results

in c becoming the winner after a recount. We consider the round in which greedy recounting examines

candidate c; suppose that greedy recounting selects a subset of districts G. Let A = C \ {c, p} denote

the set of the remaining m− 2 candidates.

We define the following pairwise disjoint sets of districts:

• IG = G \R;

• IO = R \G;

• IOG = R ∩G;

• IOG = M \ (R ∪G).

Given a set of districts I ⊆M and a subset of candidates J ⊆ C \ {p}, let

∆(I, J) =
∑

i∈I

∑

a∈J

(via − ṽia)

denote the total number of votes in I that are transferred by the attacker from candidates in J to p; if J
or I is a singleton, we omit the curly braces and write ∆(I, j) or ∆(i, J), respectively. Since (M, ṽ) is

a regular manipulation, we have

sp = SW(p) + ∆(M, c) + ∆(M,A), (1)

sc = SW(c)−∆(M, c), (2)

sa = SW(a)−∆(M,a) for each a ∈ A. (3)

Since recounting the districts in R = IO ∪ IOG ensures that c becomes the winner, we obtain

sc +∆(IO ∪ IOG, c) ≥ sp −∆(IO ∪ IOG, c)−∆(IO ∪ IOG, A); (4)

if p ≻ c, this inequality is strict.

Next, let us focus on the behavior of the greedy recounting. Let g ∈ IG and o ∈ IO. Since the

greedy algorithm selects g, but not o, we have

(vgc − vgp)− (ṽgc − ṽgp) ≥ (voc − vop)− (ṽoc − ṽop).

Since vic − ṽic = ∆(i, c) and ṽip − vip = ∆(i, c) + ∆(i, A) for every i ∈M , we then obtain

2∆(g, c) + ∆(g,A) ≥ 2∆(o, c) + ∆(o,A).
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Since |G| = BD, |R| ≤ BD, we have |IG| ≥ |IO|. Pick a subset of districts I ′G ⊆ IG with |I ′G| = |IO|.
We can pair each o ∈ IO with a unique g ∈ I ′G, and add all corresponding inequalities to get

2∆(I ′G, c) + ∆(I ′G, A) ≥ 2∆(IO, c) + ∆(IO, A);

since ∆(i, b) ≥ 0 for all b ∈ A ∪ {c} and all i ∈ IG \ I
′
G, we get

2∆(IG, c) + ∆(IG, A) ≥ 2∆(IO, c) + ∆(IO, A). (5)

By adding inequalities (4) and (5), we obtain

sc +∆(IO ∪ IOG, c) + 2∆(IG, c) + ∆(IG, A)

≥ sp −∆(IO ∪ IOG, c)−∆(IO ∪ IOG, A) + 2∆(IO, c) + ∆(IO, A),

or, simplifying,

sc +∆(IG ∪ IOG, c) ≥ sp −∆(IG ∪ IOG, c)−∆(IG ∪ IOG, A); (6)

if p ≻ c, then Inequality (4) is strict and hence Inequality (6) is strict as well. Inequality (6) means that

after recounting the districts in G = IG ∪ IOG, c beats p, i.e., the winner is either c or another candidate

a ∈ A. To conclude the proof, it suffices to show that if the winner in the recounted instance is some

candidate a ∈ A then SW(a) ≥ 1
2SW(c).

By substituting expressions for sc and sp from (2) and (1), we can write Inequality (6) as

SW(c)−∆(IO ∪ IOG, c) ≥ SW(p) + ∆(IO ∪ IOG, c) + ∆(IO ∪ IOG, A).

Since SW(p) ≥ 0 and ∆(IO ∪ IOG, A) ≥ 0, it follows that

∆(IO ∪ IOG, c) ≤
1

2
SW(c). (7)

By our assumption, recounting the districts in G = IG ∪ IOG results in a getting at least as many votes

as c, so we obtain

sa +∆(IG ∪ IOG, a) ≥ sc +∆(IG ∪ IOG, c).

