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ABSTRACT
This paper addresses the semiparametric estimation of the regression function in a
situation where the response variable is right-censored and the covariate(s) is com-
pletely observed. We present a new copula-based method to estimate the regression
function. The key concept presented in this manuscript is to write the regression
function in terms of the copula density and marginal distributions. We suppose a
parametric model for the copula density with unknown parameter(s) and we estimate
the marginal distributions of the response and the covariate by the Kaplan-Meier
estimator and the empirical distribution, respectively. We establish the asymptotic
properties of our estimator and extend it to the multivariate case. The proposed
method is then applied to analyze a data-set on lifetime with lung-cancer.

KEYWORDS
Semiparametric copula-based estimation; Regression function; Censored data;
Parametric copula models; Kaplan-Meier estimator.

1. Introduction

Incident cohort design is usually adopted to study the time between an initiating event,
say disease onset, to a terminating event, say death. The failure times of individuals
recruited in such studies may however be subject to right-censoring due to voluntary
retraction, emigration or end of study. Right-censoring on the response variable (failure
time) arises when the followed subjects in a study cannot provide us information on
the outcome of the study despite of our knowledge of the predictors for these subjects
(e.g. age at disease onset).

The relation between these predictors and the response variable is one of the most
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important problem in statistics. In particular, the regression model

Y = m(X) + ε,

where m(x) = E[Y |X = x] is an unknown smooth function and ε is a random
error (E[ε|X = x] = 0 and E[ε2|X = x] < ∞). The estimation of the regression
function m have been extensively studied in literature under different data settings.
At first, [18] and [11] proposed estimators based on the linear regression model
with some methodological weaknesses since they both require a particular censoring
pattern. Furthermore, based on the general linear model, the method proposed by
[1] is an iterative sequence of estimators and has the drawback of not necessarily
converging. In the work of [5,13,24,26–28], data transformations for censored data
were presented. The problem with the linear regression models is that they are too
restrictive. Nonparametric methods, for example Nadaraya-Watson or local linear
kernel (see [6]), provide a flexible method, since they do not assume a specific model
for the regression function. However, the nonparametric approaches suffer from the
curse of dimensionality. More recently, several copula-based methods were proposed
to estimate m for complete data. For instance, see the parametric approach of [25],
[12] and [3], and the semiparametric method of [20].

Consider a response variable Y , with distribution F0 and density f0, and a vector
of d predictors X = (X1, ..., Xd) with joint distribution FX and joint density fX . Let
F1, . . . , Fd be the respective marginal distributions of X1, . . . , Xd, x = (x1, . . . , xd)
and denote F (x) =

(
F1(x1), . . . , Fd(xd)

)
. From the copula theory, it is known that the

multivariate distribution FY,X1,...,Xd
is given by

FY,X1,...,Xd
(y, x1, . . . , xd) = C (F0(y), F1(x1), . . . , Fd(xd)) ,

where C is the copula distribution of (Y,X1, ..., Xd) with uniform margins on [0, 1].
Using this decomposition, the conditional density of Y given X = x can be written
in terms of copula densities as

fY |X=x(y) = f0(y)
c (F0(y),F (x))

cX (F (x))
, (1)

where c and cX are the respective copula densities of (Y,X1, ..., Xd) and (X1, ..., Xd).
Using a copula-based parametric approach, [25], [12] and [3] investigated the re-
lationship (1) for various copula families (e.g. Gaussian, Student, Farlie-Gumbel-
Morgenstern (FGM), Iterated FGM, Archimedean) in order to estimate the regres-
sion function m(x) for single and multiple covariates. For instance, if the copula
density of (Y,X1) belongs to the FGM family with parameter θ, i.e. c(u0, u1) =
1 + θ(1− 2u0)(1− 2u1), then

m(x1) = E[Y ] + θ (2F1(x1)− 1)

∫
F0(y) (1− F0(y)) dy.

For the multiple covariates case (d ≥ 2), see [12]. Note that for θ = 0 Y and X1 are
independent and m(x1) = E[Y ]. Another example, if the copula of (Y,X) is Gaussian,
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then

m(x) = E

[
F−1

0

{
Φ

(
uTΣ−1

X ρ+ Z
√

1− ρTΣ−1
X ρ

)}]
,

where u = (Φ−1(F1(x1)), . . . ,Φ−1(Fd(xd)))
T , ρ = (corr(Y,X1), . . . , corr(Y,Xd))

T ,
Z ∼ N(0, 1), Φ is the standard normal cdf and ΣX is the correlation ma-
trix of X. For ρ = 0, Y and X are independent and m is simplified to
m(x1) = E

[
F−1

0 (Φ(Z))
]
≡ E[Y ]. A semiparametric approach was taken re-

cently by [20] to estimate m for complete data. The latter assume a parametric model
for the copula density and estimate the marginal distributions using nonparametric
methods.

