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Abstract

Recent developments in technology have enhanced the abilities of systems to both
generate and collect data from a variety of sources. There is an increasing number
of Internet of Things devices generating continuous data streams rapidly. Mining
these data streams brings new opportunities but also introduces new challenges.
Learning from these data streams is challenging due to the characteristics of such
streams: continuous unbounded high-speed data of an evolving nature which must
be processed on the fly. An additional challenge emanates from the fact that many
of the data streams generated by real-world applications are imbalanced within
themselves. This difficulty is more acute in multi-class learning tasks. Despite
“learning from non-stationary streams” and “class imbalance” problems having
been investigated separately in the literature, too little attention has been paid
to the multi-class imbalance problem as it can emerge in evolving streams. This
thesis is devoted to the development of new techniques for mining evolving data
streams which have skewed distributions and to tackling the multi-class problem
related to such streams. It presents a new method for classifying heterogeneous
data streams which extends the current concept drift adaptation techniques so
they can deal with imbalanced classes’ scenarios. To this end, an adaptive learning
algorithm is developed which uses a windows based approach, and which modifies
the make-up of the training set to enhance the accuracy of classification. In addi-
tion, this research proposes a new method for discovering patterns from evolving
data streams with skewed distributions; it introduces a dynamically calculated
support threshold; this allows the proposed method to tackle the rare patterns
problem as this is encountered in non-stationary streams. Moreover, an experi-
ment is conducted in relation to forecasting time series from heterogeneous data
streams using a deep learning approach, to provide real-time parking prediction

in a transportation domain.
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Chapter 1

Introduction

We live in the era of data abundance. Sensors, financial markets, search engines,
social media applications, text messages, YouTube, etc. have generated unprece-
dented amount of data. In 2018, an article on Forbes [191] noted that there were
2.5 quintillion bytes of data produced daily, and that 90% of the data in the world
was generated between 2016 and 2018. The amount of data generated is growing
at an increasing rate with the growth of the Internet of Things (IoT) [242].

The IoT is a network of physical devices, vehicles, buildings and other items
[276]. These objects have embedded within them sensors, software, and network
connectivity technology which together enable them to measure changes in their
environment and generate data that reports on their status [276, 287]. According
to IoT Analytics report !, it was estimated that there were seven billion connected
[oT devices at the end of 2018, this number exceeded the number of people on the
planet. The IoT technology enhances the capabilities available for both generating
and collecting data, and provides the means to develop applications that can create
a true reflection of the real world and so support better decision making [242].
Qin et al. in [216] identified the main characteristics of data streams generated
from IoT objects: dynamic; heterogeneous; generated at high speeds; and usually

containing redundant, incomplete and/or uncertain data.

https://iot-analytics.com/iot-2018-in-review/
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Data streams, from the IoT devices and other sources (e.g, financial markets),
can be considered as one of the main sources of what is referred to as Big Data
[242]. Big Data is commonly used to describe huge amounts of heterogeneous
data generated from a variety of sources and which can be analysed in order to
reveal insights from these data streams [184, 281]. A study from Gartner [25]
described Big Data as having three dimensions, known as three ‘Vs’: volume “the
amount of data generated”, variety “the different forms of data: structured (e.g.,
relational databases), semi structured (e.g., JSON documents) and unstructured
data (e.g., emails messages)”, and velocity “the speed at which data generated”
(25, 150, 154, 281]. Later, the veracity “uncertainty of data” was considered as
the fourth dimension [190].

Data mining and knowledge discovery have been attracting a significant amount
of research effort recently, across both academia and industry [4, 63, 257, 286].
Data mining can be defined as the process of extracting implicit, previously un-
known, and potentially useful information from data [286]. It provides a means by
which to develop solutions that bridge the widening gap between data generation
and data analysis — by providing techniques and algorithms which facilitate the
analysing of vast amounts of data. Such analysis has been used to generate useful
insights, for example, detecting air quality levels [89, 99, 152], monitoring traffic
flows in urban areas [11, 212, 223, 255], and in healthcare industry to monitor

emergency cases or detect diseases in their early stages [20, 56, 186, 218].

1.1 Motivation

Motivated by the increasing proliferation of IoT technologies affecting our daily
lives, this thesis seeks to exploit the kind of real-time data streams which flow from
IoT devices, and to illustrate the significance of heterogeneous data streams from
diverse sources. In the IoT data stream model, data arrives continuously and at

high speed[185, 220, 242]. Thus, a huge amount of data can be constantly recorded
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and used for real-time and/or historical analysis [185, 242]. Deriving insights from
the IoT data streams can be considered as one of the key opportunities; real-time
or near-real time analysis of such heterogeneous data streams has the potential
to have a major impact across a number of different domains [111, 220, 242].
However, dealing with the changing nature of such data streams over time (i.e.,
with concepts that drift or change completely) and the imbalanced distributions
that may appear in these streams, is one of the main challenges in IoT data
streams mining [74, 242].

In this thesis, we are interested in developing and extending techniques for
mining evolving data streams 2 which have skewed distributions and tackling the
multi-class problem related to such streams. In particular, we seek to develop
learning techniques for non-stationary and imbalanced data streams from a vari-
ety of IoT devices in order to provide near-real time analysis of such heterogeneous
data streams. This kind of analysis is being used in this thesis to provide efficient
solutions to car parking issues, in a transportation domain (i.e., this is the under-
lying domain that we are considering from an experimental point of view). In this
use case of intelligent parking system, where the parking lots are monitored by
a variety of IoT devices, data streams come in too fast for processing (i.e., data
velocity) from different ToT devices (i.e., data variety), and we develop learning
techniques which are able to extract useful information from these uncertain data,
learn behavioural patterns from various kinds of streams, and provide predictions

of future behaviours, in order to support intelligent decision making.

1.2 Research Aim and Objectives

The aim of this thesis is to investigate and enhance machine learning techniques
focused on mining data streams generated from non-stationary environments, and

to explore the problems that can occur when mining and analysing such hetero-

2An evolving data stream is a stream of data whose distribution changes over time [27, 28,
46, 119, 224].
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geneous data streams from different sources. The thesis’ objectives are as follows:

e To identify the usefulness of integrating a variety of data sources together

and analysing the resultant heterogeneous data streams.

e To develop a simulated environment of a parking lots setting (i.e., cars and
their movements), where the parking lots are monitored by a set of embedded
[oT devices; these devices generate heterogeneous data streams. The main
purpose of this simulation is to create a dataset (i.e., data streams from the
IoT devices) that captures the dynamic behaviour of objects (i.e., cars) in
relation to a real-world application. This in order to study the problems that
can be encountered when mining non-stationary and imbalanced datasets,
and then to use this dataset to experiment with and develop new techniques

to address these problems and validate the methods.

e To develop new learning techniques that are capable of classifying non sta-
tionary data streams, detecting and adapting to changes in the underlying
concepts being represented in these streams; and dealing with imbalanced

class distributions.

e To investigate and enhance methods for pattern discovery from dynamic
streaming data so that they can be used to capture the relations between
different items in dynamic environments, and handle changes in the patterns

which emerge from mining the various types of stream.

e To explore time series forecasting techniques for multivariate time series
from heterogeneous data streams in order to identify potential challenges
when dealing with data from non-stationary environments which, in addi-

tion, exhibit complex seasonality.

e To investigate a deep learning approach to forecasting time series from data

streams in order to provide as accurate forecasts as possible of future be-
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haviour — so to support intelligent decision making in the parking lots

environment.

The work described in this thesis addresses the joint problem of the chang-
ing nature (i.e., concept drift) and the imbalanced classes distributions in non-
stationary data streams. It seeks to contribute to the wider literature by extending
the existing techniques for adapting concept drift [45, 47, 88, 108, 166, 247, 267,
295] into class imbalance scenarios [79, 137, 243, 271, 274] and developing methods
that learn from such dynamic data streams and tackle the multi-class imbalance
issue in these streams. In addition, it enhances the current pattern discovery
techniques over data stream [132, 141, 142, 170, 176, 258], in order to provide an
efficent solution to the rare patterns problem [132, 141, 142, 179] that may ap-
pear in non-stationary streams and to detect changes (i.e., drifts) in the emerging
patterns.

Moreover, this thesis attempts to deliver insights from the heterogeneous data
streams generated by the IoT devices. It addresses the combined issue of the mul-
tiple variables and the complex seasonality in time series data streams generated
at high speed [40, 41, 144]. Furthermore, it develops a deep learning approach
for forecasting time series, over multiple time steps, in order to provide reliable
car parking solutions, unlike the existing parking availability prediction systems
[50, 219, 265, 293, 294] that require additional hardware and sensors to be installed

for predicting the parking availability.

1.3 Contributions

Extracting insights from data streams, captured in real-time, can give decision
makers a heightened awareness of real-time events [11, 12, 55, 212]. For example,
streams from ubiquitous sensors which are deployed in infrastructure such as roads
and buildings, or sensors which report on environmental conditions can be used

to develop innovative solutions to traffic managements systems [223, 255]. This

5
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requires a set of powerful tools and techniques for processing and reasoning these
streams — with minimal latency so that real-time, or near-real-time responses
can be generated [4, 100].

This present study has contributed to the development of data streams mining
techniques for non-stationary and imbalanced data streams. It has investigated
mining techniques which are designed to integrate and learn from data streams
generated by different sources. In addition, it has addressed the most common
challenges which are encountered when analysing such data streams. In particular,

this work investigated the following challenges:

e Investigating classification algorithms which operate over data streams and
addressing the weaknesses in the existing approaches to classification prob-
lems related to multi-class situations [79, 137, 243, 271, 274], and then de-
veloping a new method capable of classifying dynamic data streams which

have skewed distributions.

e Investigating pattern discovery approaches and examining the rare pattern
problem [132, 141, 142, 179] which is often encountered in real-world data

stream applications.

e Investigating machine learning methods which can be used to forecast mul-

tivariate time series [40, 41, 144] derived from a variety of data streams.

These challenges were investigated through creating a simulation environment
which has been inspired by real data. We have chosen the domain of transporta-
tion (i.e., car parking setting) as the domain of application because there is an
increasing number of sensors and other IoT devices that are deployed in parking
lots settings [234], wherein there are dynamic data streams from different sources
which can readily be used in an investigation of mining techniques operating over
data streams [148].

One difficulty encountered at the start of this research, was that of finding a

real-dataset which exhibited the presence of heterogeneous data streams derived
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from a variety of sources. IoT devices can potentially have a significant positive
impact on people’s quality of life [71, 256]. However, these devices are also pose
serious threats to privacy as they can collect/reveal personal data such as user
identity, location, car registration numbers, credit card information, etc. There-
fore, datasets derived from these devices are not generally made publicly available
[256]. Thus we decided instead to simulate a dynamic environment within which
a set of IoT devices have been deployed — in its infrastructure. This simula-
tion provided the means by which to generate the necessary heterogeneous data
streams, having skewed distributions and evolving over time (Chapter 3).

Streaming data poses many challenges relating to limited storage and pro-
cessing resources, as well as those relating to the need to adapt with evolving
data [17, 87, 102]; moreover, it can exacerbate issues such as class imbalance
(272, 273, 290]. This work has explored mining techniques which can classify the
data items within evolving streams which have skewed class distributions. Class
imbalance issues are even more intractable when more than two classes are in-
volved [197, 272]. Most studies [46, 48, 57, 137, 178, 198, 271-274, 290] in the
field have used ensemble learners to handle the concept drift in imbalanced data
streams, furthermore, these works have only focused on the two classes situation
and too little attention has been paid to multi-class imbalance problems [274].
Therefore, the present study aimed to contribute to this area by extending con-
cept drift adapting techniques into multi-class imbalance scenarios. In particular,
we have developed a new method (named ICE-Stream: Imbalanced Classes in
Evolving Streams) for learning from evolving data streams which can handle the
problem of class imbalance as it is encountered in these kinds of stream; this
method is based on an adaptive learning algorithm which uses a windows based
approach (instead of ensemble learners) in order to handle the concept drift in
data streams (Chapter 4).