By substituting expressions for sa and sc from (3) and (2), we can rewrite this inequality as

SW(a)−∆(IO ∪ IOG, a) ≥ SW(c) −∆(IO ∪ IOG, c).

Finally, since ∆(IO ∪ IOG, a) ≥ 0, from Inequality (7) we obtain

SW(a) ≥
1

2
SW(c),

as desired.

In fact, the bound on the approximation ratio provided by Theorem 5.5 is essentially tight.

Theorem 5.6. For any constant ε > 0, neither PV-REC-REG nor PD-REC-REG admits a polynomial-

time (12 + ε)-approximation algorithm unless P = NP, even when m = 3.
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Proof. We focus on PV; the proof for PD follows by setting the weight of each district in the reduction

below to be equal to the number of voters therein.

We will show that if there is a (12 + ε)-approximation algorithm for PV-REC-REG, it can be used to

solve PARTITION; see Definition 2.5.

Given an instance X of PARTITION with |X| = ℓ, we construct an instance of PV-REC-REG

with a set of candidates C = {a, b, p}, where p is the attacker’s preferred candidate, as follows. Let

y =
∑

x∈X x, and z = ⌈y/ε⌉. Without loss of generality, we assume that all integers in X are divisible

by 4 and hence y ≥ 4. In what follows, we describe each district Di by a tuple (via, vib, vip). The

districts are partitioned into the following three sets I1, I2 and I3:

• For each x ∈ X, there is a district in I1 with votes (0, 2xℓ, 0), which are distorted to (0, 0, 2xℓ).

• I2 consists of 2zℓ districts with votes (1, 0, 0), which are distorted to (0, 0, 1).

• I3 consists of two districts with votes (2zℓ+yℓ+2ℓ, 0, 0) and (0, 2zℓ, 0), which are not distorted.

Finally, the budget of the defender is BD = ℓ− 1.

Since votes are transferred to p only, the manipulation is regular. The vote counts of the candidates

before and after the manipulation are as follows:

True vote counts (SW) Distorted vote counts

a 4zℓ+ yℓ+ 2ℓ 2zℓ+ yℓ+ 2ℓ

b 2zℓ+ 2yℓ 2zℓ

p 0 2zℓ+ 2yℓ

Therefore, before the manipulation the winner is a, and the manipulation makes p the election winner.

Since
SW(c)

SW(a)
≤

2zℓ+ 2yℓ

4zℓ+ yℓ+ 2ℓ
<

1

2
+ ε for each c ∈ {b, p},

any (12 + ε)-approximation algorithm can decide whether a can be restored as the winner. We will now

argue that this is equivalent to deciding whether the given instance of PARTITION is a yes-instance.

Suppose that X is a yes-instance of PARTITION, i.e., there exists a subset X ′ ⊆ X such that
∑

x∈X′ x = y/2; note that |X ′| ≤ ℓ − 1. Then, by recounting the |X ′| districts of I1 that corre-

spond to the integers in X ′, the defender lowers the vote count of p by yℓ and increases the vote count

of b by yℓ. As a result, a gets 2zℓ + yℓ + 2ℓ votes, b gets 2zℓ + yℓ votes, and p gets 2zℓ + yℓ votes.

Therefore, a is restored as the election winner.

Conversely, suppose that there is no subset X ′ ⊆ X such that
∑

x∈X′ x = y/2. Since all integers in

X are divisible by 4, y/2 is even and hence for any X ′ ⊆ X we have |
∑

x∈X′ x − y/2| ≥ 2. Suppose

that the defender recounts districts in I1 that correspond to a subset X ′ ⊆ X as well as q districts in I2;

let u =
∑

x∈X′ x. Since q < ℓ, the vote count of candidate a after the recount is

2zℓ+ yℓ+ 2ℓ+ q < 2zℓ+ yℓ+ 3ℓ.

If u ≥ y/2 + 2, then the vote count of b after the recount is

2zℓ+ 2uℓ ≥ 2zℓ+ yℓ+ 4ℓ.

