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Abstract

We build on an estimation method which can accommodate time variation in a cointegrating

relationship and present a test for cointegration under this setup. We apply our test procedure to

the UK Great Ratios and find little evidence for cointegration when the parameters are assumed

constant, but strong evidence when allowing them to drift slowly over time.
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HIGHLIGHTS

• We build on an estimation method and test for cointegrating relationships in the presence of time

variation.

• We apply this to the UK Great Ratios and find strong evidence for changing cointegrating relation-

ships.
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1 Cointegration with time-varying parameters

We extend the literature on time variation (TV) in the setup of cointegrating relationships1 by generalising

the kernel estimators of Giraitis et al. (2018) to a cointegrating regression model, proving consistency, and

proposing a cointegration test based on the residuals computed with time variation in the parameters.

Let yt and a k× 1 vector xt be I(1) processes. In the standard case yt and xt cointegrate if there exists a

k × 1 vector of constant parameters β which delivers an I(0) linear combination ut between yt and xt :

ut = yt − x′tβ. (1)

We generalise this definition to allow for a persistent and bounded time-varying vector βt which results

in a cointegrating regression of the form

yt = x′tβt + ut (2)

We assume that βt satisfies

sup
|s|<s0

‖βt − βt−s‖ = Op

((s0
t

)γ)
for some 0 < γ ≤ 1. (3)

Condition (3) implies that the sequence of parameters drifts slowly with time, a property that is sufficient

for consistent estimation of βt. This covers the constant case as well as deterministic piecewise differen-

tiable processes assumed in the work of Dahlhaus on locally stationary processes (e.g. Dahlhaus (2000)

or Dahlhaus and Polonik (2006)). Condition (3) also includes stochastic parameter processes exhibiting

a degree of persistence necessary for consistent estimation of stochastically driven TV. These include

bounded random walk processes, as well as some fractionally integrated processes2. In a related paper,

Park and Hahn (1999) assume the parameter is a deterministic function of time f(t/T ), which is covered

by our condition (3), but instead use a series expansion to approximate the TV parameters.

Under the TV parameter framework of (3), an extremum estimator for βt is derived by minimising an

objective function β̂t = arg minβ
∑T
j=1 ktju

2
j :

β̂t =

 T∑
j=1

ktjxjx
′
j

−1 T∑
j=1

ktjxjyj


where the weights ktj are generated by a kernel, ktj := K

(
(t − j)/H

)
, where K(x) ≥ 0, x ∈ R is a

bounded function and H is a bandwidth parameter such that H → ∞, H = o(T/ log T ). The kernel

estimator β̂t is a simple generalisation of a rolling window estimator of the form

β̂t =

 t+H∑
j=t−H

xjx
′
j

−1 t+H∑
j=t−H

xjyj

 .

1A seminal paper is Bierens and Martins (2010).
2In addition, parameters can be a linear combination of deterministic and stochastic processes themselves satisfying (3).
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We assume that K is a non-negative bounded function with a piecewise bounded derivative K̇(x) such

that
∫
K(x)dx = 1. Examples include

K(x) = (1/2)I(|x| ≤ 1), flat kernel,

K(x) = (3/4)(1− x2)I(|x| ≤ 1), Epanechnikov kernel,

K(x) = (1/
√

2π)e−x
2/2, Gaussian kernel.

If K has unbounded support, we assume in addition that

K(x) ≤ C exp(−cx2), |K̇(x)| ≤ C(1 + x2)−1, x ≥ 0, for some C > 0, c > 0. (4)

When xt and yt are stationary and γ = 1/2, Giraitis et al. (2018) show that assuming a martingale

difference error process, the kernel estimator β̂t is consistent: β̂t − βt = Op

((
1
H

)1/2)
+ Op

((
H
T

)1/2)
.

Further, if xt is a unit root process and βt is deterministic, then Phillips et al. (2017) have shown

consistency and derived rates for β̂t.