Pattern discovery has become a powerful tool for extracting valuable infor-

mation from mass data [3, 100, 123]. The current trend towards applications
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which generate massive data streams has heightened the need for pattern discov-
ery techniques which can extract patterns from, and reveal hidden relations, in
these data streams [3]. However, extracting patterns from evolving data streams
is difficult and time consuming [177]. In particular, there are two classic problems
which are closely linked to pattern discovery from data streams [155, 177, 179]:
the extraction of a huge number of meaningless patterns, and/or the omission of
patterns which do not appear frequently (i.e., rare pattern problem). This study
investigated pattern discovery techniques which operate over data streams, and
highlighted the need for better methods to capture the dynamic of patterns from
heterogeneous streams efficiently. Then, it produced a new method (named FP-
EStream: Frequent Patterns from imbalanced Evolving Streams) for extracting
patterns from evolving streams with skewed classes distributions, which can effi-
ciently handle the issue of concept drift as encountered in patterns that emerge
from such streams and overcome the rare pattern problem — by using a dynam-
ically calculated threshold to identify patterns contained within heterogeneous
streams (Chapter 5).

Time series data from dynamic environments can capture the dynamic be-
haviours of these environments [144], and provide a means by which to monitor
and predict the changes which occur in them over time [40, 41]. The explosive
growth in the complexity and size of time series data streams, across many real-
world applications, has presented a challenge to the existing statistical forecasting
techniques [131, 184]. Thus, there is a definite need to develop further time series
forecasting techniques that deal with data generated at high speed, and which ex-
hibit complex seasonality and multiple variables [131, 144]. This work examined
machine learning approaches to the forecasting of time series from heterogeneous
data streams. In particular, it provides an empirical exploration of the use of
a deep learning approach (using Gated Recurrent Units) to forecasting time se-
ries from heterogeneous data streams. Unlike the existing statistical methods

[41, 42, 76, 77, 144] that are not suitable for dealing with multivariate time se-
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ries with multiple seasonal components, the proposed approach can handle the

complex seasonality in the multivariate time series data streams (Chapter 6).

1.4 Thesis Structure

The thesis structure is depicted in Figure 1.1. The overall structure of this thesis
takes the form of seven chapters, including this introductory chapter; the rest of

the thesis is structured as follows:

e Chapter 2 aims to lay out the theoretical dimensions of the research, it
presents a concise description of key concepts which relate to this work and
defines the scope of the thesis. In particular, it discusses the existing litera-
ture associated with the research area, focusing on data streams and stream
mining techniques, and illustrating the difference between the mining of

conventional data and the mining of data streams. In addition, Chapter



Chapter 1. Introduction

2 elucidates common challenges encountered when mining streaming data,
namely: (i) concept drift, (ii) imbalanced class distributions, and (iii) min-
ing frequent patterns. This will be followed by a discussion of approaches
that have been used in the literature to solve the aforementioned problems,
and identify the limitations with these approaches which then lead to the
techniques proposed in the subsequent chapters. Furthermore, the chapter
illustrates key concepts that relate to time series forecasting, including a re-
view of current statistical techniques as well as of the most promising studies
of machine learning approaches that have been undertaken in the literature
as regards forecasting time series. Moreover, this chapter presents gen-
eral background information concerning deep learning using artificial neural
networks and some neural network architectures that will be used for this

present study in particular.

e Chapter 3 defines the research problem using an illustrative scenario of a
variety of data streams derived from a dynamic environment; and it presents
a detailed description of the main components of the research framework
used here. Moreover, this chapter provides the experimental framework,
discusses the reasons behind the choice of simulation model and explains
the criteria which have been used to create this model. Furthermore, it
provides a detailed description of the characteristics of the sample that was
used to create the simulation, and how this sample has been modelled in a

simulation environment.

e Chapter 4 is concerned with investigating classification techniques on evolv-
ing data streams which exhibit internal imbalance, and discusses the meth-
ods used for this in here. It begins by identifying some common prob-
lems that may occur when performing classification over heterogeneous data
streams derived from dynamic environments, and highlights the limitations

of previous studies. Then, it suggests a novel technique for learning from
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imbalanced evolving data streams. After that, it moves on to describe in
greater detail the experiments that were conducted on a simulated dataset
and two other, real, datasets. This will be followed by a comparison between
the results obtained using the proposed methods with the results obtained
by the use of other learning approaches; this is in order to evaluate the

proposed technique.

e Chapter 5 is focused on discovering patterns from differing data streams
with skewed distributions, and which emerge from dynamic environments.
The chapter begins by providing a brief overview about pattern mining in
general. Then it goes on to describe the methods used in this investigation.
In particular, the chapter proposes a new method for extracting pattern from
imbalanced evolving data streams. This discussion is followed by a descrip-
tion of a set of experiments performed on both the simulated dataset which
was used for the previous chapter and a real dataset. Subsequently, the
chapter discusses the findings which emerged from these experiments, then

the results are compared with state-of-the-art pattern mining techniques.

e Chapter 6 provides an empirical exploration of deep learning in relation to
the task of forecasting non-stationary multivariate time series. In particu-
lar, it investigates using deep learning approaches to the forecasting of the
availability of parking spaces across a number of different parking lots. It
begins by providing a brief overview of the related work as regards predict-
ing the availability of parking spaces. Then it describes the problem using
an illustrative scenario and discusses the methods used in this exploration.
It goes on to describe in greater detail how the experiments were conducted

and presents a discussion of the findings.

e Chapter 7 is the final chapter of this thesis; it draws upon the discussions
presented across the entire thesis, tying up the various theoretical and em-

pirical strands. The chapter provides a brief summary of the main contri-
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butions of this work, and a critique of its findings, indicating the strengths
and weaknesses of the approaches taken. It then goes on to identify areas

for further research.

1.5 Publications

In the course of conducting this research, the following publications were produced:

1. Poster presentation, 2017 CSEE Joint Workshop with Industry, Public and

Charitable Sector, Friday 30 June 2017, Colchester Campus.

2. Almuammar, M. and Fasli, M., “Pattern Discovery from Dynamic Data
Streams using Frequent Pattern Mining with Multi-support Thresholds,” in
the 2017 IEEFE International Conference on Frontiers and Advances in Data

Science (FADS), Xi’an, October 2017. pp. 35-40.[8]

3. Almuammar, M. and Fasli, M., “Learning Patterns from Imbalanced Evolv-
ing Data Streams,” in 2018 IEEE International Conference on Big Data

(Big Data), Seattle, December 2018. pp. 2048-2057. [9]

4. Almuammar, M. and Fasli, M., “Deep Learning for Non-stationary Multi-
variate Time Series Forecasting, in 2019 IEEE International Conference on

Big Data (Big Data), Los Angeles, December 2019. pp.2097-2106 [10]
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Chapter 2

Background and Literature

Survey

2.1 Introduction

Recent developments in technology have enhanced our capability for collecting
data from diverse sources which produce data continuously. Deriving insights
from such data streams is challenging, because data items arrive at high speed
and algorithms that process these streams must deal with the changing nature
of such streams, using limited computational resources — in terms of memory
and time [80, 107]. An additional challenge emanates from the fact that many of
data streams generated by many real-life applications have skewed distributions
[46, 197, 273], this poses a difficulty for learning algorithms, as they will be biased
towards the majority group [165]. Although “learning from evolving streams”
(80, 107, 108] and “learning from imbalanced distributions” [178] have been inves-
tigated separately in the literature, only few works [46, 165] have addressed the
combined challenge of imbalanced distribuations in the context of data streams,
and too little attention has been paid to the multi-class imbalance problem as it

can emerge in evolving streams [273].
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This chapter begins by giving a brief overview of data stream and data min-
ing, describes characteristics of streaming data and its potential usefulness, and
discusses the requirements of data streams mining techniques. It then goes on
to review the literature on some common challenges in mining data streams,
namely concept drift, imbalanced classes distributions, and mining frequent pat-
terns. Moreover, it looks at time series forecasting, and examines some previous
studies which were conducted for forecasting time series. Moreover, it provides an
overview of deep learning in artificial neural networks, and then gives a detailed
descriptions of some neural network architectures: Multi-layer Perceptron and
Recurrent Neural Networks (including the Gated Recurrent Units layer variant).
The chapter concludes with a short summary that identifies the main challenges
related to this work, in order to assist the reader to understand the purpose of

this thesis.

2.2 Data Streams

Recent years have seen significant advancements in information technology, and
this has led to the creation of large flows of data. An increasing number of ap-
plications involved in everyday life generate a considerable amount of data on
a continuous basis. Examples include the stock market, sensor networks, infor-
mation from social networks or geo-spatial services, customer click streams, etc.
These datasets which grow rapidly and constantly are referred to as data streams
[5, 100, 117, 143].

A data stream is defined as an unbounded and ordered sequence, ordered
implicitly by arrival time or explicitly by time stamp, of data items [17, 117].
There are a variety of streaming data scenarios; for example, streams may be a flow
of data items that arrive in a continuous regular manner, or it may consist of huge
amounts of data items of potentially infinite length which arrive in unpredictable

bursts — such as streaming data about player interactions within online games
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(97, 210, 241]. Another common scenario is where data objects’ values change
frequently and at high speed, e.g., stock market values [139]. A data stream can
also be generated continuously by multiple data sources which typically send out
their data records simultaneously in small packages — this description applies to
video or sensor streams [102].

Data streams are different from data stored in conventional relational databases
in a number of respects. Gama et al. [102] summarized the differences between
streaming and conventional models in terms of two issues. First, there is no control
over the arrival of data stream elements because data elements from the stream
arrive online. Second, the complexity of storing and retrieving data stream, rather
than conventional, elements is far greater; the data stream is potentially of infi-
nite size; therefore, once an element from a data stream has been processed, it is
usually discarded and thus cannot be retrieved easily (unless, in fact, it has been
specifically stored away). Similarly, a number of studies [17, 246] have identified
important features of data streams to distinguish them from data managed us-
ing traditional data models: (i) ordered, (ii) infinite, (iii) arrive at high speed,

(iv) dynamic, and (v) high dimensional.

2.3 Data Mining

Data mining, also referred to as knowledge discovery, emerged during the late
1980s [126]. It is a broad umbrella term that describes variety of processes which
are carried out on large datasets in order to discover previously unknown patterns
and to identify correlations and relationships among data [4, 100, 126, 127, 286].
The results of data mining may be used then to predict future trends and/or sup-
port decision making [4, 100]. Witten and Frank in [285] defined data mining as
“the extraction of implicit, previously unknown, and potentially useful informa-
tion from data”. Later, Han et al. in [126] defined data mining as “the process of

discovering interesting patterns and knowledge from large amount of data”.
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Typically, data mining is considered one of the steps in the Knowledge Discov-
ery in Databases (KDD) process [91] and its aim is to provide tools to enable the
transformation of vast amounts of (often messy) data into useful information and
knowledge [286]. Most of techniques described in KDD have been developed within
a field known as machine learning[96, 286]. Machine learning emanated from ar-
tificial intelligence [51] and its focus is on developing techniques for automatically
learning from data in order to improve the performance of a system [51, 286].
Machine learning provides the technical basis for data mining, it presents algo-
rithms for inferring structure from data [91, 286], but data mining is more than
select a machine learning technique and apply it on a dataset [91], hence there are
additional challenges in many real world applications related to data (e.g., incom-
plete or dynamic data) or/and the appropriate choice of the learning technique
parameters [126, 286]. In this thesis, the term of data mining techniques is used
to refer to data mining that utilize machine learning techniques.

From the literature [4, 35, 126, 183, 199, 286], it can be seen that there are a
number of different types of learning paradigms associated with machine learning

and data mining, namely:

e Supervised Learning (SL), in this approach, the learning model is trained on
a labelled dataset where the task is to learn the mapping function between a
set of input and output pairs, this mapping function is then used to process

another dataset, i.e., to predict the labels of a test set.[52].

e Unsupervised Learning (UL), where the training data consists of a set of
input data without any corresponding target values and the task is to make

inferences from this unlabeled data [35, 188].

e Semi-supervised Learning (SSL), this approach is a mixture of supervised
and unsupervised learning, where the training data typically consists of a

small amount of labeled data with a large amount of unlabeled data [54, 194].
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e Reinforcement Learning (RL), this approach is concerned with the problem
of finding suitable actions to take in a given situation in order to maximize
a reward, where the learning model discovers the target values by a process

of trial and error (i.e., the target values are not provided) [249].

e Deep Learning (DL), this approach is concerned with building more accurate
in-depth models which solve problems by mimicking how the human brain

works [120, 236]

e Active Learning (AL), where the learning model is allowed to obtain the de-
sired outputs at new data points, by asking queries in the form of unlabeled

instances to be labeled (e.g., by a human annotator) [70].