Otherwise, u ≤ y/2− 2. Since q < ℓ, the vote count of p after the recount is

2zℓ− q + 2ℓ
∑

x∈X\X′

x = 2zℓ− q + 2yℓ− 2uℓ

> 2zℓ+ 2yℓ− 2uℓ− ℓ

≥ 2zℓ+ yℓ+ 3ℓ.

Therefore, in either case one of b or p gets more votes than a, and the theorem follows.
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5.2 The Attacker’s Problem

Greedy recounting also plays an important role in our analysis of R-MAN-REG. Indeed, even though

greedy recounting does not constitute an algorithm for R-REC-REG, Lemma 5.4 suffices to establish

that R-MAN-REG is in NP: the attacker can guess a regular manipulation and use greedy recounting

to verify whether it is successful. For PV, this complexity upper bound is tight: one can check that in

the hardness proofs in Theorem 3.3 the attacker’s successful manipulation strategy is regular, and hence

PV-MAN-REG is NP-complete. We summarize these observations in the following theorem.

Theorem 5.7. PV-MAN-REG is NP-complete. The hardness result holds even if m = 3 or if the input

vote profile and district weights are given in unary.

We cannot use the same approach to show that PD-MAN-REG is NP-hard: the hardness proofs

in Theorems 4.6–4.8 rely on the attacker using a non-regular strategy. In fact, it turns out that PD-

MAN-REG is polynomial-time solvable, i.e., for PD focusing on regular manipulations brings down the

complexity of the attacker’s problem from ΣP
2 to P.

Theorem 5.8. PD-MAN-REG can be solved in polynomial time.

Proof. Let p be the attacker’s preferred candidate, and let A = {c ∈ C : SW(c) > SW(p) or SW(c) =
SW(p), c ≻ p} be the set of candidates that are preferred to p by the defender. For each c ∈ C \ {p},
we denote by Sc the set of districts that have c as their true winner and can be manipulated in favor of p.

Let S =
⋃

c∈C\{p} Sc denote the set of all districts that can be manipulated in favor of p. Note that for

every c ∈ C the set Sc can be computed efficiently: the problem of deciding if the winner of district Di

can be changed to p can be viewed as an instance of nonuniform bribery under Plurality with prices in

{0, 1} and budget γi, and nonuniform bribery is in P for the Plurality rule (see the proof of Theorem 4.3

for the definition of nonuniform bribery and references).

Since the manipulation is regular, the attacker’s strategy can be identified with a subset M ⊆ S. Let

ℓ = min{BA, |S|} be the maximum number of districts that can be manipulated. For any set Q ⊆ S,

|Q| ≤ ℓ, let f(Q) be the set that consists of ℓ−|Q| heaviest districts in S\Q, with ties broken arbitrarily;

thus, |f(Q) ∪Q| = ℓ. Our algorithm is based on the following lemma.

Lemma 5.9. Consider a subset Q ⊂ S such that there exists a winning regular manipulation M ,

|M | ≤ ℓ, with Q ⊂ M . Suppose that when the attacker manipulates the districts in Q ∪ f(Q), there

is a candidate a ∈ A such that the defender can make a beat p by recounting at most BD districts. Let

Smax
a = argmaxj∈Sa\Q wj . Then

(i) Sa \Q 6= ∅, and

(ii) for each i ∈ Smax
a there is a winning regular manipulation M ′, |M ′| ≤ ℓ, with Q ∪ {i} ⊆M ′.

Before we prove this lemma, we will explain how to use it to find a winning regular manipulation if

it exists. The algorithm proceeds as follows.

1. Set Q = ∅.

2. Apply greedy recounting to Q ∪ f(Q) to check whether Q ∪ f(Q) is a winning regular manipu-

lation. If yes, terminate and return Q ∪ f(Q). Otherwise greedy recounting returns a candidate

a ∈ A such that the defender can make a beat p by recounting at most BD districts.

