
Privacy-Preserving Gesture Recognition with 

Explainable Type-2 Fuzzy Logic Based Systems
 

Josip Rožman, Hani Hagras, Javier Andreu-Perez 
The Computational Intelligence Centre, School of Computer Science 

and Electronic Engineering 

University of Essex, Colchester, UK 

Damien Clarke, Beate Müller, Steve Fitz 
Data Exploitation Group, Plextek 

Plextek Ltd., Great Chesterford, UK 

    
 Abstract— Smart homes are a growing market in need of 

privacy preserving sensors paired with explainable, interpretable 

and reliable control systems. The recent boom in Artificial 

Intelligence (AI) has seen an ever-growing persistence to 

incorporate it in all spheres of human life including the 

household. This growth in AI has been met with reciprocal 

concern for the privacy impacts and reluctance to introduce 

sensors, such as cameras, into homes. This concern has led to 

research of sensors not traditionally found in households, mainly 

short range radar. There has been also increasing awareness of 

AI transparency and explainability. Traditional AI black box 

models are not trusted, despite boasting high accuracy scores, 

due to the inability to understand what the decisions were based 

on. Interval Type-2 Fuzzy Logic offers a powerful alternative, 

achieving close to black box levels of performance while 

remaining completely interpretable. This paper presents a 

privacy preserving short range radar sensor coupled with an 

Explainable AI  system employing a Big Bang Big Crunch (BB-

BC) Interval Type-2 Fuzzy Logic System (FLS) to classify 
gestures performed in an indoor environment.  

Keywords— Type-2 Fuzzy Logic; Big Bang - Big Crunch; 

Privacy Preserving Sensing; Explainable Artificial Intelligence 
(XAI) 

I. INTRODUCTION 

With the growing interest in smart home applications there 
is an increasing demand for privacy preserving sensors and 
technologies [1], [2]. Current household appliances use a touch 
based interface which has an inherent flaw; the requirement of 
the individual to be in proximity of the device. This can be an 
issue when designing devices useable by all individuals. 
Hence, alternative communication channels have been 
explored including gesture recognition in particular [3], [4], 
[5], [6].  

The majority of research conducted in the field of indoor 
gesture recognition is based on RGB camera systems. One 
such system can be found in [7] where a public video sequence 
dataset was used to train a model composed of a Deep Belief 
Network (DBN) and a 3D Convolutional Neural Network 
(CNN). The dataset used for training contained a total of 940 
video sequences containing 10 to 20 sequences of each of the 
20 gestures used. The results were evaluated using the Jaccard 
Index and a value of 80.9% was reported. The wide use of such 
camera based systems, despite boasting high classification 

performance, is limited due to privacy issues concerning RGB 
cameras. A large majority of people would not feel 
comfortable with constant camera surveillance required for 
such systems to work. This is especially true in privacy-
sensitive rooms of the house such as bathrooms and bedrooms. 
This has led to a surge in research based on privacy preserving 
sensors for gesture recognition. 

An implementation of an Ultrasonic based gesture 
classification system can be found in [8]. The system was 
trained to recognize 6 small finger gestures at a short range. An 
additional class was used to represent no fingers being present. 
In the training process 2700 sample sequences of gestures and 
an additional 2700 of the no finger class were used. The final 
reported accuracy of the system is 96.34%. A high resolution 
and low power gesture sensing technology based on a 
millimeter-wave radar named Soli was presented by [9]. Short 
range temporal variation was observed and supplied to a 
random forest classifier to predict one of 4 gestures. An 
accuracy of 92.1% was reported for 1000 test gestures. As this 
work focused on short range gestures it is important to note the 
noise floor was greatly decreased. The Soli sensor was used by 
[10] to explore a wider range of gestures. A total of 11 gestures 
were observed and classified using a Convolutional Neural 
Network architecture. An accuracy of 88.0% was reported for a 
non-personalized classifier and a 94.5% for a personalized 
classifier. 

All above mentioned systems use black box classification 
models which lack interpretability, and inference cannot be 
augmented by expert knowledge or be assessed by third 
parties, based on the XAI’s principles [11], [12] .  

