University of Essex

Department of Mathematical Sciences

ON THE PREDICTABILITY OF U.S. STOCK MARKET
USING MACHINE LEARNING AND DEEP
LEARNING TECHNIQUES

A Thesis submitted for the award of
Doctor of Philosophy
by

Jonathan Iworiso

Supervisor: Dr. Spyridon Vrontos

March 25, 2020



Table of Contents

Abstract 8
Dedication 10
Acknowledgments 11
List of Publications 12
1 Introduction 13
2 Directional Predictability of U.S. Stock Market Using Machine

Learning Techniques 20
2.1 Imtroduction . . . . . . . .. ... 20
2.2 Literature Review . . . . . . . .. . o o 22
2.3 Research Methodology . . . . . .. .. .. ... ... ... ... .. 26
2.3.1 Equity Premium Direction Modelling as a Binary Time Series 26
2.3.2 The Static and Dynamic Binary Probit Models . . . . . . . 27

2.3.3  The Penalized Binary Probit Models for Stock Return Pre-
dictability . . . . . .. ... 30

2.3.4 Classification and Regression Trees for Stock Return Pre-
dictability . . . . . . ..o 33
2.3.5 Statistical and Economic Performance Evaluation . . . . . . 26
2.4 Data Analysis and Discussion . . . . . .. ... ... ... 63
2.4.1 Sources of Data and Variables . . . . . ... .. ... .. .. 63
2.4.2 Statistical Performance Evaluation Results . . . . . . . . .. 64



2.4.3 The Economic Performance Evaluation Results . . . . . .. 74

2.5 Conclusion . . . . . . . ., 78

Forecasting the U.S. Equity Premium with Regression Training

Techniques 80
3.1 Imtroduction . . . . . . . . ... 80
3.2 Literature Review . . . . . . . ... oo Lo 82
3.3 Methodology . . . . . . ... 86
3.3.1 The Historical Average . . . . . . . . ... ... ... .... 86
3.3.2 The Least Squares Regression Training . . . . . . . ... .. 86
3.3.3 The Support Vector Regression . . . . .. ... ... .... 94
3.3.4 Relevance Vector Regression . . . . . . ... ... ... ... 96
3.3.5 The Regularized or Penalized Regression . . . . . . . .. .. 100
3.3.6 Components Regression . . . .. ... ... ... ...... 106
3.3.7 Gaussian Processes Regression . . . . . . .. ... ... ... 109
3.3.8 Regression Splines . . . . ... ... ... ... .. ... .. 111
3.3.9 Cubist Regression . . . . . . . ... ... ... ... 112
3.3.10 k Nearest Neighbour . . . . .. ... ... ... .. ..... 113
3.3.11 Projection Pursuit Regression . . . . . ... ... ... ... 115
3.3.12 Neural Networks Regression . . . . . .. .. .. ... .... 116
3.3.13 Statistical and Economic Performance Evaluation . . . . . . 119
3.4 The Empirical Results and Discussion . . . . . . .. ... ... ... 124
3.4.1 Data, Variables and Forecasting Method . . . . . . ... .. 124
3.4.2 Results and Discussion . . . . . . ... ... ... 128
3.5 Conclusion . . . . . . .. 154

Deep Learning Techniques for Stock Market Statistical Predictabil-

ity with Economic Significance 157
4.1 Introduction . . . . . . . ... 157
4.2 Review of Relevant Literature . . . . . . . . .. .. ... ... ... 158
4.3 Research Methodology . . . . . .. ... .. ... .. ... ..... 162



4.3.1 Excess Stock Return Predictability . . . .. ... .. .. .. 162

4.3.2 Historical Average . . . . . .. . .. ... ... .. ... .. 163
4.3.3 Deep Neural Network . . . . . .. ... ... ... .. .... 163
4.3.4 Stacked Autoencoder . . . . ... ... L. 164
4.3.5 Hy0 Deep Learning . . . . . .. ... ... ... 166
4.3.6 Long Short Term Memory . . . . . ... .. .. ... .... 167
4.3.7 Dropout Approach . . . . ... ... . ... ... ... ... 169
4.3.8 Activation Functions . . . . . ... ... 169
4.3.9 Statistical and Economic Performance Evaluation . . . . . . 170
4.4 Data Analysis & Discussion . . . . . ... ..o 172
4.5 Conclusion . . . . . . ... 189
Summary, Conclusion and Further Research 191
5.1 Summary . ... 191
5.2 Conclusion . . . . . .. .. 194
5.3 Further Research . . . . . . . ... ... ... 0. 196



List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

3.3
3.4

4.1

4.2

4.3

4.4

4.5

The Confusion Matrix . . . . . . . .. ... ... ... ... ...
The Financial Variables used for the Study . . . . . . . ... .. ..
Statistical Performance Evaluation Results . . . . . . ... ... ..
Statistical Performance Evaluation Results Continued . . . . . . . .
Economic Performance Evaluation Results . . . . ... .. ... ..

Economic Performance Evaluation Results Continued . . . . . . ..

Data & Description of Variables: 1960MO01 to 2016M12 . . . . . . .
Descriptive Statistics for the Time Series Variables:1960MO01 to
2016M12 . . . o L
The Statistical and Economic Performance Evaluation Results . . .
The Statistical and Economic Performance Evaluation Results Con-

tinued . ..o L

The Activation Functions . . . . . . . . .. ... ... ... ....
Data & Description of Variables:1960MO01 to 2016M12 . . . . . . . .

Statistical and Economic Performance: 1981M1 to 2016M12: T995 =



List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

Graphical Representation of the Out-of-Sample Positive Class Re-
turn Forecasts . . . . . . . ... oo
Graphical Representation of the Out-of-Sample Positive Class Re-
turn Forecasts continued . . . . . .. ... oL
Graphical Representation of the Out-of-Sample Positive Class Re-
turn Forecasts . . . . . . . ..o
Graphical Representation of the Out-of-Sample Positive Class Re-
turn Forecasts continued . . . . . . ... ... oL
Graphical Representation of the Out-of-Sample Positive Class Re-
turn Forecasts continued . . . . . .. ... 0oL
Graphical Representation of the Out-of-Sample Positive Class Re-

turn Forecasts continued . . . . . . . . . ... ...

Out-of-Sample U.S Monthly Equity Premium Forecasts produced
by the RT Models . . . . . . .. .. ... . ... ... ... ....
Out-of-Sample U.S Monthly Equity Premium Forecasts produced
by the RT Models (Continued) . . . ... ... ... ... .....
Out-of-Sample U.S Monthly Equity Premium Forecasts produced
by the RT Models (Continued) . . . ... ... ... ... .....
Out-of-Sample U.S Monthly Equity Premium Forecasts produced
by the RT Models (Continued) . . . ... ... ... ... . ....
Out-of-Sample U.S Monthly Equity Premium Forecasts produced
by the RT Models (Continued) . . . .. .. ... ... ... ....



3.6 Out-of-Sample U.S Monthly Equity Premium Forecasts produced
by the RT Models (Continued) . . . ... ... ... ... .....
3.7 Out-of-Sample U.S Monthly Equity Premium Forecasts produced
by the RT Models (Continued) . . . . ... ... ... ... ....
3.8 Out-of-Sample U.S Monthly Equity Premium Forecasts produced
by the RT Models (Continued) . . .. ... ... .. ... .....
3.9 Out-of-Sample U.S Monthly Equity Premium Forecasts produced
by the RT Models (Continued) . . . ... ... ... ... .....
3.10 Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative
square prediction error (DCSPE) . . . .. ... ... ... ..
3.11 Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative
square prediction error (DCSPE) continued . . . . . . . .. ... ..
3.12 Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative
square prediction error (DCSPE) continued . . . . . . ... ... ..
3.13 Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative
square prediction error (DCSPE) continued . . . . . . ... ... ..
3.14 Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative
square prediction error (DCSPE) continued . . . . . . .. ... ...
3.15 Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative
square prediction error (DCSPE) Continued . . . . . ... ... ..
3.16 Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative

square prediction error (DCSPE) Continued . . . . . ... ... ..



3.17

3.18

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative
square prediction error (DCSPE) Continued . . . . . ... .. ... 151
Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative

square prediction error (DCSPE) Continued . . . . . ... ... .. 152

Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1981 to December 2016 . . . . . . . . .. 180
Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1981 to December 2016 (continued) . . . 181
Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1981 to December 2016 (continued) . . . 182
Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1991 to December 2016 . . . . . . . . .. 183
Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1991 to December 2016 (continued) . . . 184
Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1991 to December 2016 (continued) . . . 185
Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 2001 to December 2016 . . . . . . . . .. 186
Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 2001 to December 2016 (continued) . . . 187
Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 2001 to December 2016 (continued) . . . 188



Abstract

Conventional market theories are considered to be inconsistent approach in mod-
ern financial analysis. This thesis focuses mainly on the application of sophisti-
cated machine learning and deep learning techniques in stock market statistical
predictability and economic significance over the benchmark conventional efficient
market hypothesis and econometric models. Five chapters and three publishable
papers were proposed altogether, and each chapter is developed to solve specific
identifiable problem(s).

Chapter one gives the general introduction of the thesis. It presents the state-
ment of the research problems identified in the relevant literature, the objective
of the study and the significance of the study. Chapter two applies a plethora
of machine learning techniques to forecast the direction of the U.S. stock mar-
ket. The notable sophisticated techniques such as regularization, discriminant
analysis, classification trees, Bayesian and neural networks were employed. The
empirical findings revealed that the discriminant analysis classifiers, classification
trees, Bayesian classifiers and penalized binary probit models demonstrate signif-
icant outperformance over the binary probit models both statistically and eco-
nomically, proving significant alternatives to portfolio managers. Chapter three
focuses mainly on the application of regression training (RT) techniques to fore-
cast the U.S. equity premium. The RT models demonstrate significant evidence of
equity premium predictability both statistically and economically relative to the
benchmark historical average, delivering significant utility gains. Chapter four
investigates the statistical predictive power and economic significance of financial

stock market data by deep learning techniques. Chapter five give the summary,



conclusion and present area(s) of further research.

The techniques are proven to be robust both statistically and economically
when forecasting the equity premium out-of-sample using recursive window method.
Overall, the deep learning techniques produced the best result in this thesis. They
seek to provide meaningful economic information on mean-variance portfolio in-
vestment for investors who are timing the market to earn future gains at minimal

risk.
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Chapter 1

Introduction

A notable quest in modern financial literature is the search for more suitable mod-
els that can explicitly model and forecast financial time series data with utmost
precision to guarantee investors future expectation at extremely low volatility. In
this case, the researchers are expected to present models that can significantly
outperformed the conventional financial modelling and forecasting approach. A
number of statistical and econometric models have been applied by various schol-
ars over the years. Although the empirical findings in most situations are proven
to outperformed the conventional approaches but are generally considered to be
weak as compared to a rule of thumb (i.e., at least 50%) especially in sign forecast-
ing and market dynamics (Leitch and Tanner, 1991; Christoffersen and Diebold,
2006; Anatolyev and Gospodinov, 2010; Ponk&, 2016), and hence, the need for
further research in this field of study. The empirical findings in Nyberg (2011,
2013) demonstrates the effectiveness of static and dynamic statistical models in fi-
nancial time series analysis but the resulting predictive power of the models seems
to be weak and required further statistical and economic performance evaluation
measures to affirm the stability in finance. The classification and level estimation
techniques in Leung et al. (2000) greatly provides evidence of useful predictabil-
ity over the conventional financial methodologies known as the benchmark buy
and hold (B&H) trading strategy, with the discriminant classifier emerging as the

superior model in this perspective. The quest for a superior model to forecast
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equity risk premium out-of-sample comparative to the benchmark historical av-
erage with convincing statistical and economic performance evaluation measures
to a mean-variance portfolio investor, is another crucial debatable research issue
in modern finance (Goyal and Welch, 2003; Campbell and Thompson, 2005, 2007;
Rapach et al., 2007; Neely et al., 2014; Baetje and Menkhoff, 2016; Bai, 2010; Li
and Tsiakas, 2017). Although the statistical and econometric models used in the
afore-mentioned studies demonstrate feasibility and evidence of both statistically
and economically significant predictability but further investigation is required to
authenticate the fate of investors timing the market to maximize profit at minimal
risk.

The earnest expectation of the stock market outcome to mean-variance in-
vestors above the treasury bill rate led to the quest for a meaningful estimate of
excess stock return or equity premium (Campbell, 2008). The equity premium is
the difference between the expected return on the market portfolio (SP500) and
the risk free interest rate. Thus, investors can expect this return from holding
the market portfolio in excess of the return on the 3-month Treasury bills. It is
considered to be the most crucial concept in finance, owing to portfolio alloca-
tion decisions and cost of capital estimates. It is worth noting that the backbone
of investment strategies depends on the ability to predict future returns but the
predictability itself does not necessarily guarantee the investor’s profit from the
trading strategy based on the resulting forecasts (Campbell and Thompson, 2005;
Bai, 2010). An academic debating question in modern review of financial studies
is that: can any other model accurately forecast the equity premium better than
the forecasts from the historical average? Goyal and Welch (2007) have argued
that no other variable beats a simple forecast based on the historical average, and
concluded that the in-sample correlations conceal a systematic failure of the finan-
cial and economic variables out-of-sample. Contrary to this empirical analysis, the
results in Rapach et al. (2007) reveals that despite the failure of the individual

model forecasts to outperform the historical mean forecasts, the combination of
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the individual model forecasts yield statistically and economically significant gains,
relative to the historical mean, consistently over time. Although some of the in-
dicators used as predictors appeared to be good statistically significant predic-
tors of the equity premium in-sample at some specific horizons but are relatively
poor in the out-of-sample forecasting ability. Fama and French (2002) verified
that the estimates from economic fundamentals especially in the dividend growth
model, appeared to produce lower standard errors resulting to corresponding bet-
ter precision than the estimates from the benchmark historical average model.
The combination approach in Neely et al. (2014) confirmed that both technical
indicators and macroeconomic variables displayed statistically and economically
significant evidence of in-sample and out-of-sample forecasting ability, with the
technical indicators seemingly outperforming the macroeconomic variables. The
empirical analysis suggests that the combination of both technical indicators and
macroeconomic variables will significantly improve the equity risk premium fore-
casts rather than using a single set of the predictor variables alone. However,
the findings require further investigation for either corroboration or refutation.
Following this argument, Baetje and Menkhoff (2016) demonstrated that the pre-
dictive abilities of both indicators seem to possess similar quality when assessed
by their respective long term forecast errors. Unlike the economic indicators that
loses predictive ability on a long run, the technical indicators maintain or increase
stability over time, and hence, the technical indicators consistently outperformed
the economic indicators over time. The application of forecasts combination in
Rapach et al. (2010) confirmed that combination of forecasts yields statistically
and economically significant out-of-sample gains consistently on a long run, com-
pared to the benchmark historical average. Therefore, the forecasts combination
approach in Rapach et al. (2010) appeared to maintain a long run statistical and
economic stability.

However, evaluating the mean squared errors (MSEs) and Sharpe ratios (SRs)

alone, do not provide adequate evidence to justify the superiority of a specific
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model over other competitive models. Some existing papers focused mainly on
evaluating the model prediction errors, expected returns on portfolio investment
and the corresponding Sharpe ratio. In addition to these parametric measures, Ny-
berg (2011) included the Diebold-Mariano (DM) statistical tests and the Pesaran-
Timmermann (PT) directional predictability tests only in the in-sample case, but
do not investigate the DM among the models in the out-of-sample case. The
benchmark used in the study was the expected return on a portfolio investment
held on a risk-free interest rate, based on the buy and hold trading strategy. Goyal
and Welch (2003), Campbell and Thompson (2005) were mainly concerned with
examining the predictive ability of individual predictor variables relative to the
benchmark historical average, using the out-of-sample statistical goodness of fit
tests and the SRs, whereas Campbell and Thompson (2007); Campbell (2008),
Goyal and Welch (2007) and Rapach et al. (2010) added an important concept
known as the utility gain, which serves as an additional benchmark for comparing
the economic performance of a model to a portfolio investor with a portfolio held
on the risk-free Treasury bill. However, some important concepts such as cumu-
lative returns among others were not included in their studies. It is imperative to
explore adequate statistical predictive and economic significance tests especially in
the out-of-sample forecasting models, to determine superiority among the resulting
models used in the study.

In modern research, the use of machine learning and deep learning techniques
is drawing rapid attention in financial time series analysis. Machine learning is the
study of sophisticated algorithms and mathematical models existing between input
features and target output or to learn and recognize patterns in order to improve
the performance on a specific task typically by computer systems. In this case, the
algorithm builds a model from sample training data and use the resulting model
to make predictions without being explicitly programmed to perform the specific
task. The feasibility of some machine learning techniques in finance (Kumar and

Thenmozhi, 2006; Chen, 2011; Huang and Wu, 2008; Ince and Trafalis, 2007;
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Pahwa et al., 2017; Patel et al., 2015) with desirable predictive performance had
led to the introduction of more sophisticated learning technique known as deep
learning which have the ability to extract features from a large raw dataset without
relying on prior knowledge of predictors. Day and Lee (2016) described deep
learning as deep neural network, which is a more sophisticated aspect of machine
learning. It is a form of machine learning technique that involved the use of
data to train a model or recognize pattern(s) or label instances in order to make
predictions from new data in a more sophisticated manner (Heaton et al., 2017).
Machine learning and deep learning techniques are shown in empirical literature to
be useful techniques to learn data, recognize patterns such as speech recognition,
and to classify instances such as digital image classification. They appeared to
be useful modern research techniques for analysis in computer science, biology,
medicine, linguistics, physics, statistics, economics and finance.

It is worth noting that the machine learning algorithms/models introduced in
financial and econometric literature do not provide adequate statistical predictive
and economic significant measuring tools for comparing their performances with
the conventional efficient market hypothesis and econometric models. Suffice it
to say that the justification of a predictive model in terms of superiority over the
conventional models in finance depends on both statistical and economic perfor-
mance measures. The findings in Kumar and Thenmozhi (2006), Chen (2011)
and Chen and Hao (2017) are promising, but do not provide adequate statistical
and economic measures to demonstrate the superiority of machine learning tech-
niques over the benchmark approaches in finance. Yoshihara et al. (2014) shows
that recurrent deep neural networks appeared to be more effective approach over
support vector machines (SV M) and deep belief networks when predicting the
trend of stock market, especially when the process is focused on specific period
after a known significant event in financial domain. The analysis provides a con-
troversial superiority of recurrent neural networks over the deep belief network in

this direction. The empirical findings in (Zhao et al., 2017) shows the superior-
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ity of deep learning ensemble with stacked denoising autoencoders for modelling
and forecasting crude oil prices over the bootstrap aggregation and other ma-
chine learning techniques used in the literature. The empirical results in Hu et al.
(2018), Feuerriegel and Fehrer (2016), Heaton et al. (2016) also confirmed that the
application of deep learning techniques in financial analysis seek to outperformed
both the standard methods in finance and the conventional machine learning tech-
niques. Armano et al. (2005) introduced a hybrid genetic-neural architecture to
forecast stock indexes with consideration of realistic trading commission, and ap-
peared to be promising in the selected application task. The empirical findings
also demonstrate evidence of superior outperformance over the benchmark buy
and hold strategy for a large test sample size. Contrary to these analyses, is the
empirical results in Krauss et al. (2017) in which a random forest outperformed
some notable deep learning techniques. It was shown that the random forest out-
performed both deep neural networks (DNN) and gradient boosted trees in the
investigation of statistical arbitrage on SP500, and concluded that a further inves-
tigation by hyper-parameter optimization for the deep neural networks is required
as an area of future research work.

The statement of the problem lies on the provision of superior technique that
can significantly outperform the existing conventional econometric models and to
fill the identifiable research gaps in the existing literature. The objective of this
study is to explore the sophisticated machine learning and deep learning techniques
to model financial stock market data in order to make predictions and evaluate
their performances with robustness, and to demonstrate superior outperformance
of these proposed methodologies in the thesis over the benchmark approaches used
in the existing literature. The study aimed to introduce additional statistical and
economic performance evaluation measures that can authenticate the long-run
effectiveness and consistency of the proposed models in relation to optimistic in-
vestment approach for yielding future gains. Therefore the outcome of this study

shall provide significant statistical and economic information to stock market in-
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vestors and portfolio managers on the need for optimal portfolio assessment with
a view to maximize profit at minimal risk when timing the market. It shall also
fill the identifiable research gaps, enrich empirical literature and present area of

further research to future researchers on the subject matter.
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Chapter 2

Directional Predictability of U.S.

Stock Market Using Machine

Learning Techniques

2.1 Introduction

Stock market participants aim at maximising returns on portfolio investments at
minimal risk. Consequently, forecasting stock market returns has received con-
siderable attention in recent years. The majority of papers have focused on the
forecast accuracy of competing models and examined if there is evidence of pre-
dictability, which can lead to economic gains. However, devising successful trading
strategies is contingent on the directional accuracy of the underlying models. The
literature on directional predictability is sparse, and the empirical findings offer
limited support. For example, the findings in (Chevapatrakul, 2013; Christoffersen
and Diebold, 2006; Nyberg and Pénkéa, 2016) provide weak evidence of directional
stock market predictability. Although the predictive power of the models em-
ployed so far are shown to be weak in statistical terms, they seem to provide
economic value. Thus, the emphatic challenge lies in the development of a suit-
able directional predictive model involving the relevant financial and economic

variables.
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The application of some benchmark econometric models used in previous find-
ings are shown to be weak in terms of predictive performance. The introduction of
recursive and alternative rolling windows out-of-sample estimation and forecasting
techniques used by Nyberg (2008, 2011), Pénka (2016) provide statistically sig-
nificant evidence of the directional predictability of stock market returns, but the
predictive power of the models are shown to be relatively weak, and hence, there
is a need to introduce sophisticated machine learning techniques, as proposed in
this study to improve the predictive task of the models.

This chapter focuses on the application of sophisticated machine learning tech-
niques on binary probit and classification models to forecast the direction of the
U.S. excess stock market returns. The machine learning techniques employed in-
clude classification and regression trees (CART), such as Bagging, Boosting and
Discriminant Analysis classifiers, Bayesian classifiers, Neural Networks and reg-
ularization techniques, such as Ridge, Least Absolute Shrinkage and Selection
Operator (LASSO), and Elastic Net. To compare our findings with the previous
literature, we also include four variants of the benchmark binary probit models,
namely, the static, stepwise static, dynamic and stepwise dynamic models. The
application of CART forecasting models aims to explore all covariates as ensem-
bles to learn the data, train the classification model, recognize patterns, classify
instances and to forecast future binary outcomes. With respect to penalised binary
probit models, it is important to note that the presence of shrinkage penalty vec-
tor norms could result to a bias in coefficient estimates, reduction in the forecast
errors and improvement in predictive performance via the so-called bias-variance
trade off. Thus, the proposal of CART and penalized predictive models in this
chapter aims at yielding superior statistical predictive performance and economic
significance compared to the benchmark econometric models typically employed

in the literature to date.
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2.2 Literature Review

A notable quest in modern financial econometric literature is the application of
suitable techniques to predict the sign of stock market returns. A review of rele-
vant empirical literature has revealed that the use of econometric models for the
directional predictability of excess stock returns are known to produce weak pre-
dictive power, poor statistical goodness of fit and low predictive accuracies, among
others; see (Pesaran and Timmermann, 1995; Nyberg, 2011; Leung et al., 2000;
Chevapatrakul, 2013; Leitch and Tanner, 1991; Pénka, 2016), even though the
empirical results seems to provide economic significance.

The previous findings on directional predictability by Anatolyev and Gospodi-
nov (2010), and Hong and Chung (2003) have employed a logistic regression model
to predict the sign of U.S. stock market returns using relevant financial vari-
ables as the key predictors, and their results provide evidence of predictability,
but the overall predictive power is relatively weak, compared to a rule of thumb
(i.e., at least 50%). In an attempt to determine market timing and asset allo-
cation decisions between stocks and risk-free assets, some researchers considered
the role of conditional mean and volatility while predicting the sign of asset re-
turns. Christoffersen and Diebold (2006) have opined that the direction of asset
returns is predictable, as volatility dependence produces sign dependence, so long
as expected returns are nonzero. This notion seems to be true, as other existing
papers have also provided significant statistical evidence of the sign predictability
of the U.S. stock market returns and economic recession status by application of
static, dynamic, autodynamic and error correction models, both in-sample and
out-of-sample (Nyberg, 2011; Kauppi and Saikkonen, 2008; Nyberg and Poénka,
2016; Nyberg, 2013).

The static and dynamic probit models proposed by Nyberg (2011) to predict
the direction of monthly U.S. excess stock returns recursively appears to have out-
performed the autoregressive moving average with exogenous inputs models (AR-

MAX), vector autoregressive-generalized autoregressive conditional heteroskedas-
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ticity (VAR-GARCH) models, etc. used by previous researchers. The idea was
based on the approach used by Kauppi and Saikkonen (2008), Estrella and Mishkin
(1998) to obtain U.S. economic recession forecasts using variables such as the U.S.
term spread and lagged stock returns, among others.

However, according to the Nyberg (2011) paper, the Estrella’s statistical good-
ness of fit values in the various probit models are very low in all cases. The positive
values of the Sharpe ratios signified that investors are likely to have positive re-
turns on portfolio investments. The percentage of correct matches as a statistical
performance evaluation measure in the existing papers are relatively low, hence
the need to employ more advanced sophisticated models that can yield a better
degree of accuracy with the smallest prediction error.

The underlying challenges associated with the use of financial and economic
variables to predict stock market returns has prompted researchers to introduce
sophisticated statistical or machine learning algorithms to improve the predic-
tive task and the overall performance of the resulting models under consideration.
It is noticeable from the empirical literature that machine learning techniques,
which include Random Forest, Linear Discriminant Analysis (LDA), k-Nearest
Neighbour, Tree-based Classification, Recursive Partitioning, Bagging and Boost-
ing, Logistic Regression, Support Vector Machine (SVM), Ridge Regression, Least
Absolute Shrinkage and Selection Operator (LASSO), Least Angle Regression and
Elastic Nets, are useful for the analysis of financial econometric time series (Roy
et al., 2015; Sermpinis et al., 2017; Li and Chen, 2014; Inoue and Kilian, 2008;
Zhou et al., 2015; Hsu et al., 2008; Park and Sakaori, 2013; Chen, 2016; Stock and
Watson, 2012; Lin and McClean, 2001; Kim and Swanson, 2014; Hajek et al., 2014,
Shen et al., 2014; Pahwa et al., 2017; Swanson and White, 1997). Khaidem et al.
(2016) used the Random Forest method to predict the direction of stock market
prices. The algorithm appears to be robust in predicting the future direction of
the stock market movement, thus minimizing the risk of investment in the stock

market with good predictive accuracy.
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The ridge regression introduced by Hoerl and Kennard (1970), and the least ab-
solute shrinkage and selection operator (LASSO) introduced by Tibshirani (1996)
are found to be useful statistical or machine learning techniques for econometric
models. The ridge regression reduces multicollinearity and minimizes the model
prediction error but does not perform feature selection; the LASSO shrinks the
model coefficients towards zero and performs feature selection and model inter-
pretability. The aim is to introduce bias in the model coefficient estimates and
minimize the prediction error.