3. If Sa\Q = ∅ or |Q| = ℓ, then output ∅. Otherwise, select an arbitrary i ∈ Smax
a , set Q← Q∪{i},

and go back to Step 2.
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By Lemma 5.4, if the algorithm returns Q∪f(Q) at the end of Step 2, then Q∪f(Q) is a winning regular

manipulation. Otherwise, by Lemma 5.9, there is no winning strategy. This shows that our algorithm is

correct. To see that it runs in polynomial time, note that every execution of Step 2 increases |Q| by 1,

and |Q| is bounded from above by ℓ.
To complete the proof, it remains to prove Lemma 5.9

Proof of Lemma 5.9. Suppose that there exist Q, M and a that satisfy the conditions in the statement

of the lemma. For each candidate c ∈ C and each X ⊆ S, let sc(X) denote the weight of c after the

districts in X have been manipulated in favor of p. We prove each claim of the lemma separately.

Proof of claim (i). We will prove a stronger claim, namely, that M ∩ (Sa \Q) 6= ∅.

Suppose for the sake of contradiction that M ∩ (Sa \ Q) = ∅. We will argue that in this case

Q ∪ f(Q) is a winning manipulation, thereby obtaining a contradiction with the assumptions of the

lemma. To this end, we consider an arbitrary recounting strategy R′ ⊆ Q∪ f(Q), |R′| ≤ BD, transform

it into a recounting strategy R ⊆M , and use the fact that M is a winning manipulation.

Since Q ⊆M , we have M ∩ Sa ⊆ Q and (M \Q) ∩ Sa = ∅. Hence,

∑

i∈M\Q

wia =
∑

i∈(M\Q)∩Sa

wi = 0. (8)

Fix a recounting strategy R′ ⊆ Q∪ f(Q), |R′| ≤ BD. Let R′′ be the set of min {|R′ ∩ f(Q)|, |M \Q|}
heaviest districts in M \ Q, and set R = (R′ ∩ Q) ∪ R′′. Note that R ⊆ M and |R| ≤ BD: we have

|R| ≤ |R′ ∩Q|+ |R′ ∩ f(Q)| ≤ |R′| ≤ BD. Moreover, Q \R = Q \R′, and

sa
(

(Q ∪ f(Q)) \R′
)

= SW(a)−
∑

i∈(Q∪f(Q))\R′

wia

≤ SW(a)−
∑

i∈Q\R′

wia

= SW(a)−
∑

i∈Q\R

wia −
∑

i∈M\Q

wia

≤ SW(a)−
∑

i∈Q\R

wia −
∑

i∈(M\Q)\R

wia

= sa(M \R), (9)

where the third transition follows by (8).

Next, we claim that

∑

i∈f(Q)\R′

wi ≥
∑

i∈(M\Q)\R

wi.

Indeed, if |R′′| = |M \Q|, then M \Q ⊆ R, so the right-hand side of this inequality is 0, and our claim

is immediate. Otherwise, |R′′| = |f(Q) ∩R′| = |(M \Q) ∩R| and |f(Q)| = |M \Q|, i.e., both sums

have the same number of summands. Moreover, f(Q) contains the heaviest ℓ − |Q| districts in S \ Q,

M \Q ⊆ S \Q, and (M \Q) ∩R consists of |(M \Q) ∩R| heaviest districts in M \Q, so the claim

follows.

We can now write

sp
(

(Q ∪ f(Q)) \R′
)

= SW(p) +
∑

i∈Q\R′

wi +
∑

i∈f(Q)\R′

wi
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≥ SW(p) +
∑

i∈Q\R

wi +
∑

i∈(M\Q)\R

wi

= sp(M \R). (10)

Combining inequalities (9) and (10), we obtain

sa((Q ∪ f(Q)) \R′)− sp((Q ∪ f(Q)) \R′) ≤ sa(M \R)− sp(M \R).