In this paper, we propose a semiparametric copula-based estimator for the regres-
sion function when the response variable is subject to right-censoring. Here, we assume
a parametric model for the copula density and we propose to estimate the marginal
distributions F0 by the product-limit estimator and F1, . . . , Fd by their empirical
counterparts. To the best of our knowledge, such method has never been proposed
or studied in the literature. Assuming a parametric model for the copula density
avoids the curse of dimensionality but requires the choice of the adequate copula model.

The paper is organized as follows. In Section 2, we define our estimator for the
regression function in the case of right censored data. In Section 3, we establish the
asymptotic properties of the proposed estimator by providing its i.i.d. representation,
and showing its uniform weak convergence and asymptotic normality. In section 4, we
apply our methodology to analyze a data-set on lifetime with lung-cancer. The proofs
of the theoretical results are presented in the appendix.

2. Estimator for right-censored data

Suppose that the response Y is subject to right-censoring by a random variable C
and one observes the vector (Z, δ) =

(
min(Y,C), I(Y ≤ C)

)
, where δ indicates if Y is

censored or not. We assume that Y and C are independent and we consider uncensored
covariates X1, . . . , Xd. The data has the form

{(
Zi, δi, X1,i, . . . , Xd,i

)
, i = 1, . . . , n

}
.

Based on the relationship (1), the regression function m(x) = E [Y |X = x] can be
expressed in terms of the copula density and the marginal distributions as

m(x) = E
[
Y w

(
F0(Y ),F (x)

)]
=

e(F (x))

cX(F (x))
, (2)

where w(u0,u) = c(u0,u)/cX(u) and

e(u) =

∫ 1

0
F−1

0 (u0) c(u0,u) du0,

with F−1
0 the inverse of F0. In the particular cases of a single covariate (d = 1) or

mutually independent predictors, cX = 1 and m(x1) is reduced to e(F (x1)).
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Formula (2) allows different ways for estimating m. One approach assumes a para-
metric model for the copula densities and the marginal distributions. The parameters
of the copula density and those of the marginal distributions can be estimated by
using maximum likelihood (ML) or inference functions for margins method ((IFM))
in two steps [see [23] and [9]]. The IFM method provides results similar to that of
maximum likelihood (ML) and is easier to implement This method is however too
restrictive, and a misspecification of the parametric model leads to wrong conclusions.
A second way is to estimate nonparametrically the copula density and the marginal
distributions. For example, the method proposed by [8] and [2] to estimate the copula
density can be adapted to right-censored data. However, this method suffers from the
curse of dimensionality and requires practical bandwidth parameters. The third ap-
proach is semiparametric. This method considers a parametric model for the copula
density and nonparametrically estimates the marginal distributions. The semipara-
metric approach is less restrictive than the parametric method and avoids the curse
of dimensionality of the nonparametric estimator. The estimation of the copula distri-
bution based on a semiparametric approach have been proposed by [7], for complete
data, and by [23] for right-censored data. Based on extensive simulations, [10] showed
that the semiparametric approach outperforms the ML and IFM methods.

To estimate the regression function m, we consider a parametric model c(·, ·; θ)
for the copula density, where θ is an unknown parameter vector, and nonparametric
estimators for F0 and Fj (j = 1, . . . , d). First, the marginal distribution of the response
is replaced by the Kaplan-Meier estimator, Γn, defined as follows :

Γn(t) = 1−
∏

1≤i≤n
Z(i)<t

[
n− i

n− i+ 1

]δ(i)
,

where Z(1), . . . , Z(n) are the ordered responses and δ(1), . . . , δ(n) their respective con-
comitant censoring indicators. The marginal distributions of the covariates are esti-
mated by the rescaled empirical distribution F̂j(t):

F̂j(t) =
1

n+ 1

n∑
i=1

1(Xj,i ≤ t),

with Xj,1, . . . , Xj,n i.i.d random copies of Xj (j = 1, . . . , d).