This paper proposes the use of a Texas Instruments (TI) 
IWR6843ISK-ODS short range radar paired with a fully 
explainable BB-BC type-2 Fuzzy Logic classification system. 
The use of radar based technology has multiple advantages 
over cameras and similar sensors. Data gathered by radar are 
anonymous, containing only range, radial velocity and angle 
values. An additional advantage of radars is its insensitivity to 
lighting and obscurants as opposed to cameras. On the other 
hand fuzzy logic offers a powerful tool to deal with high noise 
to signal ratio and ambiguity, while offering an explainable 
alternative to black box models [13]. The proposed system 
performance will be compared to a Type-1 Fuzzy logic system, 
a Deep Neural Network and a Convolutional Neural Network. 



Section II details the Data collection and processing steps. 
Section III presents a brief overview on Interval Type-2 Fuzzy 
Logic. Section IV presents the proposed BB-BC type-2 FLS 
classification system. The experiments and results are 
presented in Section V. Conclusions and future work are 
presented in Section VI. 

II. DATA COLLECTION AND FEATURE EXTRACTION 

A. Data collection 

For the collection of data, a Texas Instruments (TI) 
IWR6843ISK-ODS board (depicted in Fig.1) was used. The 
board contains 3 millimeter-wave radar transmitters, 4 
receivers and operates in a frequency range of 60.25 to 64 
GHz.  

 

Fig. 1. TI IWR6843ISK-ODS board used for data collection. 

A high velocity resolution of 0.15 km/h was used along 
with a preset maximum range of 5 m and a range resolution of 
10 cm. The sampling frequency was set to 10 samples per 
second along with a video recording of the same scene with a 
sampling frequency of 30 frames per second.  

The proposed radar is capable of measuring range and 
radial velocity along with azimuth and elevation angles of 
objects within the field of view [14]. At each time step the 
radar measures the amplitude for each combination of range 
and radial velocity for every transmitter and receiver antenna 
pair. A positive and negative value of radial velocity can be 
observed for objects moving away from and towards the sensor 
respectively. The radial velocity shall be referred to as the 
Doppler value. An example of a Range-Doppler Amplitude 
heatmap averaged across all antenna pairs for a bicycle like 
motion with hands is shown in Fig. 2. 

A large amount of reflected signal can be observed at 
longer ranges. The closest range signal is caused by the direct 
reflection whereas the longer range signals are caused by 
multi-path reflections (e.g. from the ceiling and floor). To 
address this issue the highest peak in the zero Doppler bin was 
selected as it is assumed this represents the reflection from the 
static body of the subject. All range bins prior to the peak 
(range bins closer to the sensor) are retained while all range 
bins behind the peak value have been discarded. 

All non-zero amplitude points in the heatmap are then 
transformed into a point cloud and the variation in antenna pair 
measurements for each Range-Doppler combination is used to 
infer 3D coordinates. It was noticed that spread along the 
elevation axis was inconsistent and the reason was found to be 
related to low Doppler return values and weak returns. The 
removal of the previously stated values was then applied to 
mitigate the issue. Fig. 3 shows a filtered and unfiltered 
windowed Range-Doppler heat map while Fig. 4 represents the 
resulting 3D point cloud.  

 

 

Fig. 2. Range-Doppler-Amplitude heatmap of the incoherent sum of antenna 
pairs. 

 

Fig. 3. a) unfiltered Range-Doppler Amplitude heatmap b) filtered Range-

Doppler Amplitude heatmap 

 

Fig. 4. Example of a 3D Point cloud representation of data in a single time 
instance. 

B. Feature extraction 

A total of 9 features were extracted from the point cloud 
data at each time step and time windowed for a total of one 

a) 

b) 



second resulting in 90 features (inputs to the classification 
system). The features used were: change in x, y and z central 
coordinate from the previous frame, average radial velocity 
across all points, average acceleration across all points, volume 
of a cuboid fit to incorporate all points, average distance 
between points, squared average velocity across all points and 
the number of clusters. 

The number of clusters was extracted using a DBSCAN 
algorithm with a 0.5 threshold, a minimum number of 10 
samples and the use of the Euclidian distance as the metric.  