The empirical analysis in Inoue and Kilian (2008) revealed that bagging has
large reductions in prediction mean square errors (PMSEs) in inflation forecast-
ing. Kim and Swanson (2014) suggest that the model averaging does not dominate
other well designed prediction model specification methods, and that the use of
hybrid combination factor and shrinkage methods produced the best predictions
as compared to principal components, bagging, boosting, least angle regression,
among others. On the other hand, the empirical results from Zhou et al. (2015)
showed no statistically significant difference between the best classification perfor-
mance of the models with yearly feature selection guided by data mining techniques
and the one involving domain knowledge; hence, their predictive accuracies seems
to be the same.

The use of the LASSO linear regression model for stock market forecasting
in Roy et al. (2015) using monthly data revealed that the LASSO method yield
sparse solutions and performs extremely well when the number of features is less
than the number of observations, and that the LASSO linear regression model
outperforms the ridge linear regression model. Modelling the market implied rat-
ings using LASSO variable selection techniques in Sermpinis et al. (2017) and
forecasting macroeconomic time series using LASSO-based approaches and their
forecast combinations with dynamic factor models in Li and Chen (2014) all reflect
statistical evidence of the superior predictive power of LASSO.

The outperformance of the aforementioned statistical learning algorithmic tech-
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niques over the benchmark econometric and statistical modelling techniques has
prompted modern researchers to proceed into a more advanced concept, i.e., the
deep learning techniques based on artificial intelligence, which encompasses sup-
port vector machines (SVM) and neural networks (NNET). However, the con-
trasting arguments of various scholars on the predictive performance by SVM
and NNET as compared to the previous literature has placed this notion pending
for further statistical investigation. The application of artificial neural networks
(ANN) in forecasting financial markets and stock prices in Shahpazov et al. (2014)
demonstrated the outperformance of the NNET over previous techniques used in
the existing literature. Again, the findings in de Oliveira et al. (2013) also revealed
that the application of artificial neural networks yielded the minimum mean square
prediction error (MSE) and correct direction rates. Controversially, the analytical
results by Moreno and Olmeda (2007) show that the ANN do not provide evi-
dence of superior performance over the conventional linear models. The findings
in Ding et al. (2013), applying the concept for daily data and market sentiment,
shows the outperformance of SVM over NNET and logistic regression. The SVM
seems to be the most accurate machine learning model for predicting stock market
movement, but the statistical tests do not provide significant statistical evidence
of better performance over NNET and logistic regression. Patel et al. (2015) con-
firmed the outperformance of Random Forest over ANN, SVM and the genetic
algorithm (GA) for input data with continuous values. Ballings et al. (2015) also
presented random forest as the top machine learning algorithm over others and
recommended the inclusion of ensembles in algorithmic sets when predicting the
direction of stock market prices. The findings in Zheng (2006) demonstrated the
superiority of boosting and bagging of NNET over SVM and logistic regression
when forecasting the daily directional movements of stocks.

It is obvious, based on the reviewed existing empirical literature, that machine
learning techniques played an enormous role in financial econometric time series.

Thus, the application of the proposed sophisticated machine learning recursive
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out-of-sample forecasting models for the directional predictability of the U.S. stock
market returns in this paper aimed to yield significant results and outperform the
benchmark econometric models and aimed to enrich the empirical literature for

further relevant scholarly research work.

2.3 Research Methodology

This section gives a detailed theoretical approach to excess stock return modelling
as a binary time series, the static and dynamic binary probit forecasting models;
the application of machine learning techniques which include the Ridge, LASSO
and Elastic Net probit models; the classification and regression trees (CART); fol-
lowed by the forecasting/predictive model performance evaluation for easy com-

parison.

2.3.1 Equity Premium Direction Modelling as a Binary

Time Series

Let R; be the monthly U.S. excess stock market return over the risk-free interest
rate denoted by rf;, and let I denote the binary-valued dependent variable. The
sign of the monthly equity premium is modelled as the return sign binary indicator,

as follows:

1, if Ry > 0 i.e., positive excess stock market return
I} = (2.1)

0, if R; <0 i.e., negative or zero excess stock market return.

R, is calculated as follows:

R =In ( ) —rfis (2.2)

P4

where P, is the price of the stock index at period t and rf;_; is the risk-free

interest rate at period ¢t — 1 (Pesaran, 2015; Leung et al., 2000). The distribution
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of the return sign binary indicator I conditional on R;_; follows Bernoulli with

probability p;, as follows:
I}|Ri—1 ~ Bernoulli(p:),

where ®;_; is the information set of the covariates.

2.3.2 The Static and Dynamic Binary Probit Models

Christoffersen and Diebold (2006) showed that if R, is distributed as follows:
Ry|Ry_y ~ N(p, O-t2|t71>

and displays no conditional mean dependence and conditional variance depen-
dence, then there exists a link between the volatility dynamics and the sign
dynamics. The conditional probability of a positive excess stock market return

Prob,_1(R; > 0) is as follows:

Prob,_1(R, >O):1_F< - ) :F< 5 )

Otjt—1 Otjt—1

where T'(.) is the N (0, 1) cumulative distribution function, and the forecast hori-
zon used is equal to 1. The sign of equity premium is predictable if the conditional
probability of positive equity premium Prob, i(R; > 0) > 0.5 for a threshold of
0.5, varies with the information set i, ;, which invariably implies a direction of
change in the forecastability or predictability of the equity premium (Chevapa-
trakul, 2013).

Given the conditional expectation FE;_;, conditional on the information set

R;_1. The conditional probability of a positive equity premium sign employing
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the binary probit indicator I} =1 is as follows:
Pt = Et—l(]f) = P’r'Obt_l(]f = 1) = PTObt_l(Rt > 0) = F(qjt)

where I'(.) is a standard normal cumulative distribution function.

The static and dynamic binary probit models can be obtained from this direction,
using the fact that the autocorrelation between any two successive numerical values
of the equity premium is statistically negligible.

Thus, the static binary probit forecasting model is defined as follows:

Vo1 (B) = o+ ZiB (2.3)

where « is the model intercept;
Z, is k-dimensional covariate vector of predictors of equity premium;

B is k x 1 vector of unknown coefficients (Nyberg, 2011; Nyberg and Ponka, 2016).

Using the uncorrelated assumption Cor.(I},;,I7) = 0, the historical value
of the equity premium sign indicator I; is included in the static binary probit
forecasting model, which results to the dynamic binary probit forecasting model.

Thus, the dynamic binary probit forecasting model is

Uip1(8) = a+ Z nil; + 2y (2.4)

=1

where « is the model intercept;

7 is an unknown coefficient of the lagged equity premium sign indicator;

Z, is k-dimensional covariate vector of the predictors of equity premium;

[ is k x 1 vector of unknown coefficients;

p is the lag order of the equity premium sign indicator (Kauppi and Saikkonen,

2008).

Thus, the benchmark forecasts from the static binary probit model are based
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on the link function:
Prob(I;,, = 1|%;) = I'(a + Z;5) (2.5)

and the benchmark forecasts from the dynamic binary probit model are based on

the link function:
p
Prob(I; , = 1|%) =T(a+ > _nl; + Z,p) (2.6)
=1

where p > 1 is the lag order (Kauppi and Saikkonen, 2008).

2.3.2.1 Stepwise Variable Selection using Akaike Information Crite-

rion

The stepwise variable selection is a step-by-step selection technique which seeks to
screen the predictive variables of a specific model by an automatic iterative pro-
cedure. It involves a screening process in that in each step, a predictor variable
is considered for inclusion or elimination from the set of predictor variables based
on the significant status determined by an information criterion. In this study,
the bidirectional (forward-and-backward) stepwise approach with the Akaike in-
formation criterion (StepAIC) was used for further investigation of the static and

dynamic binary probit models.

2.3.2.2 Likelihood Estimation of Binary Probit Model Parameters

The parameters of the binary probit models defined in (2.3) and (2.4) can be

estimated by maximum likelihood method. Given the function:

Prob(If,, = 11%) = T(W141(8)) (2.7)
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The likelihood function of (3 is defined as follows:
L@ =TI r(wa®) II (1-T@a®) (2:8)
(Its+1:1) (Izs+1:0)
The log-likelihood function is defined as follows:
mL@) = 3 T(wa@®)+ X (1-TWw(8))  (29)
(Its+1:1) (If+1:0)

Thus, the maximum likelihood estimator (MLE) of  is obtained as follows:

BML = arg;nax Z F(‘I’tﬂ(ﬁ)) + Z (1 - F(‘I'tﬂ(ﬁ)))

(It5+1:1) (Its+1:0)

where I'(.) is the standard normal cumulative distribution function (Estrella and

Mishkin, 1998; Pesaran, 2015; Kedem and Fokianos, 2005)

2.3.3 The Penalized Binary Probit Models for Stock Re-

turn Predictability

This section examined the penalized likelihood binary probit models employing
the relevant Ridge, LASSO and Elastic Net structures. The inclusion of a penalty
vector norm in the log-likelihood function of the ordinary binary probit model
results in the penalized binary probit model. It is worth noting that in the penal-
ized likelihood binary probit models, the coefficient estimates are shrunk towards
zero. The regularized biased coefficients are known to have significantly reduced

variances, that could result in smaller forecasting errors.
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2.3.3.1 The Ridge Binary Probit Model

The ridge binary probit model aims to reduce multicollinearity and minimize the
prediction error of the model and is based on the ridge regression introduced
by Hoerl and Kennard (1970). Given the log-likelihood function of the ordinary
binary probit model (2.9), the ridge log-likelihood probit function introduces a

penalty on the fs-norm of j:

mL(g) = % F(‘I/H_l(ﬂ))-i- D (1—F(\1/t+1 ) )\262 InL(B)—\ || 8
(It+1 1) (Its+1:0)
(2.11)
where InL(f) is the unrestricted log-likelihood function of the probit model; || 3|3 =
Zle 6]2 is the f>-vector norm of 3; A > 0 is the ridge tuning parameter which
controls the amount of regularization of the norm of .

Thus, the maximum likelihood estimator of the ridge binary probit model is given

by the following:

BI)\{MLE = arg;nax Z F(\Iltﬂ > Z (1 _ F(\Ijtﬂ(ﬁ))) _ )\ZBJZ

(I ,=1) (I3,,=0) j=1

where BA’\ is the maximizer of the ordinary probit model.

2.3.3.2 The LASSO Binary Probit Model

The Least Absolute Shrinkage and Selection Operator (LASSO) introduced by
Tibshirani (1996) as a shrinkage and selection technique for linear regression mod-
els is extended to binary probit models. The proposed LASSO binary probit model
aims to shrink the probit model coefficients toward zero, yielding bias parameter
estimates, resulting in the model interpretability and identification of the covari-
ates most strongly associated with the equity premium direction.

To obtain the LASSO coefficient (7,5, the maximization of the log-likelihood
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function of the ordinary binary probit model (2.9) will include a shrinkage penalty
on /1-norm of #. The introduction of the constraint into the probit model is ex-
pressed by incorporating a shrinkage penalty to the log-likelihood of the model.

Thus, the constraint maximization for the log-likelihood becomes:

mL() = > T(wa@)+ > (1-T(wn(8))- AZ 81 = InL(B)=A 81,
(Its+1:1) (Its+1:0)

(2.12)
where InL(3) is the unrestricted log-likelihood function of the probit model; || 8|, =
,/Z§:1|ﬁj| is the ¢;-vector norm of 3; A > 0 is the LASSO tuning parameter,
which controls the amount of shrinkage (regularization) of the norm of 5.

The vector 324,15, that maximizes InL(8") is the LASSO binary probit estimator

of 8, hence, the LASSO binary probit model coefficient estimates are obtained by

Bhaee =argmax 37 T(Via(@) + 3 (1—r(wt+l<ﬁ>))—Ai|ﬁj|

(I 1=1) (I§41=0)
where B’\ is the maximizer of the ordinary probit model.

2.3.3.3 The Elastic Net Binary Probit Model

The elastic net (EN) is a regularized technique that linearly combines the ¢; and
{5 penalties of the LASSO and Ridge. The elastic net probit coefficient estimates
5’)];]‘\1/[ . are obtained by maximizing the log-likelihood function, which penalized
the size of the model coeflicients based on both the ¢;-vector norm and #s-vector

norm of 3, defined by the following:

InL(pM) = Z F<\I’t+1(ﬁ)>+ Z <1 INQUA(C) > < i% aiWﬂ)
2.13)

(Its+1:1) (It+1_0)
(2.
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Thus, the parameter estimates of the elastic net binary probit model will be given

by the following:

AN o
EMLE ™

S0

arg max Z F<\Ijt+1(ﬁ)) + Z (1 - F(\Ijt+h<ﬂ))) - )\(<1 —a) i 5_ + O‘i ‘@’)

g (Its+1:1) (Its+1:0)

where A and « are the elastic net tuning parameters (Zou and Hastie, 2005). In
this study, the penalty factor o« = 0.5 was employed, which results to an elastic

net probit model.

To choose the tuning parameters A, A\;, Ay in Ridge, LASSO and Elastic Net,
we need a validation set in which the predictive value of the specific penalized bi-
nary probit model could be compared for various values of the tuning parameter,
and the optimal tuning parameter should be chosen such that the error rate is
minimal. In this study, the best tuning parameter employing cross-validation was

chosen for each model.

2.3.4 Classification and Regression Trees for Stock Return

Predictability

The concept of classification and regression trees (CART) was first introduced by
Breiman et al. (1984), which involves the use of decision tree learning procedures
to build a model that can predict the value of a target variable based on several
input variables. There are many classification algorithms, including decision trees,
rule-based learners, exemplar learners, discriminant functions, neural networks
and Bayesian networks, that are considered to be useful in modern forecasting.
There are also ways of combining them into ensemble classifiers, such as bagging,

boosting, and random forest. The consistent CART models in this study are as
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follows:

2.3.4.1 Bagging

Bagging or bootstrap aggregating was introduced in 1994 by Breiman (1996) to
improve classification by combining classifications of randomly generated training
datasets, to reduce the biases and variances in a tree-based analysis. Bagging im-
plies fitting a model, including all potential points on the original training set. It
appears to effectively remove the instability of a decision rule by averaging across
resamples and to avoid overfitting (Zheng, 2006).

Let S = {(Z1,11), (Zo,y2), o (ZtsYt), -, (Zr,yr)} denote the training sample,
where T is the number of observations in the training sample, Z; is a vector
of k covariates, and y, € {—1, 1} indicates a positive or negative return for each t.

The classification into one of the two groups is defined as follows:

A

¥(z) = sign(S(Zt) . TB),\@(Z) e {-1,1}

where 75 is the threshold (cut-off value): 8(Z,) is the base classifier that learned
the covariates in the training sample; ) (Z;) > T implies a positive return classi-
fication, while 0 (Z:) < 75 implies a negative return classification (Lemmens and
Croux, 2006).

The decision tree classification score is given by the following:
NZ)=2p(Z)—1

where p(Z) is the predicted probability of a positive return estimated by the tree.
For each bootstrap sample Sy, b = 1,2, ..., B, a classifier can be estimated assigning
B score functions 67(Z), 03(Z), ..., 6;(Z), ..., 0%(Z).

These functions are afterwards aggregated into a score, as follows:

B
. 1 .
buag (2) = 5 > 04(2)
b=1
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Thus, the final classification is obtained as follows:

\ijbag(Z):sign(Sbag(Z)—TB) ¥(Z) € {~1,1} (2.14)

2.3.4.2 Random Forest

A random forest (RF) classifier, see Breiman (2001), is a specific type of boot-
strap aggregating based on a random subset of the input features (Ballings et al.,
2015; Kumar and Thenmozhi, 2006; Creamer, 2009). A random forest classifier
consists of an ensemble classification algorithm that involves the use of trees as
base classifiers. It consists of a combination of classifiers in which each classifier
contributes an individual vote for assigning the most frequent class to the input

vector Z, defined by the following:

R R B
6B = majority vote {(5;,(2)} (2.15)

b=1

where 5b(Z) is the class prediction of the b random forest tree; Z is the input
vector; b=1,2,..., B.

The Gini index approach suggested by Breiman et al. (1984) is a suitable measure
for selecting the best splits which determines the impurity of a given element with
respect to the classes, and hence, it is employed for selecting the best split at each
node.

Given a training dataset S, involving a set of covariates and categorical target

outcome, the Gini index can be computed as follows:

ZZ 5“8 5”’S>) (2.16)

1 jFi
h(6:,8)) . . _
where W is the probability that a selected instance belongs to class &;;
h(4;,8)) . - . . ~
W is the probability that a selected instance belongs to class d;; for ¢ #

J (Rodriguez-Galiano et al., 2012). Thus the random forest seek to produce a

measure of proximity between each pair of instances in the classification tree.
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Alternatively, for a given node 7 with estimated class probabilities Prob(j|r),j =

1,...,J, the node impurity, I(7), employing the Gini index is defined as follows:

J
I(r) = Prob(j|r)Prob(i|r). (2.17)
JF
The Gini index is minimised when the node is pure (homogeneous) with respect

to one of the classes.

2.3.4.3 Conditional Inference Tree

The conditional inference tree (CTree) enables the use of recursive partitioning
and tree-structured models in a conditional inference framework. The use of the
Gini index to determine the most favourable split induces a selection bias toward
covariates with many possible splits and also cannot distinguish between a signifi-
cant and an insignificant improvement in the information measure. Hothorn et al.
(2006) proposed the conditional inference approach tree where the node split is
selected based on how good the association is between the response and the covari-
ates. The resulting nodes should provide a high association between the response
and the covariates. The significance of the association is investigated by a x? test
and the covariate with highest association is selected for splitting. Moreover, mul-
tiple test procedures are applied to determine whether no significant association
between any of the covariates and the response can be stated and the recursion
needs to stop.

In more detail, let Z = (Z;,---,Z;) be the k-dimensional vector of covariates
and let y be a categorical response variable. Z is taken from a sample space
Z = Z; X --- x Zp. We assume that the conditional distribution of y given Z

depends on the function f of Z as follows:

D(y|Z) = D(y|Z,--- ,Zy) = D(y|f(Z1,- -+, Zy)).
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Thus, a generic algorithm for recursive binary partitioning for a given learning
sample

'Cn:(yiﬂzli;"'azki)7 Z.:l,"',n,

can be formulated using non-negative integer valued case weights w = (wy, - -+ , wy,).
Each node of the tree is represented by a vector of case weights having nonzero
elements when the corresponding observations are elements of the node, and are

zero otherwise. The following steps implement recursive binary partitioning:

1. Test the global null hypothesis of independence between any covariate Z and
the categorical response variable y for case weights w. Stop if this hypothesis
cannot be rejected. Otherwise, select the j-th covariate Z; with the strongest

association to y.

2. Choose a set A C Z; to split Z; into two disjoint sets of A and A°. The
case weights wj.ss and wygn: determine the two subgroups with wies,;, =
’UJlI(ZJ’l c A) and Wright,i = sz(ZN ¢ A), for all i = 1,2, e, Mo, where

I(-) is the indicator function.

3. Repeat steps 1 and 2 recursively with the different case weights w. and

Wright, Tespectively.

2.3.4.4 Conditional Inference Forest

Random forest has been criticised for the bias that results from favouring covari-
ates with many split-points. The conditional inference forest (CForest) is known
to correct this bias by separating the procedure for the best covariate to split on
from that of the best split point search for the selected covariate. The conditional
inference forest is an implementation of the random forest and bootstrap aggre-
gating ensemble algorithms, utilising conditional inference trees as base learners.
To determine the variable importance in conditional inference forests, the vector
of the predictor variables is randomly permuted and the initial association with

the response variable is broken. When the permuted and the non-permuted vari-
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ables are used to predict the response variable for the out of bag observations, the
classification accuracy decreases substantially if the permuted variable is associ-
ated with the response. Hence, the variable importance is the difference in the
prediction accuracy before and after permutation of the variable average over all
trees (Strobl et al., 2008; Das et al., 2009).

Given the out of bag sample B(7) for a tree 7 € 1, ..., ntree. The variable impor-

tance of a single tree is defined as follows:

2 teB(r) Imp(y,- = o(7; Zj)) B D teB(r) [mp<yi = 0(7; Zj777j)>

Var™(r:2;) = B B

(2.18)
where Z; is the j* input or predictor variable; y; is the response variable at
observation i; §(7; Z;) represent the predicted classes before the permuting process;
d(7; Zj,m;) represent the predicted classes after the permuting process (Strobl
et al., 2008).

The raw variable importance score for each of the input variables is the mean

importance over all trees 7 € 1,...,ntree, and can be computed as follows:

ntree m .
Vc”,[mp(zj) _ 27:1 Var' p(T, Zj)

2.19
nitree ( )

where Var!'™?(7; Z;) are the individual importance scores, computed from ntree
independent bootstrap samples.

That is, the variable importance of any variable is the difference in the prediction
accuracy before and after the permuting process of the variable, averaged over all

T trees.

2.3.4.5 Adaptive Boosting

Boosting is an ensemble technique aimed at increasing the strength of a weak
learning classifier by improving its accuracy. A boosting algorithm, as proposed

by Schapire (1990), seeks to convert a weak learner into a strong learner. The

38



principle consists of sequentially applying the classifier to adaptively re-weighted
versions of the initial dataset S;,b = 1,2,---, B. In each step, the learning at-
tention is focused on modified versions of the data, where the modifications give
more weight, w;, to misclassified points. Once the process has finished, the single
classifiers obtained are combined into a final classifier by weighted majority vote.
In boosting, the predictors are made sequentially rather than independently.

For a real adaptive boosting (AdaBoost), the classification score is defined as

follows:

0n(Zs) = %m (%>

where p}(Z;) is the estimated probability in step b, for t =1,2,...,T.
1
From the weights w;; = T for t =1,2,...,T; the weights for the next step b+ 1

are updated as follows:
Wipt1 = Wip eXp<_yt8b<Zt))> t=12,..,T

where Zthl wyp = 1 and the corresponding probability estimate for the iteration
b+ 1 becomes p;,,(Z;) (Hofner et al., 2014; Lai et al., 2009).
The procedure is repeated for b = 1,2, ..., B until the final prediction is obtained

as follows:

@MMAZ)::mgn[E:SMZ)—~n4,@mwAZ)e{—lJ} (2.20)

where the threshold 75 is a correction term for balanced training sample, which

could be zero (75 = 0) when a proportion sample is used (Lemmens and Croux,

2006).

Given the test set {(Z1,v1), (Za2,v2), ..oy (ZtsYt)s -y (Zr, Zr)} with individual

classifier scores 0(z;) and the final classification score W(Z,) for ¢t = 1,2, ..., T;
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then the error rate will be computed as
1
BR= L3 1[ia) # ]

t=1

where 7' is the size of the test sample; I[-] is a binary indicator function.
The main steps of the Adaboost algorithm are as follows (Freund and Schapire,

1996; Alfaro et al., 2013):

1
1. Initialize the observation weights w; = T fort=1,2,---.,T.
2. Forb=1,2,--- , B:

(a) Fit a classifier 8,(Z) to the training data using observation weights w.

(b) Compute the weighted misclassification error for 0,(Z):

S wel [y #6(Z)]
erry, = =4 1ZT ”
t=1

(¢) Compute oy = %ln[%::b], where ay is the weight score forb = 1,2, ..., B

(d) Update the weights w, <+ wiexp(opl |y, # 5b(Zt)]), fort =1,2,---,T

and normalize them.
3. Output the final classifier \i/boost(Z) = sign Zle abgb(Z) ,\ifboost(Z) e {-1,1}.

Other boosted tree models used in this research include the gradient boosting
machine (GBM), the generalized linear boosting model (GLMBoost) and the Log-

itBoost model.

2.3.4.6 Gradient Boosting

Gradient boosting (GBM) seeks to generate a prediction model in the form of an
ensemble of weak learners such as decision trees, in order to minimize the resulting
classification error.

Let Z = {Zy,Z,,..., Z}} be k-dimensional set of predictors with target output
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variable y € {—1,1}, and a collection of L instances in the form {(y,,Z);¢ =
1,2,...,L}. Then we can model a learning prediction function 6(Z) : Z — y that
minimizes the expectation of the loss function By,s(y, d) over the joint distribution

of all ordered pair (y,Z). The predictive classifier function is defined as follows:

~

0(Z) = argmin E[y, Z]| Bjyss (y, 5(Z)>
o(Z)

where Ely, Z] is the joint expectation of the input vector Z and the target output
V; Bioss (y, (5(Z)) is the loss function.

The conditional expectation of y given Z is as follows:

k k

Ely|Z] =0(2)=> 0;2; = 6,(Z;)

j=1 j=1

where 01(Z1),02(Z3), ..., 0x(Z)) are smooth functions.
We can extend the classifier function by introducing additive model with functions

0;(Z;),j = 1,2, ...k of all the input variables, defined as follows:

k k

0(Z) =Y 6i(2Z) =Y 0;T(Z;0) (2.21)

J=1

where 0,I'(Z;; «;) is a weak learner characterized by a parameter vector o =
(a1, g, ..., o) and a vector of multiplier § = (61,0, ..., 6x); 0;(Z;) is the weighted
majority vote of the individual weak learners (Guelman, 2012; Son et al., 2015).

Thus, the resulting objective function can be minimized as follows:

L k
min ZBZOSS (yi, Z@F(Z@O@-)) (2.22)
j=1

{0505} 5-1

where Bjyss <y, ) (Z)) is the chosen loss function required to estimate a lack of fit.

Friedman (2001, 2002) laid the groundwork for a new generation of boosting

algorithms. Assume that we are interested in modelling Pr(y = 1|Z = Z) for a
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Bernoulli response variable. The idea is to fit a model of the following form:
B
MZ) = Gp(Z) =) 9(Z;m)

b=1

where

Priy=12Z=2)
MZ) = log (Pr<y 0z = Z))

and 7, is parameter vector, which for the trees, captures the identity of the split
variables, their split values and the constants in the terminal nodes.

The main steps of the gradient boosting algorithm are as follows:
1. Start with GO(Z) = 0, and set the shrinkage parameter € > 0.
2. Forb=1,2,--- , B:

(a) Compute the pointwise negative gradient of the loss function at the

current fit as follows:

r, — _ OL(yt,\e)
t— g

(b) Approximate the negative gradient by a depth-d tree by solving the
following;:
minimise, S (re — go(Z; 7))

(c) Update G4(Z) = Gy-1(Z) + G4(Z), with G,(Z) = €g(Z; %)

3. Return the sequence Gb(Z), forb=1,2,---,B.

2.3.4.7 Generalized Linear Boosting

The generalized linear boosting (GLMBoost) fits a tree based model using a boost-
ing algorithm as opposed to maximum likelihood estimation, which trains the data
with best cross-valided mstop tuning parameter, performs variable selection and
predict future classes. The GLMBoost employs component-wise (generalised) lin-
ear models as base-learners (Bithlmann and Yu, 2003; Biithlmann et al., 2007).