The data mining techniques used vary according to differing requirements of
different applications. The most widely used techniques, across many real world

applications, include but are not limited to [35, 126, 174]:

e Classification, a supervised learning technique that learns the structure
of a dataset’s items, where these items belong to distinct groups (i.e., cat-
egories) known as classes. A classifier model is used then to estimate the

class labels of new observations.

e Regression, another supervised learning technique for determining the
strength of the relationship between a dependent variable and a number
of other varying, independent variables. Here, the output variable is a real

value (instead of class in the classification).

e Association rule learning and frequency counting, discovering of rela-
tionships between the variables exhibited by the dataset, and the identifying
of the most significant values in the dataset. Association rule learning can

be considerd as unsupervised learning technique [130].
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e Clustering, an unsupervised learning technique that is concerned of placing
objects and structures from the dataset into groups, based on their degree

of similarity:.

e Anomaly detection, the identifying of items, events or observations which
do not conform to expected patterns or to the incidence of other items in the
dataset. There are three approaches to the problem of anomaly detection:

supervised, unsupervised, and semi-supervised learning [136].

This thesis seeks to investigate both the supervised and the deep learning
approaches to learning from streaming data. Later in this chapter, we will discuss
the existing literature on deep learning and artificial neural networks (this is
related to Chapter 6). Furthermore, a detailed discussion about the existing
classification techniques for data streams is presented in Chapter 4. However, this
thesis does not aim to provide a broad overview of the data mining techniques or
the learning paradigims and the interested reader is referred to [4, 62, 120, 126,
174, 199, 236, 286).

2.4 Mining and Processing Data Streams

Mining data streams presents inherent difficulties, because it requires processing
of an unlimited amount of data and performing efficient calculations on the fly
with bounded computing memory and limited processing cababilities [17, 87].
Obviously, such continuous and rapidly arriving data must be processed quickly
and efficiently — in one or only a few passes. The analysis becomes more valuable
when it is done in real time while the data is in motion, and in most cases, data
loses its importance as time passes [117]. Therefore, conventional data mining
techniques cannot be directly applied to data streams. Most of conventional data
mining techniques entail the availability of the whole dataset before the processing

(i.e, the training) can begin [126, 286]. Moreover, multiple scans of the data are
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often required in order to the sought-for information; this is unrealistic in relation
to data streams [3, 102].

A considerable amount of literature has been published on processing data
streams [3, 69, 81, 102]. The existing approaches fall into two categories: Data
Stream Management Systems (DSMSs), and Complex Event Processing Systems
(CEPs) [68]; these are both aimed at providing low delay processing even in
the presence of large volumes of input data generated at rapid rates [17, 189].
These systems are based on data models, such as relational models, which apply
only a limited predefined set of operations with a fixed structure on the data
streams [117]. Particularly, Data Stream Management Systems (DSMSs) inherit
their data and query model from conventional Database Management Systems
(DBMSs). With these latter systems DSMSs, data stream processing operates by
processing time windows or sliding windows of the data, to select only the most
recent elements in a stream — either based on their element number (in count-
based window systems), or on their time stamps (in time-based windows) [189].
The basic concept of Complex Event Processing Systems (CEPs) is to identify
patterns in data streams which represent meaningful situations in the application
domain [44]. Surveys such as that conducted in [17, 33, 213] show the differences
between Database Management Systems (DBMSs) and Data Stream Management
Systems (DSMSs). Table 2.1 summarises the main differences between the two

processing systems [17, 33, 44, 68, 117, 189, 213].

Table 2.1: Differences between DBMSs and DSMSs.

Database Management Systems Data Stream Management Systems
Scheduled data arrival Non-controlled data arrival

Bounded data Infinite data

Persistent data Volatile data streams

One-time queries, random access Continuous queries, sequential access
Fewer limitations on storage and retrieval | More limitations on storage and retrieval
Relatively low update rate Potentially extremely high update rate
Little or no time requirements Real time requirements
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2.4.1 Evaluating Data Streams Mining Techniques

Data streams set new requirements, compared to the conventional databases, in
regard to the evaluation of the performance of data mining techniques which learn
from these streams [106]. As stated before, while all available data are considered
in data mining techniques which operate on conventional databases, streaming
scenarios restrict the processing to a certain window of concern (i.e., the most
recent elements in the stream) [117, 126, 286]. Thus, existing methods which are
used to evaluate data mining techniques that learn from conventional databases
(e.g., cross-validation or where the dataset is splitted into train and test sets)
are not applicable when learning from dynamic and time-changing data streams
[105, 106]. So in order to build a picture of the performance of data mining
techniques which learn from evolving data streams, two common approaches have
been proposed in the literature [106-108, 168] to evaluate these learning techniques
over data streams: holdout evaluation, and predictive sequential evaluation.

In holdout evaluation approach, the learning model is tested on an independent
set of the dataset. Typically, this set is chosen at regular time intervals (e.g., the
end of the window). Then the estimated loss on test set is used as performance
indicator [106, 168]. While in predictive sequential “Prequential [73]” evaluation,
the error of a learning model is computed from each example (or a sequence of
examples) in the data stream [106, 107]. In particular, the learning model makes a
prediction for each example in the stream, then the prequential-error is computed
based on an accumulated sum of a loss function, L, between the prediction, ;

and observed values, y;, this can be expressed as [106, 168]:

prequential — error = Z L(yi, U:) (2.1)

i=1
Both approaches provide a way to monitor the evolution of learning as a process,

however, the performance estimates from both approaches can be affected by the

order of the examples [107].
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2.5 Common Issues in Mining Data Streams

Mining data streams is challenging due to the characteristics of such streams, viz:
being continuous, unbounded and ‘high-speed’ data, of a non-stationary nature,
which must be processed on the fly using minimal computational resources. An
additional challenge is imposed by presence of imbalanced data streams in many
real-world applications. This section discusses challenges that may occur when
mining heterogeneous data streams; these issues should be taken into considera-

tion when developing mining techniques for streaming data.

2.5.1 Concept Drift

One of the biggest challenges in classifying data items from real-world data streams
is concept drift [280]; this phenomenon occurs when data streams are generated in
non-stationary environments. A non-stationary environment is where the proba-
bilistic properties of the data change over time (i.e., its underlying distribution can
change dynamically over time) [80, 107], for example, the weather in one place
is different from one season to another, and a customer’s shopping behaviour
changes over time, according to fashions and the season [107, 247]. Changes to
data stream distributions over time may lead to the emergence of new classes or
to changes in the existing classes [108, 199].

Simply, if X represents a set of input variables and Y represents a set of target
variable, then concept drift between two different time stamps, ty and t;, can be

defined as follows [108]:

dre X :pto<x>y) 7épt1(xvy) (22)

Where p;, and p;, denote the joint probabilities at time ¢y and t; , respectively,
between the input variable (or set of variables) « and the target variable y. This

means that [108]:
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e the prior probabilities of class p(y) may change;
e and/or the class conditional probabilities p(z | y) may change;

e and as a result, the posterior probabilities of class p(y | =) may change,

affecting the prediction.

In fact, concept drift can cause the predictive performance of the classifiers
to be reduced over time [196]; therefore, the learning model must detect such
changes (drifts) and adapt itself to the current state of the environment [166, 237].

Previous studies have distinguished between two types of drift [108, 199, 247]:

e Real concept drift, which indicates changes in the conditional distribution of
the target variable given a set of input variables, regardless of any changes

in the input distributions.

e Virtual drift occurs when the distribution of the incoming data changes,

p(z), without affecting the conditional distributions of the target variables

p(y | @).

Hence, in both cases the joint distribution, p(z,y), changes.

Drift may occur suddenly (e.g., the changes in a customer’ reading interests
from one topic to another) [108, 205, 206, 222|, or it may happen gradually
(e.g., the change in daily behaviour between the week days and the week end
) [108, 158, 159, 288] or it may be the case that drift is reoccurring when previ-
ously seen concepts reoccur after some time (e.g., the seasonal changes in weather
or fashions). Furthermore, another scenario of drift is when new classes that were
not seen before are introduced, one or more types of drifts may occur in data si-
multaneously [108, 196, 296]. It is interesting to note here, that anomaly (random
changes) cannot be considered as concept drift, as learning techniques do not need

to adapt with such changes [53, 108].
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2.5.1.1 Dealing with Concept Drift

Techniques developed to handle concept drift can be divided into three main

groups [137, 247, 259]:

e Adaptive base learners, the simplest way to cope with concept drift, where

the learner can dynamically adapt to new training data.

e Learners which modify the training set, commonly, the training set is modi-
fied (i.e., to include a subset of the previously seen examples) either by using

windows approach or instance weighting approach.

e Ensemble techniques, where multiple (often weak) classifiers are combined
to form one ensemble model, these classifiers are trained on the same dataset

and then the results are used to provide the final prediction .

The first algorithms designed to deal with drifting data were STAGGER [235],
IB3 [7], and the suite of FLORA algorithms [279, 280]. STAGGER [235] and IB3
[7] are instance-base learners that learn from one example at a time (i.e., without
keeping the previous examples), the learning model is updated continuously with
the most recent example. Learning models, in both STAGGER and IB3, deal
explicitly with concept drift, but the main limitations in these models that they
only able to adapt to gradual concept drifts, and that their adaptation is relatively
slow [108]. Whereas the FLORA [279, 280] algorithms use a sliding window of
the most recent examples (instead of one example). Here, the learning model is
updated with the arrival of new training window, and the old examples from the
previous windows are discarded. FLORA [279] was the first method that used
an explicit forgetting mechanism (using adaptive windows) to deal with evolving
data with unpredictable changes [108]. The original FLORA algorithm used a
fixed length window size. Later, an adaptive windows approach was introduced
in FLORAZ2 algorithm which adjusts the window size dynamically when a change

is detected — in order to improve the learning performance [108, 279, 280]. The
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rigid window adjustment heuristic is a major weakness of FLORA algorithms,
moreover, it is difficult for the learning model to recover after long drifts [244].
Several techniques [2, 82, 161, 163] have been proposed then in the literature based
on forgetting the outdated observations in order to detect and cope with drift
in evolving data streams [108]. Forgetting can be done abruptly when learning
models discard the old examples in the previous windows|[2, 82, 279, 280], or can
be done gradually when old examples are not completely discarded, instead, they
are associated with weights that reflect their age [161, 163].

One of the first adaptive ensemble techniques was proposed in [34]. It was de-
veloped for classifying streams of text in order to detect user interests and build
a content-based filter. Accordingly, two classifiers were used: a naive Bayes clas-
sifier for modeling the long-term interests and a nearest neighbor classifier for
capturing the short-term interests of the user. Typically, adaptive ensembles con-
sist of set of individual models which are combined to form a single new model
[261]. The average or a weighted average predictions of these individual mod-
els are combined to predict the new incoming instances [161, 261]|. Later, many
ensemble techniques have been presented in the literature to deal with concept
drift in streaming data. For example, the Streaming Ensemble Algorithm (SEA)
[245] which trains a separate classifier on non-overlapping batches of training ex-
amples, the trained classifier is added then to a fixed-size ensemble, while the
worst-performing classifier is discarded, then a majority voting is used to make
the prediction. Another example is presented in [267], Wang et al. proposed the
Accuracy Weighted Ensemble technique (AWE) which used a weighted voting in-
stead of the majority voting. The weight reflects the benefit of using a specific
individual model in comparison to a random classifier. However, the performance
of the AWE technique depends on the size of training batch [45]. Despite that
small batches are better than large batches with regard to drift detection, using
small batches can worsen the classifier performance (only few examples are used

to train the classifer). Therefore, authors in [45] presented the Accuracy Updated
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Ensemble technique (AUE) which extends the AWE by using online component
classifiers and updating them according to the current distribution. In this tech-
nique, the component classifiers can be trained on more examples and become
more accurate when no change occurs. However, updating many components
with similar examples may reduce their diversity [45]. Another ensemble tech-
nique, Adaptive Random Forest algorithm (ARF), was proposed in [119]. ARF
trains a background tree after a warning has been detected and then only replace
the primary model if the drift has occurred, this resampling technique used in
order cope with different types of concept drifts. In general, ensemble approaches
have been found to be the most popular methods for stream classification due to
their robustness [108, 161]. However, it is important to note that training many
base classifiers in the ensemble technique is a time consuming process [119].
Furthermore, change detectors, such as the Drift Detection Method [104] and
the Adaptive Sliding Window Algorithm [26] were introduced to detect concept
drift in data streams. Change detectors are stand-alone techniques that can be
used in combination with any stream classifier [262], typically, the evolution of the
performance indicators or the raw data are monitored then they are statistically
compared to a fixed baseline [108]. This can be used to provide information about
the dynamics of the process generating data [108]. Many works proposed in the
literature [18, 153, 266] have used detection approaches based on monitoring two
distributions. In these approaches, a fixed reference window is used to summa-
rize the past information with a sliding detection window over the most recent
examples. The main limitation of these approaches is the memory requirements,

as they need to store data in two windows [108].