Then, we estimate the copula parameter θ by the estimator θ̂ that maximises the
pseudo maximum likelihood given in equation (11) of [23]. Therefore, an estimator for
the numerator e(F (x)) is

ê(F̂ (x)) =

n∑
i=1

Ziwi c(Γn(Zi), F̂ (x); θ̂), (3)

where F̂ (x) =
(
F̂1(x1), . . . , F̂d(xd)

)
and wi is the mass attached to Zi under the

Kaplan-Meier estimator, i.e., w1 = Γn(Z(1)) and wi = Γn(Z(i)) − Γn(Z(i−1)), i =

2, . . . , n. Now, using the fact that cX(u) = E
[
c
(
F0(Y ),u

)]
, we estimate the denomi-
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nator cX(F (x)) by

ĉX(F̂ (x)) =

n∑
i=1

wi c(Γn(Zi), F̂ (x); θ̂), (4)

Thus, our semiparametric estimator for m(x) is

m̂(x) =
ê(F̂ (x))

ĉX(F̂ (x))
=

n∑
i=1

Zi
wi c(Γn(Zi), F̂ (x); θ̂)∑n
i=1wi c(Γn(Zi), F̂ (x); θ̂)

. (5)

In the particular case of a single covariate (d = 1), or mutually independent predictors
X1, . . . , Xd, the estimator of m(x) is reduced to

m̂(x) =

n∑
i=1

Ziwi c(Γn(Zi), F̂ (x)); θ̂). (6)

Let L(z) = P [Z ≤ z] and τ = sup{z : L(z) < 1} <∞. Since the tail region information
on the survival function of Y may not be identifiable in [τ,∞) due to right censoring,
we note that Γn is defined on the interval [0, τ ].

Remark 1.
1. We can consider other estimators, Γ̃n and F̃j (j = 1, . . . , d), to estimate the response
and marginal distributions provided that the following conditions are satisfied :

(i) Γ̃n(t) = Γn(t) + op(n
−1/2).

(ii) F̃j(t) = F̂j(t) + op(n
−1/2), for j = 1, . . . , d.

2. The model in (2) can be extended to mixed (continuous and discrete) covariates.
However, this model can’t be used for a discrete response. The idea proposed in
[4], for complete data, can be adapted to our model by assuming a latent variable
framework to describe discrete outcomes.

3. In the case where some of the predictors are subject to right-censoring, we may
estimate their distributions by the Kaplan-Meier estimator instead.

4. The nonparametric kernel estimator (Nadaraya-Watson type)

m̂NP (x) =

n∑
i=1

wiKd(
x−X.,i

h )∑n
`=1w`Kd(

x−X.,`

h )
Zi,

with Kd a kernel function defined on Rd and h the smoothing parameter, is a
robust alternative to our semiparametric estimator. This estimator requires less
assumptions and is more flexible. However, the a.s. convergence rate of m̂NP is

Oa.s.
(
n−1 log(n)

)1/(d+2)
in the presence of d covariates. This rate becomes slower

as the dimension of the covariates increases.
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3. Asymptotic results

We start by presenting some notations and assumptions, on the copula and its
parameters, needed for establishing the asymptotic properties of the regression
function estimator. Denote ∂jc = ∂c/∂uj for j = 0, . . . , d, ċ = (∂c/∂θ1, . . . , ∂c/∂θp)

T

and let x ∈ Rd such that F (x) ∈ (0, 1)d.

Assumption A: Let g be either c, ċ or ∂jc (j = 0, . . . , d).

(i) (u, θ) → gu0
(u, θ) ≡ g(u0,u; θ) is continuous at (F (x), θ0), uniformly on u0 ∈

[0, 1].
(ii) u0 → g(u0,F (x); θ0) is continuous on [0, 1].

Assumption B: The parameter estimator θ̂ satisfies,

θ̂ − θ0 =
1

n

n∑
i=1

ζi + op(n
−1/2),

where ζi are i.i.d. random variables with zero mean and finite variance.

As noted above, we consider the estimation of θ proposed by Shih & Louis (1995)
for a bivariate parametric copula model. This estimator satisfies Assumption B, and
by a similar approach, we may extend the latter representation to a multivariate
parametric copula model (d > 2).

Assumption C:
The copula density is bounded and bounded away from zero on its compact support.