Since M is a winning manipulation, we have sa(M \ R) ≤ sp(M \R), and if a ≻ p, this inequality is

strict. As this hold for any defender’s strategy R′, it follows that Q ∪ f(Q) is a winning manipulation,

too, which contradicts the assumptions of the lemma.

Proof of claim (ii). We have established that Sa \ Q 6= ∅ and hence Smax
a 6= ∅. Now, suppose for

the sake of contradiction that for some i ∈ Smax
a there is no winning regular manipulation M ′ with

|M ′| ≤ ℓ, Q ∪ {i} ⊆ M ′. Since all districts in Smax
a are identical from both the attacker’s and the

defender’s perspective, it holds that, in fact, for every i ∈ Smax
a there is no winning regular manipulation

M ′ with |M ′| ≤ ℓ, Q ∪ {i} ⊆M ′.

We have argued that M ∩ (Sa \ Q) 6= ∅; pick some j ∈ M ∩ (Sa \ Q). Since Q ∪ {j} ⊆ M
and M is a winning regular manipulation, it follows that j /∈ Smax

a . Pick some i ∈ Smax
a and set

M ′ = (M \ {j}) ∪ {i}. We will now obtain a contradiction by showing that M ′ is a winning regular

manipulation. Consider an arbitrary recounting strategy R′ ⊆M ′, |R′| ≤ BD.

(a) If i ∈ R′, let R = (R′ \ {i}) ∪ {j} so that |R| = |R′| ≤ BD, and M ′ \R′ = M \R. Since M is

a winning strategy, for every c ∈ A we have

sc(M
′ \R′)− sp(M

′ \R′) = sc(M \R)− sp(M \R) ≤ 0;

if c ≻ p, this inequality is strict.

(b) If i /∈ R′, let R = R′. Then for every c ∈ C \ {a, p} we have

sc(M
′ \R′) = sc(M \R),

and, since wj < wi, we obtain

sa(M
′ \R′) = sa(M \R) + wj − wi < sa(M \R),

sp(M
′ \R′) = sp(M \R)− wi + wj > sp(M \R).

Combining these facts, for every c ∈ A we have

sc(M
′ \R′)− sp(M

′ \R′) < sc(M \R)− sp(M \R) ≤ 0.

Thus, both in case (a) and in case (b), p remains the winner after recounting.

This completes the proof of the lemma.

We have described an algorithm that finds a winning regular manipulation (and returns ∅ if no such

manipulation exists) in polynomial time. Thus, PD-MAN-REG is in P.
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6 Conclusion and Open Problems

We have studied the problem of protecting elections by means of recounting votes in the manipulated

districts. Our results offer an almost complete picture of the worst-case complexity of the problems faced

by the defender and the attacker. Perhaps the most obvious open question is whether we can strengthen

the NP-hardness results for PV-MAN and for PD-MAN under unary representation to ΣP
2 -completeness

results. The next challenge is to extend our results beyond Plurality; e.g., leadership elections are often

conducted using Plurality with Runoff, and it would be interesting to understand if similar results hold

for this rule.

Our model is quite expressive: districts may have different weights, and an attacker may only be

able to corrupt a fraction of votes in a district. These features of the model are intended to capture

the challenges of real-world scenarios; in particular, it is typically infeasible for the attacker to change

all votes in a district. However, it is important to understand their impact on the complexity of the

problems we consider. We tried to indicate which of our hardness results hold for special cases of the

model, and proved some easiness results under simplifying assumptions, but it would be good to obtain

a more detailed picture, possibly using the tools of parameterized complexity. A concrete open question

is whether our ΣP
2 -hardness result holds if γi = ni for all i ∈ [k].