2.5.2 Imbalanced Classes Distribution

Another potential issue that is associated with mining data stream is imbalanced

classes distribution — which sometimes is referred to as unbalanced data. Im-
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balanced classes problem is a common problem in real-world applications with
regard to data mining and pattern recognition domain [46]. Typically, it occurs
in classification scenarios when classes are not represented equally in the dataset,
i.e., some of classes may be rare, or they may only appear on certain occasions
in the data stream [178, 273]. This can be seen in the case of spam filtering,
fraud detection, and fault diagnosis in computer monitoring systems [272, 273].
In such cases, classifiers tend to be biased toward the majority classes, resulting
in a high accuracy classification performance, however these classifiers will not be
able to detect any of the instances that belong to the minority class; classification
becomes even more difficult if there are multiple classes [273].

Several works have been developed in the literature to tackle the imbalanced
classes problem as it emerges in static data; most approaches aim to achieve a
more balanced distribution by using various forms of re-sampling [178]. However,
parallel research in the context of data streams is limited to only few works [46],
and too little attention has been paid to the multi-class imbalance issue [273].
Methods which deal with imbalanced classes in data streams can be categorized
into data level and algorithm level approaches [273]. One of the earliest attempts
to handle data streams with skewed distributions was proposed by Gao et al.
in [109]. An ensemble learner was presented, where each incoming batch was
divided into a set of positive and negative class instances. Then, all the positive
examples and a subset of the negative class instances which is selected randomly,
are combined to form the training set for the ensemble classifier. However, this
technique did not consider the drift of the the minority class [137], in addition,
it only dealt with two-classes imbalance problems. A recent work which deals
with multi-class imbalance in data streams was presented in [272]; the authors
used a time decay function to detect the imbalance rate dynamically and to work
with this they proposed two re-sampling-based ensemble methods, Oversampling-
based Online Bagging (OOB) and Undersampling-based Online Bagging (UOB).

In addition, a concept drift detector and an adaptive online learner which take
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corresponding actions when class imbalance and concept drift happen. Despite
this technique was proposed for multi-class imbalance problems, it only tested
in this work on two-class cases. A more recent technique was proposed in [197];
this technique depends on an ensemble method which made use of voting based
classifiers, wherein different class weights are used to help detect the presence of
an unbalanced (i.e., relatively low frequency) class in the validation set. However,
this technique requires an initialization step before learning takes place, and it
is not clear how the class weights will remain accurate in the case of evolving
streams.

Class imbalance introduces challenges to classifiers which are used for stream
mining in terms of the classifier performance metrics and evaluation procedures
(92, 178, 272]. Simple performance metrics, such as accuracy (the percentage
of the correctly classified instances in the test set), can be easily calculated and

interpreted, it can be represented by Equation 2.3 (in binary classification):

TruePositives + TrueNegatives

(2.3)

Accuracy =
4 Positives + Negatives

However, in relation to imbalanced classes classification scenarios, it it easy to
obtain a high accuracy with the assumption of that errors are equally cost — often
the cost of misclassifying instance of the minority class is much higher [92, 270].
Therefore, many other performance metrics have been introduced to replace the
accuracy measure which yields overoptimistic estimates (because it entirely ignores
the low frequency classes). For example, kappa statistic, x, which was introduced
by Cohen [65], has been used in the literature as a performance measure that takes
class imbalance into account. Simply it compares the accuracy of the classifier

with the accuracy of a random classifier [31, 92], this can be expressed as:

Accy — Ace,

= 2.4
& 1 — Acc, (24)

The quantity Accg is the classifier’s prequential accuracy 2.1, it is computed based
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on an accumulated sum of a loss function between the prediction and observed
values [31, 147]. Whereas Acc. is the expected accuracy (i.e., the probability
that a random classifier which assigns the same number of examples to each class
makes a correct prediction). The kappa value, k, ranges between —1 and 1, and
if k is less than zero, it means that a random guessing surpasses the classifier’s
performance. In addition, mesures such F-score (the harmonic mean of recall and
precision), G-mean, and the area under the Receiver Operating Characteristic
curve (ROC curve) are commonly used in the literature, but they are originally
designed for two-class problems, and can not be applied directly on multi-class

tasks [31, 47, 178, 237, 269).

2.5.3 Mining Frequent Patterns

Frequent patterns are items that appear in the dataset with a frequency above a
user specified threshold. Frequent pattern mining was introduced in 1994, when
Agrawal and Srikant [6] proposed the Apriori algorithm, which generate set of
association rules, for market basket analysis. Simply, association rules are set of
statements which indicate that certain groups of items or events tend to occur
together. There are two basic concepts related to such association rules: the first
is the confidence or the accuracy which defines how often the rule is true; the
second is the support or the coverage which indicates the frequency threshold of
a rule. If I represents a set of items, an association rule is an implication of the
form: A= B where: A C I,B C I, and AN B = (. Then, the support, Sup,

and the confidence, Conf, can be defined by the following Equations 2.5, and 2.6.

Sup(A = B) =p(AU B) (2.5)

Conf(A = B) = p(B | A) (2.6)

Association rule mining consists of two steps. First, find all frequent item sets
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and then generate rules from these sets. An item set is considered to be frequent
when its support is at least equal to the minimum support threshold [134].

Later, many other algorithms were developed for the purpose of detecting
different types of pattern in the transaction data. In general, there are three basic
frequent pattern mining methodologies: Apriori, FP-Growth and Eclat [113]. FP-
Growth [123] is distinguished from the other methodologies by the fact that, with
it, there is no candidate generation; the method works in a divide-and-conquer way
and requires fewer database scans, so it is more suitable (than the other methods)
for huge database transactions and long patterns. It simply scans the database
first to construct a list of frequent items; the items are sorted by descending order
of frequency as the method proceeds; then in accordance to the frequent-item list,
the database is compressed into a frequent-pattern tree, FP-tree, which retains
the itemset association information. The FP-tree, instead of the raw dataset, is
mined to find frequent patterns — by starting from each frequent length-1 pattern,
constructing its conditional pattern base, constructing its conditional FP-tree, and
then performing mining recursively on each such tree [123].

However, a major issue encountered by the aforementioned frequent pattern
mining approaches has been the rare pattern problem [179]. This is because they
all use a single support threshold to identify what constitutes a frequent pattern
across the entire dataset. In many real-world applications, choosing a low thresh-
old value will identify a large number of meaningless patterns, whereas a high
threshold value will lead to the skipping of rare but significant patterns [155]. To
solve the rare patterns problem, multiple minimum supports were introduced by
Liu et al. in [179], based on the Apriori algorithm. Subsequently, several proposals
were made in the literature, such as Conditional Frequent Pattern-Growth (CFP-
Growth) [140], an FP-growth-like algorithm which permitted setting minimum
support thresholds for rare items. A list of minimum support thresholds, MIS,
was proposed to indicate the minimum support threshold for each item instead of

one threshold. Later, CFP-Growth++ [156] was developed as an extension of the
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CFP-Growth algorithm with three pruning techniques: least minimum support
(LMS) which represents the lowest support of all frequent patterns, a conditional
minsup, and infrequent leaf node pruning in order to identify which suffix pat-
terns can generate frequent patterns at higher order. However, a major limitation
in these works lies in the fact that this MIS list is required as prior knowledge
(i.e., both require scanning the whole dataset before algorithms commences). In
addition, some approaches were introduced to detect the rare patterns only, for
example, RP-Growth technique [258], an adaptation of the FP-Growth which was
proposed to find rare item sets using two threshold values: Minsup and Min-
raresup. Minsup value represents the upper boundary of what is counted as rare
(i.e., items which have support values less than Minsup are considered rare) and
Minraresup value represents the lower boundary of rare items ((i.e., items which
have support values less than Minraresup are considered noise), Minsup and Min-
raresup represent a range, where Minraresup is less than Minsup value. Like the
FP-Growth, this algorithm scans the dataset first to calculate the supports, but
different from the FP-tree in the FP-Growth which is built based on the frequent
item list, the RP-Tree here is built based only on transactions that have at least
one rare item set. However, the use of fixed values for support thresholds, in ad-
dition to the construction cost of the conditional sub-trees, limit the application
of these algorithms within streaming scenarios.

One of the first attempts at discovering frequent patterns in streamed data was
developed by Giannella et al [113]. In their work, the FP-Stream algorithm was
proposed based on a batch environment. For each batch, the frequent patterns are
extracted by means of the FP-Growth algorithm applied on a FP-tree structure
representing the sequences in the batch. However, due to the use of a single
support, rare patterns are not detectable by this method. Subsequently, several
algorithms [132, 141, 142, 170, 176] have been proposed for discovering patterns
in data streams. These works designed to detect rare patterns, by scanning the

stream items once or multiple times, but due to the fixed supports used by these
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algorithms, they still cannot handle efficiently the issue of concept drift in the

emerging patterns.

2.6 Time Series Forecasting

Forecasting time series is simply the use of the available observations at time ¢,
commonly referred to as the inputs, to predict the future values of the data items in
the time series at time t+1, commonly referred to as the outputs [41, 42, 200]. The
data used in many forecasting problems commonly falls into one of two categories:
univariate time series, where only one variable (i.e., time series) is measured over
time; or multivariate time series, that involve several variables. Hence, time series

forecasting problems may be grouped into four broad types [42, 240]:

e Univariate inputs and univariate outputs
e Univariate inputs and multivariate outputs
e Multivariate inputs and univariate outputs

e Multivariate inputs and multivariate outputs

Brockwell et al. presented a general approach to time series modelling and

forecasting in [41]:

1. Plot the series, then examine the main features of the graph, and check
if there are any significant trends (i.e., increasing or decreasing) or any
seasonality ( i.e., patterns) exhibited by the series - or alternatively if there
are any outliers that a domain expert can find a reason for (i.e., they are

non-random).

2. Choosing and fitting a forecasting model based on the available historical
data and the apparent relationships between variables; most of the statistical
models require the removal of the trend and seasonal components in order

to make the series stationary before application (of such a technique).
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3. Use and then evaluate the forecasting model. It is common practice to di-
vide the data in the time series into two sets: the training set, used for
estimating the forecasting parameters; and the test set, for evaluating the
model’s accuracy. There are different methods to measure the forecast ac-
curacy, the most commonly used are: Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Root Mean Squared Error (RMSE) [144]. MSE
and RMSE are measures of the average (or the square root of the average)
of squared differences between prediction and actual observation, whereas
MAE is based on the absolute error calculation, the lower values of these

metrics indicate better prediction, this can be represented as follows [238]:

n

1
MSE = — 2 2.
SE=-3 ¢ (2.7)

i=1

I,
RMSE = | ~ ;1 € (2.8)
MAE—1§ €] (2.9)
= n €; .

i=1

Where the error e is the difference between prediction and actual observation.

The statistical approaches which are most widely used for time series fore-
casting are the Auto Regressive Integrated Moving Average (ARIMA) [39], and
the Exponential Smoothing (ES) models [43, 144]. Many variations of these ap-
proaches have been proposed in the literature to deal with seasonal components
and/or multivariate time series. For example, Holt in [138] developed a method
for forecasting trend in time series based on the weighted ES, this method was
extended by Winters in [284] to capture the seasonality. Later, the Holt-Winters
method was extended in [251], in order to deal with more than one seasonal com-

ponent (i.e., within-day and within-week seasonality) in a univariate time series
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of half-hourly electricity demand. Furthermore, the seasonal ARIMA (SARIMA)
[181] was developed by including an additional seasonal terms in the ARIMA mod-
els (i.e., it explicitly models the seasonal component) to deal with the seasonal
components. Moreover, the Vector ARIMA (VARIMA) model was introduced to
deal with multivariate time series, however, the VARIMA models are difficult to
estimate because of the large numbers of parameters involved [75]. In addition,
some models have attempted to deal with more complex seasonal components:
e.g., BATS (Box-Cox transformation, ARMA errors, Trend and Seasonal com-
ponents) [77] and TBATS (Trigonometric seasonality, Box-Cox transformation,
ARMA errors, Trend and Seasonal components) [76].