Let Z = (Zy,Zs, ..., Zx) be k-dimensional vector of covariates, from which the
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categorical binary response variable y; € {1,...,c¢} can be predicted. Then a

generalized linear model can be fitted as follows:
() = Bo+ BrZi + ... + B Zi (2.23)

where i1 = E(y|Z) is the conditional expectation of the binary response; £ is the
link function; g is a vector of unknown parameters.

The boosted generalized linear model additionally performs variable selection and
the effects are shrunken toward zero if early stopping (mstop) is applied in the
model (Hofner et al., 2014; Alfaro et al., 2013). The GLMBoost fits simple linear
models separately for each column of the design matrix to the negative gradient
vector, for each boosting iterations, using the best fitting base-learner in the up-

date step.

2.3.4.8 LogitBoost

The LogitBoost is an algorithm used to produce a logistic regression model at ev-
ery node in the classification tree and each node is able to be split using a suitable
splitting criterion (Friedman et al., 2000; Landwehr et al., 2005). It is designed to
train the classification algorithm using stumps or one node decision trees as weak
learners.

Let {(v, Zi)}ij\il be input dataset set with N samples, Z; € Z, y; € y € {—1,1}.
The binomial log-likelihood loss function of a binary logitboost is defined as fol-

lows:

Bioss(0) = FE [ —log(1 + eyé(Z>)]

which varies directly with the classification error and appears to be less sensitive
to noise and outliers.

The weight w; and the working respond Z; in each of the Newton iteration steps
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¢ =1,2,..., L is defined as follows:

w; = Prob(Z;)(1 — Prob(Z;))

Witl) _prop(z;)

Wi

Z, = for 1=1,2,..,N

with initial values w; = +; Prob(Z) = Prob(y = 1|Z) =  and 6(Z) = 0 (Ka-
marudin et al., 2017; Qi et al., 2011).

We then fit the function f,(Z) by a weighted least squares regression of y; to
Z; using weights w;, and thereafter we update the committee function and the

corresponding probability based on the following:

6(Z) = 6(Z) + 1 fo(Z)

5(2)
Prob(Z) = —esa)ieiam

when all the iterations are exhausted then the model becomes:

L

> 52) = 50+ 1i(2)+ 1(2) + .+ ()

=0

5(2) = §

and the overall classifier is the resulting decision function:

1 if §6(Z)>0 = W(Z) belongs to class 1
U(z) = sign{o(Z)} =
—1 if 6(Z) <0 = VU(Z) belongs to class 2

(2.24)
(Li, 2012; Feng et al., 2005).
Thus, the Newton steps for optimization of the loss function seeks to build a ro-
bust classifier by iteratively adding a weak classifier to improve the classification

process.

Alternatively, let {(yi, Zi)}fil be the input dataset with N samples, Z; € Z,

y; €y € {—1,1}, and use the transformation y* = HTy to represent the outcome
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with a 0/1 response, and represent the probability of y* = 1 with Prob(Z) where

F(Z)

P’I“Ob(Z) = m

The main steps of the LogitBoost algorithm are as follows:

1. Start with w, = 1/T,t = 1,-,T, F(Z) = 0, and probability estimates
Prob(Z;) = L.

2

2. Forb=1,2,---, B:

(a) Compute the working response r; and the weights w; as follows

w; = Prob(Z;)(1 — Prob(Z;))

y*—Prob(Z;)

w;

T, =

(b) Fit the function f,(Z) by a weighted least-squares regression of r; to Z;
using weights w;.

F(2Z)

(C) Update F(Z) < F(Z) + %fb(Z), and PTOb(Z) = m .

3. Return the classifier sign [F(Z)] = sign [Zszl fb(Z)}  forb=1,2,---,B.

2.3.4.9 Recursive Partitioning Algorithm

The recursive partitioning (RPart) algorithm builds a decision tree that attempt
to correctly classify elements of the set by splitting it into subsets based on sev-
eral features. The splitting process continues indefinitely, resulting in newer sub-
samples and terminates after a specific stopping criterion is attained (Cook and
Goldman, 1984).

Let y; be a conditionally distributed dichotomous response variable given the
k predictors, such that the k predictors are elements of a sample space ) =

Q1 X 2y X .... X Q. Then, by tree-structured recursive partitioning, the condi-
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tional distribution of ¥, given Z;_; depends on the function:

‘I’(yt|Zt—1) = \I’(yt|9(Z(t—1)1, Z(t—1)2> ey Z(t—l)k)) (2-25)

from which the p disjoint cells By, B, ..., B, partitioning the predictor space

are obtained; where ¢(-) is a function of the k predictors (Hothorn et al., 2006).
The fitted model is based on a learning sample with some missing predictors Z;_1,

defined by the following:

by = {yt; Z(t—l)l; Z(t—1)27 e Z(t—l)k;t =1,2, '-'7T} (2-26)

The recursive algorithm proposed by Zeileis et al. (2008), Hothorn et al. (2006) is

as follows:

1. Fit the model to all observations at once in the initial node and estimate the

unknown parameters by minimizing the objective function;

2. Evaluate the stability or instability of the estimated parameters with respect

to the ordering features;

3. Determine the splitting point that locally optimizes the objective function

using a fixed or adaptive number of splits;

4. Split the node into sub-nodes and repeat the procedure recursively until no

further splitting is feasible.

2.3.4.10 Linear Discriminant Analysis

The discriminant function was first introduced by Fisher (1936). Linear dis-

criminant analysis (LDA) uses Bayes’ theorem to estimate output class prob-
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abilities given the input features, using the assumptions that the input data
Z = (Zy,Zy, - ,7Zy) follow a multivariate Gaussian distribution with a class
specific mean vector p. and a common covariance matrix S, = S for all ¢. If
fe(Z) is the class conditional density of the covariates Z, in class y = ¢, i.e.,
fe(Z) = Prob(Z = Zly = c¢), and 1. is the prior probability of class ¢, then by

Bayes’ theorem, the class posterior probability is given by the following:

fe(Z) e

Probly =clZ=27) = —————,
L S A RTI

for c¢=1,2,---,C
and Z has a multivariate Gaussian density for each class given by the following:

7:2) = (2m) 418l beap( — L2 - n)'S (@~ ).

The LDA classifier assigns an observation given by Z = Z to the class ¢ given by

the following:
1
UIPA(Z) = argmaz. {lelﬂc - 5#2871% + lOg%} : (2.27)

For a proof of the above equation, see (James et al., 2013). The word linear in
the LDA classifier stems from the fact that the discriminant function is a linear

function of the input features Z.

2.3.4.11 Quadratic Discriminant Analysis

The quadratic discriminant analysis (QDA) classifier separates multi-class mea-
surements by a quadratic surface. Unlike LDA, in the case of the QDA classifier,
the input features in each class follow a multivariate Gaussian distribution with
a class specific mean vector p. and a class specific covariance matrix S., owing to
the heterogeneity of variance-covariance matrices for the various classes (James

et al., 2013; Ou and Wang, 2009).
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The QDA classifier is given by the following:

1 1
VePY(Z) = argmaz. (QC(Z)> = argmaz, {—ilog|Sc| — ~(Z — 11)'S;HZ — pe) + log¢c} .

2
(2.28)
The QDA classifier obtains its name from the fact that the QDA discriminant

function is a quadratic function of the input features Z.

2.3.4.12 Regularized Discriminant Analysis

The regularized discriminant analysis (RDA) introduces regularization into the
estimates of the covariance matrices and allows the shrinkage of the separate
covariance matrices of QDA toward a common covariance, as in LDA. In this
sense, RDA is a compromise between LDA and QDA. The regularized covariance

matrices have the form:

S.(\) = AS. + (1 - \)S

where S is the pooled covariance matrix used in the LDA; S, is the class specific
covariance matrix of the input features used in the QDA; and ) is a non-negative
tuning parameter that controls the degree of shrinkage of the individual class
covariance matrix estimates toward the pooled estimates. Here, A € [0, 1] allows
a continuum of models between LDA and QDA and needs to be specified. In
practice, A can be chosen employing cross-validation. Biasing the class covariance
matrices toward commonality is not the only way to shrink them. An additional
convex combination allows S, itself to be shrunk toward a scaled identity matrix,
using the shrinkage parameter v as follows:

S 7) = (1= 7)8.(3) + 7 rfS. ()

where 3 tr[S.(\)] is the mean of the diagonal elements of S, (), so it is the mean

variance of the class input features. The RDA classifier is given by the following:

UIPNZ) = {(Z — Z)'S (A ANZ — Zy) + log|Sc(N, )]} (2.29)

c

48



where A is the cross-validated parameter that controls the degree of shrinkage
of the individual class covariance matrix estimates toward the pooled estimates
and v is an additional regularization parameter that controls shrinkage toward a

multiple of the identity matrix for a given value of A (Friedman, 1989).

2.3.4.13 Heteroscedastic Discriminant Analysis

The heteroscedastic discriminant analysis (HDA) is a generalized method of the
LDA in that its feature space transformation does not require the imposition of
equal within-class covariance assumptions as compared to the standard LDA. The
HDA classifier is capable of handling different covariance structures of the class
distributions (Kumar and Andreou, 1998).

Let {ZZ}N X denote a sequence of k-dimensional feature vectors, with each vector

i=

belonging to a single class j € {1,...,C}, and let y denote a categorical response
variable. If N;, p; and X; represent the sample count, mean and covariance,
respectively, of the 7% class, then the between-class matrix M can be extracted

in the following form:
C
1
= N Z ]MJ/‘L] /

where 4/ is the transpose of p; of the gt class; p is a vector of overall means.
The HDA objective function seeks to find a projection matrix, denoted by [, that
maximizes the likelihood in the Jacobian transformation space y = 8'Z under the

normality assumption, such that the ratio of the determinants:

|BMB' |

Q(B) =
2 [T, 1858/

(2.30)

is maximized, where (3’ is the transpose of 5 (Huang et al., 2000; Szepannek et al.,

2009).
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The HDA classifier is then given by the following:

c
THPA(B) = argmaxlog{Q(ﬁ)} = argmax{ Z —N;log|BE; '] + Nlog|/8Mﬁ’|}
B B —
7j=1
(2.31)
where M is the between-class matrix. See Kumar and Andreou (1998) for further

details.

2.3.4.14 Sparse Discriminant Analysis

The sparse LDA introduces projection techniques that imposes zero entries in the
feature matrix, aimed at reducing the dimensionality to produce a final parsi-
monious model. The sparse discriminant function involves the inclusion of an /¢,
penalty norm in the optimal scoring problem which results in the optimization

problem, follows:

mazg, 3;SB;—nP;, subject to B;(S,+Q)B; =1, Bi(Su+Q)By = 0 for all m < j

(2.32)
where (3; is the discriminant vector of class 7, {2 is a positive definite matrix; S,, is
the within class covariance matrix. The j** sparse discriminant analysis solution

pair (6}, 8;) is obtained by solving the problem, as follows:

ming, o, {yej — 2B + B8 + Aﬁjl} (2.33)

1
subject to  —0jy'yf; =1 and 0y'yf, =0 forall m<j
n

and the sparse LDA is as follows:

1 /
gSparselDA(g 5) — argmin {EHyej — ZB;|” + nB;8; + >\|’5JH1} (2.34)

Y3

where y is a vector of dummy variables for the j™ classes; 6; is a j-vector of scores;
n is the sample size; n and A are non-negative tuning parameters (Clemmensen

et al., 2011). Thus, the ¢; penalty norm on f; results in sparsity when the tuning
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parameter \ is large.

2.3.4.15 High Dimensional Discriminant Analysis

The high dimensional discriminant analysis (HDDA) is another important exten-
sion of the LDA most feasible for a dimensionality reduction model involving many
features as compared to the sample size, and in which the LDA is weak in perfor-
mance. Let I'; be an orthogonal matrix of eigenvectors of a covariance matrix S;;
let ®; be the basis from the eigenvectors of S;, and assuming the class conditional
densities follows Gaussian NV (u;, S;) for all i = 1, ..., ¢. Then, the class conditional

covariance matrix €);, is defined by the following:

where (; is diagonal matrix with two distinct eigenvectors u; and v;, u; > v;.
If 11,(Z) = D,TN(Z — 1) + ps represents the projection of the input vector Z on

the affine space ;, then the cost function will be as follows:

s = L) 112 — T (Z)]”

Uy (%

Hi(z) =

+dilnu; + (k—d;)Inv; — 2Inm; (2.35)

2 2

o
where u; = -+ and v; =
4 — Q4

with o; € {0,1} and 0; > 0 for all i = 1,....¢; k
is the k-dimensional input vector; d; is the i** diagonal of I'; (Bouveyron et al.,
2007).

The posterior probability is defined as follows:

Prob(i|Z) = ——— for i#j (2.36)
505(Z)

25:1 e 2

Thus, the maximum likelihood estimators of u; and v; are, respectively, as follows:

AMLE wa and ﬁMLE Z @i
d; k — d

j=d;i+1
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where @, ; > w; 2 > ... > w;, are the eigenvectors of g@
Following this approach, the maximum likelihood estimators of «; and o? are

V; N U;V;
=" and (6H)MIF = "'
U; + V; U; + V;

2.3.4.16 Distance Weighted Discrimination

The distance weighted discrimination (DWD) was introduced by Marron et al.
(2007) to tackle high-dimensional datasets and to specifically improve the per-
formance of support vector machines. It employs the concept of maximization,
thereby maximizing the existing gap between an ordered pair of classes to make
them more separable, introducing harmonic mean of the distances of all data vec-
tors to the separating hyperplane (Huang et al., 2012). Given the training dataset
{(ys, Zi)}fil with k-dimensional vector of covariates Z, y the binary response vari-
abley € {—1,+1}, let d; = (Z;w+ 0)y; + a; be the distance of the i*" data vector

to the separating hyperplane. Then, the DWD is obtained by the following:

N
1

argminz (d— —i—C’(Ozi)) subject to d; = (Ziw+0)y; + ;. di,a; > 0; V ||w|]* < 1

w,0,a; i—1 7

(2.37)
where «; is a positive slack variable included to boost the positivity of d;; w is the
weight vector (Qiao and Zhang, 2015). The slack variable serves as a correction
measure, which corresponds to the amount of misclassification for the i** vector.
Thus, the DWD binary linear classification process employs gap minimization to
improve the separability of the two classes and the minimization of the misclassi-

fication error.

2.3.4.17 k Nearest Neighbour

The k nearest neighbour (kNN) is used for classifying objects based on the closest
training instances in the feature space.
Given the training data set {(Z1,y1), (Z2,y2), -+ ,(Zr,yr)} in which an object is

to be classified based on a majority being assigned to the class most common to
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its corresponding k nearest neighbours. Then, the Euclidean distance between

instances ¢ and 7 is defined as follows:

- - |yie—jel \2 |yi1—j1\2 |Yio—j2]\ 2 yiL—jr]\2
i) = | 37 (WYt (ol ol el
7 Ty 1 T2 L
(2.38)
where 7, denotes the maximum range of attribute ¢; ¢ =1,2, ..., L.
When k nearest neighbours with known classification are picked for an unclassified
instance ¢, then a combined classification approach that combines the classifica-
tions from the k nearest neighbours will predict the next class for ¢, and so on.
The instance ¢ is classified as belonging to class y, using the average distance

measure if

1 . 1 .
kf_l Z dEuclid(27€)<k_ Z dEuclid(Z7£) (239)

icy(6,k) 2 ieN( k)
where k = ki + ko; k1 is the number of instances belonging to class y in the k
nearest neighbours; ko is the number of instances belonging to class N in the k
nearest neighbours (Huang et al., 2008; Su, 2011)
The k can be chosen by cross-validation, and the KN N model does not depend on
the prior probabilities of the classes (Imandoust and Bolandraftar, 2013; Nayak
et al., 2015).

2.3.4.18 Naive Bayes

The Naive Bayes classifier combines the Bayes model with a decision rule, and a

common rule is to pick the most probable hypothesis, which is known as maximum

posterior decision rule (Ou and Wang, 2009).

Given the training set {(Z1,v1), (Z2,y2), -+, (Z7,yr)} and using the assumption

that the features Z. are independent given a class y = j such that f;(Z) =
P, fje(Z) are functional class labels with kernel smoothing estimates of the

function f;.(.) from the training set.

33



Then the Naive Bayes classifier is as follows:

UNB(Z) = argmax; { f;(Z);} (2.40)

where 9, is estimated from the sample proportion.

2.3.4.19 Learning Vector Quantization

The learning vector quantization (LVQ) algorithm (Kohonen, 1995; Ripley, 1996),
is an artificial neural network designed to enable one to construct a modified
training set iteratively. The modified training sets are called codebooks. Let’s
consider the LVQ1 process based on Kohonen (1995). Assume that a number of
codebooks m; are placed into the input space to approximate various domains of
the input vector Z by their quantized values. Usually several codebook vectors
are assigned to each class of Z values, and Z is then decided to belong to the same
class to which the nearest m; belongs. Let ¢ = argmin(||Z — m;]||), define the
nearest m; to Z, denoted by m..

Values for the m; that approximately minimize the misclassification errors in
the above nearest-neighbor classification can be found as asymptotic values in
the following learning process. Let Z(t) be a sample of input and let the m;(t)
represent sequences of the m; in the discrete-time domain. The basic LVQ1 process
is defined by:

Me(t + 1) = me(t) + a()[Z(t) — mo(t)] (2.41)

if Z and m. belong to the same class,

Me(t + 1) = me(t)a(t)[Z(t) — mu(t)] (2.42)

if Z and m, belong to different classes, and

m;(t+ 1) = my(t) (2.43)
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for ¢ not in ¢. Here 0 < a(t) < 1, and a(t) may be constant or decrease monoton-

ically with time.

2.3.4.20 Neural Network

The neural network (NNET) is a system made up of a number of simple highly
interconnected processing elements, which process information by their dynamic
state response to external inputs. The NNET consists of layers made up of inter-
connected nodes that contain the activation function (Caudill, 1989; Ripley, 1996).
The NNET layers are as follows:

Input — Hidden — Output

Given an input vector of covariates Z, and a categorical output y. Then, a neural

network can be modelled in the following form:

x; =T(00; +0,Z) for j=1,2,...p

yk:\p(/ﬁo,k_’_B;{;Z) fOT k= 1a27"'7q

where I'(x) = 5 +i,x is the sigmoid activation function, used to introduce a nonlin-
earity at the hidden layer. The parameters 0;; and §; ; are known as the weights
and define linear combinations of the input vector Z and hidden unit output x.
The intercepts ¢y ; and By are known as biases. The function ¥ permits a final

transformation of the output and a typical choice for binary classification is the

inverse logit function.

Let L(0, 5) be defined as follows:



then their respective partial derivatives will be as follows:

oL’ . . .
— 9yt — it 5/ [ AN
aﬁk,j (yk yk) k(ﬂkx )X]
and
oL o
:—22 )5 (81X B T (0

90,

where the superscript ¢ is the i** component, for j = 1,2,...,pand k = 1,2, ..., q;
6 is the transpose of 6; 3’ is the transpose of 3; N is the number of components.
Thus, the gradient updates corresponding to the (s + 1) iteration with learning

rate 7, by back propagation, resulting in the following:

OL!
s+1
BV — By - TSZ 5. (2.44)
N .
AL
0Ut) — 03, — 7, (2.45)
gl al — 89;,1

where 7, is the learning rate (Caudill, 1989; Ou and Wang, 2009).

2.3.5 Statistical and Economic Performance Evaluation

2.3.5.1 Correct Prediction Ratio

In this case, a 2 x 2 square matrix of contingency table for cross-classifying the
actual and predicted outcomes in each of the two categorical pairs is constructed
before computing the correct prediction ratio or simply the ’hit ratio’ for the
direction of change in the stock market return.

The correct prediction ratio (CPR) is defined as follows:

T
CPR = Cpupward + O-Pdownward Z Tt - Tt
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S [(F = 1)I(r, = 1)
Zthl I(r,=1)
>y L(F = 0)I (7, = 0)
Zthl I(r, = 0)

correct predictions for the downward moves; I(.) is a binary indicator function

where CP,puara = is the proportion of correct predictions

for the upward moves; CPiounward =

is the proportion of

which takes the value 1 when the argument in the parenthesis is true and 0 when
it is false, based on the 0.50 threshold; 7; is the predicted value and 7; is the actual
value (Chevapatrakul, 2013).

The CPR lies between 0 and 1, (0 < CPR < 1) and it is usually expressed in

percentage.

2.3.5.2 The Pesaran-Timmermann Directional Predictability Test

This test was first proposed by Pesaran and Timmermann (1992) and was im-
proved by Granger and Pesaran (2000) for evaluating directional forecasting or
predictability performance and market timing. The null hypothesis Hy, which is
”No statistically significant directional predictability” against the alternative hy-
pothesis H 4, which is ”There is statistically significant directional predictability”

can be tested based on the Pesaran-Timmermann test statistic, as follows:

\/TKS asymptotically
~Y

PT = (ﬁ(l—ﬁ)>°-5 N(0,1)
I(1-1)
where KS = TR — F'R is the Hanssen-Kuiper skill score; TR = Fow o jiu is
uw _l’_ u
rud
the true or hit rate; FR = ————— is the false rate; 7" is the sample period in
Jud + Jdd

months;
and the forecasts’ classifications are again obtained from the 2 x 2 contingency

table showing:
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T
judzz_[(ft:]_,It:O),

t=1
T

"™ =) "I(I; =0,1, = 1);
t=1
T

=3 "1(I, = 0,1, = 0);
t=1

where u is an upward signal (I; = 1) and d is a downward signal (I, = 0); I(.) is
an indicator function taking the values 0 and 1; I is the sample mean of the sign
indicator values I; computed in the T' — month sample period; I, is the predicted
excess stock return sign indicator; I; is the actual or realized excess stock return
sign indicator; 7; = ITR+ (1 — I)FR (Nyberg, 2011; Granger and Pesaran, 2000;
Bergmeir et al., 2014)

Thus, the PT test statistic as stated above has the asymptotic standard normal

distribution under the null hypothesis Hy of no directional predictability.

2.3.5.3 Confusion Matrix Metrics

The confusion matrix consists of true positives (TP), false positives (FP), false

negatives (FN) and true negatives (TN). In this study, we use the following met-

Positive (Predicted) | Negative (Predicted)
Positive (Actual) TP FN
Negative (Actual) FP TN

Total = TP + TN + FP + FN; where TP = true positives, FN = false negatives, FP = false positives, TN = true negatives

Table 2.1: The Confusion Matrix

rics to evaluate the accuracy and correctness of the classification models:

TP+TN

A _ .
Uy = TP I TN+ FP+ FN

Note that the accuracy of prediction equals the correct prediction ratio (CPR).

TP

recitsion TP+ FP
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TP

S@TLS'LtZUZty = m—m
e TN
Speci ficity = TNTFN
2 2T P
1A% = = )
1ocore 1 1 TP+ FP+ FN

— + —
Sensitivity = Precision
Kappa Statistic: The kappa statistic, denoted by k, is computed as follows:

Po—Pe _ 4 1 —po

1_pe _1_pe

where py is the relative observed agreement among the raters; p. is the hypothetical

probability of chance agreement, which can be obtained from the following:

Pe = % Z N Mime

for categories m with N items and n,,, is the number of times rater ¢ predicted

category m.

McNemar’s Test: The McNemar’s test, as introduced by McNemar (1947),
is used in this paper to investigate the marginal homogeneity between the row and
column marginal frequencies in the 2 x 2 confusion matrix. The null hypothesis
of marginal homogeneity (that is the two outcomes are marginally equiprobable)
against the alternative hypothesis that they differ in probabilities is defined as
follows:

Hy : Prob(FN) = Prob(FP)
Hy : Prob(FN) # Prob(FP)
The McNemar's test statistic is defined as follows:

, (FN—FP)?

_ 2
X' = Fyrrp ~al)

Thus, the McNemar’s test statistic is asymptotically chi-square distributed with
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1 degree of freedom at the a% significance level.

2.3.5.4 Economic Performance Evaluation

Evaluating the economic performance of a forecasting model is of great importance
to a profit oriented portfolio investor. Consider the following trading strategy: Let
Proby(Ryy1 > 0) be the estimated probability of a positive excess stock return for
the period t 4+ 1. Then the trading strategy or decision rule can be expressed as
follows:

If Prob;(R;+1 > 0) > 0.5, then purchase the stock index.

Else if Prob;(R;y1 > 0) < 0.5, then purchase the treasury bill.
The performance of the constructed portfolios is evaluated over the out-of-sample
period (1991 to 2016: T=312 months) using a plethora of performance measures.
First, we consider the realized returns of the constructed portfolios. Let r, ;11 be
the realized return of the portfolio at time ¢ + 1. The average or expected return
(ER) within the out-of-sample period, the cumulative return at the end of the
period, and the volatility of the portfolio can be computed. It is imperative to

compare the return per unit of risk by using the Sharpe Ratio.

Sharpe Ratio
Let’s consider the Sharpe Ratio (SR) which standardizes the realized returns with
the risk of the portfolio. The SR is computed through the following model:

E(ry) — E(rfi)
Var(r,)

SR, =

where r, is the average realized return of the portfolio over the out-of-sample
period; r f; is the risk-free interest investment rate; Var(r,) is the variance of the
portfolio over the out-of-sample period.

Optimally, portfolios with high Sharpe ratios are most preferable to portfolios with
low Sharpe ratios, owing to the fact that the higher the Sharpe ratio the higher

the return and the lower the volatility.

60



Maximum Drawdown

A portfolio measure associated with the sustainability of the portfolio losses is the
maximum drawdown (MaxDD) which broadly reflects the maximum cumulative
loss from a peak to a following bottom. MaxDD is defined as the maximum
sustained percentage decline (peak to trough), which has occurred in the portfolio
within the period studied. MaxDD up to time T is the maximum of the drawdown
over the history of the specific variable under consideration. It is computed as
follows:

MaxDD, = max | max (PV;)— PV,

To<t<T—1To<j<T-1

where PV denotes the portfolio value; Ty, T" denote the beginning and end of the

evaluation period, respectively.

Omega Ratio
The Omega ratio, as a risk-return performance measure of a portfolio investment
introduced by Keating and Shadwick (2002), gives the probability weighted ratio
of gains versus losses for a stipulated threshold return target. We first define the
n-th lower partial moment (LPM,,) of the portfolio return and the kappa function
K, and used the concept to compute Omega, Sortino and the Upside Potential
respectively, see (Harlow and Rao, 1989; Sortino and Van Der Meer, 1991; Sortino
and Price, 1994) for detail studies. The n-th lower partial moment (LPM,,) of the

portfolio return is defined as follows:

LPM,(ry) = E[((ry — 7)1)"]

where r, is the benchmark return.