We contrasted out model with that of Yin et al. [2018], where the defender moves first and protects

some of the districts from manipulation. In practice, the defender can use a variety of protective measures

at different points in time, and an exciting direction for future work is to analyze what happens when

the defender can split her resources among different activities, with some activities preceding the attack,

and others (such as recounting) undertaken in the aftermath of the attack.
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1 . . . 2i 2i+ 1 . . . 2|B|+ 2

xi 1 ai (one copy for each i ∈ {1, . . . , |A|})

x0 1 0 (q copies)

yi 1 bi (q + 1 copies for each i ∈ {1, . . . , |B|})

y′
i

1 0 (q + 1 copies for each i ∈ {1, . . . , |B|})

wi 1 }

(q copies of y−i = wi − zi

for each i ∈ {1, . . . , |B|})
zi bi

s q · · · 2q + 1 q · · · t (the goal)

Figure 1: Reduction from BI-SS to SSS+ (all blank sections are 0s).

A Appendix: Proof of Lemma 4.5

In order to prove that SSS is ΣP
2 -complete, we will first show (Lemma A.1) that a variant of this problem,

which we call SSS+, is ΣP
2 -complete. We will then explain how to reduce SSS+ to SSS.

An instance of SSS+ is given by a set of positive integers Y and two positive integers r and f . It

is a yes-instance if there exists a subset Y ′ ⊆ Y with |Y ′| = r such that for all Y ′′ ⊆ Y ′ it holds that
∑

x∈Y ′′ x 6= f , and a no-instance otherwise.

Lemma A.1. SSS+ is ΣP
2 -complete.

Proof. It is easy to see that SSS+ is in ΣP
2 . In the remainder of the proof, we show that this problem is

ΣP
2 -hard. Consider an instance 〈Y, r, f〉 of SSS+. Let q = |Y |−r, s =

∑

x∈Y x−f . Note that 〈Y, r, f〉
is a yes-instance of SSS+ if and only if there exists a subset Y ′ ⊆ Y with |Y ′| = q such that for all

Y ′′ ⊆ Y \ Y ′ it holds that
∑

y∈Y ′ y +
∑

y∈Y ′′ y 6= s; thus, this instance of SSS+ can be equivalently

described by the triple 〈Y, q, s〉.
To prove hardness of SSS+, we show a reduction from the BILEVEL SUBSET SUM (BI-SS) problem,

which is known to be ΣP
2 -complete [Berman et al., 2002].

Definition A.2 (BILEVEL SUBSET SUM (BI-SS)). An instance of BI-SS is given by a positive integer t
and two sets of positive integers A and B. It is a yes-instance if there exists a set A′ ⊆ A such that for

all B′ ⊆ B it holds that
∑

a∈A′ a+
∑

b∈B′ b 6= t, and a no-instance otherwise.

It is convenient to think of both BI-SS and SSS+ as leader-follower games. The leader acts first by

selecting a subset; his aim is to prevent the sum of the integers chosen by both players from reaching a

given target. The follower acts second; her aim is to select a subset so that the sum of the chosen integers

equals the target. The difference between these two games is that in the former game the leader and the

follower select from two different sets and there is no limit of the number of integers each of them can
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choose, whereas in the latter game the leader is limited to q integers and both parties choose from the

same base set.

Given an instance 〈A,B, t〉 of BI-SS, where A = {a1, . . . , a|A|}, B = {b1, . . . , b|B|}, we proceed

as follows. We will represent a positive integer x as a vector of bits of length L = ⌊log2 x⌋+1, denoted

x = x1 . . . xL: we have
∑

i∈[L] x
i · 2L−i = x. We will consider numbers that correspond to bit vectors

consisting of 2|B|+ 2 sections, with each section consisting of

⌈

log2

(

∑

a∈A

a+ (|A|+ 1)
∑

a∈B

b+ 1

)⌉

+ ⌈log2(2|A| + 2)⌉

bits; this value, which is polynomial in the size of the input, is chosen so that addition operations do not

carry bits across sections. For h = 1, . . . , 2|B|+ 2, let x(h) denote the h-th section of x.

We now construct an instance of SSS+ described by a triple 〈Y, q, s〉. Let q = |A|. The set Y
consists of the following integers (see also Figure 1):

• For each i = 1, . . . , q, there is an integer xi such that xi(1) = 1, xi(2|B|+2) = ai, and xi(h) = 0
for each section h 6= 1, 2|B| + 2.