TBATS was developed by De Livera et al in [76], it uses a combination of
Fourier representations and a Box-Cox transformationwith with an exponential
smoothing state space model and presents trigonometric formulation as a means
of decomposing complex seasonal time series, in order to deal with complex sea-
sonality in automated way with no seasonality constraints. According to [76],
TBATS is more accurate than BATS and requires fewer parameters to be esti-
mated. The proposed decomposition in the TBATS leads to extraction of seasonal
components which are otherwise not apparent in the time series. Moreover, the
seasonality in the TBATS model is allowed to change slowly over time (unlike
other methods where the seasonal patterns are forced to be repeated periodically
without change). However, due to the complex computations, TBATS model can
be slow to estimate, especially with long time series [144]. The TBATS model can
be described by the equations in Figure 2.1.

More recently, researchers have shown an increased interest in using machine
learning models for forecasting time series [37, 131, 211, 217]. In particular, deep
learning approaches and neural network models have drawn attention because of
these have been used across a number of different domains for forecasting time
series. For example, a deep learning approach using Stacked Denoising Auto-

Encoders (SADEs) was developed to forecast indoor temperature in [227]; an
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Model: Where:
. L ym - time series at moment t (Box-Cox transformed)
M1 +ob "'Z L t
Yo =l1+¢b, St-m* d; o .
i=1 s, - ith seasonal component

L=I,_,+¢b,_,+ad,
bf:d) b[*1+[5 d[

I, -local level
b, - trend with damping
p q .
d‘:Z (PJdH"'Z 0.e, +e, d, - ARMA(p,q) process for residuals
i=1 i=1

e, - Gaussian white noise

Seasonal part:
Model parameters:

(k)
S}”:Z S[f ) T - Amount of seasonalities
j=1 ; i
m; - Length of ith seasonal period
QO ) N il k; - Amount of harmonics for ith seasonal period
Sj,i:Sj,r—ICOS(wi)+sj,r.—1 Sm(wi)"'}’l d, .
. ) , ) A - Box-Cox transformation
si=—s"_isin(w;)+s cos(w;)+yyd
st St v ' ‘ o,p - Smoothing
¢ - Trend damping
w,=27jlm,

®;,0; - ARMA(p, q) coefficients

yi'y\ - Seasonal smoothing (two for each period)

Figure 2.1: TBATS model description using mathematical equations [76]

electricity demand forecasting system used an ensemble of Deep Learning Belief
Networks (DBNs) and a Support Vector Regression (SVR) model in [217], and
deep recurrent neural networks were used in a more recent study [239]. In addition,
a wind power forecasting approach based on wavelet transforms and convolutional

neural networks was proposed in [268].

2.7 Artificial Neural Networks and Deep Learn-
ing

Deep Learning (DL) is one of the machine learning approaches that has seen
huge growth in recent years. Although the concept of deep learning appears
to be new, it has been known in the literature under different names for many
years; the concept was first described in the 1940s as Cybernetics [120, 193, 239].

What makes deep learning models attractive is their ability to use existing data
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to train algorithms so that they can learn complicated concepts and then use
these to make predictions about new data. Therefore, deep learning has become
a powerful tool for learning how to perform highly complex tasks across different
domains, e.g., computer vision, speech recognition, and automated translation
services [78, 120, 236].

Artificial Neural Networks (ANNs) are at the core of the current deep learn-
ing techniques. Typically, deep learning models are composed of multiple layers
of artificial neurons. An ANN is basically a network of computing units (i.e.,
neurons) linked by directed connections; each computing unit performs a number
of functions (e.g., aggregation then activation functions) on the inputs. Specifi-
cally, the aggregation function calculates the sum of the inputs from the incoming
connections, then the activation function is applied on this aggregation result;
subsequently, the outputs are spread over the outgoing connections as inputs to
other units, of the next layer [180, 204].

The simplest ANN architecture is the Multi-Layer Perceptron (MLP) model,
a feed-forward neural network consisting of multiple layers of nonlinear neurons
[229]. Typically, such a network has three layers: the input layer, a single hid-
den layer which can be used to extract features from the inputs and to compute
complex functions, and the output layer. Figure 2.2 shows a graphical represen-
tation of MLP with a single hidden layer. It has commonly been assumed that
there should be more than one hidden layer in the neural network, for such to
be considered capable of implementing deep learning; otherwise neural networks
capabilities are referred to as shallow learning [120, 236].

It is important to note here, that the ANN architecture described above is
not the only one; there are several kinds of artificial neural networks described in
the literature, e.g., Convolutional Neural Networks (CNNs) [98]; and Recurrent
Neural Networks (RNNs) [232] of which Long-Short Term Memorys (LSTMs) [135]
and Gated Recurrent Units GRUs [61] are specific types of neurons layers.

RNNs are quite different from the other types of neural network, and have
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Input data:
mfeatures

—_—

Output Layer

Hidden Layer:
n hidden neurcns

Figure 2.2: A graphical representation of Multi-layer Perceptron model with a
single hidden layer

shown unique capabilities in terms of dealing with sequential data [120, 133,
248]. RNNs can capture the sequential nature of variable-length sequences X =
(x1,29,. . .,2¢), by having a recurrent hidden state h, whose activation at each time,
t, is dependent on that of the previous time, ¢t — 1, (i.e., the output of the hidden
layer neurons are used as inputs to these neurons). RNNs can be represented

mathematically as follows:

he = f(xy, hiq) (2.10)

where z; is the input, and h; represents the hidden state at time ¢, and this
makes the output prediction as well. The diagram in Figure 2.3 shows a simple
representation of the RNN architecture.

A number of different variants of the RNN architecture have been proposed
in the literature to eliminate some of the potential training problems (vanish-
ing/exploding gradient problems, where the gradient becomes too small and pre-
vents the weight from changing its value or becomes too large which results in
NaN values) [135]. The Long-Short Term Memory (LSTM) model [135] is a mod-
ified RNN structure with a memory cell — here, typically, the hidden layer of a
RNN is replaced by a complex block of computing units composed of gates (an

input gate, an output gate and a forget gate). A more recent variant, the Gated
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Figure 2.3: A graphical representation of Recurrent Neural Network
architecture
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Recurrent Unit (GRU), was proposed in 2014 by Cho et al. [58]. The following
section presents a detailed description of the GRU concept; GRUs will be used
in Chapter 6 for time series forecasting in terms of predicting the availability
of car parking spaces. Detailed descriptions of the other architectures of neural

networks is beyond the scope of this thesis; the interested reader is referred to

120, 203, 236].

2.7.1 Gated Recurrent Units (GRUs)

The Gated Recurrent Unit, known as the GRU, layer was proposed in order to
allow each recurrent unit to capture the dependencies operating over different
time scales. Specifically, it consists of two gates, a reset gate and an update gate,
that modulate the flow of information inside the unit [58, 61]. The diagram in
Figure 2.4 shows a simple representation of a GRU layer.

Given a sequence X = (z1,Z2,...2,), the update gate z; of the GRU at time
t decides how much the unit should update its activation or content h; (i.e., how
much information from previous time steps needs to be passed to future ones);

this is defined as [58, 61, 162]:

Zt = O'(WZJJt + Uzhtfl) (211)
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where I, and U, are the corresponding weights. The reset gate r; helps the unit
to decide how much of the past information to forget; for example, when r; is
close to zero, this makes the unit act as if it is reading the very first symbol of an
input sequence, allowing it to forget the previously computed state. The value at
the reset gate, r;, is computed in a similar way to the value at the update gate z;,

with different weights W, and U, as follows [58, 61, 162]:

s = O‘(Wf,«mt + Urht—l) (212)

The current memory content ﬁt uses the reset gate to store the relevant informa-

tion from the past, it is computed as [58, 61, 162]:

ﬁt = tanh(WﬁL’t ‘l— TtU @ ht—l) (213)

where W and U are weights, ® is an element-wise multiplication, and tanh is a
nonlinear activation function. Finally, the activation, h;, of the GRU at time ¢ is

calculated using the update gate z;; this is defined as follows [58, 61, 162]:

ht =z ©® ht—l + (]_ — Zt) @77:15 (214)

GRUs can be considered as a simplified variant of LSTMs, because they both

have similar designs. Despite the fact that GRUs are quite new and their potential

out

Figure 2.4: A graphical representation of a Gated Recurrent Unit layer
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has not been fully explored, they have nevertheless been shown to be faster to train
than LSTMs, as they have fewer gates; they also have demonstrated comparable

performance [58, 61, 149, 162].

2.8 Chapter Summary

We live in the age of the analytics; there is an explosive growth of data — produced
by information digitisation — in volume, velocity and diversity. This has dictated
the need for efficient and effective learning techniques and analysis methods which
can operate on data streams generated in dynamic environments (i.e., that are
changing unexpectedly). Aggregating and analysing data streams from diverse
sources has the potential to derive insights from these data streams in order to
make smarter and real time decisions. However, mining techniques which operate
on conventional data cannot be applied directly on these data streams. This
because that in conventional databases, already stored data may be scanned and
processed many times. In contrast, data streams can be only processed online,
thus, learning models can be trained either incrementally by continuous update
or by retraining using recent batches of data [80, 97, 107, 210, 241].

In many real-world applications, data streams are produced in non-stationary
environments which change dynamically, this results in the phenomenon of con-
cept drift [280]: the change of underlying data distributions over time. Another
difficulty arises when it is assumed that the data is balanced, however in many
real-world problems, the class distributions can become severely underrepresented
in data streams [178, 273]. The problem of class imbalance becomes more acute in
multi-class learning tasks, as the data are dynamically evolving and it is impossible
to see the whole picture of data [273].

This chapter presented a brief overview with regard to mining data streams
and the methods used in this investigation. It examined the existing literature

that relates to learning from data stream which generated by variety of sources
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in dynamic environments. Moreover, it described and discussed main challenges
that may emerge in terms of learning from data streams that exhibit concept
drift and class imbalance. So far, several studies [46, 109, 197, 273] investigating
data streams have been carried out on evolving data streams which have skewed
distributions, however to the best of our knowledge, these studies focused on
binary class problems [137] and there is a distinct lack of research in multi-class
scenarios. Undertaking such an advanced study which examines the combined
problems of stream processing, concept drift and multi-class imbalanced scenarios,
presents a challenge that we aim to address in this thesis.

The development of new methods which can cope with concept drift in evolving
data streams and which can deal with imbalanced classes distributions was a main
challenge in this work. Another constraint was concerned with evaluating the
performance of learning techniques which deal with data streams online and in a
dynamic environment. This relates to the choice of validation procedure, and the
choice of the evaluation metrics which can measure the performance of learning
technique at any time and which can deal with unbalanced data.

A major limitation of this study was the lack of sufficient data streams which
exhibit the presence of heterogeneous data streams produced by diverse sources.
Therefore, we developed a simulation model of a dynamic environment which pro-
duces heterogeneous data streams from set of IoT devices. This was in order to
allow an understanding of the streams dynamics in addition to certain phenomena
present in these data streams. The set of data streams derived from the simulation
model is described in next chapter. Then, we used this dataset, in Chapter 4 and
Chapter 5, to establish new mining techniques which can deal with evolving im-
balanced data stream. In Chapter 6, another time series dataset was constructed
from the simulated data streams in order to explorer prediction techniques with
regard to evolving imbalanced time series streams. These datasets, which derived
from the simulation model, can serve as a benchmark for analysing data streams

from heterogeneous sources.
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Experimental Framework

3.1 Introduction

The enormous proliferation of data streams generated in many real world appli-
cations produces new challenges [51]. The dynamic, high speed, incomplete, and
noisy data streams generated from multiple heterogeneous sources, make it neces-
sary to develop new data mining techniques in order to derive insights from such
data streams [74]. The basic purpose of this thesis is to investigate an aspect of
data mining: learning from multiple heterogeneous data streams generated from
dynamic systems and thus to predict the behaviour of upcoming streams gen-
erated in subsequent time intervals. This chapter presents a broad description
of the problem domain. Subsequently, it overviews the abstract formulation of
the problem for this research; then it provides an illustrative scenario which can
be used to facilitate the process of investigating the problem and exploring its
solutions. In order to demonstrate the problem domain, a smart parking system
based on the IoT has been adopted as a system model. This smart parking system
provides scenario which illustrates a dynamic system requiring reasoning across a
variety of streams. The system can be characterised as heterogeneous, dynamic,
and unbalanced; this means that the streams are generated by different sources, in

a non-stationary environment, and with skewed distributions. The smart parking
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system’s characteristics facilitated the implementing of the required system prop-
erties: there are many parking lots; different types of users; and the data streams
are generated from sensors, smart pay stations, and mobile phones applications
etc. These characteristics make the smart parking system a suitable problem to

use as a basis for our work and the exploration of techniques.