In this paper, we wish to test the hypothesis that ut is an I(0) process in the presence of parameter

time variation, assuming that βt satisfies condition (3). We extend the cointegrating KPSS test (null of

stationarity around a deterministic trend)3 with a statistic based on the kernel estimate β̂t. We define

the model’s residuals by

ût = yt − x′tβ̂t

and the KPSS test statistic by

CI =
T−2h

∑T
j=1 S

2
j

ŝ2

where h = H/T , ŝ2 is an estimate of the long run variance of ût and S[Tr] =
∑[Tr]
j=1 ûj . The asymptotic

distribution of the test statistic CI defined above follows once we note that

T−2h

T∑
j=1

S2
j = T−1

T∑
j=1

(
T−1/2h1/2Sj

)2
=⇒ Q2 (5)

where Q =
√

2
∫ 1

−1K(s)dB∗y,(s+1)/2.

We next sketch a derivation of Equation (5), considering the proof of Theorem 1 of Shin (1994). First,

note that

T−1/2S[Tr] = T−1/2
[Tr]∑
j=1

ûj = T−1/2
[Tr]∑
j=1

uj − T−3/2
[Tr]∑
j=1

xjT
(
β̂ − β

)
.

The time-varying version of this expression is

T−1/2h1/2S[Tr] = T−1/2h1/2
[Tr]∑
j=1

ûj = T−1/2h1/2
[Tr]∑
j=1

uj − T−3/2
[Tr]∑
j=1

xjTh
1/2
(
β̂j − βj

)
,

3KPSS is often preferred to alternative tests as under null hypotheses of non-stationarity, alternative tests can misbehave.
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where T−1/2h1/2
∑[Tr]
j=1 uj = Op

(
h1/2

)
= op (1) .We focus on the remaining term T−3/2

∑[Tr]
j=1 xjTh

1/2
(
β̂j − βj

)
.

We have by Phillips et al. (2017) that for j = [Tr],

Th1/2
(
β̂j − βj

)
= Th1/2

(
β̂[Tr] − β[Tr]

)
=⇒ ∆−1r Γr

where

∆r = B2
x,r

Γr =
√

2Bx,r

∫ 1

−1
K(s)dB∗y,(s+1)/2.

Therefore,

Th1/2
(
β̂j − βj

)
= Th1/2

(
β̂[Tr] − β[Tr]

)
=⇒
√

2B−1x,r

∫ 1

−1
K(s)dB∗y,(s+1)/2

and

T−3/2
[Tr]∑
j=1

xjTh
1/2
(
β̂j − βj

)
= T−1

[Tr]∑
j=1

xj
T 1/2

Th1/2
(
β̂j − βj

)
=⇒
√

2

∫ 1

0

Bx,r
(
B−1x,r

) [∫ 1

−1
K(s)dB∗y,(s+1)/2

]
dr =

√
2

∫ 1

−1
K(s)dB∗y,(s+1)/2 ≡ Q

This leads to

T−2h

T∑
j=1

S2
j = T−1

T∑
j=1

(
T−1/2h1/2Sj

)2
=⇒ Q2,

proving the result.

2 Monte Carlo Exercise

In this section, we study the finite sample properties of our time-varying extension to the KPSS test.

We simulate data using the model in Equation (2) as the data generating process where βt is a bounded

random walk

βt =

t∑
i=1

vt/
√
t, vt ∼ N (0, 1) .

Based on these simulated samples, Table 1 compares the rejection probabilities of our KPSS test at 95%

under the null of cointegration (ut ∼ I (0)) and Table 2 presents the rejection probabilities under the

alternative of no cointegration (ut ∼ I (1)) for a range of sample sizes and bandwidths. We find that

the test’s size is close to the nominal 5% for different bandwidths even for small sample sizes. Table 2

also presents the empirical size of the standard time invariant KPSS test, and it is clear that when the

true DGP features TV parameters, ignoring the time variation will result in extensively oversized tests,

e.g. for sample sizes of over 600, the test will always reject the null of cointegration, even though a time-

varying cointegrating relationship exists. For the power comparison under the alternative, we examine
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two DGPs: one with parameter time variation as before (βt), and another with fixed parameters (β = 1).