III. A BRIEF OVERVIEW ON INTERVAL TYPE-2 FUZZY LOGIC  

Fuzzy logic provides a powerful tool to deal with real 
world uncertainty and provides a mathematical model to 
handle this uncertainty [15], [16], [17], [18], [19], [20], [21], 
[22]. As described in [23] various types of uncertainty can be 
observed:   

 Uncertainty about the meaning of the words that are 
used in the rules 

 Uncertainty about the consequent that is used in a rule 

 Uncertainty about the measurements that activate the 
fuzzy system 

 Uncertainty about the data that are used to tune 
parameters of a fuzzy system 

 

Type-2 Fuzzy Logic allows modeling of a higher degree of 
uncertainty, which is of importance when using noisy sensor 
data. A type-2 fuzzy set can be defined as [23]: 

�̃� = {(𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢))| ∀𝑥 ∈ 𝑋,    ∀𝑢 ∈  𝐽𝑥 ⊆ [0,1]}              

𝑥 𝜖 𝑋 is a value within the universe of the primary variable, 
𝑢 𝜖 𝑈 ≡ [0,1] is value within universe of the secondary 
variable, 𝐽𝑥 ⊆ [0,1] represents the primary membership of 𝑥.   
𝜇𝐴(𝑥, 𝑢) is a type-1 fuzzy set known as the secondary set. A 

type-2 fuzzy set �̃� is completely determined by its footprint of 
uncertainty (FOU) (shown cross hatched in Fig. 5). The FOU 
can be properly defined by its lower and upper membership 
functions [23].  

𝜇
𝐴

(𝑥) = sup{𝑢|𝑢 ∈ [0,1], 𝜇𝐴(𝑥, 𝑢) >  0} 

𝜇𝐴(𝑥) = inf{𝑢|𝑢 ∈ [0,1], 𝜇𝐴(𝑥, 𝑢) >  0} 

In this paper, we will employ the interval Type-2 Fuzzy 
system which assumes all secondary membership grades of the 
type-2 sets are set to 1, that is 𝜇𝐴(𝑥, 𝑢) = 1, ∀𝑥 ∈ 𝐽𝑥 ⊆ [0,1]. 
An example of an Interval type-2 Membership Function is 
given in Fig. 5. 

IV. THE PROPOSED BB-BC  TYPE-2 FLS CLASSIFIER 

SYSTEM 

Fig. 6 depicts the steps involved in the development of BB-
BC type-2 FLS classifier system which starts by data collection 
followed by random rule generation and then followed by raw 

rule reduction and rule length reduction while employ the BB-
BC to maximise the model accuracy and interpretability ( by 
generating small rule bases with short rules). The following 
subsections will discuss these steps in detail.  

 

 

Fig. 5. Type-2 Interval Type-2 Membership Function.  

 
Fig. 6. Flow chart of proposed optimization steps for the type-2 Fuzzy Logic 

classifier 

A. Initial rule base creation 

Antecedent membership functions are generated by 
creating sets of 3 piecewise linear membership functions 
corresponding to Low, Medium and High for each input as 
shown in Fig. 7.  

 
Fig. 7. Type-2 Membership Functions generated for each input. 

This is done by randomly generating sets of three numbers 
for each membership function. The first number represents the 
end of the rising edge (b); the second number represents the 
start of the falling edge (c), while the final number represents 
the relative size of the FOU (e and f). The start of the rising 
edge of each membership function is anchored at the start of 
the falling edge of the previous membership function. The 
same logic is applied to the end of the falling edge and the end 



of the rising edge of the next membership function. This is 
done to ensure overlap of membership functions and prevent 
segments in which the membership grade of all membership 
function would amount to 0. The relative footprint of 
uncertainty value represents the displacement between the start 
of the rising edge of the lower membership function as 
opposed to the upper membership function. The same logic is 
applied to the falling edge, while the end of the rising edge and 
start of the falling edge are anchored in the same points as their 
upper membership function counterparts.  