• There are q copies of integer x0 such that x0(1) = 1, and x0(h) = 0 for each section h 6= 1.

• For each i = 1, . . . , |B|, there are:

– q + 1 copies of integer yi such that yi(2i) = 1, yi(2|B| + 2) = bi, and yi(h) = 0 for each

section h 6= 2i, 2|B| + 2.

– q + 1 copies of integer y′i such that y′i(2i) = 1 and y′i(h) = 0 for every section h 6= 2i.

– q copies of integer y−i = wi − zi, where wi is such that wi(2i + 1) = 1 and wi(h) = 0
for every h 6= 2i + 1, while zi is such that zi(2|B| + 2) = bi and zi(h) = 0 for every

h 6= 2|B|+ 2.

Also, we set the goal s so that s(1) = q, s(2|B|+ 2) = t, and s(2h) = 2q + 1, s(2h+ 1) = q for each

h ∈ {1, . . . , |B|}.
To verify the correctness of the reduction, we first make the following observation. In the SSS+

instance, the follower can achieve the goal s only if, for each i = 1, . . . , |B|, all copies of y−i and

exactly 2q + 1 out of the 2q + 2 copies of yi and y′i are included in the set Y ′ ∪ Y ′′, which is chosen

by the joint efforts of the leader and the follower: otherwise, the 2i-th and the (2i + 1)-th sections of

the sum would not match the corresponding sections in s. The follower can decide whether Y ′ ∪ Y ′′

will contain q + 1 copy of yi and q copies of y′i or vice versa, since the leader’s choice is restricted to q
integers, while the follower’s choice is unrestricted. Therefore, for each i = 1, . . . , |B|, the (2|B|+2)-th
section of the sum of the selected copies of yi, y

′
i and y−i will be either 0 or bi; effectively, the follower

chooses whether to include bi in the sum.

Now, suppose that in the given BI-SS instance there exists a subset A′ ⊆ A such that for all B′ ⊆ B
it holds that

∑

a∈A′ a +
∑

b∈B′ b 6= t. Then, in the corresponding instance of SSS+ the leader can

choose the subset Y ′ containing all xi such that ai ∈ A′ and q − |A′| copies of x0. Given this choice

of the leader, the follower can only choose integers from the copies of yi, y
′
i, and y−i since any other

choice will make the first section of the sum different from q. However, since
∑

a∈A′ a+
∑

b∈B′ b 6= t
for all B′ ⊆ B, no matter which integers the follower chooses, the last section of the sum cannot be t.
Thus, this instance of SSS+ is a yes-instance.

Conversely, suppose that the BI-SS INSTANCE is such that for every A′ ⊆ A there exists a B′ ⊆ B
such that

∑

a∈A′ a +
∑

b∈B′ b = t. We will now argue that in the corresponding instance of SSS+ the

follower can always achieve the goal s. Indeed, suppose the leader chooses a set Y ′. Let A′ = {ai :

27



xi ∈ Y ′}, and, for each i ∈ {1, . . . , |B|}, let αi be the number of copies of yi in Y ′, let α′
i be the number

of copies of y′i in Y ′, and let βi be the number of copies of y−i in Y ′. Fix some set B′ ⊆ B such that
∑

a∈A′ a+
∑

b∈B′ b = t. To achieve the goal s, the follower can include the following integers in Y ′′:

• q − |A′| copies of x0, so that the first section of the sum is exactly q;

• q + 1− αi copies of yi, q − α′
i copies of y′i, and q − βi copies of y−i for each i such that bi ∈ B′,

so that the last sections of the copies of yi, y
′
i, and y−i in Y ′ ∪ Y ′′ sum up to bi;

• q − αi copies of yi, q + 1− α′
i copies of y′i, and q − βi copies of y−i for each i such that bi /∈ B′,

so that the last sections of the copies of yi, y
′
i, and y−i in Y ′ ∪ Y ′′ sum up to 0.

This completes the proof.