The copula density c is required to be bounded away from 0 for a regression model
with multiple covariates. All the parametric copula densities (Gaussian, Student,
Archimedean copula, etc) are bounded away from zero. These densities are bounded
on (0, 1)d, but some of them are unbounded at the corners of [0, 1]d. To relax Assump-
tion C, the proofs in the appendix can be adapted by considering a copula density
that satisfies the condition

c(u0, u1, ..., ud) = O

 1√∏d
j=0 uj(1− uj)

 .

This condition is satisfied by many common copula densities (see [21]).

3.1. Main results

We begin by considering the case of one covariate X1 (d = 1). In Proposition 3.1, we
establish the uniform weak convergence of the proposed regression function estimator
m̂. The i.i.d. representation of m̂ is derived in Theorem 3.2, while in Corollary 3.3, the
asymptotic normality of m̂ is established.
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Proposition 3.1. Under Assumptions A and B we have

sup
x1

∣∣m̂(x1)−m(x1)
∣∣ = Op

(√
n−1 log log n

)
.

Proof. The proof is given in the appendix.

Denote

ηi,1(x1) =

∫ τ

0
y ξi(y) ∂0c(F0(y), F1(x1); θ0) dF0(y),

ηi,2(x1) =
[
I(X1i ≤ x1)− F1(x1)

] ∫ τ

0
y ∂1c(F0(y), F1(x1); θ0) dF0(y),

ηi,3(x1) =

∫ τ

0
y ζi ċ(F0(y), F1(x1); θ0) dF0(y),

ηi,4(x1) =

∫ τ

0
ξi(y) dHx1

(y), withHx1
(y) = yc(F0(y), F1(x1); θ0).

with ξi(y) the i.i.d. random term of the representation of the Kaplan-Meier estimator
Γn, see [14]. The additional terms ηi,1, ηi,2 and ηi,4 are needed because the marginal
distributions are estimated in the first step.

Theorem 3.2. Let ηi =
∑4

j=1 ηi,j. Under Assumptions A and B, m̂ admits the i.i.d.
representation

m̂(x1) = m(x1) +
1

n

n∑
i=1

ηi(x1) + op(n
−1/2) (7)

The proof is is given in the appendix. The representation of m̂ in (7) leads to the
following result.

Corollary 3.3. Under Assumptions A and B,
√
n
[
m̂(x1) − m(x1)

]
converges to a

normal distribution with zero mean and variance σ2(x1) = E
[
η2

1(x1)
]
.

3.2. Extension to the multivariate case

Following similar steps in proof of Proposition 3.1, we can establish the uniform weak
convergence, with the same order as in Proposition 3.1, of m̂ with multiple covariate.
Next, we extend the result in Theorem 3.2 to the multivariate case d ≥ 2, by following
similar arguments in Theorem 3.2’s proof. First, one can easily check that ê admits
the representation

ê(F̂ (x))− e(F (x)) = n−1
n∑
i=1

ϕi(x) + op(n
−1/2), (8)
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where x = (x1, . . . , xd), F (x) = (F1(x1), . . . , Fd(xd)) and ϕi =
∑4

j=1 ϕi,j , with

ϕi,1(x) =

∫ τ

0
y ξi(y) ∂0c(F0(y),F (x); θ0) dF0(y),

ϕi,2(x) =

d∑
j=1

[
I(Xji ≤ xj)− Fj(xj)

] ∫ τ

0
y ∂jc(F0(y),F (x); θ0) dF0(y),

ϕi,3(x) =

∫ τ

0
y ζTi ċ(F0(y),F (x); θ0) dF0(y)

and

ϕi,4(x) =

∫ τ

0
ξi(y) dH∗x(y) withH∗x(y) = c(F0(y),F (x); θ0).

Second, one can show that ĉX has the representation

ĉX(F̂ (x))− cX(F (x)) = n−1
n∑
i=1

φi(x) + op(n
−1/2), (9)

where φi =
∑4

j=1 φi,j , with

φi,1(x) =

∫ τ

0
ξi(y) ∂0c(F0(y),F (x); θ0) dF0(y),

φi,2(x) =

d∑
j=1

[
I(Xji ≤ xj)− Fj(xj)

] ∫ τ

0
∂jc(F0(y),F (x); θ0) dF0(y),

φi,3(x) =

∫ τ

0
ζTi ċ(F0(y),F (x); θ0) dF0(y)

and

φi,4(x) =

∫ τ

0
ξi(y) dH∗x(y).

Combining (8) with (9) leads to the next main result.