The Kappa function K, (r,) is defined as follows:

Kn(ry) = Bl = for n=1,2,..
Y/ LPM,(ry)
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Thus, the Omega ratio is computed from the following formula:

Omega(ry) = Ki(rp) + 1

Sortino Ratio
Unlike the Sharpe ratio, which penalizes both upside and downside volatility
equally, the Sortino ratio penalizes only the returns that fall below a user spec-
ified target. The Sortino ratio measures the risk adjusted return of a portfolio

investment. It can be computed from the following formula:

S(ry) = Ka(rp)

Like the Sharpe ratio, the higher the Sortino ratio, the better the risk adjusted
performance and vice versa.

Upside Potential
Upside Potential is a measure of the return of an investment relative to the minimal

acceptable return. The upside potential is calculated as follows:

El(ry —1)"]

\/ LMPMQ(’I”I))

The economic importance of the upside cannot be overemphasized. It is not only

UP(?”b) =

indicating an investor’s potential gain in value but also judges the success of a
portfolio manager’s performance comparative to a benchmark.

Additionally, I investigate the tail-risk of the different proposed models. A
CVaR of A% at the 100(1-a)% confidence level means that the average portfolio
loss measured over 100a% of worst cases is equal to A% of the wealth managed by
the investor. To compute VaR and CVaR, we use the empirical distribution of the
portfolio realized returns. VaR and CVaR are calculated at the 95% confidence
levels.

In this study, the U.S. 3-month interest rate for the risk-free rate r f; and for the

benchmark rate of return (r,) necessary for the calculation of Omega, MaxDD
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and S were employed.

2.4 Data Analysis and Discussion

2.4.1 Sources of Data and Variables

The data used in this chapter are obtained from Amit Goyal’s webpage!, cover-
ing monthly observations ranging from January 1960 to December 2016. These
variables, presented in Table 2.2, have been used in the existing literature quite
extensively for predictability of the equity premium, see (Rapach et al., 2010; Ny-
berg, 2011; Meligkotsidou et al., 2014, 2019) among others. The total number of
observations is 7" = 684. An out-of-sample period of T, = 312 monthly obser-
vations ranging from January 1991 to December 2016 has been employed for the
evaluation of the forecasting performance. The forecast horizon denoted by h is
one month ahead for each of the forecasting models.

In the out-of-sample method, the parameters of the forecasting models are es-

Table 2.2: The Financial Variables used for the Study

Indicator Time Series Variable
Equity Premium EquityPrem
Default Return Spread DFR
Excess Stock Return ESR
Short Term Interest Rate AShortR
Long Term Yield ALongR
Term Spread TermSpr
Inflation Alnfl
Return Spread ReturnSpr
Yield Spread YieldSpr
Book to Market Value BMV
Net Equity Expansion NFEE
Dividend Price Ratio DPR
Earning Price Ratio EPR
Stock Variance SVar

timated recursively using an expanding window of observations, in which the fit-
ted models are estimated using data from the start date of the dataset to the

present time and obtain a one month-period-ahead forecast. The procedure is

Lwww.hec.unil.ch/agoyal /
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repeated iteratively until the end of the forecast sample period is attained. In the
CART techniques, each classification model is trained, pre-processed the training
dataset in a closed centre and scale form, tuned the parameter(s) of each model
by cross-validation and resampling, determining the variable importance before
making the out-of-sample forecasts. The resampling approach seeks to determine
the values of each of the model parameters (if any) and uses the best tuning
parameter(s) based on fitted in-sample accurate measures to produce the out-of-
sample forecasts. In each model, the best tuning parameter(s) were used to run
the out-of-sample forecasts recursively, and their respective performance evalua-
tion measures were obtained. All computations in this study were obtained using
R software and the associated packages (Kuhn et al., 2008; Kuhn, 2012, 2015) and

https://topepo.github.io/caret /available-models.html, see Tables 2.3 and 2.4.

2.4.2 Statistical Performance Evaluation Results

The statistical performance evaluation results for the proposed techniques in this
chapter, presented in Tables 2.3 and 2.4, are shown to be promising, owing to
the empirical evidence of useful predictability. The out-of-sample positive class
return forecasts are depicted in Figures 2.1 to 2.6. In the benchmark binary pro-
bit models, the predictive accuracy of the static binary probit model involving
all covariates appeared to be very low with insignificant evidence of PT direc-
tional predictability, and the kappa statistic is extremely poor, indicating a poor
inter-rater agreement between the actual and predicted values. Whereas the ap-
plication of stepwise variable selection by the Akaike information criterion (AIC)
on the static model seeks to improve the predictive accuracy, it does not provide
statistically significant evidence of directional predictability and the kappa statis-
tic is still low. The dynamic binary probit, which includes the lagged excess stock
return indicator together with the other predictor variables, produced a slightly

better predictive accuracy as compared to the static probit.
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Again, the application of stepwise variable selection by AIC on the dynamic
probit results in a slight increase in the predictive accuracy and the result equals
the result of the stepwise static binary probit. The analysis of the static and
dynamic binary probit models revealed that a parsimonious approach is prefer-
able to incorporating many predictors in the models. The replication of the static
and dynamic binary probit models used in the previous findings, as shown in
the existing literature, such as in Nyberg (2011), had confirmed the feasibility of
these models for excess stock return directional predictability. Interestingly, the
empirical analysis of the static and dynamic binary probit models in this chap-
ter produced predictive accuracy (CPRs) equivalent to the CPRs of these models
demonstrated by Nyberg (2008), Nyberg (2011) and investigate other important
statistical performance measures, such as the kappa statistic, which determines
inter-rater agreement between the actual results and the forecasts, and the Mc-
Nemar’s test for the detection of marginal homogeneity or equiprobability.

Turning to penalized binary probit models, the inclusion of penalty vector
norm(s) in the ordinary binary probit models revealed a good improvement in
predictive performance of the models. Specifically, the ridge, LASSO and elastic
net provide higher predictive accuracy, which outperformed the benchmark binary
probit models, with Ridge being statistically significant at 0.1%, EN at 1% and
LASSO at 5%, with better inter-rater agreement between the actual results and
the forecasts, as judged by the kappa statistic, and McNemar’s p,qe €vidence of
marginal heterogeneity. The penalized probit models also produced better preci-
sion, specificity, sensitivity and F scores compared to the ordinary probit models.
The ridge produced a better predictive accuracy and other statistical performance
evaluation measures than the LASSO and elastic net, outperforming both the
LASSO and the elastic net in this direction. Overall, the presence of the ¢; and
{5 penalty vector norms in the binary probit models appeared to improve the
predictive task and the overall performance of the resulting models.

The models employed for forecasting the direction of the U.S. stock market
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Binary Probit Models
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Penalized Binary Probit Models
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Best Discriminant Analysis Classifiers
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Best Bagging & Boosting Classifiers
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Figure 2.4: Graphical Representation of the Out-of-Sample Positive Class Return
Forecasts continued

71



Bayesian Classifiers
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in this chapter demonstrate both the feasibility of the models and significant evi-
dence of outperformance over the benchmark probit models. With the exception
of LogitBoost, neural networks, LDA and HDA, all other classifiers in this chapter
are shown to have outperformed the benchmark binary probit models by statis-
tical performance evaluation measures. In more detail, seven of the proposed
methods outperform the benchmark probit models at 0.1%, five methods at 1%
and four methods at 5%. It is noticeable that the introduction of the stepwise
variable selection concept in the LDA model improved the predictive task and
the resulting statistical performance of the LDA model, whereas the introduc-
tion of the stepwise concept in the QDA model worsened the predictive task and
overall performance of the QDA model. The empirical analysis in this study con-
firmed the superior outperformance of random forest (RF) over other forest based
classification models in financial analysis, as shown in Ballings et al. (2015). Bag-
ging and boosting, as demonstrated by Zheng (2006) in other aspects of stock
market analysis, also appeared to have outperformed the neural networks in this
study. Unlike the benchmark binary probit models, the three sophisticated ma-
chine learning classification models, i.e., random forest, HDDA and QDA, provide
fair inter-rater agreement between the actual results and the forecasts, as shown
by their respective kappa statistic. The HDDA appeared to produce the best
out-of-sample statistical performance evaluation results, followed by naive Bayes,
and the QDA, with significant evidence of outperformance. Overall, the HDDA is
the best model for predicting the direction of the U.S. stock market in terms of

statistical measures of predictability.

2.4.3 The Economic Performance Evaluation Results

As in the statistical case, the economic performance evaluation results, presented
in Tables 2.5 and 2.6, also revealed that the dynamic binary probit model pro-
duced better cumulative returns, Sharpe ratio (SR), MaxDD, Omega, Sortino

Ratio and Upside Potential than the static binary probit, and the stepwise vari-
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able selection cases by AIC, in each case, appeared to yield even better economic
evaluation results than the ordinary case. The penalized binary probit models
(ridge, LASSO and elastic net) produced better cumulative returns, SR, MaxDD,
Omega, Sortino and Upside than the ordinary binary probit models and, hence,
demonstrate economically significant evidence of outperformance over the bench-
mark binary probit. For example ridge has SR equal to 0.642 while the static
probit has SR equal to 0.271. Interestingly, all the penalized binary probit mod-
els outperformed the benchmark static and dynamic binary probit models in this
chapter. Again, the ridge outperformed the LASSO and elastic net in terms of the
economic significance measure and seems to provide better economic information
on future investment outcomes to a stock market investor than the LASSO and
elastic net. All the CART models that are shown to be promising in terms of
statistical predictability in this chapter are also shown to be promising in terms of
economic significance to portfolio investors. The effectiveness of Bagging (Boot-
strap Aggregating), Boosting, Trees, Forests, Naive Bayes Discriminant Analysis
models and other ensembles that were demonstrated to be useful in other concepts
of financial analysis are also shown to be useful in forecasting the direction of the
U.S. excess stock market returns and providing portfolio investors with better eco-
nomic significance about the future outcome of investments in the stock market.
The Random Forest method produced the highest SR (0.643) among the bagging
and boosting models and by far greater than the static probit model (0.271). It is
worth noting that a best performing model in terms of the statistical measure may

not necessarily reflect the best performance in the economic significance measure.
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Contrary to the statistical performance analysis, the HDDA does not corre-
spondingly provide the best economic performance result; instead the QDA pro-
duced the highest cumulative return, SR, Omega, Sortino and Upside with a cor-
responding least MaxDD. QDA gives SR equal to 1.077 (almost four times the SR
of static probit), while HDDA produces SR equal to 0.831. Although the HDDA
also demonstrates good evidence of economic significance and appeared to have
outperformed the other models in terms of some useful economic performance eval-
uation measures, another suitable benchmark comparative measure of economic
significance on portfolio investment by investors is to compare the expected return
on portfolio investment produced by the model with a buy and hold trading strat-
egy of the SP500 index. In this case, we see that the simple probit models do not
outperformed the buy and hold strategy. However, the penalized probit models
and the prominent CART models (for example, HDDA, QDA, RDA and Naive
Bayes) outperformed the buy and hold strategy, providing higher risk-adjusted
returns.

Interestingly, the prominent CART models used in this chapter have econom-
ically outperformed the benchmark binary probit models and the buy and hold
trading strategy with a significant margin. Overall, the QDA appeared to be the
best economically significant model for forecasting the direction of the U.S. stock

market out-of-sample.

2.5 Conclusion

The analysis of the benchmark binary probit models in this chapter corroborates
the empirical findings in previous studies, especially in Nyberg (2008), Nyberg
(2011). In this chapter, additional statistical and economic performance evaluation
measures were introduced to investigate the long-run usefulness of these models
in the financial stock market.

The empirical analysis in this chapter revealed that the proposed sophisticated

machine learning techniques outperformed the benchmark binary probit models
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both statistically and economically. In terms of the statistical predictive accuracy,
the best penalized binary probit model outperformed the best binary probit model
by 5.5% and the best CART model outperformed the best binary probit model by
7.4%.

In terms of statistical performance evaluation measures, the HDDA appeared
to be the best model for forecasting the direction of the U.S. stock market in this
chapter, owing to its highest predictive accuracy with minimum misclassification
error (MCE) and other resulting statistical measures. Adding to the previous
analysis in the existing financial and econometric literature, the Kappa statistic
was used in this chapter to investigate the inter-rater agreement between the actual
values and forecasts produced by the various models. The Kappa statistic revealed
that there is no inter-rater agreement between the actual values and the forecasts
obtained by the static and the dynamic binary probit models. Interestingly, the
RF, QDA and HDDA proposed in this chapter provide evidence of fair inter-rater
agreement between the actual values and the forecasts produced by the models.
However, the QDA appeared to be the best model in terms of the measures of
economic significance in this chapter. The QDA seems to provide more economic
value to guarantee the success of a portfolio manager in the stock market than the
other models used in this chapter.

Overall, the HDDA is the best model for forecasting the direction of the U.S.
stock market out-of-sample in terms of statistical predictability measures, while
the QDA is the best economically significant model for a portfolio investor whose
utmost goal is to minimise risk and maximize profit, based on the empirical ana-

lytical findings in this chapter.

2This chapter is published in a reputable international journal, as follows:
Iworiso, J. & Vrontos, S. (2019). On the Directional Predictability of Equity Premium Using
Machine Learning Techniques. Journal of Forecasting, 1-21. https://doi.org/10.1002/for.2632
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Chapter 3

Forecasting the U.S. Equity
Premium with Regression

Training Techniques

3.1 Introduction

The out-of-sample predictability of equity premium is a major confrontational re-
search issue with controversial views among scholars in empirical finance. The
challenge about expectation of the stock market delivery to mean-variance in-
vestors above the treasury bill rate led to the quest for a meaningful estimate of
the equity premium (Campbell, 2008). The historical average model is seen as an
old-fashioned efficient market theory for forecasting the equity premium, owing to
the inconsistent forecasts comparative to the real-time market setting. Empirical
literature have documented that several financial and economic variables used as
potential predictors can only forecast the equity premium in-sample but are unable
to deliver significantly superior out-of-sample forecasts relative to the benchmark
global historical average out-of-sample forecasts, and hence the research question:
can anything consistently beat the historical average out-of-sample? (Campbell
and Thompson, 2005; Goyal and Welch, 2007). The historical average is used as

a benchmark for comparing the performance of any model whose forecasts are es-
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timated via expanding or rolling window in an out-of-sample fashion, from which
the relevant statistical measures of forecastability can be evaluated. In this re-
gard, any model whose relevant statistical measures outperformed those obtained
with the benchmark historical average is said to beat the historical average out-
of-sample.

This chapter focuses mainly on the application of sophisticated regression train-
ing (RT) techniques to forecast the U.S. monthly equity premium out-of-sample
recursively. It involves the training of a regression model which comprises all
relevant financial and economic variables rather than using fewer or individual
variables, and then using the resulting sophisticated model together with the best
tuning parameters to forecast the equity premium. We employed a broad cate-
gories of regression models, which includes, kitchen sink linear model, partial least
squares regression, kernel-based regularized least squares, support vector regres-
sion, relevance vector regression, regularized or penalized regression, components
regression, Gaussian processes regression, regression splines, rule-based regression,
nearest neighbour, projection pursuit, and neural networks. A major advantage
of the RT techniques is that all predictor variables are regarded as important
variables before preprocessing in the course of training the model and the result-
ing fitted or trained model decides variable importance associated with the final
cross-validated model.

The application of these RT forecasting models in this perspective is expected
to beat the old-fashioned benchmark historical average. Hopefully, the output of
this study will enrich empirical literature and fills the research gap by addressing
the controversial arguments between scholars on the predictive ability of financial
and economic predictor variables in forecasting the U.S. equity premium out-of-
sample relative to the benchmark historical average. In particular, the significant
RT out-of-sample forecasting models among these RT models aimed to provide
meaning information to a mean-variance portfolio investor in a real-time setting

who optimally reallocates a monthly portfolio between equities and risk-free trea-
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sury bill.

3.2 Literature Review

The predictability of equity premium is drawing a keen interest in modern finan-
cial and econometric research. By definition, the equity premium is the difference
between the expected return on the market portfolio (SP500) and the risk free
interest rate. It is the return that investors can expect from holding the mar-
ket portfolio in excess of the return on the 3-month Treasury bills. In finance,
it is considered to be the most important concept owing to portfolio allocation
decisions and cost of capital estimates. The backbone of investment strategies de-
pends on the ability to predict future returns but the forecastability itself does not
necessarily guarantee the investor’s profit from the trading strategy based on the
resulting forecasts (Campbell and Thompson, 2005; Bai, 2010). Thus the quest for
a reasonable precise estimate of the equity risk premium by a number of scholars
in the financial business cycle.

Several empirical literature have demonstrated evidence in forecasting equity
premium and evaluating their performance in an attempt to determine both sta-
tistical and economic significance, see among others (Polk et al., 2006; Goyal and
Welch, 2007; Campbell and Thompson, 2007; Della Corte et al., 2010; Kellard
et al., 2010; Baur and LofHler, 2015; Aye et al., 2016; Kolev and Karapandza,
2017; Avdis and Wachter, 2017). A notable argument in this perspective, over the
years, is the critical examination of any other predictive model that can signifi-
cantly outperform the so-called benchmark historical average forecasting model.
One of the academic debating questions in modern review of financial studies is
that: can any other empirical model accurately forecast the equity premium bet-
ter than the forecasts from the historical mean? Goyal and Welch (2007) have
argued previously that no other variable beats a simple forecast based on the his-

torical mean, owing to the fact that in-sample correlations conceal a systematic
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failure of the financial and economic variables out-of-sample. Contrary to this
view, the analysis made by Rapach et al. (2007) reveals that despite the failure
of the individual model forecasts to outperform the historical mean forecasts, the
combination of the individual model forecasts yield statistically and economically
significant gains, relative to the historical mean, consistently over time. Although
some of the indicators used as predictors appeared to be good statistically signifi-
cant predictors of the equity premium in-sample at some specific horizons but are
relatively poor in the out-of-sample forecasting ability. Fama and French (2002)
on the other hand, verified analytically that the estimates from economic fun-
damentals especially the dividend growth model, produced lower standard errors
resulting to better precision than the estimates from the historical average model.
The variety and inconsistency in performance as shown by different scholars could
be traceable to the choice of predictor variables, the frequency of the dataset (an-
nually, quarterly, monthly, weekly or daily), the estimation period, the forecast
horizon and the specific models used by the researcher.

The notion on poor predictive performance of these variables in existing litera-
ture prompt Goyal and Welch (2003) to investigate the cause of the poor predictive
ability using dividend ratio as a typical predictor variable. The finding clarifies
that the poor predictive ability is mainly caused by instability of parameters in the
models. The in-sample tests provide better explanatory power than the counter-
part, and hence, a good in-sample performance does not necessarily imply a good
out-of-sample performance. Notwithstanding the out-of-sample weak explanatory
power, they seems to be economically meaningful for investors. Controversial to
some existing literature in U.S. financial studies, Kellard et al. (2010) have demon-
strated statistical evidence that the UK dividend ratios possess some predictive
ability for equity premium, and that FTSE All-Share dividend ratios have rela-
tively strong forecasting power than the S&P500 dividend ratios over the whole
sample period. Campbell and Thompson (2007) argued that the empirical models

can produce useful out-of-sample forecasts by restricting the model parameters.

83



Comparative to this argument, the kitchen sink regression models incorporating
the relevant financial and economic variables do not only fail to beat the uncon-
ditional benchmark historical mean in a statistically significant approach for over
three decades; also underperformed the prevailing forecasting model especially in
the out-of-sample case, and concluded that the underperformed models could not
guarantee investors with profitable information to time the market (Goyal and
Welch, 2007).

The exploration of economic variables versus technical analysis is another cru-
cial discourse in forecasting equity premium. The findings made by Neely et al.
(2010) suggests that both economic fundamental and moving average rules provide
statistical and economic significant evidence of forecasting gains in different pro-
portions which appeared mostly in the U.S. business cycle recession periods. The
resulting evidence for the forecasting gains produced by both techniques seems to
be significant to a mean-variance investor. Neely et al. (2014) confirmed that both
technical indicators and macroeconomic variables displayed statistically and eco-
nomically significant evidence of in-sample and out-of-sample forecasting ability,
with the technical indicators seemingly outperforming the macroeconomic vari-
ables. The empirical analysis suggests that the combination of both technical
indicators and macroeconomic variables will significantly improve the equity risk
premium forecasts rather than using either of the two information only. As a
follow-up to the robustness of this finding, Baetje and Menkhoff (2016) argued
that the predictive abilities of both indicators seem to possess similar quality
when assessed by their respective long term forecast errors. Unlike the economic
indicators that loses predictive ability on a long run, the technical indicators main-
tain or increase stability over time, and hence, the technical indicators consistently
outperformed the economic indicators over time. The empirical findings in Rapach
et al. (2010) confirmed that combination of forecasts yields statistically and eco-
nomically significant out-of-sample gains consistently on a long run, as compared

to the benchmark historical average. Thus, the forecasts combination approach
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maintains a long run statistical and economic stability in this direction.

In an attempt to determine the role of macroeconomic risk to the declining na-
ture of the equity premium, Lettau et al. (2007) argued that a decline in macroe-
conomic risk leads to a fall in future equity risk premium, resulting to a boom
in stock prices in the model economy. The introduction of economic constraints
on the sign of coefficients and return forecasts, and the imposition of statistical
constraints through shrinkage estimators in the out-of-sample models by Li and
Tsiakas (2017) appeared to outperformed both the models conditioning the eco-
nomic fundamentals and technical indicators. Lee et al. (2015) added that the
asymptotic properties constrained local historical mean estimators appeared to
minimize the asymptotic variance and the mean squared errors. The substan-
tial nonlinearity is controlled by the local historical mean, and the local positive
constraint improves the equity premium out-of-sample forecasts.

The application of bagging (bootstrap aggregation) to smooth parameter re-
strictions (positivity of the regression coefficients and positivity of the forecasts)
by Hillebrand et al. (2009), Hillebrand et al. (2014) produced lower forecast errors
than the forecast errors from the simple restricted and benchmark historical aver-
age models. In light of the empirical analysis in Rapach et al. (2010), Hillebrand
et al. (2014) added that although simple forecasts combination do consistently
well, but are not best at all times, owing to the noticeable improvement by in-
troduction of bagging constraints. This led to the recommendation that forecasts
combination could be improved by bagging. The outperformance of some notable
techniques over the benchmark historical average, as mentioned in the existing
literature suggests that the regression training techniques will play enormous role
in forecasting the U.S. monthly equity premium. The application of sophisticated
regression training techniques in this research is proposed to fill the identifiable
gaps in the existing empirical literature, and to yield more consistent recursive
out-of-sample forecasts with significant economic gains. Thus, the outcome of this

research shall enrich empirical literature on forecastability of future equity pre-
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mium and to guarantee investor’s profit in the financial market.

3.3 Methodology

3.3.1 The Historical Average

Given a univariate time series {yt}thl, with y; denoting the monthly equity pre-

mium. The historical average (HA) model is defined as follows:

Y1 = B+ e (3.1)

where 3 is a parameter representing the intercept; ¢, is a zero mean disturbance
term; t = 1,2,...,T (Campbell and Thompson, 2005; Lee et al., 2015). The least

squares estimator (LSE) of the historical average is as follows:

1 T
gsAE A Z?Jt
t=1

which implies that the forecast for g, is given by:

1 T
?)T+1\T = T Z Yt
t=1

where B{{;‘E is the parametric estimator of 3.

3.3.2 The Least Squares Regression Training
3.3.2.1 Kitchen Sink Model

Given a training dataset {y;,x;1, 22, ...,xt,k}thl of T statistical units, then a

kitchen sink predictive linear model takes the form:

Yey1 = Bo + Bixey + Boeo + oo + Braep + e t=1,2,...,T (3.2)
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where ;41 is the equity premium at ¢ + 1 (Rapach et al., 2010); 241, 12, ..., T
are the predictor variables available at the end of ¢ used to predict y;,1; By is a
constant term representing the intercept; (1, s, ..., O are the model coefficients;
€:+1 18 a zero mean disturbance term (Goyal and Welch, 2007).

The above model can be represented in matrix form, as follows:
y=X[+¢€ (3.3)

where y is a T x 1 vector of observed values; X is T x (k + 1) matrix of predictor
variables; 3 is (k 4+ 1) x 1 dimensional parameter vector; € is T' X 1 zero mean
vector of disturbances.

If the parameters § = (B, f1, --., k) are estimated by OLS, then the linear model

(LM) forecasts can be obtained from the resulting kitchen sink predictive model:

@T+h(BOLS) = /T+h—1BOLS (3-4)

where 3OF5 = (X'X)~'X'y is the OLS estimate of .

3.3.2.2 The Partial Least Squares

The partial least squares (PLS) regression finds a set of latent vectors or compo-
nents that performs a simultaneous decomposition of X and y with the constraint
that these components explain as much as possible the covariance between X and
y. The latent vectors obtained from X are used to predict y, where X is T' x k
matrix of 7" inputs and y is T x 1 vector of response values.

Following the decomposition of X and y as a product of common set of orthogonal
factors and a set of specific loadings, the predictor variables are decomposed as
follows:

X =SL' with S'S=1I (3.5)
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where I is the T x T identity matrix; S is the T' X k score matrix; L is the non-
orthogonal loading matrix with column vector of loadings k& (Abdi, 2010).

Given two sets of weights w and w*, associated with a linear combination of the
columns of X and y, to attain maximum covariance. Our aim is to obtain a first

pair of latent vectors s and u in the form:
s=Xw and u=yw" (3.6)

with constraints w'w = 1, §’s = 1 and s’u is maximal; where w denotes the k x 1
weight vector; s and u denote the 7" x 1 latent vectors respectively. When the
first latent vector is obtained, it will be subtracted from both X and y and the
procedure is re-iterated until it becomes a null matrix.

Using the nonlinear iterative partial least squares (NIPALS) algorithm, we create
two matrices E = X and F =y, which are then column centred and normalized;
where E is T' x k matrix of T inputs and F is T" x 1 vector of responses. The

NIPALS algorithm takes the form (Rosipal and Trejo, 2001; Abdi, 2010):

Step 1: randomly initialize u  (estimate X weights)

Step 2: w =E'u (estimate X factor scores and normalize)

Step 3: s = Ew, s+ 25 (estimate y weights)

ls|

Step 4: w* =F's  (estimate y scores)
Step 5: u=Fw*, u<+ =

[[ull

Step 6: repeat steps 2 and 5 until s converges

Step 7: deflate matrices E and F in the form E = E — s/’ and F = F — bsw*

where b = s'u is the value of b used to predict y from s; / = E's represent the
factor loadings for X.
The vectors s, u, w,w* and ¢ are then stored in the corresponding matrices and

the scalar b is stored as a diagonal element of the regression coefficients .
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If E becomes a null matrix, then the whole set of latent vectors is obtained,
otherwise the procedure is re-iterated from step 2 onward.