B. Raw rule extraction 

To assign valid consequents for each rule a procedure 
described in [24] was implement. For each input vector in the 
dataset, the membership grades of the upper and lower 
membership functions were calculated and all combinations 
where the values of the membership grades were nonzero were 
extracted. For each of the given combinations a consequent 
membership function was assigned containing the true value 
for the given input. Scaled firing strengths are then calculated 
for each rule using the given equation : 

                   𝑓𝑗𝑡(𝑥𝑡) = ∏ 𝜇
𝐴𝑛

𝑞𝑗𝑡 (𝑥𝑛)𝑛
1  

𝑓𝑗𝑡(𝑥𝑡) = ∏ 𝜇
𝐴𝑛

𝑞𝑗𝑡 (𝑥𝑛)𝑛
1  

Where 𝑓𝑗𝑡(𝑥𝑡) and 𝑓𝑗𝑡(𝑥𝑡) represent the upper and lower 

bounds of the firing strengths for each of the t data points. 

The given procedure results in a large number of rules, 
some of which can have the same antecedent but a different 
consequent. In order to calculate the weighted scale dominance 
the firing strengths of all rules have to be normalized. This is 
done by dividing the firing strength of the given rule by the 
summation of all the firing strengths of rules sharing the same 
consequent [24].  

                   𝑓𝑠
𝑗𝑡

=  
𝑓𝑗𝑡

∑ 𝑓𝑗𝑡
𝑗∈𝐶𝑙𝑎𝑠𝑠𝑗

  

𝑓𝑠
𝑗𝑡

=  
𝑓𝑗𝑡

∑ 𝑓𝑗𝑡
𝑗∈𝐶𝑙𝑎𝑠𝑠𝑗

  

Where 𝑓𝑠
𝑗𝑡

 and 𝑓𝑠
𝑗𝑡

 are the upper and lower scaled bounds 

of the firing strength of rules sharing the same consequent. 

To resolve the conflicting rules containing the same 
antecedent and different consequent scaled confidence and 
scaled support are calculated as [25]: 

The scaled confidence is computed as follows: 

       𝑐𝑜𝑛𝑓(�̃�𝑞  ⇒ 𝐶𝑞) =  
∑ 𝑓𝑠

𝑗𝑡
𝑥𝑠∈𝐶𝑞 (𝑥𝑠)

∑ 𝑓𝑠
𝑗𝑡

(𝑚
𝑗=1 𝑥𝑠)

 

𝑐𝑜𝑛𝑓(�̃�𝑞  ⇒ 𝐶𝑞) =  
∑ 𝑓𝑠

𝑗𝑡
𝑥𝑠∈𝐶𝑞 (𝑥𝑠)

∑ 𝑓𝑠
𝑗𝑡

(𝑚
𝑗=1 𝑥𝑠)

 

Where 𝑐𝑜𝑛𝑓(�̃�𝑞  ⇒ 𝐶𝑞) and 𝑐𝑜𝑛𝑓(�̃�𝑞  ⇒ 𝐶𝑞) are the 

upper and lower scale confidence bounds of the class 𝐶𝑞 being 

the consequent class given the antecedents �̃�𝑞 for m conflicting 

rules. 

The scaled support is computed as follows:  

𝑠𝑢𝑝𝑝(�̃�𝑞  ⇒ 𝐶𝑞) =  
∑ 𝑓𝑠

𝑗𝑡
𝑥𝑠∈𝐶𝑞 (𝑥𝑠)

𝑚
  

𝑠𝑢𝑝𝑝(�̃�𝑞  ⇒ 𝐶𝑞) =  
∑ 𝑓𝑠

𝑗𝑡
𝑥𝑠∈𝐶𝑞 (𝑥𝑠)

𝑚
 

Where the scaled support of a rule having the consequent  

𝐶𝑞 given the antecedents �̃�𝑞 can be defined by its upper and 

lower bounds 𝑠𝑢𝑝𝑝(�̃�𝑞  ⇒ 𝐶𝑞) and 𝑠𝑢𝑝𝑝(�̃�𝑞  ⇒ 𝐶𝑞). m is the 

number of training patterns.  

The scaled dominance is then defined as: 

𝑑(�̃�𝑞  ⇒ 𝐶𝑞) =  𝑐𝑜𝑛𝑓(�̃�𝑞  ⇒ 𝐶𝑞) ∗  𝑠𝑢𝑝𝑝(�̃�𝑞  ⇒ 𝐶𝑞) 

𝑑(�̃�𝑞  ⇒ 𝐶𝑞) =  𝑐𝑜𝑛𝑓(�̃�𝑞  ⇒ 𝐶𝑞) ∗  𝑠𝑢𝑝𝑝(�̃�𝑞  ⇒ 𝐶𝑞) 

Where 𝑑(�̃�𝑞  ⇒ 𝐶𝑞) and 𝑑(�̃�𝑞  ⇒ 𝐶𝑞) represent the upper 

and lower bound of scaled dominance of a rule belonging to 

class  𝐶𝑞 given the antecedents �̃�𝑞. 