3.2 An Abstract Formulation of the Problem

In this section, we formulate the problem of real time learning from imbalanced
evolving streams. We consider the problem in terms of heterogeneous stream
reasoning, where data coming from different sources — sensors and devices such as
smart pay stations, mobile phones etc. — can be used to extract useful information
and provide support to users in making their choices. Specifically, we assume an
environment which represents a typical university or another organisation with
different types of users that require the use of parking spaces for different periods
of time, with different frequency etc. We are seeking to develop methods that may
be used as part of an application to assist the different users who are searching

for a park space for their vehicles in the situation there are multiple parking lots.

3.2.1 Data Streams from 10T Devices

In the context of this thesis, a data stream S is an unbounded, ordered sequence,
implicitly ordered by arrival time or explicitly by time stamp, of data items 7,
Jtyy -yt ..., which are continuously generated over time. These data items
can be simple attribute-value pairs similar to relational database tuples, such as
the items in the streams exhibited in this thesis, or they might have more complex

structures such as graphs.
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Definition 1. A Data Stream, St,, over a specific time interval, T, [t, ,...,

tn+r—1), is defined as a time series of data items, 4, ... 0, , , :
STn = {Ztn7ztn+17 PN ’Ztn+L—1}
where
o iy = (tn, f1,---, fa); a is the number of features of the data item

e t, is the beginning of the time interval T,

® t,.7 1 is the end of T,

e [ is the length of T',

Here, it is assumed that there are different streams from various sources (src):

sensors, smart meters, twitter feeds, mobile applications, etc.

Let Str be the set of structured data streams, {Stry, Stra, ..., Stry}, generated

by different IoT devices at a given time stamp ¢, where:

St’l"l(fl, N
St?”g(fl, ce

Strk(fl, .

x?y7z

) fx)
fy)

7fZ)

is the number of sources that have generated the data streams
is a stream from the first source sr¢;

is a stream from the second source srcs

is a stream from the k™ source srcy

are the numbers of features in each stream

Hence, in this work we assume that each stream consists of different features.

Furthermore, we assume that the joint of these streams (based on specific features)

over a specific time interval, T, [t, ,..., tnyr—1], (e.g., a single hour) represents

the current window-batch JStry, , and the joint of these streams over the previous
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time interval, T,,_ 1, [tn_r ;- .., tn_1], (e.g., the previous hour) represents the pre-
vious window-batch JStry, . As the window-batches are time-based windows,
so their sizes vary, each window may consist of any number of data items — in

the joint stream.

3.2.2 Titled Time Windows

In the proposed approach, time-window batches are chosen as a means to repre-
sent /process the multiple streams from the IoT devices. More specifically, differ-
ently defined time-windows (titled-time windows) [113, 124, 214] will be used in
order to detect the periodical patterns (the differing seasonal patterns: hourly,
daily, weekly, etc.), from the evolving streams over different time intervals (an
hour, a day, a week and a term). A time-window defined by its title is auto-
matically self-maintained [103, 113, 124]; whenever it reaches the boundary of its
time window granularity, the aggregates stored at its lowest granularity level are
summarized and transferred to the upper granularity level. Typically, the natural
time-windows [103, 113, 124] are represented in the diagram in the Figure 3.1, this
is based on the notion of physical time being split in seconds, minutes, etc. As
illustrated in the diagram, the maintenance of windows is straightforward, when
four batches of 15-minutes-window are accumulated, they are merged together in
order to represent one hour. After 24 hours are accumulated, a day batch can be

built, and so on.

12 months 30 days 24 hours  one hour one guarter

—_ L L

now

Time

Figure 3.1: The natural titled-time-window structure
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The concept of a titled-time window is similar to that of the sliding window
concept where the most recent data are given more importance than old data
[72, 187, 214]. But unlike the sliding windows which discard the old data items
in data stream [214], the titled-time window focuses more on the recent data
without completely ignoring the old data items in the stream [187]. The design
of the titled-time window system is based on the fact that learning from data
streams is time-sensitive. The recent changes at a fine granularity are valuable
and can be used for purpose such as fraud detection (bank transactions) or fault
diagnosis (monitoring systems) [101, 117]. Although the data items in the stream
lose their significance over time [117], monitoring the long term changes at a
coarse granularity can be very useful for identifying trends or detecting changes

in patterns which exist within streams [101].

Definition 2. A Titled-Time Window, Wy, , over a data stream S of a titled
length L, is the subset of all data items in the stream S which consists of those

items that occur between time stamps ¢,, and ¢, 1_1:

WTn - {Ztn72tn+l7 C ’Ztn+L71}
where
e the items ,,%,.,,...,%,,, , are data items from the stream .S, this can
represented as {iy,, %, ,-- -t} C S

t, € T, is the time stamp at the beginning of the window Wy, , 0 <n

tnir—1 € T, is the time stamp at the end of the window Wy, L >0

L is the length of the window, as identified by the user

The choice of the optimal length L of the window depends on the application
domain. In general, the window size should be chosen taking into account the

drift speed of a data stream, therefore small windows should be chosen in periods
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during which the drift is fast, while larger windows should be decided upon during
periods of slow drift [38, 113, 175]. It is important to note that the maintenance of
windows does not necessarily follow the natural titled-time windows. For example,
eight hours might be accumulated to form one working day, or five week days might

form one week.

3.2.3 Car Parking Lots Problem Formulation

This section provides a formalization of the car parking lots problem. As has been
mentioned above, a dynamic parking lots setting has been used in this thesis as
a system model, where there are heterogeneous data streams generated from a
variety of sources: sensors, smart pay machines and a parking mobile app. Based
on the data streams described in Section 3.2.1, let Str be the set of structured
data streams {Stry, Stry, Strs} generated by various IoT devices at a given time

stamp t,, where:

Stri(fi,..., fe) is a stream from camera sensors snj...sn,; m: the number of

sensors that monitor the entry of the set of parking lots

Stra(fi,..., fy) is a stream from smart parking pay stations ps;...ps;; [: the

number of parking pay stations
Srts(fi,..., [.) is a stream from parking mobile app
Y, 2 are the number of features in each stream
Let the data items in the stream Str;, which represents the data stream from
the camera sensors, consist of the following features:

Stri(sens_loc, vehicle_C'T, vehicle_plate, dir)

where:

e sens_loc, is the location of the sensor
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e vehicle_C'T), is the car’s crossing-time
e vehicle_plate, is the car’s plate number

e dir, a boolean variable that indicates the car’s direction, 1: incoming; 0:

outgoing

The second stream Stry, represents the stream from the pay stations; its data

items will comprise the following features:

Stry(pay_loc, vehicle_plate, park_start, park_end, park_fee, discount)

where:

e pay_loc, is location of the station

vehicle_plate, is the car’s plate number

park_start, is the start of the parking-time

park_end, is the end of the parking-time

park_fee, is the parking fee paid

discount, a boolean variable that indicates whether a discount was applied

to the parking fee, 1: discount applied; 0: discount not applied
Let the last stream Strs, be the stream from a mobile phone application, where
each item consists of the following features:

Strs(loc, vehicle_plate, park_start, park_end, park_fee, driver)

where:
e Joc, is parking location obtained through the phone GPS.

e vehicle_plate, is the car’s plate number
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park_start, is the parking-time

park_end, is the end of the parking-time

park_fee, is the parking fee paid

driver, the driver type from the user’s profile

Let the joint of the three streams (the join operation being based on the car
plate number) over a fixed time interval ( e.g., a single hour) be the current
window-batch, JStry , and the joint of the three streams at the previous time
interval ( e.g., the previous hour) be the previous window-batch, JStrr, .. As
the window-batches are time based, so their sizes vary, each window of the joint
stream may consist of any number of data items.

The scenario described by the streams above is a typical scenario in relation
to car parking lots, although the number and the structure of streams may vary
slightly due to different lots specifications and the available facilities. The main
aim of this thesis is to develop new methods: (i) which can learn from evolving
streams with skewed distributions and capture the behaviour of different drivers
(in Chapter 4), and (ii) discover patterns which represent meaningful situation
within such a dynamic environment (in Chapter 5), and then (iii) to predict the
future behaviour of items which will be encountered in these multiple streams
(in Chapter 6). Particularly, we envisage a situation where perhaps the methods
proposed are used as part of an application in order to guide drivers to different
car parks, based on the predicted availability and patterns extracted from the
heterogeneous data streams. So that such drivers will be able to find out, before
they come to the location, how busy the parking lots are and the probability of

finding a parking space when they arrive.
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3.3 Experimental Framework

There are a large number of research areas where real-world experimentation is
difficult or impossible to apply [13, 21, 146, 164], for example, experiments that are
conducted in real-world for traffic control can be expensive and time consuming
[13, 164]. Thus, many researchers have used simulations instead, in order to not
just model a real-world systems and phenomena, but also to run experiments with
hypothetical what-if questions that they would not normally be able to experiment
with or obtain data from in reality [13, 85]. For instance, companies can use
simulations to analyze future market scenarios [171], and policy makers can use
simulations to understand the impact of transport policies on individuals and the
whole system [13, 128].

Simulation is a tool that helps to visualize systems, investigate how systems
will work under specific assumptions, and predict how systems may behave when
provided with differing inputs [13, 49, 85, 263]. Researches [13, 85, 171] pointed

out to the following advantages for simulations over the real systems:

e Independence from spatial dimensions, this enables investigating processes
in extremely large or small systems which would be otherwise difficult to

analyse.

e Time compression (or expansion), this enables observing real-world phenom-
ena that consume very long time (or which occur too quickly) in a reasonable

time frame.
e (Cost-effectiveness in terms of implementation and acquiring data.

e Performing experiments that either are dangerous, or that would be impos-

sible to do them in reality.

The smallest components of the system are referred to as micro [128, 182].
Simulating the micro-level behavior provides insights into the complex systems

and finds causes of the macro-level features [182]. Arisona et al. in [13] showed
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that micro simulation-based models of urban systems can be used for prediction

and scenario analysis especially for transportation and land use.

Definition 3. A Simulation is the imitation of the operation of a real-world
process over time, by representing and scenario playing through computational

models.

In the next sections, we describe the simulation that has been developed as part
of the experimental framework to explore problems with learning and prediction
from multiple data streams, this includes a detailed description of the dataset

which was chosen for this work.

3.3.1 The Simulator

For the proposed problems that emanate from multiple streams of data in do-
mains such as the [oT, it was difficult to find a sufficiently data set generated
from a streaming environment similar to the one described above in Section 3.2.
We consider a smart parking system with multiple types of users etc. to be an
illustration of this streaming environment, where there are a variety of IoT devices
that produced heterogeneous data streams, in a dynamic environment and with
multiple Imbalanced class distributions. However, such datasets are not generally
made publicly available due to privacy concerns. Therefore, we decided that the
best method to adopt for this investigation was to simulate an environment that
generates such datasets. The aim of the simulation was to simulate drivers’ be-
haviour when they are searching for parking spaces and to explore the patterns
which emerge from the behaviour of drivers in parking lots.

There are many computational simulations tools used in the literature such as
Netlogo [254, 283], Simulink [192, 250], DynaMIT [22, 23] and SUMO [64, 208].
Accordingly, the simulator NetLogo [282] was selected as a means of implementing
the proposed model, involving cars and parking lots. Netlogo [282] is a multi-

agent-based modelling tool which provides its own programming language, de-
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signed for the creation of models [254, 283]. It was chosen because of its specific
advantages [254, 283], viz: first, it is a free and open-source modelling environ-
ment for simulating small systems; second, it is a powerful tool that can be easily
learned and used; third, and the most important point, it is appropriate for mod-

elling complex systems which develop over time.