We are now ready to show that SSS is ΣP
2 -complete. This problem is obviously in ΣP

2 . We show

that it is ΣP
2 -hard via a reduction from SSS+. Given an instance 〈Y, r, f〉 of SSS+, we construct an

instance 〈X, ℓ〉 of SSS as follows. Let q = |Y | − r, z =
∑

x∈Y x+ 1 and z′ = −f − (q + 1)z.

• Let X consist of all integers in Y , 2q+1 copies of z and q+1 copies of z′. Thus, |X| = |Y |+3q+2.

• Set ℓ = |Y |+ 2q + 2.

Observe that any subset X ′ ⊆ X of size ℓ must contain: (1) at least r integers from Y , (2) at least one

copy of z′, and (3) at least q + 1 copies of z. Note also that z′ + (q + 1)z = −f . We will show that

〈Y, r, f〉 is a yes-instance of SSS+ if and only if 〈X, ℓ〉 is a yes-instance of SSS.

Suppose that 〈X, ℓ〉 is a yes-instance of SSS; thus, there exists X ′ ⊆ X such that |X ′| = ℓ and
∑

x∈X′′ x 6= 0 for all X ′′ ⊆ X ′ with X ′′ 6= ∅. By our observation, X ′ contains at least r integers from

Y . Consider a set Y ′ obtained by picking exactly r elements from X ′∩Y . We claim that
∑

x∈Y ′′ x 6= f
for all Y ′′ ⊆ Y ′. Indeed, pick an arbitrary subset Y ′′ ⊆ Y ′, and consider a set X ′′ containing all integers

in Y ′′, one copy of z′ and q + 1 copies of z. If
∑

x∈Y ′′ x = f , then
∑

x∈X′′ x = 0, contradicting our

assumption that 〈X, ℓ〉 is a yes-instance of SSS. Therefore, Y ′ witnesses that 〈Y, r, f〉 is a yes-instance

of SSS+.

Conversely, suppose that 〈Y, r, f〉 is a yes-instance of SSS+, i.e., there exists a set Y ′ ⊆ Y such that

|Y ′| = r and
∑

x∈Y ′′ x 6= f for all Y ′′ ⊆ Y ′. Consider the set X ′ containing all integers in Y ′, all q+1
copies of z′, and q + 1 copies of z; hence, |X ′| = r+ 2q + 2 = ℓ. Suppose towards a contradiction that
∑

x∈X′′ x = 0 for some X ′′ ⊆ X ′ with X ′′ 6= ∅.

Let nz and nz′ be the number of copies of z and z′ in X ′′, respectively; we have nz, nz′ ≤ q + 1.

We have

0 =
∑

x∈X′′

x = nz′ · z
′ + nz · z +

∑

x∈X′′∩Y ′

x. (11)

Since z and all numbers in Y ′ are positive, it holds that nz′ > 0. Substituting z′ = −f − (q + 1)z, we

obtain

nz′f + [(q + 1)nz′ − nz]z =
∑

x∈X′′∩Y ′

x ≤
∑

x∈Y

x < z

and hence

(q + 1)nz′ − nz < 1. (12)

Since nz, nz′ ≤ q + 1 and nz′ > 0, Eq. (12) implies that nz′ = 1 and nz = q + 1. Substituting these

values into Eq. (11), we obtain
∑

x∈X′′∩Y ′ x = f , which contradicts the assumption that
∑

x∈Y ′′ x 6= f
for all Y ′′ ⊆ Y ′. We conclude that

∑

x∈X′′ x 6= 0 for all X ′′ ⊆ X ′ with X ′′ 6= ∅, so 〈X, ℓ〉 is a

yes-instance of SSS.

28


	1 Introduction
	2 The Model
	3 Plurality over Voters
	4 Plurality over Districts
	5 Regular Manipulations
	5.1 The Defender's Problem
	5.2 The Attacker's Problem

	6 Conclusion and Open Problems
	A Appendix: Proof of Lemma 4.5