Theorem 3.4. Under Assumptions A, B and C, we have

m̂(x)−m(x) = n−1
n∑
i=1

1

cX(F (x))

[
ϕi(x)−m(x)φi(x)

]
+ op(n

−1/2).

Theorem 3.4 implies that
√
n
[
m̂(x) −m(x)

]
follows asymptotically a normal distri-

bution with mean zero and variance

σ2(x) = Var
(

1

cX(F (x))

[
ϕi(x)−m(x)φi(x)

])
.
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Figure 1. Regression function estimators of patients with lung cancer: (a) lifetime vs Weight-Loss, (b) lifetime
vs Calories-Meals. Copula-based estimator (blue line) and nonparametric kernel estimator (red line).

4. Data analysis

4.1. Survival with lung cancer

We illustrate the methodology described in Section 2 by analysing a set of survival
data from patients with advanced lung cancer collected by the “North Central Can-
cer Treatment Group” (see [16]). The primary goal of [16] was the investigation of
whether descriptive information from a patient-completed questionnaire could provide
prognostic information that was independent from the one obtained by the physi-
cian. The questionnaire (which contains different questions about age, calories intake,
weight-loss in the last six months, etc) was completed by the patients before entering
the study of lung cancer. This study was mainly focused on dietary and daily activities
factors and their possible relation to risk of lung cancer. The data set contains the
lifetimes of n = 228 individuals (men and women), among whom 165 died and 63
were right-censored during the follow-up. The survival time Y is defined as the time
between onset of lung cancer and death. In this example, we consider two covariates:
X1 as the weight loss in the last six months prior to entering the study and X2 as the
average of meal calories per day before entering the study; hence the two covariates
are completely observed.

To choose the copula function for our semiparametric regression estimator, we con-
sider the copula model {c(.; θ), θ ∈ Θ} that minimizes the weighted sum of squared
residuals defined by

n∑
i=1

wi

[
Zi − m̂c(Xi)

]2
. (10)

This leads to select the Gaussian and Clayton copulas for estimating the regression
functions of Lifetime vs Weight-Loss and Lifetime vs Calories-Meals, respectively. Fig-
ure 1 displays the plots of the semiparametric copula-based estimator (blue line) and
the nonparametric kernel estimator (red line) defined by

m̂NP (x) =

n∑
i=1

wiK
(x−Xi

hn

)
n∑
`=1

w`K
(x−X`

hn

) Zi, (11)
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Figure 2. Regression function estimators of 157 heart transplant patients. Copula-based estimator with Joe’s

copula (blue line) and nonparametric kernel estimator (red line).

where K(x) = 0.75(1 − x2) I(−1 ≤ x ≤ 1) and hn > 0 is a sequence of band-
width tending to 0. Both estimators show similar behaviors and fluctuate about the
survival-time e5.3 ≈ 200 days. The horizontal tendency of the copula-based estima-
tors can be explained by the weak dependence between the response (lifetime) and
the two covariates. In [22], we found that the estimates of Kendall’s tau measure
of association is τ̂Y,X1

= −0.0848, for Lifetime vs Weight-Loss, and τ̂Y,X2
= 0.1335,

for Lifetime vs Calories-Meals. This indicates weak association between the response
and the covariates. These results concur with the findings of [16]. Note that in (11)
we select the bandwidth hn that minimizes the weighted integrated squared error

WISE(h) =
∫
x>0

[
m̂NP (x;h)−m(x)

]2
dFX(x), given by

ĥ = arg min
h

{
n∑
i=1

wi

[
m̂NP
−i (Xi;h)− Zi

]2
}
,

where m̂NP−i (x) is a leave-one-out estimate of m at x;

m̂NP−i (x;h) =

n∑
k=1
k 6=i

wkK
(x−Xk

h

)
n∑
j=1
j 6=i

wjK
(x−Xj

h

) Zk.