In each case considered, the power is increasing in the sample size, and relatively smaller bandwidths

deliver better power. From Table 2 it is clear that we get good power with our TV KPSS test, even when

the true DGP does not feature parameter time variation.

Bandwidth, Tα Rejection probabilities

under the null, kernel

α T=200 T=400 T=600 T=800

0.20 0.047 0.049 0.064 0.048

0.25 0.054 0.050 0.045 0.037

0.30 0.065 0.058 0.061 0.057

0.35 0.042 0.052 0.060 0.053

0.40 0.054 0.060 0.048 0.043

0.45 0.055 0.047 0.053 0.055

0.50 0.058 0.057 0.045 0.062

0.55 0.061 0.052 0.055 0.061

0.60 0.056 0.047 0.043 0.059

0.65 0.066 0.039 0.038 0.041

0.70 0.042 0.037 0.042 0.049

0.75 0.061 0.058 0.042 0.052

0.80 0.040 0.046 0.054 0.052

0.85 0.053 0.061 0.048 0.041

0.90 0.043 0.044 0.039 0.040

Rejection probabilities under

the null, time invariant KPSS

0.948 0.980 1.000 1.000

Table 1: Size of the KPSS test and its TVP extension in the presence of parameter time variation

3 Application to UK Great Ratios

Kaldor (1961) put forward a set of ‘stylised facts’ that were considered as universal characteristics of

long-run growth. Among these were that capital and labour shares and the capital output ratio were

5



Bandwidth, Tα Rejection probabilities Rejection probabilities

under the alternative bt under the alternative b = 1

α T=200 T=400 T=600 T=800 T=200 T=400 T=600 T=800

0.20 0.605 0.740 0.828 0.891 0.630 0.737 0.861 0.893

0.25 0.663 0.732 0.830 0.890 0.701 0.726 0.822 0.919

0.30 0.631 0.770 0.804 0.874 0.653 0.791 0.811 0.904

0.35 0.597 0.762 0.819 0.861 0.638 0.785 0.812 0.878

0.40 0.608 0.711 0.752 0.824 0.628 0.728 0.807 0.891

0.45 0.577 0.672 0.733 0.768 0.651 0.663 0.754 0.775

0.50 0.548 0.618 0.667 0.756 0.585 0.643 0.675 0.746

0.55 0.506 0.587 0.645 0.713 0.522 0.616 0.670 0.779

0.60 0.495 0.549 0.593 0.653 0.549 0.580 0.573 0.664

0.65 0.466 0.498 0.545 0.565 0.463 0.482 0.538 0.562

0.70 0.392 0.391 0.491 0.509 0.359 0.464 0.524 0.551

0.75 0.352 0.393 0.395 0.442 0.387 0.389 0.418 0.449

0.80 0.303 0.342 0.364 0.365 0.325 0.372 0.380 0.391

0.85 0.272 0.276 0.350 0.331 0.213 0.282 0.324 0.365

0.90 0.273 0.289 0.292 0.313 0.288 0.309 0.329 0.380

Table 2: Power of the TVP KPSS extension in the presence of constant and TV parameter

stable over time. In the same year Klein and Kosobud (1961) used the phrase ‘great ratios’ in the title of

their paper to indicate stable and constant relationships between key variables that are to be expected

in balanced growth models. However, not all models exhibit this, including: endogenous growth models

(examined empirically by Jones (1995), rejecting varying steady state growth); models with multiple

equilbria (eg Farmer et al. (2009)); and hysteresis in labour markets which was a popular feature of

models in the 1980s (a modern formulation is to be found in Gaĺı (2015)). Even when the Klein and

Kosobud (1961) conditions are in place, deep parameters might change over time. Nevertheless, constant

parameter balanced growth remains the default assumption in the majority of macroeconomic models.

It is natural to put to a statistical test the balanced growth idea, by testing the great ratios for stationarity.