3.3.2 The Simulations Requirements

To realise the dynamic model of the parking lots environment, the simulation

system must have the following facilities:

e A representation of dynamic behaviour: the simulation’s main purpose is to
implement the drivers’ behaviour when they are searching for a car space in
a parking lot, while other drivers are leaving their parking lots. Moreover,
some drivers may enter the car park for drop-off or pick-up without reserv-
ing a space in the parking lots (taxi drivers commonly do this, of course).
Therefore, the system must be able to simulate such dynamic system be-

haviour.

e Heterogeneity: the simulation must be able to generate a variety of streams
which contain different kinds of data items at run-time. This feature is im-
portant when simulating the parking lots system to realise real world parking
lots environment, where multiple data streams are generated, for example,
cameras reading plate numbers, parking stations, entry/exit sensors, mobile

app applications through which the users book places etc.

e A continuous time-driven approach: as opposed to an event-driven approach,
the simulation must facilitate the process of running continuous time-driven
experiments. With this approach, the simulation clock is advanced, contin-
uously, using a fixed increment At. Then after each update of the clock,
the state variables are updated for that time interval [t,t 4+ At]. This is the

most widely used approach when simulating natural systems [160].
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e Scalability: the simulation must be capable of being scaled up by increasing
the numbers of cars that arrive at the parking lots, without changing drivers’

behaviours in relation to the parking lots.

e The simulation should be able to run different hypothetical what-if scenarios.

3.3.3 Data Set Description

As was pointed out in the problem formulation in Section 3.2, this thesis investi-
gates the problem represented by heterogeneous data streams that are generated
by different sources, using the specific case where there are multiple parking lots
and different types of drivers. Accordingly, the proposed approach was applied
to the IoT streams generated by a typical car parking scenario as it would be
experienced in universities both in the UK and abroad. Particularly, the data
from the University of Essex were used to construct this experimental setting, a
map of the University of Essex parking lots ! is shown in Figure 3.2.

Here, there are six different parking lots, and only three main entrances to all

these parking lots, as follows:

!The map available on: http://findyourway.essex.ac.uk/

Figure 3.2: The map of parking lots at the University of Essex

52


http://findyourway.essex.ac.uk/

Chapter 3. Experimental Framework

e The first entrance leads to the North Car Park, which is open to both staff
members and students, also it has special parking spaces for drop-off for the

university’s nursery, and a drop off/collection point for taxis.

e The second entrance leads to the Multi-deck Car Park which is intended
for staff members only, and Car Park B which is used by gym members in
addition to staff and students. Also, there is a drop-off/collection point for

taxis at Car Park B.

e The third entrance leads to Car Park A which is designated for students use,
plus the Valley car park which has special parking spaces for visitors and
the Constable Building car park which is designated for on-campus hotel

staff and hotel customers/visitors.

The Multi-deck Car Park is the only one which is equipped with a camera
sensor for number plate recognition. However, with the increasing usage of IoT
devices, it is more likely that in the near future a lot more places will be equipped
with such sensors, and for the purpose of this work we assume that there is a
camera sensor at each entry capable of identifying all the cars that cross the entry
point. Here, the sensors were assumed to be camera sensors, due to the increasing
use of camera sensors in monitoring and surveillance and their low costs and high
accuracy as compared to other sensors.

In this scenario, the drivers who are looking for parking spaces, can be divided
into four groups: staff members, students, gym members and visitors; staff mem-
bers and students get a discounted rate on the parking fee. Moreover, there is
a smart pay station located at each parking lot, where the drivers can pay the
parking fee, or they can alternatively pay for parking using a (presumed) mobile
phone application.

To obtain an understanding of the real-world situation in the parking lots, and
in order to develop as realistic a simulation as possible, the following techniques

were used:
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e We approached and had in-depth discussions regarding the operation of the
car parks with the Transport Policy Manager of the University of Essex, Ms.

Charlotte Humphries.

e We obtained and examined a report concerning the daily usage of the Multi-
deck Car Park over three months period in the summer term of 2016, from
08/03/2016 until 17/06/2016, snapshots of this report are provided in Ap-

pendix A.

e Hour-long meetings were arranged with two of the traffic officers at the Uni-
versity of Essex, Mr. Gary Gibbons and Mr. Joe Preston, to obtain a better
understanding of the patterns that they had observed as they patrolled the
parking lots on a daily basis to ensure that users had paid for parking. The

full transcripts of the interviews is provided in Appendix B.

o We accessed the University’s web site and investigated the official published
information concerning the car parks at Colchester campus, drivers parking

information, and parking rules and regulations.

According to this information, there are 1,620 parking spaces at the University;
the details of these parking spaces are shown in Table 3.1. The parking charges are
applied from 9:00 in the morning until 16:00 in the after noon on weekdays from
Monday to Friday; at all other times, it is free to park. Furthermore, if a driver
(a staff member or student) registers his/her car with the Estates Management
Help Desk, s/he is entitled to pay for their parking at lower rate: 10 pence per
hour or 70 pence per day, otherwise s/he must pay the normal visitors’ rate. The
total number of registered users (both staff members and students) in the year
2015-16 was 2,942 which is double the number of spaces available in the parking
lots. Also, the number of users registered as staff members was 1,613 in the year
2015-16, exceeding the number of users registered as students which is 1,329 for

the same year.
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Table 3.1: The capacity of the parking lots at the University of Essex

Car Park Capacity (spaces)
Car Park A 102
The Valley Car Park 368
the Constable Building Car Park 91
The Multi-decked Car Park 397
Car Park B 255
The North Car Park 407
Total 1,620

From an analysis of the report, it can be seen that that 8:00 and 9:00 in
the morning are the peak hours; after these hours, the number of cars arriving
decreases slightly; this is reasonable considering the structure of a typical working
day, the times that lectures, seminars and other events start. On the other hand,
there is a significant increase in the number of cars on Tuesdays and conversely a
significant decrease on Fridays.

Furthermore, due to the fact that there is no information concerning the use
of the other parking lots which are available, and in order to create a sufficiently
realistic simulation model, semi-structured interviews were conducted with the
traffic officers working at the University of Essex. It was found from this that
there is a slight decrease in the number of cars parked at all of the lots, but
especially in Car Park A and the Valley Car Park towards the end of term. While
in the summer, Car Park A is nearly empty, the Valley Car Park is not used to
its full capacity, conversely there is a noticeable increase in the number of visitors
at the same time. However, there is no clear difference between term time and
summer as far as other parking lots are concerned where most of the users are
staff members. The Figure 3.3 shows how busy the parking lots are in the term
time based on the information from the aforementioned interviews and the report.

In addition, the majority of the users of the six parking lots are registered
users, which means they are staff members or students. About 25% of the drivers
who use Car Park B are non-registered users and according to the traffic officers

they are usually gym members. The officers also reported that special days at
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LP: Low Peak

P: Peak
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The occupancy of the University of Essex parking lots during the

term time

the University are usually held in the summer: e.g., graduation days and summer

schools. Since Car Park A and the Valley car park have a lot of empty spaces in

the summer, they are allocated for visitor use on these special days; temporary

parking spaces are opened for visitors as well. A summary of the interviews is

shown in Table 3.2.
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3.3.4 Data Set Simulation

In the light of what has been discussed above about the difficulties in obtaining
a data set that sufficiently represents a dynamic setting like these parking lots,
and based on the data collected via the interviews and the analysis of seasonal
and other patterns of behaviour discussed in the previous section, the activity
at the parking lots at the University of Essex for the academic year 2015-2016
was simulated using NetLogo [254]. Subsequently, the 11 weeks from Monday 5
October 2015 until Friday 18 December 2015, i.e., the Autumn term of 2015-16,
was chosen as the period from which the data set to be used was extracted.
Furthermore, a multinomial distribution was selected as the one to govern to
the allocation of cars into parking lots. Due to the lack of information about
the precise parking probabilities governing each parking, the parking probabilities
were calculated based on the number of registered drivers. As has been reported
by the parking officers, the percentage of non-registered drivers who park their
cars in the university parking lots at any one time comes to approximately 10% of
the total number of parking spaces, and this figure, coupled with the information
which was available about the number of registered drivers who were staff and
students, outlined in the previous Section 3.3.3, means that the percentage of staff
to the total number of drivers is 53%, the comparative percentage of students is
42%, the percentage of gym members is 2% to the total number of drivers and
the percentage of visitors to the total number users is 3%. There is an equal
probability that a staff member parks his/her in the Multi-decked Car Park, Car
Park B, the Valley Car Park or the North Car Park. Moreover, there is an equal
probability that a student will park his/her car in Car Park A, Car Park B, Valley
Car Park or the North car park. However, the Constable Building Car Park is
allocated to a specific group of staff. Consequently, the probability used to allocate
a car into a parking space, i.e. the probability that an arriving car will park in a

specific parking lot, was calculated as presented in Table 3.3
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Table 3.3: The probabilities used to allocate a car into a parking lot in the
simulation model

Car Park Probability

Car Park A 0.12
The Valley Car Park 0.24
Constable Building Car Park 0.03
Multi-decked Car Park 0.13
Car Park B 0.24
The North Car Park 0.24
The Cumulative parking probability 1

In brief, for the Autumn term, three data streams were generated and ex-
ported as MS-Excel files: the sensors stream, which consisted of 189,260 data
items, the combined payment stream, from all the pay stations and also from
the mobile phone application, consisting of 114,021 data items. The structures
of these streams are presented in Table 3.4. Screen shots of the graphical user
interface (GUI) of the simulation are provided in Figure 3.4.

Moreover, the full details of the simulation’s steps and its functions are shown
in Appendix C. It is worth to review the occupancy patterns at the different

Table 3.4: The structure of data streams generated from the simulation model
of the parking lots at the University of Essex

Data stream The structure of the stream

Date

Time

Camera sensors stream Sensor location

In or Out

Car plate number

Date

Payment time

GPS location of the station

Pay station stream Car plate number

Payment amount

End of parking duration

Discount (yes, no)

Date

Payment time

Mobile application stream | Car plate number

GPS location (some users enable it, other disable it)
Driver type (from user’s profile)

Payment amount( parking duration derived )
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s :

Figure 3.4: Screen shots of the model simulation GUI in NetLogo

parking lots as it appears in the joint of the three simulated streams, and compare
it with the occupancy in the real data (previously illustrated in Figure 3.3). In the
joint stream, there were 74,105 rows that represent parking information for staff
members, 31,453 rows for students, 4,439 for gym members and 1,508 rows for
visitors. These numbers show the imbalance in driver types in the simulated data
(i.e., multi-class imbalance) . We used Tableau [60] to extract and plot parking
patterns from the joint streams. The following diagram in Figure 3.5 shows the
patterns appear at each parking lot over different intervals of the Autumn term.
This shows that our simulation is able to produce similar data to what has been

reported in the interviews, Multi-deck car park report etc.
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Chapter 3. Experimental Framework

3.4 Chapter Summary

This chapter describes the experimental framework of the present research. The
contribution described in this chapter is two-fold. First, we present an abstract
formulation of the problem using an illustrative scenario which relates to a smart
car-parking system, where there are a set of parking lots which are all equipped
with a number of differing [oT devices. Second, we develop a car parking simu-
lation based on a real world environment to facilitate experimental work. This
simulation is used to create a dataset that is close to a realistic scenario and the
dataset itself exhibits multi-class imbalance suited for experimental purposes. In
detail, the chapter provides a detailed description of the University of Essex park-
ing lot usage information, then it presents a simulation model of the movements
of traffic within the parking lots. This simulation was designed to produce the
necessary heterogeneous data streams, which change dynamically and which ex-
hibit multi-class imbalanced distributions (i.e., different types of users where most
of users are either staff members or students, in addition to the other users: gym
members and visitors). These heterogeneous data streams provided the means
by which the investigations described in the following chapters were facilitated,
particularly, for the development of new learning techniques which can operate
on evolving data streams with skewed distributions (i.e., to classify the user type)
and which can extract useful patterns from these streams and predict the future

behaviour of items which will be encountered in these streams.
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Chapter 4

Learning from Imbalanced

Evolving Data Streams

4.1 Introduction

Machine learning and data mining models have been widely applied in industry,
marketing, finance, web analytic and many other areas [94, 286]. In the past,
these models have been built based on data that has been assumed to be suffi-
cient and representative of fixed distributions [137]. However, in many-real world
applications, such assumptions are unsupportable. For example, many real-world
applications run in a dynamic environment (e.g., weather prediction, financial
markets analysis or monitoring systems), and these environments often suffer from
the concept drift problem. Furthermore, in many situations, the class distribu-
tions are skewed, resulting in the imbalanced classes problem. In data stream
scenarios, the variety and velocity of the data have introduced new challenges to
the established learning techniques, as these streams must be processed quickly
in one or only a few passes.