To calculate the weighted scaled dominance the average 
dominance over rules with same antecedents and different 
consequents is subtracted from the dominance values 
calculated in the previous step [24].  

𝑤𝑑(�̃�𝑞  ⇒ 𝐶𝑞) =  𝑑(�̃�𝑞  ⇒ 𝐶𝑞) −  𝑑𝑎𝑣𝑒  

𝑤𝑑(�̃�𝑞  ⇒ 𝐶𝑞) =  𝑑(�̃�𝑞  ⇒ 𝐶𝑞) −  𝑑𝑎𝑣𝑒  

Where 𝑤𝑑(�̃�𝑞  ⇒ 𝐶𝑞) and 𝑤𝑑(�̃�𝑞  ⇒ 𝐶𝑞) are the upper 

and lower bounds of the weighted scaled dominance of a rule 

belonging to class 𝐶𝑞 given the antecedents �̃�𝑞. Where 𝑑𝑎𝑣𝑒  

and 𝑑𝑎𝑣𝑒  are upper and lower bounds of the average 

dominance over rules with the same antecedents �̃�𝑞, and a 

conflicting consequent class. 

 The number of rules generated by this procedure is large so 
for each outcome only 30 rules with the highest weighted 
dominance are retained. By performing this step, some 
combination of inputs will not be represented in the rule base. 
Classification is performed in one of two ways dependent on if 
the current combination of inputs is represented in any rule. If 
the input matches one of the existing rules the final class can be 
obtained by taking the maximum value of the ZClassh [24].  

𝑍𝐶𝑙𝑎𝑠𝑠ℎ(𝑥t) =  
∑ 𝑓𝑗

𝑗∈ℎ 𝑥t∗ 𝑤𝑑(𝐴𝑞 ⇒𝐶𝑞) 

max 𝑗 ∈ℎ (𝑓𝑗(𝑥t)∗ 𝑤𝑑(𝐴𝑞 ⇒𝐶𝑞)
 



𝑍𝐶𝑙𝑎𝑠𝑠ℎ(𝑥t) =  
∑ 𝑓𝑗

𝑗∈ℎ 𝑥t∗ 𝑤𝑑(𝐴𝑞 ⇒𝐶𝑞) 

max 𝑗 ∈ℎ (𝑓𝑗(𝑥t)∗ 𝑤𝑑(𝐴𝑞 ⇒𝐶𝑞)
 

𝑍𝐶𝑙𝑎𝑠𝑠ℎ =  
𝑍𝐶𝑙𝑎𝑠𝑠ℎ(𝑥t)+ 𝑍𝐶𝑙𝑎𝑠𝑠ℎ(𝑥t) 

2
 

Where 𝑍𝐶𝑙𝑎𝑠𝑠ℎ is the total vote strength for a class given 

an input vector 𝑥(𝑝) calculated as the mean of its upper and 

lower bounds 𝑍𝐶𝑙𝑎𝑠𝑠ℎ and 𝑍𝐶𝑙𝑎𝑠𝑠ℎ. 

In the event the input does not match any of the rules in the 
rule base a similarity measure is calculated using the distances 
between the linguistic labels of the input fired and those in 
each rule of the rule base. The most similar rules dominance 
and the firing strength of the current combination of inputs 
shall be used in the previously stated equations to determine 
the output [24]. 

 A subset of 30 rules representing each of the possible 
outputs was kept by selecting only the rules containing the 
highest weighted dominance values.  

C. Rule length reduction 

In order to increase the readability and interpretability of 
the final output a basic genetic algorithm without crossover 
was implemented to generate sets of 4 indices representing the 
inputs to use for each of the rules. The fitness of each 
chromosome was determined by evaluating the F1 score on the 
training set. The sample with the highest fitness score in the 
initial population is then selected and mutated to produce the 
next generation. This procedure is performed for a set number 
of generations. 