4.2. Heart transplant data

The Stanford survival data were extracted from a program of heart transplant which
began in October 1967 (see [19]). The patients had to be selected to take part of that
program and therefore received a transplant. Some people die between the selection of
the patient and the transplant, which leads their survival time to be 0. The cut-off date
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of the study was February 1980, and at this moment, the data about heart transplant
of 184 patients was collected. The variables of interest in this analysis are the survival
time Y (in days), the failure status δ (1 if dead and 0 if alive and censored) and the age
at the time of the first transplant X. We only keep patients who their mismatch score
is not missing. Therefore, we get a sample of n = 157 data with a censorship of 35%.
Figure 2 illustrates the semiparametric copula-based estimator (blue line) and the
nonparametric kernel-estimator (red line), given by (11). The copula-based estimator
shows a slight increase up to Age-of-Transplant = 50, and then a decrease after that.
This indicates a rapid decline in the survival of patients who received a transplant
after the age of fifty. The Age-of-Transplat variable (X) seems to have an impact on
the survival time (Y ). In [22], the estimation of Spearman’s rho measure of association
is ρ̂Y,X = −0.626. This reflects a moderate strong association between X and Y , and
concurs with the finding of [19]. Note that we employed the weighted sum of squared
residuals defined in (10) to select the Joe copula for this data.

5. Conclusion

We introduced a new copula-based estimator for the regression function when the
response variable is subject to right-censoring and the covariate(s) is completely ob-
served. The key element in the paper is to write the regression function in terms of the
copula density and marginal distributions. The estimation method uses a parametric
model for the copula density, with unknown parameter(s), and estimate nonparamet-
rically the marginal distributions of the response and covariate(s). We studied the
asymptotic behavior of our estimator analytically, and we extend it to the multivari-
ate case. The proposed estimation method have shown satisfactory results in analyzing
two real data-sets, concerning survival with heart-transplant and lifetime with lung-
cancer.
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Appendix A. Appendix: Proofs of main results

For a function S defined on the set S, we denote by ||S|| = supx∈S |S(x)| in the proofs.

Proof of Proposition 3.1.
Recall that the copula density c is a smooth function. The difference m̂−m is equal
to

m̂(x1)−m(x1) =

∫ τ

0
y
[
c
(
Γn(y), F̂1(x1); θ̂

)
− c
(
F0(y), F1(x1); θ

)]
dΓn(y)

+

∫ τ

0
y c
(
F0(y), F1(x1); θ

)
d
[
Γn(y)− F0(y)

]
Let Hx1

(y) = y c
(
F0(y), F1(x1); θ

)
, F̂0(y) = Γn(y)−F0(y), ∆Hx1

(t) = Hx1
(t)−Hx1

(t−)

and ∆F̂0(t) = F̂0(t)− F̂0(t−). By partial integration formula for the Lebesgue-Stieltjes
integral∫ τ

0
Hx1

(y−) dF̂0(y) = Hx1
(τ)F̂0(τ)−Hx1

(0)F̂0(0)−
∫ τ

0
F̂0(y−) dHx1

(y)−
∑

0≤t≤τ
∆Hx1

(t) ∆F̂0(t)

= Hx1
(τ)F̂0(τ)−

∫ τ

0
F̂0(y−) dHx1

(y),

because Hx1
(0) = 0 and ∆Hx1

(t) = 0, since Hx1
is continuous on [0, τ ]. Hence

m̂(x1)−m(x1) =

∫ τ

0
y
[
c
(
Γn(y), F̂1(x1); θ̂

)
− c
(
F0(y), F1(x1); θ

)]
dΓn(y)

+Hx1
(τ)F̂0(τ)−

∫ τ

0
F̂0(y−) dHx1

(y). (A1)

By using Mean Value Theorem for a multivariate real-valued differentiable functions
in the 1st term on the R.H.S. of (A1), and the uniform convergence results ‖Γn−F0‖ =

Oa.s.
(√

n−1 log log(n)
)
, ‖F̂1−F1‖ = Oa.s.

(√
n−1 log log(n)) and |θ̂− θ| = Op

(
1/
√
n
)
,

the result follows.

Proof of Theorem 3.2.
Notice that m̂(x1)−m(x1) can be expressed as

m̂(x1)−m(x1) =

∫
y≥0

y
[
c
(
Γn(y), F̂1(x1); θ̂

)
− c
(
F0(y), F1(x1); θ

)]
d[Γn(y)− F0(y)]

+

∫
y≥0

y
[
c
(
Γn(y), F̂1(x1); θ̂

)
− c
(
F0(y), F1(x1); θ

)]
dF0(y)

+

∫
y≥0

y c
(
F0(y), F1(x1); θ

)
d[Γn(y)− F0(y)].
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Let rn(x1), I2 and I3 denote, respectively, the first, second and thirds terms on
the R.H.S. of the latter equality. Using Taylor expansion of first order on c in
I2, partial integration on I3 and the uniform convergence results ‖Γn − F0‖ =

Oa.s.
(√

n−1 log log(n)
)
, ‖F̂1 − F1‖ = Oa.s.