Thus, the response variable is predicted using the resulting regression model:

y = SﬁA/ = XBPLS wzth 5]3[,5' = (LH_)BA/ (37)

where L™ is the T' x k matrix of the Moore-Penrose pseudo-inverse of L (Abdi,
2010); Bprs is a k x 1 vector of the diagonal matrix of the PLS regression coeffi-

cients; A = (wi, w3, ...,w;)" is a k x 1 vector of weights.

KernelPLS

Consider a nonlinear transformation function of the k-dimensional input variables
x into a feature space F, defined by ® : x € R¥ — ®(x) € F, where ® is an
T x k matrix of regressors. The kernel PLS algorithm is obtained by modifying
the NIPALS algorithm using the matrix ® of mapped input data (Rénnar et al.,
1994; Rosipal and Trejo, 2001):

Step 1: randomly initialize u
Step 2: s = ®d'u, s+ =
Step 3: w* =y's
Step 4: u=yw", u<+ —-
Step 5: repeat steps 2 and 5 until s converges

Step 6: deflate &’ matrix and y vector respectively in the form: &’ = (o —

ss'®)(P —ss'®P) and y =y —ss'y.

We can apply the kernel trick ®(xz;)'®(x;)" = ['(x;,z;), where ®®’ represents
the k x k kernel Gram matrix [ of the cross dot product between all mapped

input data points {®(z;), ®(z;)}F,_,. The deflation of the ®@’ = I' matrix after
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extraction of s component is as follows:
'+ (I —ss)I'(/ —ss') =T —ss'T'— I'ss’ +ss'T'ss’ (3.8)

where I is an k-dimensional identity matrix.

The matrix of the regression coefficients will take the form:
B =®'U(STU) 'Sy (3.9)
and the prediction on the test data takes the form:
y=®B =TU(STU) 'Sy =SSy (3.10)

where the last part of the equation follows from the fact that the matrix of the
components S may be expressed as S = PR with R = ¥ U(STU) L, Uis T x k
matrix of extracted components (Rosipal and Trejo, 2001).

Thus, the solution of the kernel PLS regression is as follows:

k
PLSkemel(X,W) = Z Wir(miax]’) (3-11)

1,j=1

where m; = U(S'TU) 'Sy is a k x 1 vector of partial least square estimators;
|l —=;1%
U(zi,zj) = e = | — zj|| is the Euclidean distance between x; and z;,

o2 € RT is the bandwidth of the kernel function.

The wide kernel PLS (WideKernelPLS) takes the same form as the kernel PLS
but differs in the number of components (ncomp) used as tuning parameter(s) of

the model. The ncomp in the WideKernelPLS is usually less than the ncomp from
the kernel PLS.
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SparsePLS

The objective function for the first sparse PLS direction vector can be formulated
by adding an ¢; penalty norm constraint to the PLS model (3.6), with modification
to obtain the following:

max(w'Mw) subject to w'w=1, |w| <« (3.12)

w

where M = X'yy'X is a T' x T matrix and o determines the amount of sparsity.
In order to obtain a sufficiently sparse solution, a generalization can be made that
achieves the sparsity by imposition of an ¢;-penalty norm onto a surrogate of the
direction vector w*, instead of the original direction w, while keeping w and w*

close to each other, and it takes the form (Chun and Keles, 2010):

zvll"lvll{—liwlMW—l-(l—/ﬁ)(W*—W)/M<W*—W)—|—Oé1||W*||1+042||W*||g} subject to w'w =1
(3.13)

where k is a thresholding parameter which represents the weight factor; a; and

ay are the parameters regulating the amount of sparsity; ||[w*||; is the ¢;-penalty

norm which encourages the sparsity on w*; ||w*||3 is the f3-penalty norm which

addresses the potential singularity in M when solving for w*.

We can obtain a solution of the generalized SPLS by alternatively iterating be-

tween solving for w when w* is fixed and solving for w* when w is fixed.

In the first case, the objective function becomes:
min{—kwMw + (1 — k)(Ww* — w)M(w* —w)} subject to w'w=1 (3.14)
and when 0 < k < %, then we obtain:

min{(Z'w — RZ'w*) (Z'w — RZ'w*)} subject to w'w =1 (3.15)
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where Z = X'y is a T' x 1 vector and & = % (Chun and Kelesg, 2010).
Thus the resulting constrained least squares problem can be solved via the method

of Lagrange multipliers and the solution is as follows:
w = &M + o*T) " "Mw* (3.16)

where the multiplier o* is the solution of w*M(M + oI)?Mw* = /2.

Following Zou et al. (2006), for k = %, the objective function reduces to —w'Mw*
and the solution is w = Uv’, where U and v are obtained from the singular value
decomposition of Mw*.

In the second case in which we solve for w* when w is fixed, the minimization

problem becomes:
min{(Z'w* — Z'w) (Z'w* — Z'w) + on|[|w*[|1 + co||W*[[5} (3.17)

which is equivalent to the naive elastic net optimization problem proposed by Zou
and Hastie (2005). It can be solved efficiently via the least angle regression algo-
rithm proposed by Efron et al. (2004) when the expression Z'w replaces y in the

naive elastic net.

3.3.2.3 The Kernel-Based Regularized Least Squares

Let I' be T x T symmetric kernel matrix whose " and j** entry is denoted
by 7v(x;,%;), measuring the pairwise similarities between each of the k covariate
vectors x;,x;. Let (B1,fa, ..., Br) be T x 1 vector of choice coeflicients and let
y = (y1,Y2, ..., yr) be T x 1 vector of the outcome values. Then a mathematical

relationship in the training dataset exists in vector form (Hainmueller and Hazlett,
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2013):

Y(xy,21) Y(x1,22) - Y(z1,20) 51
O A I | ] I
Y(@p,x1) Y(@r,22) -0 Y(wP,TT) Br

We can employ the regularization proposed by Tychonoff (1963) to consider both

model fit and the model complexity by choosing:

T

arfggn; (Ll v(x))) + AR(w) (3.19)

where L(y;, 1(x;)) is a loss function which computes how wrong the function is at
each observation; H is hypothesis space of possible functions; R is a regularizer
measuring the complexity of the function ¢; and A € RT is a parameter that
determines the trade off between the model fit and complexity.

By choosing L as the squared loss function, and the regularizer R as the square

of the />-norm, we obtain:

7

W, 0w = I0IE =D BiByv(xi,x;) = T8 (3.20)
j

(Scholkopf et al., 2002; Ferwerda et al., 2017).
The hypothesis space H is the space of functions defined by y = I', and the

optimization problem results to:

B* = argmin(y — I'8)'(y — I'8) + \3'T3 (3.21)

BERk

for which y* = I'8* gives the fitting approximation, and the conditional expec-
tation function E[y|X, A] holds for a fixed A (Ferwerda et al., 2015, 2017). This
minimization is equivalent to a ridge regression.

Thus a closed-form solution is obtained from the optimization problem by taking

the first derivative of the objective function with respect to 8, and solving the
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resulting first order conditions, which eventually gives:
=T+ )"y (3.22)

where [ is a T' x T identity matrix.

The radial basis and polynomial kernel functions of the KRLS are as follows:

2
—w, radial basis function
I(xi,%;) = n (3.23)

(x; - x4+ 1)%,  polynomial function

where 1 denotes the kernel parameter; d denotes the kernel degree for the polyno-

mial.

3.3.3 The Support Vector Regression

The support vector regression (SVR) is an extension of support vector machines
(SVM) proposed by Boser et al. (1992).

Let {(x;,%:)},_, be a training data set with {(x;)},_,€ R* as observation samples
of k predictor variables, and {(yt)}tT:1€ R as observation samples of the response

variable, for t = 1,2, ...,T. Then there exists a linear relationship of the form:
f(x) =wop(x)+b" (3.24)

where w is the weight vector; x is a vector of regressors; b* is a bias constant term
(Kazem et al., 2013).
The task is to train the model to learn the data using a training sample and

obtain the final model that can generalize the entire population. In this sense, the
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parameters of the SVM model are estimated by minimizing;:
1 T
. 2 *
min {5 Iwll” + A;(n + 7 )}

;

y— (Wox)+b"<e+mn

subject to ¢ and

(Wox)+b"—y <e+1'57,7 >0

\

where ||w|| is the Euclidean weight vector norm; A is the regularization constant
determining the trade off between the training error and model complexity; 7;, 7
are slack variables controlling the model via the penalty factor, A; e is the tube
size of the SVM model (Nalbantov et al., 2006; Plakandaras et al., 2015).

The minimization of the objective function of the SVR model can be represented

as a maximization problem in dual form:

T T T
1
mazx {—5 Z (ap — ) (g — )T (x4, X5) + Z(at — o))y — eZ(at + a;‘)}
t,s=1 t=1 t=1
subject to 0< ay, of < A, Zthl(ozt —a;)=0,1=1,2,3,.. T for the inequalities.
where I'(x4, X;) is the kernel function; a; and o are non zero Lagrangian multi-
pliers representing the solution to dual maximization problem (Nalbantov et al.,
2006). The kernel function results to an inner product, which can be extended to
other kernel functional forms.
Thus, the minimization of the objective function results to the following regression
estimates:

T

Fx) = (o] — a)T (x4, x,) + b° (3.25)
t=1

The minimization of the objective function can be done via the sequential min-

imal optimization (SMO) algorithm, see (Wen et al., 2018):
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The SMO Algorithm for Support Vector Regression
Input = a training set with 7" data point

Output = an optimal weight vector w
Step 1: Initialize wy; and F;, fort<+ 1to T
Step 2: wy; 0, Fy <y

Step 3: Repeat 1 and 2

Step 4: Search for F, and determine u
Step 5: Compute kernel values I'y

Step 6: Search for F, and determine v
Step 7: Compute kernel values I'y

Step 8: Update w, and w,

Step 9: Update F

Step 10: Search for F,,,,

Step 11: Until Fyy < Fae

The distinct kernels for the SVM are as follows:

(
/ : functi
x;X;, linear function

I(xi,x5) = ¢ em ||x; — x,]|°, radial basis function (3.26)

(Yxix; +n)?, polynomial function
\

where 1, 7 are kernel parameters; d is the degree of the polynomial in the polyno-

mial kernel function (Plakandaras et al., 2015).

3.3.4 Relevance Vector Regression

The relevance vector machine (RVM) applied multi kernel functions to a sparse
linear model employing Bayesian inference to obtain parsimonious solutions for

regression and probabilistic classification.
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Let {(x1,S1), (x2,D2), .oy X, (S3¢), .., (x7,S7)} be a training data set for RVM
learning process, where {Xt}thle RF denotes the k-dimensional input vector of
predictors and {%t}tT:lE R denotes the target outputs. The regression function of
the RVM consisting of linear combination of the weighted kernel functions is as

follows:
T

S =y(x;w) = Z we'(x,x¢) + wy (3.27)

t=1
where w is a T x 1 vector of weight parameters; I'(x, x;) is a kernel basis function;

wp is a bias term (Cummins et al., 2015; Lou et al., 2016).

The likelihood of all the data is obtained from the following product:

T
_ S ) 2
Pr(S|o?) = (2m0?) 2 exp (M) (3.28)
o

where w = (wo, wy, wa, ..., wr)"; ® = (¢(x1), d(X2), ..., p(x7))’; and
Qb(Xj) = [1, F(Xj, Xl), F(Xj, Xg), ey F(Xj, XT)]/.
Let a; be separate hyperparameter for each of the weight parameters w;, so that

the weight prior will be defined as follows:

T
Pr(wl|a) = H a e$p<_atwt> for a=(aq,q0,...,ar) (3.29)

The posterior distribution over all the unknown parameters can be obtained from

the Bayes’ rule:

Pr(S|w,a,0?)Pr(w,a, 0?)

PrS) (3.30)

Pr(w,a,c?|3) =

Let x, be a new test vector of predictor, then we can obtain a prediction for the

corresponding target 3, in terms of the predictive distribution, defined as follows:

Pr(S.|3) = / Pr(S.|w, a,0%) Pr(w, a, 02|3)dwdado? (3.31)
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The posterior Pr(w,a), %S, can be decomposed as follows:

Pr(w,a),0?|S = Pr(w|S, a,0?) Pr(a, 0?|3) (3.32)

The posterior distribution over the weights is defined as follows:

T+1

~ [ Pr(Sfw, o) Pr(wla) 5

(3.33)
where 1 = 072X®'S is the posterior mean; ¥ = (D + 0 2®'®)’ is the posterior
covariance; D = diag(ag, o', ...,ar) (Tipping, 2001; Huang and Wu, 2008; Lou
et al., 2016; Zhou et al., 2017). Thus, the estimated value of RVM model weights

is the maximum posterior (MP) estimate of the weights.

The marginal likelihood for the hyperparameter can be obtained by integrating

the weights, as follows:
_Z _1 _%/2—1%
Pr(Sla,o?) = (2r) 2|%| 2exp — (3.34)
where ¥ = 02 + D~ 1®.

Our aim is to maximize the likelihood for the hyperparameters with respect
to o and 2. For a new vector of predictors x,, the predictive distribution can be

computed as follows:
Pr(ayp, 03 p) = argmax, ,» Pr(a, 0?|S) (3.35)

and the probability distribution for the corresponding output is:

Pr(34|S, aarp, 03 p) :/PT(%”W,OKMP,U?MP)PT(W,OZMP,O']QMP|%)CZW (3.36)
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where both terms in the integrand are Gaussian; and M P is maximum posterior
(Lou et al., 2016).

Thus, we obtained the final predictions as follows:

where 02 = 0%, ,+®(x,) LP(x,); and P(x,) = [1,1(x,,%1), ['(Xs, X2), ..., D(Xs, X7)].

The multiple kernel functions of the RVM are as follows:

(pi(x¢), p;(x¢)), linear function
Dpi(x), 5(x)) = { ¢~ 12i%) = #5(x0)]

5 , radial basis function (3.38)
n

\ (pi(xt) - (p;(x4)))?,  polynomial function

where 1 denotes the kernel parameter; d denotes the kernel degree for the polyno-

mial.

The algorithm for the RVM training and forecasting procedures suggested by

Nicolaou et al. (2012) can be summarized as follows:

The Algorithm for Relevance Vector Regression
Training Stage: training set {(x;, )}y, t =1,2,...,T

Step 1: Obtain output features yy

Step 2: Construct basis matrix (Qy, ,, = (QW|QX>

(a) Apply kernel T'y, to obtain €, for input feature x
(b) Apply kernel I', to obtain €Y, for output feature y¥
Step 3: Using marginal likelihood maximization

(a) Determine the hyperparameters (6, i, o%)

(b) = 0?59, ,S and ¥ = (0?02 + D) -
Forecasting Stage: validation set

Step 4: Obtain output features yy
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Step 5: Forecast and estimate the variance
(8) . = | D (0| Q0¥
/
(b) 02 = 0 + [0 () |2 (3Y)] B[ 2 (x)I2u(?)]

3.3.5 The Regularized or Penalized Regression
3.3.5.1 The Ridge

The ridge regression model aimed to reduce multicollinearity owing to the presence
of /5—penalty norm and the cross-validated tuning parameter, A\, which regulates
the amount of shrinkage imposed on the model coefficients.

Using the training set {(z¢1, 1), (212, y2), ..., (7k, yr) }, and by imposition of ridge
constraints, the model parameter estimates will be obtained by minimizing the

objective function

N

-1 k k
(Y41 — Po — Zﬁjxt,j)Q subject toZBJZ < sy forsy €\ (3.39)
j=1 j=1

t=1

which is a convex optimization problem, hence the solution has a closed form
(James et al., 2013).

The ridge model parameter estimates will be:

T-1 k b
FRidge — qrgmin { (Y41 — Bo — Z Bix ;) + M Z 5?}
i=1 =1

k
BERkTL t=1

— BRidge — (X/X + )\11k>71X/y

which is always invertible, and hence non-singular (Ahn et al., 2012); where X
is the T x k matrix of covariates; A\ Z?Zl ﬁf =\ | Hg is the shrinkage penalty;

Z?Zl 183 = 8]l is the fy—norm of the vector 8; A, > 0 is the ridge tuning
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parameter; (3 is the intercept; 1, 5a, ..., Bx are the ridge coefficients; I is a k x k
identity matrix; k is the number of parameters to be estimated; T is the sample

size; j =1,2,..., k.

Thus, the ridge forecasts are obtained from the resulting forecasting model:

g i) = i (340

where

T—1
B — qrgmin {Z Y1 — X48)% 4+ A\ Z/BQ}
=1

BeRk+l

fis (k4 1) x 1 vector of unknown parameters, including the intercept; 7" is the
sample size.
The ridge forecasts converges to the sample mean for large values of tuning pa-

rameter, \;:

T
Ri 1
yﬁ‘f‘g; - T Zyt when A\ — oo.

t=2

The Forward - Backward Ridge

We also employed the forward-backward (FOBA) ridge which is an extension of
the ridge model. The FOBA is a regularization model that implements the for-
ward and backward or both directional sparse learning algorithms for the ridge
regression model. In this case, o € (0,1) controls how likely the steps are to be
taken, determing either addition or deletion of a variable in the rdige model. The
FOBA method takes a backward step when the ridge penalized risk increase is
less than o times the ridge penalized risk reduction in the corresponding forward

step, and vice versa.
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3.3.5.2 The Least Absolute Shrinkage and Selection Operator

The least absolute shrinkage and selection operator (LASSO) as introduced by
Tibshirani (1996) aimed to shrink the model coefficients toward zero, hence per-
forming both variable selection and model interpretability, owing to the presence
of /;—penalty norm. The LASSO does not admit a closed-form solution because
of the ¢;-penalty which makes it nonlinear in the y}s; hence the constraint mini-
mization of the LASSO is a quadratic programming problem whose solution can
be obtained by efficient approximation.

The LASSO model parameter estimates are obtained by minimizing the objective

function:

S

-1

k k
(yt—i-l — 60 — Zﬁjxm)z subject tOZ |ﬁ]| < 59 fOT S9 € Mg (341)
j=1 j=1

t=1

where Ay > 0 is the LASSO tuning parameter; 3y is the intercept; 31, s, ..., Ok are
the LASSO coefficients; Z?Zl 1851 = |18, is the £;—norm of the vector 5 (Sagaert
et al., 2018).

The LASSO model parameter estimates will be:

T-1 k k
BEASSO — qrgmin {Z(%H — Bo — Z Biwe ;)% + Ao Z |Bj|}

perMt =1 j=1 j=1

where A Zle 18| = A2 |IB|l, is the shrinkage penalty; and 3LASSO — FOLS aq

)\2—>OO

Thus, the LASSO forecasts are obtained from the resulting LASSO forecasting
model:

yﬁiﬁ;o (BLASSO) = X! 3LASSO (3.42)
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where

EGR’“JA

-1
BEASSO — argmin {Z Y1 — X50)° + A Z |55 }
=1

where X is the T' x k matrix of covariates; f is (k + 1) x 1 vector of unknown
parameters, including the intercept; 1" is the sample size; Ay controls the amount

of shrinkage (Elliott et al., 2013; MartiNez-MartiNez et al., 2011).

3.3.5.3 The Relaxed Least Absolute Shrinkage and Selection Operator

The relaxed least absolute shrinkage and selection operator (RELAXO) is a gen-
eralization of the LASSO for linear regression.

Let A and a be two separate parameters for controlling model selection and shrink-
age estimation. The RELAXO estimator can be defined for A € [0,00) and

€ (0, 00] as follows:

-1
BRELAXO _ 0 omin {Z(yt“ — X {B1s5})* + X |5|1}
t=1

ﬁeRk-{»l

where Sy is the set of predictor variables selected by LASSO estimator; 1, is
the indicator function on the set of predictor variables; a\ |3, is the shrinkage

penalty for the RELAXO (Meinshausen, 2007). It can be expressed as follows:

0, k&S§S,
{]‘S)\}k =
Br, k¢ Si
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Let L£(5) be the negative log-likelihood under the parameter 3, then the general-
ized RELAXO estimator takes the form (Meinshausen, 2007):

BRELAXO = argmin {L(5) + aX|F|,}
BESA

Thus, the RELAXO forecasts are obtained from the resulting RELAXO forecasting

model:

YR O(BREEAXO) = X BRELAXO (3.44)

where

-1
FRELAXO _ 40 imin {Z(yt“ —X{B 15, })* + aX |5’1}

BERFHL t=1

where [ is (k + 1) x 1 vector of unknown parameters, including the intercept; Sy
is the set of predictor variables selected by LASSO estimator; 1s, is the indicator

function on the set of predictor variables.

3.3.5.4 The Elastic Net

The elastic net, as proposed by Zou and Hastie (2005) combines both the ¢; and /5
penalty vector norms, and tends to eliminate extreme solutions. Thus the elastic
net model parameter estimates are obtained by minimizing the objective function
that includes the ridge and LASSO shrinkage penalties subject to both constraints,

which results to:

T-1 k k
BEWet — gramin {Z<yt+1 — By — Zﬁﬂwtﬂ')z + )\Q(Z (1—=X\) 5 + )xl’ﬁﬂ)}
t=1 J=1

k
BeRkH = j=1
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where \; is the ridge tuning parameter; Ay is the LASSO tuning parameter (Wu
and Yang, 2014).
It is worth noting that the Elastic Net is Ridge if \; = 0; it is LASSO if \; =1

and it is strictly convex if > ( (Bai and Ng, 2008)

>\2
Therefore, the elastic net forecasts are obtained from the elastic net forecasting

model:

yﬂﬁg(BElNet) = X/ FEINet (3.45)

where

T—1 k
FEWNet — oramin {Z Y1 — X, 8)% + )\2<Z M) B7 + )\1‘5]0}
t=1

k
6€R +1 ]:1

B is (k+ 1) x 1 vector of unknown parameters including the intercept; and X is

the T' x k matrix of covariates.

3.3.5.5 The Least Angle Regression

The least angle regression (LARS), introduced by Efron et al. (2004) is a machine
learning model selection algorithm for fitting linear regression models to high di-
mensional data. There is similarity between the LARS algorithm and forward
stepwise regression, and the parameter estimates are increasing in an equiangu-
lar direction to each of the corresponding correlations associated with the model
residuals.

The LARS algorithm adapted from Alfons et al. (2016) and Efron et al. (2004) is

summarized as follows:
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e Begin with all coefficients §; = 0;
e Determine the predictor X; most correlated with the response variable y;;
e Increase the coefficient 3; in the direction of the sign of its correlation;

e Increase (f;,3,) in their joint LS direction until another predictor X has
as much correlation with the residual, where £, is a coefficient for j # m

and j,m = 1,2, ..., k; and k is the number of covariates;
e Continue until all predictors are in the model.

The LARS?2 is a special improved case of the LARS that uses step as the tun-
ing parameter instead of fraction. The LARS2 adopts an infinitesimal forward
stagewise regression approach in that each of the covariate is examined from the
set of covariates in the model. The step as a model tuning parameter serves as
a step-by-step tool, determining the inclusion or exclusion of each covariate, and
hence the stepwise selection approach. Suppose the response variable is to be
determined by a linear combination of a subset of potential covariates, then the
LAR2 algorithm will provide a suitable means of producing an estimate about the

covariate(s) to be included together with their respective coefficients.

3.3.6 Components Regression
3.3.6.1 The Principal Component Regression

The principal component regression (PCR) is based on principal component anal-

ysis aimed at dimensionality reduction of a given multivariate dataset.

t=Tj=k |

Let y = {y:},_, be a T x 1 vector of observed outcomes and X = {zeiho i

a T x k data matrix of observed covariates. Then a PCR can be performed from
a principal component analysis (PCA) on the centered data matrix X.

Let X = PAQ' represent the singular value decomposition of X;
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Agxr = diag(wy, Wa, ..., W) with w; > wy > ... > wy > 0 representing the non-
negative singular values of X, such that the columns of Py = (p1,p2, ..., px) and
Qrxk = (q1,q2, .-, qx) are orthonormal sets of vectors respectively, representing the
left and right singular vectors of X (Ince and Trafalis, 2007; Mor-Yosef and Avron,
2019).

Then QAQ' gives a spectral decomposition of X'X; Apyr = diag(Vy, Vs, ..., k)
equal to

diag(w3, w2, ..., wi)=A% 9, > ¥y > ... > 9 > 0 represent the non-negative
eigenvalues of X' X; and column(Q) represent the corresponding orthonormal set
of eigenvectors.

We can obtain the j principal component represented by X¢; and the j* PCA
loading respectively, corresponding to the j™ largest principal value 9; for each
jed{1,2,...,k}.

If 0, = (Z.Z)"'Zy € R is the OLS vector of estimated coefficients with
Zr = XQr = (X1, Xqa, ..., Xqi), then for any m € {1,2,...,k}, the final PCR

estimator of 8 based on the first m principal components is obtained as follows:

(Olivieri, 2018).

The super principal component regression (superpc) is a special case of the
principal component regression (PCR) that uses a selected subset of the covari-

ates based on connectivity with the target outcome.

3.3.6.2 Independent Component Regression

Independent component regression (ICR) is a useful model for separating a mul-

tivariate signal into additive subcomponents.

107



Given a multivariate data matrix X = (241, Tt 2, ..., Trx)" with latent components
c = (c1,¢,...,cr)’, T > k. Then the task is to systematically transform the

observed multivariate data X, using an unknown mixing matrix ¥, in the form:
c=UX

into an observable vector of maximal statistically independent components c;,
measured by some independent functions (¢, ¢g, ..., ¢r), and assuming linear noise-
less holds. Then the components of the observed multivariate data matrix X are
generated as the sum of the independent components c,, s = 1,2, ..., T weighted

by the mixing weights oy s such that:

T

xt) — ¢ = Z QsCs = Q1€ + aCoy + ... + sCs + ... + e (3.47)
s=1

where ag = (a1, ag, ..., ar)’ represent the T' x 1 basis vector; ® represent the T' x k
mixing matrix whose entries obtained from the basis vector ay; ¢ = (¢, o, ..., c1)’
represent the 7' x 1 latent components (Matilainen, 2018).

Generally, the independent components are obtained by the product of the un-
known mixing matrix ¥ and the multivariate data matrix X, resulting to the
model:

y=UX

where y = (y;),t = 1,2,...,T is T x 1 response values and g, represent the sta-
tistically independent components; ¥ is the unknown mixing matrix obtained by
the inverse of mixing matrix ®: W = ®~!; X is the T' x k matrix of covariates (Lu
et al., 2009; Tang, 2019).

Thus, the non-Gaussianity of the independent components is defined by the neg-

entropy:

J(y) = S(Ycaussian) — S(¥) (3.48)
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where ¥ ouussian 15 the Gaussian random vector such that Cov(yaaussian) = Cov(Y);

S is the entropy of a random vector y with density function £(y), defined by:

sw)=- [ " e(y) log(y)dy

Using the approximation proposed in Lu et al. (2009), the neg-entropy above
results to:

JYIE(G(y) — E(G(w))* (3.49)

—2

where G(y) is an exponential function of y, defined by G(y) = e 27 cyis a
standard Gaussian distributed variable; u is a random variable having the same
standard Gaussian distribution form; F(-) and E(-) denote the expected value of

y and u respectively.