The F1 score was chosen as the metric of choice as it 
incorporates both precision and recall and is defined as: 

             𝐹1 =  
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

D. Big Bang-Big Crunch antecedent optimisation 

Big Bang-Big Crunch is an algorithm inspired by the 
creation of the universe [26, 27]. The algorithm is based on two 
stages, the first being the Big Bang stage which introduces 
disorder while in the Big Crunch stage randomly distributed 
particles are pulled into order [27]. Initial points are distributed 
randomly and then shrunk into a single point being the center 
of mass. At each Big Bang stage a smaller segment around the 
centre of mass is used to generate new points [28, 29]. 

               𝑥new =  𝑥c +  𝑙 𝑟/𝑘  

Where xc represent the current centre of mass, l the upper 
limit, r a random value  uniformly distributed over the interval 
[0, 1)  and k the current iteration index. 

The chromosomes generated by the Big Bang-Big Crunch 
algorithm consisted of three parameters (b, c, p). The fitness 
function maximized by the algorithm was the F1 score 
achieved on the training dataset. It is important to note that p is 
the relative size of the footprint of uncertainty and is used to 
encode both the e and f parameters. The values of e and f can 
be calculated as: 

𝑒 = 𝑎 + 𝑝 ∗ (𝑏 − 𝑎)  

𝑓 = 𝑑 − 𝑝 ∗ (𝑑 − 𝑐)  

V. EXPERIMENTS AND RESULTS 

A. Dataset preparation 

The dataset used consists of multiple samples of 6 
individuals performing 5 different motions as shown in Fig 8. 
The motions observed were: 

a) Single hand swipe movement (left or right) 

b) Up down movement 

c) A bicycle like motion towards the radar with both arms 

(opposite circular) 

d) Circular movement with both arms tangential to the 

radar 

e) Linear forward and backward movement with both 

hands 

 

Motions used can easily be mapped to a traditional control 
system in a domestic space where.: 

 Circular motion – Scroll over potential devices  

 Hand swipe – Scroll operation on device 

 Opposite circular - run current device 

 Up down – stop current device 

 Forward back – activate currently selected feature of 
device (button press)  

 

 

Fig. 8. Motions used starting from the top left a) Hand swipe, b) Up down 

motion, c) Opposite circular motion, d) Circular motion, e) Forward backward 
motion 

Training was performed on 50 files (10 of each motion) 
containing continuous repetition of the given motion for 17 to 
26 seconds of data. Upon performing the previously described 
feature extraction steps the resulting dataset contains 8821 
samples with 90 features. A separate validation set was 
provided containing a total of 15 files (3 for each motion) 



resulting in 2995 samples and the models were evaluated on 5 
files (one of each motion type). 

A Type-1 Fuzzy Logic classifier, Type-2 Fuzzy Logic 
classifier, a Deep Neural Network (DNN), and a Convolutional 
Neural Network based classifier were trained and evaluated. 

The Deep Neural Network used consists of 5 fully 
connected layers using a Rectified Linear Unit (ReLU) 
activation function in all hidden layers, while the output layer 
uses a softmax activation function. The proposed CNN consists 
of two blocks of two 1D convolutional layers followed by 
batch normalization and max pooling. Another two 1D 
convolutional layers are then applied and followed by a batch 
normalization layer and Global Average Pooling layer, which 
feeds into a fully connected layer using a softmax activation 
function to produce the final outputs. 

B. Results 

Offline evaluation of the system was performed to produce 
a confusion matrix as well as visual evaluation by tagging a 
video with the predictions. The final outputs were produced by 
performing a classification for 5 consecutive time steps and 
then choosing the class which was predicted the most times in 
that interval. In the event more than a single class had the 
maximum number of predictions, the class with the highest 
absolute weighted scale dominance was chosen. The confusion 
matrix for the proposed Type-2 Fuzzy Logic System can be 
found below (Fig. 9) followed by a confusion matrix for the 
proposed CNN (Fig. 10).  

 
Fig. 9. Confusion matrix for the proposed Type-2 Fuzzy Logic classifier on 

unseen data 

 
Fig. 10. Confusion matrix for proposed CNN classifier on unseen data 

Table I shows on the testing unseen data, the performances 
achieved by a the proposed Type 2 Fuzzy Logic System, a 
Convolutional Neural Network, a stacked autoencoder Deep 
Neural Network, and a Type-1 Fuzzy Logic System. 