Papers which do this include King et al. (1991), Serletis (1994), Harvey et al. (2003), Clements (2016) and

Franchi and Jusélius (2007). The overall evidence for constant parameter cointegrating vectors is weak.

Following Whelan (2003), Attfield and Temple (2010) focussed on nominal shares as we do and allowed

for discrete location (mean) shifts. The evidence of cointegration is then stronger. But the existence of a
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Figure 1: Labour share Figure 2: Profit share

small number of discrete location shifts is not compelling, and this motivates our approach. which allows

for continuous parameter changes.

We consider models of the form

yt − xt = αt + εt

where yt and xt indicate the log of the variables Yt and Xt respectively. We use a bandwidth of T 0.5,

motivated by Giraitis et al. (2014) who find that is optimal in terms of estimation MSE.4 The cointegrating

vector associated with the set {yt, xt} is restricted to be {1,−1} so the cointegrating relationship defines

the log great ratio yt − xt − αt. In the fixed coefficient case αt = α ∀ t. Figures 1 to 8 show the

unconditional mean (the fixed cointegrating coefficient, α), the actual data for the great ratios or shares

(ratio) and the time-varying mean (TV cointegrating coefficient, αt) in the left-hand panels. In the

right-hand panels, the fitted cointegrating residuals are illustrated. In most cases the raw ratios (fixed

mean) do not look stationary, with the possible exception of the profit share. By contrast, the TV

coefficient residuals are more plausible candidates for stationarity. It is hard to give a deep economic

interpretation of movements in these long run relationships as we are not estimating a structural model,

but in Kapetanios et al. (2019)the broad changes in the ratios that we are finding here are interpretable

in terms of shifting structural parameters in a benchmark equilibrium model.

Table 3 reports the values for the KPSS test statistic5 for cointegration among the nominal6 ratios.

Rejections of the null (cointegration) at the 5% level are indicated in the tables with ‘**’. For the fixed

parameters, the null of cointegration is rejected in six out of eight cases.7 By contrast, where TV is

allowed in no case is the null rejected.

4An alternative would be to use some form of cross validation, for example by minimising the one-step ahead forecasts

in or out of sample.
5Using the standard Newey-West estimate of the long-run variance.
6In Kapetanios et al. (2019), we also consider real series.
7It cannot be rejected at 5% for the two trade ratios. This may be because the null allows the possibility of a deterministic

trend in the cointegrating space.
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Figure 3: Consumption-output ratio (nominal) Figure 4: Investment-output ratio (nominal)

Figure 5: Government consumption-output ra-

tio (nominal)
Figure 6: Export-output ratio (nominal)

Figure 7: Import-output ratio (nominal) Figure 8: Capital-output ratio (nominal: stock)
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Ratio TV KPSSS Fixed KPSS

C/Y 0.13 0.44**

I/Y 0.07 0.39**

G/Y 0.05 0.19**

X/Y 0.05 0.11

M/Y 0.04 0.15

K/Y 0.09 0.17**

Labour share 0.06 0.42**

Profit share 0.04 0.15**

** indicates rejection of the null of cointegration at 5%.

C = consumption, Y = output, I = investment, G = government consumption, X = exports, M =

imports, K = capital stock

Table 3: KPSS test statistics from time varying (TV) and fixed parameter cointegration for nominal

Great Ratios

4 Conclusions

We present a method for estimating and testing for the existence of time varying cointegrating relation-

ships. We apply our procedure to the UK ‘great ratios’ which in balanced growth models are expected to

be stationary. We find little evidence for such stationarity where parameters are estimated as constant,

but strong evidence when we explicitly allow for time variation. This implies that practical macroe-

conometric models could be built allowing for this variation, which may deliver better in-sample fit and

out-of-sample forecasting performance. One implication is that DSGE models built on the assumption

of constant deep parameters may be unable to correctly represent the data particularly when long time

span is considered, a conclusion also drawn by Franchi and Jusélius (2007).
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