3.3.7 Gaussian Processes Regression

Let x = (x1, 9, ..., zx)" be input vector of covariates and y denotes the response
variable. Then the Gaussian process can be modelled as a distribution over a

function I', which maps the input space , to R:
r—=Rx

such that for any finite subset S C, its marginal distribution ®(I'(xy), I'(z2), ..., ['(xx))
is a multivariate normal distribution (Rasmussen, 2004).
By parameterization, let jx denotes the mean function and Q(x;,x;) denotes the

covariance function, such that:
['(x) ~ Gaussian(pix, 2(x;,x;)) = T|X ~ N(ux, Q(x;,%;))

where I is a vector valued function; iy is the mean function; €2(x;,x;) is the k x k

covariance matrix, for €2; ; = Q(x;,x;) = Cov(x;,X;).
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If y denote an observation with a Gaussian distribution noise € ~ N(0,0%).

Then the resulting Gaussian process regression model is as follows:
y=I(x)+¢ e~ N(0,07) (3.50)

The joint distribution of the training and test outputs denoted respectively by

y and [, with zero mean function will be:

y N<O QX X)+ 0ty QX,X) )
Ir* QX5 X)) QX* XY

where X is a design matrix for the training data; X* is a design matrix for the

test data (Singh, 2016; Sheng et al., 2018).

The predictive distribution can be obtained by conditioning I'* on X,y and
X*:
F*|X,y,X* ~ N(ﬂr*,é’l"*)
where firs = Q(X*, X)[Q(X, X)+0:1;] 'y is the estimated mean; o« = Q(X*, X*)—

QX X)[QUX, X) + 021 (X, X*) is the estimated variance. Thus, the mean

prediction is a linear combination of the noisy observation.

The kernel functions of the Gaussian processes regression (GPR) are as follows:

p

Mo linear functi
Y 1 OmTimjm, linear function

1/77r\?
Plxiixj) =4 ,.72 <E) ,radial basis function (3.51)

X; - X' + 0'2 d, olynomial function
J 0 p
\

where m > 0 is a length-scale parameter for i, j,m = 1,2, ..., k; r denotes a radius

vector with the same or different number of dimensions as the input covariates x;
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d denotes the kernel degree for the polynomial function (Rasmussen, 2006).

3.3.8 Regression Splines

The multivariate adaptive regression splines (MARS), as introduced by Friedman
(1991) is a non-parametric regression technique for handling non-linearities and
interactions between covariates in a regression model.

Given a k-dimensional vector of covariates x = (z1,xs,...,2;)" and a response

variable y, related in the form:

y=o(x)+e (3.52)

where € is a normally distributed error term. A flexible model can be estimated

by reflected pairs, known as piecewise linear basis functions:

T —T, ifex>r
(x—7)s =
0, otherwise
and
T —, ifr<r
(T—2)y =
0, otherwise

where + denotes the positive part; 7 denotes the breaking or knot point (Kooper-
berg, 2006; Koc and Bozdogan, 2015).

Let T be the sample size for the training set, then a reflected pairs for each predic-

t=T,j=k

tor variable {x; }?:1 with breaking points at each observed values {z =z}, "/~

of the specific variable can be formed, and the resulting set of all possible reflected
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pairs with their respective breaking points is defined as:

S={(z; - 7)s, (r—a)ilr € {my}Zrio}

The MARS employed the functional covariates in the set S, and their product
(for multivariate case), instead of the original covariates, to form the approximate

model:

$x) =bo+ Y _ 6W(z), (€{1,2,....p} (3.53)

=1
where Wy (z) is a weighted sum of basis function from S; ¢ is the number of basis
functions in the resulting model; §, represent the constant coefficients; d represent

the intercept (Zhang and Goh, 2016).

For the avoidance of trademark infringements, some open source implemen-
tations of MARS are referred to as Farth, with alternative usage method values
bagEarth for bagging MARS, and gcvFEarth for generalized cross-validated MARS
used as a form of regularization to trade off goodness of fit against the model

complexity.

3.3.9 Cubist Regression

The cubist regression, as introduced by Quinlan et al. (1992) is a rule-based re-
gression model in which a tree is grown where the terminal leaves contain linear
regression, and extensive models are built based on covariates used during previ-
ous splits.

Given the regression model at each terminal node of the regression tree, then the
covariates can be made recursively and the tree is reduced to a set of decision rules
drawn from the top to bottom of the regression tree, see Kuhn et al. (2016) for
the computational details. Thus the learning and decision rules can be eliminated

by pruning or pairwise combination.
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Model committees are usually created by generating a sequence of rule-based
models similar to boosting approach. The training set outcome is adjusted based
on the prior model fit and then builds a new set of rules using pseudo response
(Boston and Kuhn, 2000; Zhou et al., 2019):

The k™ committee model uses an adjusted response defined by:

k k—1) (k-1
u = 2y — g

New samples can be predicted using each model once the full set of committee

models are created. Thus the final rule-based prediction is the simple average of

the individual model predictions.

For the neighbour based adjustment approach, the k most similar neighbours
are determined from the training set when predicting a new sample, thus resulting
to:

y =

Z W [(sn —5)+y (3.54)

=~ =

where s, is the observed outcome for a training set neighbour; §, is the model
prediction of that neighbour; w, is a weight calculated using the distance of the
training set neighbours to the new sample (Boston and Kuhn, 2000).

The nearest neighbours are determined using Manhattan distances and neighbours
are only included if they are not over the average distance, and are from the pre-

diction sample.

3.3.10 k Nearest Neighbour

Using the ordering training pairs from the set of data points

(y,x) = {(v1,21), (y2,22), ..., (yr, x7)}, With x = (21,29, ...,2x) representing a

vector of covariates and y = (y1, Y2, ..., yr)’ representing a vector of values for the
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response variable. Then the nearest neighbour estimator is the mean function

value of the nearest neighbours, obtained as follows:

§(x) = é > n(x) (3.55)

where 1, is the response variable at t; x is the vector of covariates;
{(y1, 1), (y2,22), ..., (yr, x7)} is a reordering of the data points according to in-
creasing distances ||x; —x;]|| of the x's to x; ; kr is the number of neighbours from

the data points in N(x) (Biau et al., 2012; Altman, 1992).

It is worth noting that kNN involves the introduction of weighted average, in
which the weight of each neighbour depeneds on its closeness to a query point, as

follows:

TR

d(x;,x;) - y(x;) (3.56)
x;EN(x)
where ( is a normalization factor; d(x;,x;) is the Euclidean distance between x;
and x;.

The weights can be assessed by computing the inverse of the squared Euclidean

distance, as follows (Leon and Curteanu, 2015; Luken et al., 2019):

1 1
Wd(xi7xj) - d(Xi,Xj)Q - ||Xz _ Xj||2 (357)

Thus, the nearest neighbour estimator is obtained as follows:

y(;() - ijeN(x) Wd(Xi’Xj)y(Xj)
ZX]‘EN(X) Wd(xi7 Xj)

(3.58)

where w,(x;,x;) is the weight function.

The kNN algorithm uses a the weighted average of k nearest neighbours,
weighted by the inverse of their distances. Thus, the algorithm can be summarized

as follows:
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1. Compute the Euclidean distance from the query instance to the labelled

instances;
2. Reoder the labelled instances by increasing distance;

3. Determine a heuristically optimal k of nearest neighbours based on mean

squared error, by cross-validation;

4. Compute the inverse distance weighted average with the k nearest neigh-

bours.

3.3.11 Projection Pursuit Regression

The projection pursuit regression (PPR), developed by Friedman and Stuetzle
(1981), is an extensive additive model whose first task is to project the data
matrix of covariates in the optimal direction before the application of smoothing
functions to the covariates.

Let (y,x) = {(y;, Xt)}thl be a training data set in a finite dimensional space and
let & : R — R be a collection of smooth hyperparameter functions which maps
R to R. Then gy, and x; are related in the form (Lingjaerde and Liestgl, 1998;

Matilainen, 2018):

q
ye=00+> ;(Bx) +e (3.59)

Jj=1
where y; is the response variable; x; is a k-dimensional vector of covariates; ®; is
a collection of ¢ initially unknown smooth functions; 3; is a vector of ¢ unknown

parameters; ¢ is a hyper parameter.

Thus, the PPR estimators can be obtained by minimizing the error function:

g%é(et) = ET: { <yt - i <1>j(5§-xt)>2}

t=1
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If we consider each pair (®;, ;) individually, and fixing all other parameters,
to dtermine the residual, then the unaccounted variance of the output of those

parameters is defined as follows:
re=y— Y uBx) (3.60)
i
The minimization of the error function becomes as follows:

pigce) = { (- w50}

where 7, is an approximation function used to transform the optimization problem
to a closed-form (Matilainen, 2018).

Thus, the resulting PPR estimator of the optimal j3; is as follows:

prPE = (X'AX)'X'AA (3.61)

>~ argmin ’ —

where A is diagonal matrix; A is a vector of stack target observations; X is the

T x q matrix of covariates.

3.3.12 Neural Networks Regression

Let (X,y) be a training data set in a finite dimensional space, such that a function
T maps X toy:

T: X —y
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according to a particular learning rule. Then Y (x) is a neuron network, expressed
as a composition of a decomposable function 7;(x), with nonlinear weights w;, in

the form:
T(x)=T {ijnj(x)} = F(wlm (x), wama(x), ...,wknk(x)>

where I'(+) is the activation function; w = (wy, ws, ..., wy) is a vector of weighted
parameters; 1n(x) = (71(x),72(x), ..., k(X)) is a vector of composition functions

(Samarasinghe, 2016).

According to Specht (1991), the aim of generalized neural networks is to en-
hance data splitting into training and test sets, such that every training sample
represents a sample mean to a radial basis neuron. For the purpose of model
training and forecasting in this study, the most extensively used neural network
is the single hidden-layer feed-forward networks.

The predictive model for the generalized neural network is as follows:

k
Zj:l WjF(X, Xj)

Y =S T

(3.62)

where y(x) is the predicted value for the input vector x; w; is the activation for
the pattern layer neuron at j; I'(x,x;) is the radial basis function with Gaussian

kernel exp(—r‘]z), for ©; = (x,x;)(x — x;) is the squared Euclidean distance
between the training samples x; and the input x. See Liu et al. (2015) for further

detail.

3.3.12.1 Quantile Regression Neural Network

Let X;(t) be a vector of predictor variables and let y(t) be the response variable
outputs from a quantile regression neural network. The output from ¢** hidden

layer node denoted by 7,(t) can be deduced by applying a hyperbolic tangent with
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a sigmoid transfer function to the inner product between X;(t) and the hidden

layer weights WZ(Z) together with the hidden layer bias ﬁéh), in the form:

1

ne(t) = tanh (3 Xi(0)ly) + 5" (3.63)

i=1

and the estimate of the conditional T-quantile is defined as:

L
7.(6) = (3 m(tywf + ) (3.64)
=1
where w§®) are the output layer weights; 3(®) is the output layer bias; ['() is the
output layer transfer function.
Thus the linear quantile regression parameter estimates of a quantile regression

neural network with a single layer node can be obtained from the following:

(Zw oW X,(t) + BMW® 4 g ) (3.65)

(Pradeepkumar and Ravi, 2017; Cannon, 2011).

If the number of predictor variables I and the number of hidden layers nodes L in a
quantile regression neural network appeared to be complex thereby overfitting the
training data, then the concept of weight decay regularization will be introduced to
prevent overfitting. The weight decay regularization seek to penalize large weights
(w —> o0) in the input hidden layer of the model by inclusion of a quadratic

penalty term to the error function:
1 < 1 L2
€9 = =3 p (Y0 = 7,(0) + A 3D (W) (3.66)
t=1 7T =1 ¢=1
()

where p;’ is a tilted absolute function; A > 0 is a constant that controls the

amount of regularization in the weight decay term (Cannon, 2011).

The neural networks (NNET') can be applied in different forms. In this study,
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the feasible NNET regression were implemented using the caret built packages for
regression training (RT). The method value avNNet implements the feed-forward
neural network RT model in which the multiple networks are averaged (AVNNET);
the method value pca NNet implements the neural networks RT model applied with

principal component (PCANNET) for dimensionality reduction.

3.3.13 Statistical and Economic Performance Evaluation
3.3.13.1 Traditional Measures of Forecast Accuracy

The traditional measures used to determine the forecasting accuracy of each model
include the mean squared error (MSE), root mean squared error (RMSE), mean
absolute error (MAE) and mean absolute percentage error (MAPE) respectively.

They can be computed as follows:

T
1 .
MSE =2 (=)

t=1

T

1 .
RMSE = T ;(yt - yt)2

T
1 .
MAE:?;M_W

T
1
MAPE = ~

Y — Ut
Yt

where T' is the out-of-sample forecasting period; ¥, is the actual value at specific

time t; 9, is the forecast value at specific time ¢.

The MSE is employed to compute the out-of-sample mean squared forecast
error for each RT model among these traditional measures of forecast accuracy in

this study. The MSFE is chosen because our interest is to minimise risk and to
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advice a mean-variance portfortolio investor to invest on a portfolio which gives
the minimum volatility. In this case, an RT model with lower M SFE is preferable
to a model with higher one, because the higher the volatility, the more riskier the

security /investment and vice versa.

3.3.13.2 Out-of-Sample Forecast Evaluation: The R? ¢ Statistic

The out-of-sample statistical goodness of fit used to measure the performance of
individual equity premium forecasting model, suggested by Campbell and Thomp-
son (2007) for evaluating the overall performance of any competing model forecasts
in terms of proportional error minimization, relative to the benchmark historical

average forecast is defined as follows:

T .
Zt:l(yTo-i-t - yTo+t)2

R2OOS =1-
Zthl(yToth — Urp+t)?

where R%,¢ > 0 implies that the MSE of the forecasting model is less than the
MSE of the benchmark forecasts based on historical average; §r,++ represents an
equity premium forecast based on a specific competing model; and 7, represents
the equity premium forecast based on the historical average, obtained by either

expanding or rolling window method.

3.3.13.3 Diebold-Mariano Test

Another suitable measure of individual model forecasts accuracy as compared to
the benchmark historical average forecasts accuracy is based on the outcome of
Diebold-Mariano (DM) test, whose assumptions relies on the forecast error loss
differential function (Diebold and Mariano, 2002; Diebold, 2015). Let €;, and e,
denote the forecast errors associated with the loss functions L(e; ;) and L(ea) for

forecasts 1 and 2 respectively. The time-t loss differential between forecasts 1 and

120



2 is defined as follows:

dia) = L(ers) — L(ea)

The DM hypothesis of equal forecast accuracy, also known as equal expected loss,
corresponds to the zero mean assumption of dy o), i.e., E(dlgg(t)) = 0; where E()
denotes the mean value. Thus, the null hypothesis of equal forecast accuracy
against the alternative hypothesis of unequal forecast accuracy between forecasts
1 and 2, based on monthly forecast horizon h = 1, can be tested using the DM

test statistic as follows (Diebold, 2015):

d1,2 asymptotically
Y

DMy, =

N(0,1)

0y,
= 1 71 . : : O

where d; o = T Yt dy () is the sample mean loss differential and 04,, is a con-

sistent estimate of the standard deviation of dljg. Thus, the DM test statistic has

the asymptotic standard normal distribution under the null hypothesis of equal

forecast accuracy. In this study, the forecast errors of each RT model are com-

pared with the forecast errors from the benchmark historical average.

3.3.13.4 Sharpe Ratio

In finance, the Sharpe Ratio (SR) is required to examine the performance of an
investment by simply adjusting for the risk associated with it. The SR is a measure
of excess return per unit of deviation in an investment asset or trading strategy
(Sharpe, 1994). In this study, we use the SR which standardizes the realized

returns with the risk of the portfolios. It is computed as follows:

E(R,) — E(Ry)
Var(R,)

SR, =

where E(R),) is the average realized return of the portfolio over the out-of-sample

period; E(Ry) is the average risk-free treasury bill rate; Var(R,) is the variance
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of the portfolio over the out-of-sample period. A portfolio with a higher SR is

considered to be superior relative to its counterpart.

The cumulative return (CR) of the portfolio, was also employd to determine
the aggregate amount that an investment has gained or lost, independent of the

time period involved. It can be computed as follows:
T
CR=) R (3.67)
t=1

where R; is the return on month ¢; 7' is the number of months in the out-of-sample

period.

3.3.13.5 Utility Gain

The utility gain (UG) is an economic performance evaluation measure for a mean-
variance portfolio investor on a real-time basis. The UG describes the portfolio
management fee that an investor would be willing to pay in order to have access to
the additional available information in a specific RT forecasting model relative to
the sole information in the historical average. A mean-variance investor who fore-
casts the monthly equity premium using the global historical average will decide
at the end of time ¢ to allocate risky weights as share of her portfolio to equities
in time ¢ + 1, in form:
e = X1 (1)

)
OR,t+1

where wp; represent the portfolio risky weights, constrained to lie between 0%
and 150%, i.e., wo, equals zero if wp; < 0 and wp; equals 1.5 if woy; > 1.5, in
accordance with the techniques used in Campbell and Thompson (2007); A is the
risk aversion parameter; R, represent the equity premium forecasts based on the
benchmark global historical average; &%%,t 41 is the expanding window estimate of

variance of stock returns. The rationale for using portfolio weights that lie between
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0% and 150% is to impose realistic portfolio constraints to prevent the investor
from shorting stocks or taking more than 50% leverage, and hence, confining the
portfolio weight on stocks to lie between 0.0 and 1.5.

The investor realizes an average utility over the out-of-sample period, given by the

following:

where /i, is the sample mean over the out-of-sample period for the benchmark
portfolio formed using the equity premium forecasts based on the global historical
average; A&ap is the sample variance over the out-of-sample period for the bench-
mark portfolio formed using the equity premium forecasts based on the global

historical average.

The next step is to compute the average utility for the same investor when she
forms forecasts of the equity premium using an individual RT model. In this case,

the weight risky equity share can be chosen by the following:

Then the investor realizes an average utility, defined as follows:

1
2

v ~2

where [i;,, is the sample mean over the out-of-sample period for the return on the
portfolio formed using forecasts of the equity premium based on an individual RT
model; )\6]2-71) is the sample mean over the out-of-sample period for the return on
the portfolio formed using forecasts of the equity premium based on an individual

RT model (Rapach et al., 2010; Goyal and Welch, 2007).
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Thus, the utility gain (UG) can be computed as follows:

A~ A

UG =U,; - U,

for each of the RT out-of-sample forecasting models used in this study for fore-

casting the U.S. monthly equity premium.

3.4 The Empirical Results and Discussion

3.4.1 Data, Variables and Forecasting Method

In this study, the monthly data are obtained from Amit Goyal’s webpage!, each
covering monthly observations from January 1960 to December 2016, which re-
sults to a total of T' = 684. Most of these variables, presented in Table 3.1, were
previously used in financial econometric literature by other scholars to forecast
the U.S. equity premium on either monthly, quarterly or annually. In accor-
dance with the benchmark method suggested by Goyal and Welch (2003), Goyal
and Welch (2007), Campbell and Thompson (2007) in which the performance of
any forecasting model comparative to the historical average method when fore-
casting equity premium should be based on either expanding window or rolling
window out-of-sample forecasting approach, all forecasts in this study are ob-
tained using expanding window out-of-sample forecasting method for the various
RT forecasting models. The out-of-sample period consists of monthly observations
from 1991M1 to 2016M12. In this case, the parameters of the forecasting models
are estimated recursively using an expanding window of observations, with data
point from the start date to the present time and obtain a one month-period-
ahead forecast, y;r. The procedure is repeated until the last forecast, ysigr,
is obtained. In this study, we trained each RT model, preprocessed the train-

ing dataset in a centred and scaled form, tuned the RT parameter(s) of each

! Available at: www.hec.unil.ch/agoyal/docs/PredictorData2016.xlsx
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model by cross-validation and resampling all, and eventually used the best tun-
ing parameters to run the out-of-sample forecasts recursively. The resampling
approach seek to figure out the values of each model parameters, providing the
best tuning parameter(s) from the validation set that can be used to produce the
out-of-sample forecasts. All computations in this study were obtained using R
software and the associated packages (Kuhn et al., 2008; Kuhn, 2012, 2015) and
https://topepo.github.io/caret/available-models.html, see Tables 3.3 and 3.4 for
detail specification of the packages and the their values. The forecast horizon de-
noted by h is one month ahead (h = 1) for all the RT forecasting models used in

this study. All tables and graphics are depicted appropriately.
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Table 3.1: Data & Description of Variables: 1960MO01 to 2016M12

Data & Description of Variables: 1960MO01 to 2016M12

Variable

Description

Stock Index, SP;
Excess Stock Return,
Tt

Dividend Price Ratio
(log), DPR;
Dividend Yield (log),
DY;

Earnings Price Ratio

(log), EPR;

Realized Stock Vari-
ance, RSV,

Book to Market Value,
BMYV;

Net Equity Expan-

sion, NEE};

Treasury Bill
TBR;

Long Term Yield,
LTY;

Long Term Return,
LTR;

Term Spread, T'S;

Rate,

Default Yield Spread,
DY S,

Default
Spread, DRS,
Inflation, INF;

Return

Is the Standard&Poor 500 U.S stock index.

The difference between the expected return on the
market portfolio (SP500) and the risk-free treasury
bill rate.

The dividends over the past year divided by the
current stock index value.

Is the difference between the log of dividends and
the log of lagged prices.

The earnings over the past year divided by the
current stock index value.

Is the sum of squared daily returns on the S& P500
index within one month.

Is the ratio of book value to market value for the
Dow Jones Industrial Average.

Is the ratio of 12-month moving sums of net issues
by New York Stock Exchange (NYSE) listed stocks
to total end of year market capitalization of the
NYSE stocks.

Is the interest rate on a 3-month treasury bill, sec-
ondary market.

Is the long term government bond yield, constant
maturity.

Is the return on long term government bonds.

Is the difference between the long term yield
(LTY;) and the treasury bill rate (T'BR;).

Is the difference between the BAA and AAA rated
corporate bond yields.

Is the difference between the long term corporate
bond and long term government bond returns.

Is computed from the consumer price index (CPI)
for all urban consumers.
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The descriptive statistics for the time series variables are as shown in Table
3.2. Among these descriptive statistics, the kurtosis described the tailedness or
sharpness of the peak of the probability distribution of each variable relative to
a normal distribution. As a rule of thumb, any variable whose excess kurtosis
is positive has fatter tails than a normal distribution, signifying a leptokurtic
distribution while a negative excess kurtosis indicate skinnier tails than a normal
distribution, and hence, platykurtic in distribution. A zero excess kurtosis indicate
an exact normal bell-shaped curve matching that of a normal distribution and is
said to be mesokurtic in distribution. The skewness is a symmetric measure of data
distribution. Following a rule of thumb, a negative skewness indicates that the
mean of the dataset is less than the median resulting to a left-skewed distribution
while a positive skewness indicates its counterpart resulting to a right-skewed
distribution. A perfectly symmetric dataset has skewness equals zero resulting to
a zero skewed normal distribution.

From the descriptive statistics, the Fquity Prem,; have a positive kurtosis and
a negative skewness, with mean less than its median and the resulting distribution
is skewed towards the left. It is leptokurtic in distribution which appeared to have

higher probability of future negative excess stock return realizations than normal.

3.4.2 Results and Discussion

The empirical analysis in this study is splitted into two perspectives, namely the
statistical performance of each RT model and the corresponding economic signif-
icance relative to the benchmark historical average. Rather than fitting simple
linear model for the individual variables or in ordinary kitchen sink form as shown
in the existing literature, each sophisticated RT model in this study is trained
by first preprocessing the training dataset in a centred and scaled form, tuned
the RT parameter(s) of each model by cross-validation and resampling all, and

eventually used the best tuning parameters to run the forecasts recursively until
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the whole out-of-sample periods are obtained. The performance of the various RT
models are summarized in distinct panels as shown in Tables 3.3 and 3.4. Using
the benchmark procedures for statistical predictability of the equity premium in
Goyal and Welch (2003), Campbell and Thompson (2005), any of the RT models
which gives an R%,¢ > 0 with corresponding mean squared forecast error (MSFE)
less than the mean squared error of the benchmark historical average obtained us-
ing either expanding or rolling window is said to have outperformed or consistently
beat the historical average. In the regularized /shrinkage models panel, each of the
models produced R3¢ > 0 with corresponding MSFE less than the one obtained
from historical average out-of-sample. The ridge model outperformed the other
regularized /shrinkage models out-of-sample, in terms of statistically predictive
power, owing to its smallest M SF and highest RZ,g. The forward-backward ridge
(FOBA) underperformed the ridge model while the relaxed LASSO (RELAXO)
appeared to have outperformed the LASSO in this direction. Thus, the concept
of bias-variance trade off in sophisticated RT models is a useful approach for fore-
casting the U.S. monthly equity premium out-of-sample with significant predictive
power. In the component regression models panel, the ICR, the PCR and the Su-
per PC models evidently beat the benchmark historical average, with the Super
PC outperforming the ICR and PCR respectively, in a statistically justifiable ap-
proach. As for the neural network models panel, the NNET, the AVNNET
and the QRN N significantly beat the historical average whereas the PCANNET
does not outperform the historical average (i.e. R3¢ < 0) with corresponding
(MSEpcanner < MSEgga). The quantile regression neural network (QRNN)
has by far outperformed the other neural network models in this study in terms of
statistical predictability of the U.S. equity premium out-of-sample. In the kitchen
sink panel, the linear model (LM ) underperformed the benchmark historical aver-
age, and hence, it corroborates the empirical results in previous findings in which
the ordinary linear regression is unable to consistenly beat the benchmark histor-

ical average out-of-sample.
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All the partial least squares models demonstrate statistically significant ev-
idence of outperformance over the benchmark historical average, each of which
produced lower MSFE corresponding to a higher R%,q. It is worth noting that
the partial least squares models with kernel functions appeared to produced lower
MSE and corresponding higher R%,q as compared to the ordinary PLS. The
PLS with wide kernel function (WideKernelPLS) has the minimum MSE cor-
responding to the highest R%,4, and hence, outperforming the other PLS models
in this study. In the kernel-based regularized least squares (K RLS) models panel,
both the radial basis kernel and the polynomial basis kernel functions signifi-
cantly beat the benchmark historical average, and the radial basis kernel function
outperformed the polynomial basis kernel function, in terms of statistical pre-
dictability. As for the regression splines panel, the multivariate adaptive regression
splines (M ARS) and the bagging MARS (BagFEarth) showed statistically signif-
icant evidence of outperformance over the benchmark historical average; whereas
the splines with generalized cross-validation (GCVEarth) appeared to have un-
derperformed the benchmark historical average. The MARS model applied with
bagging or bootstrap aggregating seems to yield lower mean squared prediction
error which corresponds to a higher R%,q, and hence, the concept of bootstrap ag-
gregating or bagging the MARS seek to improve the predictive task of the MARS
model in this direction. All the kernel functions of the support vector regression
(SVR) panel, relevance vector machine (RVM) regression panel, and the Gaus-
sian processes regression (GPR) panel revealed statistically significant evidence
of superior performance over the benchmark historical average; the polynomial
basis kernel functions of the SVR, RVM and GPR respectively beat the linear and
radial basis kernel functions. The SVR, RVM and GPR models that are shown to
produced useful statistical information in other aspects of economic and financial
stock market analysis in empirical literature, do not only reflect usefulness in this
study but also significantly beat the benchmark historical average and many other

RT models in terms of forecasting the U.S. monthly equity premium out-of-sample.