TABLE I.  CLASSIFIER PERFORMANCE ON UNSEEN DATA 

 Precision Recall F1-Score Accuracy 

T2 FLS 65.96% 65.75% 65.86% 65.79% 
T1 FLS 31.33% 40.85% 35.46% 31.58% 

CNN 88.02% 88.62% 88.32% 87.97% 
DNN 73.82% 74.15% 73.98% 73.78% 

 

The results show the black box Deep Neural Network 

model achieves only 8.3% higher average recall as opposed to 

the proposed system. Both systems have fallen short to a more 

complex and specialized Convolutional Neural Network. The 

poor performance of the type-1 Fuzzy Logic system could be 

attributed to the high noise and uncertainty in the dataset for 
which the proposed system is better suited. 

Fig. 11 shows the video used to visually evaluate the 
results. In the top left the predicted label is shown, while the 
lower part of the image contains a bar chart which displays the 
percentage of the motion belonging to each class.   

 

 
Fig. 11. Frame of a video used for visual evaluation and tagging of motion on 

a video sequence 

While the other black box models lack explainability an 
additional emphasis has been placed on making the type-2 
Fuzzy Logic model explainable. To this end the rule length has 
been limited to a maximum of 4 antecedents per rule (while the 
system has 90 inputs to the FLS) while retaining only 30 rules 
per class. Table II contains an example of a rule used for up 
down movement classification. 

TABLE II.  EXAMPLE OF A RULE GENERATED BY THE UP DOWN FUZZY 

LOGIC CLASSIFIER 

Ante. 1 Ante. 2 Ante. 3 Ante. 4 Output 

Med_7 Med_1 Low_8 Med_3 Circular 

Motion  

 
With prior knowledge of the feature space this rule can be 

read as follows: IF the change of z coordinate in time step 7 is 



Moderate, and change of z coordinate in time step 1 is 
Moderate, and average distance between points in time step 8 
is Low, and change of y coordinate in time step 3 is Moderate, 
then predict the output class as UP-Down Motion. It can be 
observed as the movement is vertical the classifier retained 
features which are related to a change in the elevation of the 
target.  

An added benefit of the explainability is the ease of 
integrating expert knowledge into the system in terms of 
custom rules to augment the performance of the system. An 
example of such rule for forward-backward motion can be 
found in Table III. 

TABLE III.  EXAMPLE OF AN EXPERT RULE 

Ante. 1 Ante. 2 Ante. 3 Ante. 4 Output 

Low_1 High_2 High_3 High_4 Forward 

Backward 

 
The interpretation of this rule would be: If the change in the 

y coordinate in time step 1 is Low, and y coordinate change in 
time steps 2 , 3, 4 is High, the motion is Forward Backward. 
This could be interpreted as the arms have been stationary and 
have moved rapidly in consecutive measurements towards the 
sensor.  

It is also important to note that the time complexity of 
training the Fuzzy Logic classifier model is greater than the 
time complexity of training the ANN models. However, this 
does not influence the inference time of the final model. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a privacy preserving short 
range radar sensor coupled with an Explainable AI  system 
employing a Big Bang Big Crunch (BB-BC) Interval Type-2 
Fuzzy Logic System (FLS) to classify gestures performed in an 
indoor environment. Data has been collected using a TI 
IWR6843ISK-ODS board and used to optimize a type-2 Fuzzy 
Logic system for gesture recognition. The result show that the 
type-2 FLS results are comparable to black box CNN and 
stacked autoencoder deep neural networks while producing an 
Explainable AI (XAI) systems which could be easily read, 
analysed and augmented by the engineering team (to allow the 
verification of the control system) and the end user. The system 
allows for easy embedding of expert knowledge by allowing 
the user to modify or add custom rules. A significant 
performance increase compared to a type-1 Fuzzy Logic 
system can be observed. This is most likely due to the type-2 
Fuzzy Logic systems enhanced performance in noisy 
environments. In future work improvements shall be made to 
the classification performance of the system in more 
challenging domestic and outdoor spaces.  
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