(√
n−1 log log(n)

)
and |θ̂− θ| = Op

(
1/
√
n
)
,

we obtain

m̂(x1)−m(x1) = rn(x1) +

∫
y≥0

y
[
Γn(y)− F0(y)

]
∂1c
(
F0(y), F1(x1); θ

)
dF0(y)

+

∫
y≥0

y
[
F̂1(x1)− F1(x1)

]
∂2c
(
F0(y), F1(x1); θ

)
dF0(y)

+

∫
y≥0

y
[
θ̂ − θ

]
ċ
(
F0(y), F1(x1); θ

)
dF0(y)

+

∫
y≥0

[
Γn(y)− F0(y)

]
d
[
y c
(
F0(y), F1(x1); θ

)]
+Op

(
n−1 log log(n)

)
. (A2)

Now, let’s focus on rn(x1). Divide [0, τ ] into r sub-intervals [0, y1], [y1, y2], . . . , [yr−1, yr]
of equal length ` = a0n

−1/2(log n)q (q ≥ 1/2 and a0 > 0 is some constant), so r is of
order O

(
n1/2(log n)−q

)
. We have

∣∣rn(x1)
∣∣ ≤ r−1∑

i=0

∣∣∣∣∫ yi+1

yi

y
[
c
(
Γn(y), F̂1(x1); θ̂

)
− c
(
F0(y), F1(x1); θ

)]
d[Γn(y)− F0(y)]

∣∣∣∣
≤

r−1∑
i=0

τ
{
‖Γn − F0‖.‖∂1c‖+ ‖F̂1 − F1‖.‖∂2c‖+ |θ̂ − θ|.‖ċ‖

}∫ yi+1

yi

∣∣d[Γn(y)− F0(y)
]∣∣

≤ τ
{
‖Γn − F0‖.‖∂1c‖+ ‖F̂1 − F1‖.‖∂2c‖+ |θ̂ − θ|.‖ċ‖

}
×

r−1∑
i=0

sup
u,v∈[yi,yi+1]

∣∣[Γn(v)− F0(v)
]
−
[
Γn(u)− F0(u)

]∣∣ . (A3)

The sup-norm term, inside the summation, on the R.H.S. of (A3) is of order

Oa.s.
(
n−3/4(log n)

1+q

2

)
, as n → ∞, by the oscillation result in [17] (see proposi-

tion 1, page 6). Since r and the 1st term in (A3) are of order O
(
n−1/2(log n)−q

)
and Op

(
n−1/2

(
log log n

)1/2)
, respectively, the term on the R.H.S. of (A3) is of order

Oa.s.
(
n−3/4(log n)α1

)
(α1 ≥ 1). Hence,

sup
x
|rn(x1)| = Oa.s.

(
n−3/4(log n)α1

)
,

The result then follows from equation (A2) by using the i.i.d. representations of Γn−F0,

in [15], and θ̂ − θ in Assumption B2.

Proof of Corollary 3.3. The result follows from Theorem 3.2 using Central Limit
Theorem.
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Proof of Theorem 3.4. First, remark that

m̂(x)−m(x) =
1

ĉX (x)
[ê(x)− e(x)] +

e(x)

ĉX (x) cX (x)
[ĉX (x)− cX (x)].

Analogously to the proof of Proposition 3.1, by using the uniform results ‖Γn −
F0‖ = Oa.s.

(√
n−1 log log(n)

)
, ‖F̂i − Fi‖ = Oa.s.

(√
n−1 log log(n)

)
(i = 1, . . . , d) and

|θ̂ − θ| = Op
(
1/
√
n
)
, we obtain ‖ê − e‖ = Op

(√
n−1 log log(n)

)
and ‖ĉX − cX ‖ =

Op
(√

n−1 log log(n)
)
. Hence,

m̂(x)−m(x) =
1

cX (x)
[ê(x)− e(x)] +

e(x)

c2
X (x)

[ĉX (x)− cX (x)] +Op
(

log log(n)

n

)
.

By employing similar arguments to that of Theorem 3.2’s proof, one can derive the
representations (8) and (9) of ê(x) and ĉX (x) using the representation of the Kaplan-
Meier estimator Γn in [15]. This completes the proof.
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