132



The kNN as an instant-based model also demonstrate statistically significant ev-
idence of beating the benchmark historical average. In the ruled-based model
panel, the Cubist significantly beats the benchmark historical average. The pro-
jection pursuit model also produced statistically significant evidence of beating
the benchmark historical average.

Unlike in other existing papers in which the predictive performance of any
model relative to the benchmark historical average rely solely on R%,¢ and M SE,
we employed the Diebold-Mariano (DM) as confirmative tests to further inves-
tigate whether each RT model demonstrate statistically significant evidence of
beating the benchmark historical average, using the residuals of the comparative
models together with suitable loss differential function in a one-tailed test of sta-
tistical significance. The pValues drawn from the standard Z scores based on the
asymptotic normal property are shown in Tables 3.3 and 3.4. The analytical find-
ings in this study revealed that the best performing RT models that are shown
to outperformed the benchmark historical average based on the R%,q and M SE
measures are also confirmed by the DM one-tailed tests to significantly produce
better forecast accuracies than the forecast accuracy from the benchmark historical
average, at a 5% significance level. However, the DM results seems to be contro-
versial in that some RT models that beat the benchmark historical average based
on other statistical measures, do not seems to produce better forecast accuracies
than the benchmark historical average. This corroborates the argument in Ra-
pach et al. (2007) which explained that the Diebold and Mariano (2002) statistical
tests may be severely undersized when comparing forecasts from nested models,
especially for tests involving small difference in predictive accuracies among the
competing models, and seems to be inconsistent in some cases. The outcome on
the statistical measure of predictability of any model relative to the benchmark
historical average depends on the specific statistical tool and method used in the
performance evaluation, and hence, the need to specify the standard statistical

measures employed.
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The graphical approach was aslo employed to depict the statistical predictive
performance of each RT forecasting model, serially arranged in the order they
appeared in the methodology, and in Tables 3.3 and 3.4. The graphical repre-
sentation of the various forecasts produced by the RT models corroborates the
statistical performance evaluation results (see figures 3.1 to 3.9). Like in Rapach
et al. (2007) and Rapach et al. (2010), we compute the difference in benchmark
historical average forecast cumulative square prediction error and each of the in-
dividual RT model forecast cumulative square prediction error (DCSPE), and the
outcome is depicted graphically (see figures 3.10 to 3.18). It is noticeable that
the DCSPE time-plots of some of the RT models slopes mostly above the thresh-
old (zero), which indicates few outliers produced by the RT model relative to the
benchmark historical average, while in some other cases, it slopes mostly below
the threshold, which indicates many outliers produced by the RT model relative
to the benchmark historical average.

Overall, the wide kernel PLS (WideKernelPLS) produced the minimum MSE
and highest R%,¢ among the other RT models in terms of statistical predictability,
and it shows statistically significant evidence of producing better forecast accuracy
than the benchmark historical average. Thus, the WideKernelPLS is the best RT
model for forecasting the U.S. monthly equity premium out-of-sample, among all
RT models tested statistically in this study.

Suffice it to say that the R%,s and MSFE statistically significant evidence of
beating the benchmark historical average in terms of statistical predictive per-
formance does not necessarily reflect economic significance in real terms. A given
model may provide evident of useful statistical predictability relative to the bench-
mark historical average, but it may provide a weak Sharpe ratio and utility gain
respectively, underscoring a portfolio held on a risk-free treasury bill rate in some
worst case scenarios. The findings in Campbell and Thompson (2007) led to the
argument that even very low positive R%,q > 0.50% values for monthly data

can produce a meaningful economic evidence of equity premium predictability in
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terms of increased annual portfolio returns for a mean-variance investor. However,
the R%,4 does not explicitly account for an investor’s risk over the out-of-sample
period, and hence the quest to evaluate the corresponding Sharpe ratios (SR) and
utility gains (UG) based on the out-of-sample period. Reconciling the statistical
and economic evidence in an attempt to guarantee the future expectation of a
mean-variance portfolio investor is another crucial issue in this study. It is notice-
able that all the RT models demonstrate useful evidence of economic prodictabil-
ity, owing to their cumulative returns (C'Rs) and corresponding positive Share
ratios (SRs). It is also importatnt to note that a model may underperformed
the benchmark historical avergae, but it may still possess good statistical and
economic predictive power, providing useful information to a mean-variance port-
folio investor. As suggested by Campbell and Thompson (2007), a mean-variance

investor can increase her monthly portfolio return by computing a proportional

R} os
(SR)*’
rate in this study is computed to be Rﬁee = 0.220% and the risk aversion param-

factor

where SR is the Sharpe ratio. The average risk-free treasury bill

eter A = 3. Following Rapach et al. (2007) and Rapach et al. (2010), the utility
gains (UG's) in this study are expressed in the form of average annualized per-
centage returns, also known as certainty equivalent returns. The UG is important
in that it provides useful economic information on the portfolio management fee
that an investor would be willing to pay in order to have access to the additional
available information in the RT forecasting model relative to the sole information
in the historical equity premium. A model that produced a UG based on the
out-of-sample periods greater than the average risk-free treasury bill is preferable
to its counterpart, for a mean-variance portfolio investor. If risk is equal, then
it is more profitable to invest in treasury bills than in the portfolio based on the
model. In this study, 33 out of the 36 RT models produced positive UG's that are
greater than the average risk-free treasury bill, suggesting better alternatives to
a mean-variance portfolio manager than the risk-free treasury bill. The NNET

and PCAN N ET that underperformed the benchmark historical average in terms
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of statistical predictability, also provide corresponding weak economic predictabil-
ity, suggesting future portfolio investments to a mean-variance investor on the
risk-free treasury bill than the specific models. It is worth noting that the RT
models that statistically beat the historical average, also economically beat the
average risk-free treasury bill, providing better UGs in each case, except for the
AVNNET. Contrary to the statistically predictive results, the GCVEarth that
underperformed the becnhmark historical average, appeared to produce better
economically predictive results, outperforming the average risk-free treasury bill.
In terms of ranking the performance of the RT models, it is noticeable that some
of the RT models that produced smaller MSFEs, do not provide corresponding
higher UGs by comparison. The WideKernelPLS produced the smallest MSE
with the highest C R and SR, while the Gaussian processes regression with radial
basis kernel function (GPR with RBF) produced the highest average utility (AU)
with a corresponding highest UG in this direction. Thus, the findings agreed with
the notion in the litearture in which a model may be weak in statistical predictive
power, but it may provide useful economic information in a real-time setting.
The empirical findings in this study revealed that the sophisticated RT models
significantly beat the benchmark historical average both statistically and econom-
ically, producing smaller M SE's, compared to the methods used by many scholars
in the literature. Thus, the sophisticated RT models used in this study appeared
to guarantee a mean-variance investor in a real-time setting who optimally reallo-
cates a monthly portfolio between equities and risk-free treasury bill using equity

premium forecasts at minimal risk.

3.5 Conclusion

The research has fills the gap on the controversial arguments between different
scholars about the use of individual or collective variables to significantly fore-
cast the U.S. equity premium out-of-sample relative to the benchmark historical

average. Rather than individual financial variables, the sophisticated RT models
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incorporate all covariates in the kitchen sink form, regardless of variable impor-
tance at initial stage, to train the various models and use the resulting model
together with the cross-validated tuning parameters to run the forecasts recur-
sively. The replication of the benchmark historical average in this chapter have
corroborates the empirical analysis made by scholars in the existing literature.
The superior performance of any model depends on the modelling and forecasting
techniques used, and not necessarily the dataset under consideration.

The sophisticated RT forecasting models used in this study produced signifi-
cant evidence of statistical predictability with economic significance out-of-sample
relative to the benchmark historical average. The RT models generally produced
smaller mean squared prediction errors MSE and better R%,q, compared to the
analysis shown in the literature in which individual indicators were used to fore-
cast the U.S. equity premium out-of-sample. The results showed that the collective
variables provide statistically and economically useful forecasts of the U.S equity
premium for investors in real time setting, and demonstrate significant evidence of
consistently beating the benchmark historical average out-of-sample. Interestingly,
the concept of training and validating a kitchen-sink regression model associated
with the underlying sophisticated techniques in this study is evidently considered
to be statistically and economically significant approach, adding enormous impact
to enrich modern econometric and financial literature to boost the expectation of
investors on a long run. However, the statistical predictive superiority of an RT
model does not necessarily guarantee a corresponding economic superiority in this
direction.

Overall, the WideKernelPLS model produced the best result in terms of sta-
tistical predictability of the U.S. monthly equity premium out-of-sample while the
Gaussian processes regression with radial basis kernel function (GPR with RBF)
produced the highest average utility (AU) with a corresponding highest utility gain
UG, indicating the best economic significant result. They provide meaningful eco-

nomic information on mean-variance portfolio investment for investors who are
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timing the market to earn future gains at minimal risk, compared to the other RT
out-of-sample forecasting models. Therefore, the best performing sophisticated
RT out-of-sample forecasting models appeared to guarantee a mean-variance in-
vestor in a real-time setting who optimally reallocates a monthly portfolio between

equities and risk-free treasury bill using equity premium forecasts at minimal risk.

2This chapter has been submitted for publication, and it is currently on peer review, as
follows:
Iworiso, J. & Vrontos, S. (2019). Forecasting the U.S. Equity Premium with Regression Training
Techniques. Journal of Empirical Finance. Unpublished (peer review in progress).
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Chapter 4

Deep Learning Techniques for
Stock Market Statistical
Predictability with Economic

Significance

4.1 Introduction

Stock market predictability is an open-ended debatable research issue with con-
ceptualization in this modern age of rapid technological growth. A number of
methods have been proposed by several scholars as shown in existing literature
to analyse different financial data such as bonds, exchange rates, microeconomic
variables etc. The researcher’s proposed methodology could be promising when
a specific dataset is used (i.e., financial, macroeconomic, medical etc.), but not
necessarily promising in all datasets, and hence, the quest for robustness over the
proposed methodologies.

This chapter proposes a more sophisticated techniques known as deep learning
techniques which have the ability to extract features from a large raw dataset
without relying on prior knowledge of predictors. Day and Lee (2016) described

deep learning as a deep neural network, which is a more sophisticated aspect of
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machine learning. It is a form of machine learning technique that involved the
use of data to train a model or recognize pattern(s) or label instances in order to
make predictions from new data in a more sophisticated manner (Heaton et al.,
2017). The various aspects of the deep learning techniques in this study include
the deep neural network (DNN), stacked autoencoder (SAE), H20 deep learning
H20DL, long-short-term-memory (LSTM), and the fusion of some of these tech-
niques. The activation function and dropout approach were also introduced. Deep
learning techniques has demonstrated useful evidence of feasibility and effective-
ness in many fields of study, in computer science, biology, medicine, linguistics,
physics, and is currently attracting rapid attention in economics and finance.
The output of this study shall provide extensive knowledge on the effective-
ness of deep learning techniques with robustness of the proposed methodologies in
predictability of equity premium. It shall intensify investors target by providing
remedy to curb the identifiable research ills in prospective profit driven portfolio
investment at minimal risk. It shall enrich empirical literature and provide a basis

for further research work.

4.2 Review of Relevant Literature

Prediction of stock market behaviour is a challenging issue in financial analy-
sis. Empirical literature have shown several attempts made by researchers to
improve the predictive performance in stock market analysis with application of
sophisticated econometric, statistical or machine learning techniques over the old-
fashioned financial time series models (Di Persio and Honchar, 2016; Tsantekidis
et al., 2017). In recent time, the feasibility of artificial neural networks in stock
market forecasting with desirable predictive performance had led to the introduc-
tion of a more sophisticated learning technique known as deep learning. Over the
years, artificial neural networks as well as deep belief networks are shown to be

useful techniques for handling advanced linear and nonlinear relationships among
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the data. They offer a great deal of successes in time series analysis, natural lan-
guage processing, pattern mining and image classification among others (Hinton
et al., 2006; Akita et al., 2016; Yoshihara et al., 2014; Dixon et al., 2016; Vargas
et al., 2017; Deng et al., 2017; Shen et al., 2018; Candel et al., 2016; Dixon et al.,
2015; Sirignano et al., 2016; Pradeepkumar and Ravi, 2017; Hosein and Hosein,
2017; Yoshihara et al., 2015).

A review of unsupervised feature learning and deep learning for time series
modelling in Langkvist et al. (2014) revealed that the deep learning techniques
provide better representation and classification on a multitude of time series prob-
lems when properly configured and trained, compared to the shallow approaches.
It is worth noting to give less attention on the preprocessing pipeline for a specific
time series problem and focus more on learning better feature representations for a
general purpose algorithm for data structured, regardless of the underlying appli-
cation. The unsupervised feature extraction methods using principal component
analysis, autoencoder and restricted Boltzmann machine on a deep learning net-
work to predict future market behaviour by Chong et al. (2017) has demonstrated
practical insights and usefulness of deep learning techniques in stock market fore-
casting with significant improvement in performance evaluation. A comparative
analysis on predicting the trend of stock market using recurrent deep neural net-
works compared to support vector machines and deep belief networks in Yoshihara
et al. (2014) indicate the effectiveness of the approach, statistically significant im-
provement and outperformance over the later models especially when the analyti-
cal process is focused on specific period after a known significant event in financial
domain. The analysis is suggesting a controversial superiority of recurrent neural
networks over the deep belief network in this direction. A notable comparative
approach in financial literature is to compare the predictive performance of any
model with the benchmark buy and hold trading strategy. The application of deep
learning ensemble approach with stacked denoising autoencoders for modelling and

forecasting crude oil prices showed statistically significant evidence of superiority
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of the deep learning techniques over the bootstrap aggregation and other machine
learning techniques (Zhao et al., 2017). The introduction and implementation of a
hybrid genetic-neural architecture for stock indexes forecasting with consideration
of realistic trading commission by Armano et al. (2005) proved to be promising
in the selected application task and the overall results shows evidence of superior
outperformance over the benchmark buy and hold strategy for a large test dataset.
The empirical results in Hu et al. (2018), Feuerriegel and Fehrer (2016), Heaton
et al. (2016) also confirmed that the application of deep learning techniques in
financial analysis seek to outperformed both the standard methods in finance and
the conventional machine learning techniques. Contrary to these analyses, is the
empirical results in Krauss et al. (2017) in which a random forest outperformed
both deep neural networks and gradient boosted trees in the investigation of sta-
tistical arbitrage on S& P500, although a further investigation by hyper-parameter
optimization to yield improved results for the deep neural networks is required as
an area of future research. The combination of the base learners: deep neural
networks, boosted shallow trees and decorrelated trees of high depth into a simple
ensemble outperformed the various models in their individual form. It could also
be plausible to use the restricted Boltzmann machine to stack autoencoders that
can extract features from low signal to noisy time series dataset with appropriately
preprocessed inputs, as demonstrated in Takeuchi and Lee (2013), in which deep
learning technique was applied to enhance momentum trading strategy in stocks.
However, the notion of stacking the network layers in deep learning is proven
to be better in performance than the use of shallow structures (Gamboa, 2017)
and are evidently seen to be promising with underlying improvement in predictive
performance subject to further investigation in future studies.

Some scholars adopted a concept known as long short-term memory (LSTM)
units associated with deep learning techniques for stock return predictability. The
empirical results in Fischer and Krauss (2018) in financial stock market predic-

tions by deep learning techniques with LSTM seems to have outperformed other
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approaches such as the random forest, deep neural net and logistic regression. It is
worth noting that the inclusion of an LSTM network helps to extract meaningful
information effectively from noisy financial time series data. The combination of
stacked autoencoders and LSTM in deep learning framework for financial time
series in Bao et al. (2017) also demonstrate a superior performance in predic-
tive accuracy and profitability measures over the artificial neural networks and
support vector regression. The findings in Xiong et al. (2015) employing a sim-
ilar approach also give a superior outperformance over the ridge, least absolute
shrinkage and selection operator (LASSO) and generalized autoregressive condi-
tional heteroskedastic (GARCH) benchmark models by about 31% margin. The
activation function in the deep learning and neural network models were found
to be useful and promising with better predictive performance for predicting the
stock market behaviour. The use of deep neural networks and transfer learning for
decision support from financial disclosures with the aim of predicting stock market
movement by Kraus and Feuerriegel (2017) has again confirmed the superiority of
the LSTM over all traditional machine learning models based on bag of words data
analytical approach, owing to its higher directional accuracy as compared to the
traditional machine learning techniques. Traditional machine learning techniques
includes clustering, ensembles, dimensionality reduction, reinforecement learning,
artificial neural networks etc. Li et al. (2017) added that the adoption of LSTM
neural network made deep learning potentially stable in time series analysis even
in the presence of strong noise. Nelson et al. (2017) concluded that the LSTM
based models do not only outperformed other employed approaches in existing
literature but also offer less risks as compared to other strategies. In contrast
to the LSTM approach, the analytical findings made by Hiransha et al. (2018)
in predicting the National Stock Exchange of India and the New York Stock Ex-
change using their respective day-wise closing prices as dataset, the convolutional
neural network appeared to produce the best prediction accuracy, outperforming

the LSTM, multilayer perceptron and recurrent neural network among the deep
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learning techniques. Thus the convolutional neural network potentially captured
the abrupt changes in the system owing to the use of specific window for predicting
the future outcome in the stock market.

The use of market indicators: technical versus fundamental or the hybridized
approach is a pending confrontational discourse in financial analysis, which require
further investigation by various approaches including the deep learning techniques
to affirm robustness. The hybridized approach in Adebiyi et al. (2012) showed
remarkable results in predicting the future price of stock with better improvement
over the use of technical variables alone, suggesting a useful guide for investors
in making optimal business decisions in the financial market. The empirical find-
ings in Lee et al. (2017) involving an unsupervised learning phase and a fine-
tuning phase (back-propagation algorithm), in which the learning phase uses the
restricted Boltzmann machine also confirmed useful evidence of corporate per-
formance predictability, using the company’s financial and patent indicators as
predictor variables. Although the proposed deep belief network model shows good
statistical evidence in predicting a company’s performance in terms of technical
capability, however there is need to examine the hybridized form and compare

results to investigate robustness in further studies.

4.3 Research Methodology

4.3.1 Excess Stock Return Predictability

Let r; be an excess stock return at time ¢, and let Z; be a k-dimensional covariates,
required as predictor variables to predict 7,1 at time point ¢ 4+ 1. Then a kitchen
sink predictive model can be obtained in the form (Rapach et al., 2010; Phan
et al., 2015):

repr =0p + 02y + wrr;  wyr ~ N(0,0) (4.1)
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where 6, is the intercept; 6 is a k-column vector of unknown coefficients; Z; is a

k-dimensional vector of covariates; u;, is a disturbance term; t =1,2,...,T.

4.3.2 Historical Average

Let r; be a univariate time series representing the monthly excess stock market
return at time ¢. Following Rapach et al. (2010) and Lee et al. (2015), the future

historical average (HA) can be modelled as follows:
Ttr1 = 0 + U1 (42)

where # is the model parameter representing the intercept; u,,; is a zero mean
disturbance term; t = 1,2,...,T. The least squares estimator of the historical

average is as follows:

T
A 1
QHA = T;'f’t (43)

where éH A is the parametric estimator of 6.

Thus, the benchmark H A forecasts, denoted by 77,1 can be obtained as follows:

fT+1\T = T Z Tt (4-4)

4.3.3 Deep Neural Network

Typically, a single-layer neural network gives the nonlinear connection between

the variables h;, h;, 1 via a network function, defined as follows:
hl+1 = H(Whl + B) (45)

where H is an activation function; w is L x 1 vector of weight parameters; B is
L x 1 vector of biases; h; and h;,; are network variables.

Given a predictor function r = ¢(Z), then a deep neural network can be con-
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structed by serially stacking the network functions in the form:
hl = Hl(wlz + Bl)
hg = HQ(UJth + Bg)

r = Hp(wphr—1 + Byr)

where Z is L x 1 vector of input covariates; L is the number of layers, [ = 1,2, ..., L
(Chong et al., 2017; Heaton et al., 2017).

If {(Z",7")})_, represent a dataset of inputs and targets with an error function
e(r", 7") measuring the difference between the output r* = ¢g(Z") and the target
7", then the model parameters for the overall network ¢ = {wy, ws..., wr; By, fa..., Br}

can be obtained by minimizing the sum of the errors in the form:

arg min [S = ia(r”, T”)] (4.6)

¢

n=1

where n = 1,2, ..., N represent the input units
The solution of the objective function for the above minimization problem can be

obtained by gradient descent approach, resulting to (Chong et al., 2017):

N L
1
S = 2" =P a7 [l (4.7)
n=1 =1
where || - || denotes the Euclidean vector norm; || - ||z is an f5 vector norm, which

serves as a regularizer to eliminate overfitting; « is a user defined coefficient.

Such a multi-layer neural network is referred to as a deep neural network (DNN).

4.3.4 Stacked Autoencoder

An autoencoder (AE) involves a deep learning routine which trains the architec-
ture to approximate the covariate Z by itself (Z = r) via a bottleneck structure.
A bottleneck structure implies a network communication approach in which all

inputs flow are fully utilized in a defined relationship.
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Let I be a function which maps Z unto r, defined as follows:

' —%Z:r

with an input-output mapping r = ['(Z) and Z = (Z3, Zs, ...Z1). Then the solution

under an ¢»-loss function is as follows:

argmin ||Ty 5(Z) — /|5 (4.8)

w,B

subject to a regularization penalty on the weights and offsets;

where w = (wy, wy, ...,wr) and B = By, By, ..., B, (Heaton et al., 2016).

Let Z be input covariate vector in an AE, and setting the target output as r; = Z;.
Then we obtain a static AE with two layers akin to a traditional model in the form

of deep learners, defined by the following:

hg = w1Z + B1
az = 72(h2)
h3 = Wyl + BQ

r=TwB(Z) = as = y3(hs)
where ai, a3 are activation levels, with initial setting oy = Z.
A two-layer deep learning model is obtained when {w;}7_, are simultaneously es-

timated based on the training input covariates Z.

In a dynamic single-layer AE, we need to find the weight vectors wz and wy,
so that the state model encodes while the w = (w,, w,)" decodes the r, vector
into its lag r;_; and the current state Z;. Thus, a single-layer dynamic AE for a
financial time series r; can be represented in a coupled system, as follows:

Zy

ry = wgZ; +wyri_;  where = Wry (4.9)
Tt—1

(Heaton et al., 2017)
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Clearly the AE model is directly in predictive form, and hence we do not need to
model the variance-covariance matrix explicitly, given the nonlinear combination
of deep learners.

A stacked autoencoder (SAE) consists of multiple layers of sparse autoencoders in
which the output of each layer is connected to the inputs of the successive layers.
Let wim, 1), Wim,2), Bm,1), Bem,1) represent the parameters wy, wo, 81, B2 for m au-
toencoder. Then for a stacked autoencoder with L layers, the encoding step of

the SAE is obtained by running the encoding step of each layer in forward order,

defined as follows:

Zi =waa+ By (4.11)

The decoding step is obtained by running the decoding stack of each autoencoder

in reverse order, defined by the following:
04(L+l) = F(Z(L_;,_l)) (412)

Zip141) = W(r—12)(1+1) + Br—12)

where o) is the activation of the deepest layer of hidden units in the network

model.

4.3.5 H>0 Deep Learning

In a neural network model, the weighted combination, defined by:

L
a=> wZ+B (4.13)

=1
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of input signals is usually aggregated, so that an output signal, defined by:

D(a) = r(iwlzl +B) (4.14)

can be transmitted by the connected neurons in the model; where I'(«) is the
nonlinear activation function used throughout the network; § is a bias term rep-
resenting the neuron’s activation threshold (Arora et al., 2015).

The multilayer feedforward neural networks consist of many layers of intercon-
nected neuron units, starting with an input layer to match the feature space,
followed by multiple layers of nonlinearity and resulting to a linear regression
layer to match the output space.

The objective is to minimize the loss function for each training example j:

Loss(w,Blj) = Loss({wl}lel, {B, lL:11|j) (4.15)

where w is L — 1 weight vector connecting layer [ to [+ 1 for a network of L layers;
B is L — 1 column vector of biases for layer [ + 1.

The H,O follows the model of multilayer feedforward neural networks for predic-
tive modelling. Thus the HyO deep learning uses a purely supervised training
protocol with specification of the training frame together with the tuning param-

eters for the regression task.

4.3.6 Long Short Term Memory

The long stort term memory (LSTM) refers to a specific form of recurrent neural
network which seek to provide a solution by incorporating memory units, allwoing
the network to learn when to forget previous hidden states and when to update
hidden states given new information. This is done by inclusion of an input gate, a
forget gate, an input modulation gate and a memory cell in addition to the hidden

unit.
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In traditional recurrent neural networks (RNN), the networks can learn complex
temporal dynamics via a set of deep recurrence models, defined as follows:

he = y(WznZ¢ + wh, + Bz)

re = Y(WhoZi + Bz)

where Z, is the input vector of covariates; h; is the hidden layer with n hidden
units; r; is the corresponding output at time ¢, for input sequence of length 7" in
which the updates a computed sequentially.

The architecture for an LSTM model added a hidden state C; and a sigmoid func-

tion o(+) resulting to:

Iy = o(wg|hi_1, Z¢] + Br) (4.16)
I, = o(W'[hy_1, 2] + By) (4.17)
Cy = tanh(wWy|hi_1, Zy) + Be) (4.18)
C=T,®C+1LaC (4.19)

hy = Oy @ tanh(Cy) (4.20)

where ['y & C;_4 is the forget gate, which allows to throw away some data from
previous cell state; I; & C, is the input gate, which decides the values of the cell
state to be updated by an input signal in the network model; [h; 1, Z,] is a pair-
wise vector such that the new cell state is a sum of the previous cell state passing
through the forget gate selected components; O; @ tanh(C;) is the output gate,
which returns tanh applied to the hidden state with the removal of some elements
(Vargas et al., 2017; Heaton et al., 2016).

The LSTM provides a mechanism for dropping irrelevant information from the
previous states and adding relevant information from the current time step, im-
proving the predictors by utilizing data from the previous to memorize volatility
patterns from previous periods. Thus the designated model aimed to automate

the identification of the temporal connections in the dataset at the cost of larger
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sets of untrained parameters.

4.3.7 Dropout Approach

The dropout approach is a selection technique to eliminate overfitting in the train-
ing process of a deep learning model. In this case, the network is defined as follows:
rt=7(hi)

hi = w!Z' + B!

is replaced with the dropout architecture, defined by the following:

D! ~ Bernoulli(r)

il =D g Z!

rp=7(h)

ht = w!Z' + B!

where D & Z replaces Z in the previous model; & is the element-wise product;
l=1,2,...,L; Dis L-dimensional vector of independent Bernoulli distributed ran-
dom variables with parameter m; Z is L x 1 vector of covariates.

Using the loss function optimization concept, then we marginalize the problem

over the randomness to obtain the objective function:

arg min £(D ~ Bernoulli(r))|[r—w(D®Z)||5 ~ arg min |[r—7wZ|[34+7(1—7)||Sw]|3
(4.21)
which can be viewed as a Bayesian ridge regression model with a g-prior, where

S = (diag(Z'Z))2; E denotes the expectation.

4.3.8 Activation Functions

The activation functions used in this study include Sigmoid, Hyperbolic Tangent,
Maximum Output, Rectifier Linear Units, Softmax and some combinations with

the dropout approach. See (Arora et al., 2015; Candel et al., 2016; Nwankpa et al.,
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2018) for detail.

The Sigmoid is a commonly used nonlinear function in feedforward neural net-

Table 4.1: The Activation Functions

Function Formula

Sigmoid, Sigm (o) = 7= T()€l0,1]
Hyperbolic Tangent, Tanh [(o) = 5= I() e[-1,1]
Maximum Output, Maxout I'(ay, a2) = maz(a,an); T'() € R
Rectifier Linear Units, ReLU ['(a) = maz(0,a); T'(-) € RT

Softmax Ia) = ¢ (0,1) for a= (ai,qg,...,ax).

Z§:1 e

where o, a1, ag, ..., a represent the weighted combinations.

work models. It is a monotonically bounded continuous real input valued differ-
entiable function with positive derivatives everywhere in its domain. The Tanh is
commonly used in multilayer neural networks, which seeks to produce smoother
zero-centred output to improve the back propagation process in the model. The
MaxOut which is a generalization of the rectifier linear activation in which each
neuron picks the largest output of £ separate channels and each channel has its
own wights and biases. The Softmax takes an input vector of a real numbers
and normalizes into a probability distribution consisting of o probabilities propor-
tional to the exponentials of the input numbers. The aim of normalization is to
ensure that the sum of the components of the output vector I'(«) is equal to 1.
The H,O deep learning allows optional specification of adaptive learning rate for
fast convergence, annealing and momentum. The regularization options, dropout

and model averaging are special concepts introduced to prevent model overfitting.

4.3.9 Statistical and Economic Performance Evaluation

In this study, the evaluation metric employed to compare the statistical perfor-
mance of the various models is the mean squared forecast error (MSFE). It is
computed as

MSFE - Tt - Tt (422)

IIM’%
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where T' denotes the out of sample periods; r; denotes the actual at specific time
point t; 7, is the forecast at specific time point t.
The smaller the M SFFE the better the model, and hence the model which gives

the minimum MSF'E is the best statistically predictive model.

The cumulative return (CR) and the Sharpe ratio (SR) are the two metrics

used for the economic performance evaluation in this study.

Sharpe Ratio and Cumulative Return

According to Sharpe (1994), the Sharpe ratio (also known as reward to volatility
ratio) is a measure of the additional amount of return that an investor receives

per unit of increase in risk. Mathematically, it is defined as follows:

E(ry) — E(ry)
Var(ry)

SR, =

where E(r,) is the average realized return of the portfolio over the out-of-sample
period; E(ry) is the average risk-free treasury bill rate; Var(r,) is the variance of
the portfolio over the out-of-sample period. In this study, we use the SR which

standardizes the realized returns with the risk of the portfolios.

The cumulative return (C'R) of the portfolio, is computed as follows:

T
CR=Yn (4.23)
t=1

where 7; is the return on month ¢; and 7' is the number of months in the out-of-

sample period.
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4.4 Data Analysis & Discussion

The dataset and variables used in this chapter are obtained from Amit Goyal’s
webpage!, each covering monthly observations from 1960M1 to 2016M12, and the
sample size is T' = 684. The three distinct out-of-sample periods in this study con-
sists of monthly observations from January 1981 to December 2016 (T°°% = 432),
January 1991 to December 2016 (T99° = 312), and January 2001 to December
2016 (T9°% = 192). Each deep learning model was fitted and the parameters
were estimated recursively using an expanding window of observations, with data
point from the start time to the present time and obtain a one month-period-
ahead forecast. The procedure is repeated until the last forecast is obtained, for
the various out of sample periods. The forecast horizon is one month ahead, for
all the deep learning models used in the study.

The empirical analysis in this chapter provide useful evidence of statistical pre-
dictability by the deep learning techniques, each producing smaller mean squared
forecast errors (MSFEs), which implies that they possess statistical predictive
power in financial stock market analysis.

In terms of statistical predictability, all the deep leaning models demonstrate
useful evident of statistical predictability. Following the concept of statistical pre-
dictability, a model which gives a smaller M SF'E is preferable in this direction,
and hence the smaller the M SFE, the better the predictive performance of the
model. Considering the statistical predictive performance of the deep learning
models in their isolated form, the H20 deep learning (H20DL) gives the small-
est MSFFE in each of the out-of-sample periods. Specifically, the H20DL with
Rectifier used as the activation function produced the smallest M SFE, and hence,
outperformed the other individual models in the chapter. Indeed, the superiority
of H20DL over the other individual models is robust for both smaller and larger
out-of-sample priods. Furtherance to corroborating or refuting the claims made by

previous scholars about the fusion of the models in the literature, we investigate

! Available at: www.hec.unil.ch/agoyal/docs/PredictorData2016.xlsx
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Table 4.2: Data & Description of Variables:1960MO01 to 2016M12

Data & Description of Variables:1960MO01 to 2016M12

Variable

Description

Stock Index, SP;
Excess Stock Return,
Tt

Dividend Price Ratio
(log), DPR;
Dividend Yield (log),
DY;

Earnings Price Ratio

(log), EPR;

Realized Stock Vari-
ance, RSV,

Book to Market Value,
BMYV;

Net Equity Expan-

sion, NEE};

Treasury Bill
TBR;

Long Term Yield,
LTY;

Long Term Return,
LTR;

Term Spread, T'S;

Rate,

Default Yield Spread,
DY S,

Default
Spread, DRS,
Inflation, INF;

Return

Is the Standard&Poor 500 U.S stock index.

The difference between the expected return on the
market portfolio (SP500) and the risk-free treasury
bill rate.

The dividends over the past year divided by the
current stock index value.

Is the difference between the log of dividends and
the log of lagged prices.

The earnings over the past year divided by the
current stock index value.

Is the sum of squared daily returns on the S& P500
index within one month.

Is the ratio of book value to market value for the
Dow Jones Industrial Average.

Is the ratio of 12-month moving sums of net issues
by New York Stock Exchange (NYSE) listed stocks
to total end of year market capitalization of the
NYSE stocks.

Is the interest rate on a 3-month treasury bill, sec-
ondary market.

Is the long term government bond yield, constant
maturity.

Is the return on long term government bonds.

Is the difference between the long term yield
(LTY;) and the treasury bill rate (T'BR;).

Is the difference between the BAA and AAA rated
corporate bond yields.

Is the difference between the long term corporate
bond and long term government bond returns.

Is computed from the consumer price index (CPI)
for all urban consumers.
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the statistical predictive performance of the SAFE fused with H20 at various acti-
vation functions, and the results are promising. The fusion of the SAFE-with-H20
using Maxout activation function produced the smallest M SF E, compared to ev-
ery other model, for the various out-of-sample periods. The superior performance
of the SAFE-with-H20 over the individual deep learning models has corroborates
the hybrid form, demonstrated in Armano et al. (2005) in the literature. Thus, the
SAE-with-H20 gives the best statistical predictive results among all the models
tested, and it is robust with the Mazout activation function in all out-of-sample
periods. In order to demonstrate further evidence of statistical predictability, the
forecasts produced by each model is plotted vertically against their respective peri-
ods, comparative to the actual values to ease the illustration. Again, the graphical
illustration of each predictive model is seen to be promising. The graphical repre-
sentation of the actual versus the forecasts produced by the SAFE-with-H2O also
revealed the best relationship between the forecasts and actuals than the other
models. Thus, the SAE fused with H20 is the best statistically predictive deep
leaning model among all the models used in this chapter, owing to its smallest

MSFFE with robustness.

174



‘orpel odreyg = YQ WINJOI SAIIR[NWND = V) :IOLId }SLIAI0J parenbs ueswr = SN
‘€€ UOISIDA Y SuIsn paure)qo are Apnjs siy) ur sorgders pue suoryeinduwoo [y 90N

81Z0°0 0.29°T T6T00°0 XRUIJOS s JOUXU ‘SRISY ‘MO[IOSUD) INLST
16€L°0 9TF9% ¥.100°0  modoiquitp\que], Sururesrdaop oy oty ‘youdsdp 1 OH
87280 TIGPRF €6100°0  Inodorquiipyynoxely  Suruwresdosp-oty 0%y ‘youdoop 1 O°H
Z806°0 TSE0'S FLI00°0 InodoI(qUIA\ILYIN0RY  Surures(desp oty oty ‘joudeap 1d O°H
99%76'0 ¥986'F SF100°0 IOG1309Y Surureardesp oty oty ‘youdssp 1d OH
L€L6°0 8LST'S ¥F100°0 modorquirpsnoxely  Sururespdesp oy oty ‘youdsap OCH-YNM-HVS
VC6L T T6LEL  €L000°0 JMOXEIN Surureardosp oty oty ‘youdoop OCH-U¥M-TVS
80ZF'0 09%1°¢ ¥6100°0 prowsig UreI) uup-oes ‘uup - I9podusojne ‘ppudosp HVS
I1S0T°0 06161 ZI2000 quey, urer} uup udgp 1oudosap NN
L2120 6FIF'¢ 1610070 - - - VH
s YD WJASIN Uoljoung UoljeAldy oSes() (s)o8exded [PPOIN

2T = gool 'CTIN9TOZ 03 TINTSGT :99URTLIOND] SIUIOUODF PUR [RIISIIRIS €F ORL

175



‘orpel odreyg = YQ WINJOI SAIIR[NWND = V) :IOLId }SLIAI0J parenbs ueswr = SN
‘€€ UOISIDA Y SuIsn paure)qo are Apnjs siy) ur sorgders pue suoryeinduwoo [y 90N

L6000 122L0 LLT00°0 XRUIJOS s JOUXU ‘SRISY ‘MO[IOSUD) INLST
¢G990 6T0L°C 191000  Inodorquirp\quey, Sururesrdaop oy oty ‘youdsdp 1 OH
200T'T €29%'¢ GF100°0  Imodorquirpznoxely  Sururesdosp oty 0%y ‘youdoop 1 O°H
89060 8.20°¢ 8ST100°0 Inodor(quirp\oyoey  Suruwresdosp-oty oty ‘youdodp Ta O°H
LGEZ'T 9099°C ¢T100°0 IOG1309Y Surureardesp oty oty ‘youdssp 1d OH
ITS6°0 8L0€°¢ 0FT00°0  modorqurpzinoxefy  Surured[dodp oty oty ‘youdsap OCH-YNM-HVS
970S'T ¢I¥ev L0T000 JMOXEIN Sururesrdaop oy oty ‘joudodp OCH-YNM-HVS
CFST 0 688€°T  CLT000 prousig UreI) uup-oes ‘uup - I9podusojne ‘ppudosp qvS
L92¢°0 9LIT'Z SLT00°0 quey, urer} uup udgp 1oudosap NNA
€0S¢°0 6¥9S°T FLTI00°0 - - - VH
s YD WJASIN Uoljoung UoljeAldy oSes() (s)o8exded [PPOIN

1€ = gool TTIN9TOZ 03 TINTG6T :99URTLIOND] SIUIOUODF PUR [RISIIRIS F°F ORL

176



‘orpel odreyg = YQ WINJOI SAIIR[NWND = V) :IOLId }SLIAI0J parenbs ueswr = SN
‘€€ UOISIDA Y SuIsn paure)qo are Apnjs siy) ur sorgders pue suoryeinduwoo [y 90N

6062°0- ¥29¢°0- T6T00°0 XRUI}OS sy JOUXUI ‘SBIoY ‘MOPIOSUD) INILST
80290  9FRE’T 291000  ynodorquitp\que[, Sururesardoop oy oty ‘youdosdp 1d O°H
9¢66°0  9¢88°T  FFT00°0 Inodorquprp\inoxely  Sururesrdeop oy oty ‘youdodp 1d OH
PPCO'T  L€€6'T  G9T00°0  InodoI(qUIA\IOGIR0RY  Surures(desp oty oty ‘1poudesp 1d O°H
LL90°T  TLPRT  TIET00°0 IOY1309Y Surureardesp oty oty ‘youdsap 1d OH
L0L6°0  6T198°T FHT1000 nodorquyrpzinoxefy  Surures[doop oty oty ‘youdsap OCH-YNM-VS
8069°'T 2869 890000 INOXEIN Surureardoop oty oty ‘youdoop OCH-UNM-TVS
6e90°0- S0TT'0  20Z000 PIOWSIS ureI} uupoes ‘uup - I9posusojne ‘3oudosp dVS
L6200 TLLZ0 9120070 queg, UreI) wup udgp 1oudaap NN
GR0T'0  ¥8.7°0 8810070 - - - VH
gs YD  HASIN UoIdunyg UoIjeAldy o3es() (s)eSexoreg [°POIN

26T = g0l TTIN9TOZ 03 TINTO0 :99URTLIOND] SIUIOUODF PUR [RISIIRIS GF ORL

177



One notable approach for determining the statistical and economic predictive
power of a resulting model is to compare the performance with the performance
of the benchmark historical average (HA). It is imperative to note that the HA
out-of-sample forecasts are obtained by recursive window forecasting approach.
Following the benchmark approach, any deep learning model which yields M SFE
smaller than the MSFFE from the HA is said to beat the benchmark HA in
terms of statistically predictive perspective. From the empirical findings, the
H20DL applied with different activation functions have all consistently beat the
HA, owing to smaller M SFE across all out-of-sample periods. The SAFE-with-
H20 using the Mazout and MaxoutWithDropout respectively, have consistently
beat the HA in all out-of-saple periods. However, the LST M and DN N do not
outperform the benchmark HA. Thus, the H20 DL and S AFE-with-H20 appeared
to provide less volatility in future portfolio investment than the benchmark H A
in this perspective.

The economic performance evaluation results produced by the various deep
learning models generally appeared to be promising. Most of the deep learning
models produced positive cumulative return (CR) and a corresponding positive
Sharpe ratio (SR), which signifies future investment gains at lower volatility. In-
terestingly, the good performing deep learning models that provide evidence of
statistical predictability, are economically significant in the study. Contrary to
the statistically predictive analysis, in which the H20 DL using Recti fier activa-
tion function consistently producing the smallest MSF'E, does not consistently
produce the highest CR and SR. In the economic performance evaluation, the
H20DL using Recti fier activation function does not consistently produced high-
est CR and SR across all the out-of-sample periods, in the isolated form. The
H20DL using the RectifierWithDropout activation function produced higher
CR and SR respectively, than the H20DL with TanhWithDropout activation
function, in two disticnt out-of-sample periods. Notwithstanding, the H20DL

appeared to produce the best economic significant results among all the deep
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learning models tested in their isolated form. Again, the fusion results for the eco-
nomic performance evaluation reveals that the SAFE-with-H2O using the Mazxout
activation function generally yields the highest CR and SR respectively, among
all the deep learning models, in the distinct out-of-sample periods. It is worth
noting that the higher the C'R, the higher the SR and the lower the MSFFE,
which concords with a rule of thumb in an ideal market situation. Thus, the
SAFE-with-H20 using the Mazout activation function consistently yields the best
economically significant results among all the deep learning models tested, across
all out-of-sample periods in this direction.

In terms of economic performance, the H20 DL and the SAFE-with- H20 using
the various activation functions, have all produced CR and SR which are by
far higher than those from the H A, and they are robust across all out-of-sample
periods. Contrary to the statistcally predictive results, the H A do not consistently
beat the DNN and SAFE economically, across the various out-of-sample periods.
In some cases, the SAE and DNN economically beat the HA. The LSTM
which was shown to be promising for classification task in the literature, also
demonstrate evidence of statistical and economic predictability for the higher out-
of-sample periods, but do not beat the benchmark H A, in regression perpective.
The outperformance of H20DL and SAE-with-H20 over the benchmark HA,
seems to provide better strategy on future protfolio investments with less volatility
than the old-fashioned H A method.

Indeed, the introduction of H20 in equity premium data in this chapter has
demonstrated useful evidence of both statistical and economic predictability, and
the fusion with any model suggestively butress the predictive performance. Over-
all, the SAF-with-H20 using Mazout activation function consistently produced
the best statistically predictive and economically significant results among all the
deep learning models tested in the various out-of-sample periods. Therefore it is
imperative to introduce H20 and its fusion or hybridized form in deep learning

techniques when forecasting financial stock market data in order to improve the
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Figure 4.8: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
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statistically predictive task of the resulting model(s), with economic significance.

4.5 Conclusion

Deep learning techniques are proven to be useful in many fields of study including
in medicine for gene expression data, in linguistics for speech recognition and in
physics for digital image classification; but are rarely used in finance, and hence the
quest for the feasibility with statistical predictability and economic significance.
The objective was to investigate the predictive performance of deep learning tech-
niques on monthly financial stock market data, which has been achieved with fea-
sibility and promising empirical results. This chapter investigates the statistically
predictive power and economic significance of financial stock market data by deep
learning techniques. In particular, we use the equity risk premium, also known as
excess stock market return as the response variable and the other variables as the
predictors.

Interestingly, most of the deep learning techniques provide useful evidence of
statistical predictability and economic significance. The empirical findings in this
chapter reveals that the H20 DL and the S AE-with- H20 using various activation
functions have consistently outperformed the benchmark HA both statistically
and economically, and they are robust across all out-of-sample periods. It is
worth noting that the introduction of fusion, in which the SAFE is fused with
H20 appeared to produce better statistically predictive results with economic
significance, than the results obtained from their isolated forms. The deep learning
forecasting models that demonstrates evidence of statistical predictability, which
beat the benchmark H A, also demonstrates a corresponding evidence of economic
significance.

Overall, the empirical analysis in this chapter revealed that the SAF-with-
H20 using Maxout activation function produced the best statistically predictive
and economically significant results with robustness across all the out-of-sample

periods. The introduction of fusion in this study has contributed immensely to
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boost the statistical predictive task of the SAFE model, better than its isolated
form. Thus, the deep learning techniques seek to intensify investors target by
providing remedy to curb the identifiable research ills in prospective profit driven

portfolio investment at minimal risk.

2This chapter has been submitted for publication, and it is currently on peer review, as
follows:
Iworiso, J. & Vrontos, S. (2019). On the Predictability of Equity Premium Using Deep Learning
Techniques. International Journal of Forecasting. Unpublished (peer review in progress).
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Chapter 5

Summary, Conclusion and

Further Research

5.1 Summary

The objective of this thesis was to explore sophisticated machine learning and
deep learning techniques to model financial stock market data in order to make
predictions and evaluate their performances both statistically and economically
with robustness, and to demonstrate superior outperformance of the proposed
methodologies over the benchmark approaches used in the existing literature.
Chapter two applies a plethora of machine learning techniques to forecast the
direction of the U.S. equity premium. The techniques include benchmark binary
probit models, penalized binary probit models, classification and regression trees
(CART), discriminant analysis classifiers, Bayesian classifiers and neural networks.
The study begins with replication of existing methods as shown in chapter two,
specifically the static and dynamic binary probit models for directional forecast-
ing proposed by Nyberg (2011), and the empirical results corroborate the results
shown in the paper, confirming the weak predictive power of the models. The
empirical analysis reveals that the sophisticated machine learning techniques sig-
nificantly outperformed the benchmark binary probit forecasting models, both

statistically and economically. Overall, the discriminant analysis classifiers are
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ranked first among all the models tested. Specifically, the high dimensional dis-
criminant analysis (HDDA) classifier ranks first in terms of statistical performance,
while the quadratic discriminant analysis (QDA) classifier ranks first in economic
performance. The kNN, Bayesian classifiers, prominent CART and the penalized
likelihood binary probit models (Least Absolute Shrinkage and Selection Opera-
tor, Ridge, Elastic Net) also outperformed the benchmark binary probit models,
providing significant alternatives to portfolio managers. The proposed machine
learning techniques provide better investment alternatives to portfolio managers
than the buy and hold (B&H) trading strategy used as a decision rule to time the
market.

Chapter three focuses mainly on the application of regression training (RT)
techniques to forecast the U.S. monthly equity premium out-of-sample recursively
with expanding window method. It employed a broad categories of regression
models, which includes, the kitchen sink linear model, partial least squares re-
gression, kernel-based regularized least squares, support vector regression, rele-
vance vector regression, regularized regression, components regression, Gaussian
processes regression, regression splines, rule-based regression, nearest neighbour,
projection pursuit, and neural networks. Interestingly, the RT models demon-
strate significant evidence of equity premium predictability both statistically and
economically relative to the benchmark historical average, delivering significant
utility gains (UGs). The empirical findings revealed that the RT models signif-
icantly beat the benchmark historical average. Overall, the partial least squares
regression with wide kernel (WideKernel PLS) produced the best result in terms
of statistical predictability while the the Gaussian processes regression with radial
basis kernel function (GPR with RBF') produced the highest average utility (AU)
with a corresponding highest utility gain (UG), indicating the best economic sig-
nificant result, among all the RT models. The results showed that the collective
variables provide statistically and economically useful forecasts of the U.S equity

premium for investors in real time setting, and demonstrate significant evidence of
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consistently beating the benchmark historical average out-of-sample. They seek to
provide meaningful economic information on mean-variance portfolio investment
for investors who are timing the market to earn future gains at minimal risk, com-
pared to the other RT forecasting models. Therefore, the RT models appeared
to guarantee a mean-variance investor in a real-time setting who optimally reallo-
cates a monthly portfolio between equities and risk-free treasury bill using equity
premium forecasts at minimal risk.

The feasibility and superiority of the machine learning techniques (statistically
and economically) over other existing methods led to the proposal of more sophis-
ticated techniques known as deep learning techniques for further investigation on
monthly financial stock market data, which has been achieved with feasibility and
promising empirical results. Chapter four investigates the statistical predictive
power and economic significance of financial stock market data by deep learning
techniques. The deep learning techniques used in the chapter include, the deep
neural network (DNN), stacked autoencoder (SAE), H20 deep learning H20DL,
long-short-term-memory (LSTM), and the fusion of some of these techniques. The
activation function and dropout approach were also introduced. In particular, we
use the equity risk premium as the response variable and other economic and fi-
nancial variables as the predictors. The deep learning techniques used in this study
provide useful evidence of statistical predictability and economic significance. Con-
sidering the statistical predictive performance of the deep learning models in their
isolated form, the H20 deep learning (H20DL) gives the smallest mean squared
forecast error (M SFE), with corresponding highest cumulative return (CR) and
Sharpe ratio (SR) respectively, in each of the out-of-sample periods. Specifically,
the H20 DL with Rectifier used as the activation function, outperformed the other
models used in the chapter. In the fusion results, the SAF-with-H20 using Mazx-
out activation function yields the smallest M .SFE with corresponding highest C R
and SR in all the out-of-sample periods. It is worth noting that the higher the
CR, the higher the SR, and the lower the M SF E which concords with a rule of

193



thumb. Overall, the empirical analysis in this study revealed that the S AFE-with-
H20 using Mazxout activation function produced the best statistically predictive
and economic significant results with robustness across all the out-of-sample pe-
riods. Thus, the deep learning techniques seek to intensify investors target by
providing remedy to curb the identifiable research ills in portfolio investment at

minimal risk.

5.2 Conclusion

The objective of this thesis has been achieved, as the machine learning and deep
learning techniques proposed in the study have demonstrate significant evidence
of outperforming the benchmark existing methods in the relevant literature, both
statistically and economically. The techniques are proven to be robust both sta-
tistically and economically when forecasting the monthly equity premium out-
of-sample using recursive (expanding) window method. However, reconciling the
statistical and economic evidence in an attempt to guarantee the future expecta-
tion of a portfolio investor was a crucial issue in this thesis. It is worth noting, from
the empirical findings in the thesis, that the superiority of a model in terms of sta-
tistical predictability among the machine learning techniques does not necessarily
guarantee superiority in economic significance in this direction. Notwithstanding,
the best model among the deep learning techniques was shown to be superior both
statistically and economically. Thus, they provide better investment alternatives
to portfolio managers who are timing the market to earn future profits at minimal

risk rather than the conventional B& H trading strategy.

The new major contributions in this study/thesis include the following:

1. The use of sophisticated machine learning classifiers involving model train-
ing, data preprocessing, resampling/cross-validation and fine-tuning the pa-
rameters in forecasting the sign or direction of the U.S. stock market re-

cursively using expanding window has greatly outperformed the previous
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methods used in the literature, both statistically and economically, suggest-

ing better investment alternatives to portfolio managers.

. The best machine learning classifier in this study outperformed the best

binary probit model statistically in the literature by 7.4%, see Nyberg (2011).

. Unlike the previous studies shown in the literature in which only few per-
formance evaluation measures were used, this study introduces a wide range
of statistical performance evaluation measures (example Kappa statistic,
McNemar etc.) and economic performance evaluation measures (example
Sortino ratio, Maximum Draw-down, VaR, CVaR, Upside potential) to boost

the empirical analysis of the study.

. The sophisticated regression training techniques/models which incorporate
all covariates as predictors in this study produced smaller mean squared
errors, better Sharpe ratios and utility gains respectively than the use of
individual variables in ordinary regression models with restrictions by other
scholars shown in the literature. Thus the sophisticated regression training
techniques appeared to provide a better investment alternative to a mean-
variance portfolio investor who is timing the market to earn future profit at
minimal risk/volatility, rather than the conventional techniques used in the

literature.

. Unlike some previous works reviewed in the literature, the empirical find-
ings in this study appeared to be robust in that each model performance is

considered both statistically and economically.

. Adequate performance evaluation measures were used to investigate the deep
learning techniques/models in this study, in the context of finance, compared

to previous studies in the literature.

. Comparatively, the deep learning techniques in this study appeared to pro-

duce the best model in both statistically and economically justifiable manner
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when forecasting the U.S. stock market recursively with expanding window,
compared to the traditional machine learning techniques and the conven-

tional techniques in finance used in the literature.

5.3 Further Research

The following areas are left pending for further research:

e To investigate the statistical predictability and economic significance of the
machine learning and deep learning models used in this thesis at different
length(s) of forecast horizon, for example quarterly (h = 3), semi-annually

(h =6) and annually (h = 12).

e To investigate the feasibility and predictability of these sophisticated tech-
niques in forecasting other relevant financial and economic variables such as
industrial production, economic recession, economic growth, exchange rate

etc.
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