This chapter investigates the combined challenges posed by evolving streams
and multi-class imbalance. The complexity of these problems lies in the intersec-

tion of stream processing, concept drift and imbalanced data. The combination of

63



Chapter 4. Learning from Imbalanced Evolving Data Streams

these difficulties constitutes a challenge not only when building algorithms which
learn from non-stationary streams but also when evaluating their performance.
Accordingly, a new approach is proposed which extends concept drift adaptation
techniques into imbalanced classes scenarios, by developing an adaptive learning
algorithm which uses a windows based approach. In addition, in the proposed
approach, a window of the minority classes is maintained and then is used to
modify the training set, this is in order to cope the imbalanced classes’ problem.

The rest of this chapter is structured as follows. The next section discusses the
main challenges represented by the task of learning from data streams. Section
4.3 presents a review of the techniques used for mining data streams and which
are of potential use in non-stationary environments that may exhibit skewed dis-
tributions. Data stream mining algorithms can be grouped into classification,
clustering or pattern mining methods [137], the focus of this chapter is solely on
the classification techniques. Then, the proposed method will be described in
Section 4.4. This will be followed by a presentation of the experimental work in

Section 4.5. Finally, the conclusions will be discussed in Section 4.6.

4.2 Challenges in Learning from Data Streams

Learning from data streams is challenging, it is quite a different task from that
of learning from conventional data sources. Specifically, the nature of these data
streams presents the following difficulties when applying the conventional learning

techniques and algorithms on them|[31, 123, 167, 215]:

e Real-time data processing: data stream items arrive continuously and
at high speed, and the learning algorithms must process this data in real
time or near real time. Therefore, ideally, the learning algorithms should
perform only one-scan on the data (this is unlike the conventional techniques
which store and scan data multiple times), reducing the computational cost

without compromising accuracy [215].
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e Concept drift: Many real-world applications generate huge amounts of
data in the form of data streams: web logs, sensor data, financial transaction
logs, etc. And these data streams can evolve over time, so manifesting in
a phenomenon called concept drift [80]. In the classification scenarios, for
example, in which there are labelled data for training and then for test, some
classes being trained for may change over time and other new classes might
emerge. Concept drift affects the performance of any learning technique
which must operate over these evolving data streams; previous models may
no longer be able to classify the new data instances [166, 237]|. Therefore,
learning algorithms must adapt to the changes in the data stream quickly

and accurately [123, 167].

¢ Imbalanced class distributions: Class imbalance is a common problem in
real world applications. Typically, it occurs in classification scenarios where
the classes are not all represented equally in the data set [46]. In these cases,
some of the classes may be rare, appearing only occasionally; such circum-
stances arise in relation to applications like fraud detection, spam filtering
and fault diagnosis in e.g., computer monitoring systems [48, 273]. Classi-
fiers and the evaluation techniques associated with them tend to be biased
towards the majority classes, resulting in high accuracy classificatory perfor-
mance being reported despite the fact that the minority classes are largely
ignored. Multi-class imbalance imposes additional challenges as compared
to those encountered in relation to two-class imbalances; the situation may
be exacerbated in some data stream domains by the data dynamically evolv-
ing in such a way that it is impossible to see the whole picture of data at

any one time [46, 47, 273].

Moreover, it should be noted that, in particular because they come from het-
erogeneous sources, the streams must be pre-processed before learning takes place

based on these streams, the pre-processing includes [110, 127, 221]:
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e Data cleaning: data streams from sensors typically contain noise which af-
fects the data analysis, so redundant values must be removed, missing values

must be filled in, and outliers also removed.

e Data integration, the streams must be joined in order to process them in

parallel over the same interval.

e Data transformation, data may have to be converted from one format or

structure into another format or structure.

e Data reduction, to obtain the optimal minimum representation, in terms of

volume, which produces valid analytical results.

This kind of pre-processing is not only required for the application of the
technique proposed in this chapter, but it is a general requirement when one
is trying to learn from multiple streams of data that come from heterogeneous

sources [110, 127, 221].

4.3 Classification Techniques for Data Streams

Supervised classification is one of the most widely studied techniques in machine
learning and data mining. With regards to data streams, classification techniques
used on conventional databases may be extended to streaming scenarios (e.g.,
Bayes techniques, decision trees, or rule-based classifiers) [118], previous studies
reported that some classifiers recover faster from sudden changes of concepts than
others, particular, incremental learners can adapt to some extent automatically
with the drift [225, 262]. Combinations of these techniques may be used to build
more robust classifiers known as ensemble techniques [118].

Ensemble learners have been extensively studied in literature, and they have
been adapted in many real-world problems to handle problems in data stream such
as concept drift or imbalanced classes. One of the first attempts to cope with con-

cept drift in imbalanced data streams was proposed by Wang et al. [271]. Their
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work used an ensemble technique which consists of three base classifiers: decision
trees, naive bayes and neural networks and analysed the impact of concept drift
on the performance of each class. An explicit Drift Detection Method for Online
Class Imbalance (called DDM-OCI) then used to monitor the change in the recall
of the minority class in order to detect the drift. However, their work has a num-
ber of limitations; first, it only dealt with two-classes data streams and did not
take multi-class imbalance into account; second, it made an assumption that the
minority class is known at the beginning before applying the proposed technique;
third, the drift detection method proposed has been affected by the variance of re-
call on the minority class throughout the learning, which led to false positive drift
detections (false alarms). Another algorithm was presented in [46], a new method
called Prequential AUC (PAUC) was proposed for calculating the area under the
ROC curve (AUR) incrementally in imbalanced data streams. In this work, a
number of classifiers were chosen: naive Bayes and Very Fast Decision Tree with
naive Bayes leaves as incremental classifiers; and Dynamic Weighted Majority,
Online Bagging with an ADWIN drift detector, and Online Accuracy Updated
Ensemble as nsemble classifiers. Similar to the previous work [271], PAUC used
independent drift detecting techniques, so the online model only retrained when
a drift detected. Furthermore, it observed the overall performance rather than
the performance of single class. However, a major drawback of this work that it
only dealt with two-classes imbalance, and it was not clear how this method could
be extended into multi-class imbalance. Later, another ensemble learner named
ESOS-ELM [198] was presented. It consists of an ensemble classifier, where the
minority class sample is processed by a number of classifiers depending on the
imbalance ratio and the majority class sample is processed by a single classifier.
Furthermore, a re-sampling technique was used to cope with the class imbalance
problem and an accuracy weight votes were used to tackle the concept drift. The
main drawback of this work, however, that it was impractical to apply the method

proposed in real-world application, as it required the availability of an initial data
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set that includes examples from all classes — before the algorithm commences.
All the aforementioned methods were designed to handle the concept drift in im-
balanced data streams which exhibited the presence of only two classes, but none
of them addressed the multiple class imbalance [274].

To the best of our knowledge, the ensemble approach is the only method which
has been applied in the literature to solving the problem of concept drift and class
imbalance appearing together [137, 274]. More research needs to be undertaken
to extend the other concept drift adaptation techniques which has been discussed
in Section 2.5.1, specifically, adaptive base learners and learners which modify
the training set into the context of class imbalance [137]. Moreover, data streams
generated in real-world applications often are non-stationary streams that contain
multi-class imbalance. Further solutions are required to handle concept drifts in
these multi-class imbalanced data streams, because the existing techniques only

work in the two-class imbalance context [46, 198, 271, 274].

4.4 ICE-Stream Technique

Here, a new technique for classifying Imbalanced Classes in Evolving Streams
(ICE-Stream) is proposed. This new technique seeks to handle concept drift in
imbalanced data streams, particularly, in multi class imbalanced data streams
where each class can be represented by a single label. It is beyond the scope
of this thesis to examine multi-label classification problems in streaming scenar-
ios. In detail, the proposed ICE-Stream technique attempts to extend concept
drift adaptation techniques into imbalanced classes scenarios. Thus, an adap-
tive learner (naive Bayes) is used to classify multiple streams over a sequence of
titled-time windows. Moreover, the training set for the ICE-Stream technique is
modified by the addition of examples of falsely classified instances (from the pre-
vious windows) in the subsequent training windows in order to discover instances

of the minority classes.
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4.4.1 Adaptive Learner Model

In the proposed method, naive Bayes is used as the base learning classifier. It
is a supervised learning approach that assumes independence between attributes
(i.e., changing the value of a feature, does not directly change values of the other
features) and uses the probabilities of each attribute belonging to each class to
make a prediction of another attribute class. In particular, naive Bayes is based
on the Bayes Theorem, which indicates that there is a simple relationship between

p(z | y) and p(y | ), which can be expressed as [202, 231]:

ply | ) * p(x)

p(y) (4.1

plr]y) =

where the conditional probability, p(x | y), can be computed from the conditional
probability p(y | ) and the unconditional probabilities, p(z) and p(y). Despite
that the assumption of features independence may be violated in many real-world
applications, naive Bayes has been reported in practice to work efficiently even
though its independence assumption is violated [83, 172, 226].

The naive Bayes technique has been reported in the literature as being ideal
for stream mining because of its incremental nature and its ability to deal with
missing values; incremental learning techniques cope with concept drift faster
than other learning techniques [104, 225]. It is easy to update naive model when
new data stream items arrive unlike other classification approaches, for example,
Decision Tree which involves an exhaustive searching and sorting of all possible
answers or reconstructing the tree structure with every minor change, which is
inappropriate in real-time situations. It is worth pointing out here that we used
Weka [122] to find the best algorithm that fits with the data in our model and
applied different mining techniques, and although decision trees (J48) produced
sufficient classification results but it required reconstruction with every new stream
data arrives, which costs memory and processing time. Furthermore, naive Bayes

is the only generative classification method which provides a complete model of

69



Chapter 4. Learning from Imbalanced Evolving Data Streams

the probabilistic structure of the data whereas other classification approaches are
examples of discriminative models [104, 202]. The main difference between a
generative and a discriminative model is that the latter one learns the conditional
relationship between inputs, x, and the class labels, y, directly from the data.
Whereas the generative model provides a complete probabilistic description of
the data, by computing the joint probability of the inputs, x, and the class labels,
y, and then make predictions using Bayes rules to calculate p(y | =), to pick the
most likely class label [202].

Therefore, we decided that the naive Bayes technique was the best method
to adopt for this investigation, considering its ability to cope with concept drift
without extra explicit change detection methods, and where the posterior proba-
bilities could be used to calculate dynamic thresholds to identify the patterns of
interest (this will be discussed in details in the following chapter).

Let the joint stream, JStr, described in the previous chapter, be represented
by a vector f = (fi,..., f.) representing x fields (independent variables); this will

give each class, C, the probability:

p(Cy | f17~--af$)

To estimate the parameters of the naive Bayes model to be used in our ap-
proach, we utilise the Maximum Likelihood method which can be written as fol-

lows:

P(Oy> p(f | Oy)

p(Cy | fi) = 4.2
and can otherwise be understood as:
posterior probability = prior * likelihood (4.3)

evidence
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Where:

e posterior probability, is the probability of the occurrence of a class ,C,,

given that set of features (i.e., predictors) occurred

e prior, class prior probability, is a probability of the occurrence a class ,C,,
in the dataset and which can be calculated by counting all instances that

belong to this specific class divided by the overall observed target values

e [ikelthood, is the probability of the occurrence of a feature, f;, within a
class, C,, this can be calculated by counting all instances that indicate
a specific feature value (and ignore other values) divided by the overall

observed feature values
e cuvidence, is the probability of the occurrence of a feature, f;, in the dataset

The naive Bayes classifier is applied over sequential titled-time windows of
the joint stream, JStr, on the basis of interleaved test then train chunks [29],
where each arriving window-batch, JStry , of the joint stream, JStr, is used
first for testing, and then for training the classifier. As mentioned previously in
Section 2.4.1, cross validation is not applicable for data streams and so pre-quential
evaluation and holdout evaluation are the basic evaluation techniques used for the
data streams. Next, for each window-batch, JStrr, , the joint probabilities are
calculated. Joint probability, JP, is a measure that calculates the likelihood of
two or more items, x and y, occurring together at the same time: p(x Ny), it can

calculated using the conditional probability as [202, 231]:

plzNy) =ply | z)*p(z) (4.4)

This joint probability can be expressed, in relation to our approach, as:

p(C) [ p(Fi1Cy) (4.5)
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where the probability that specific attributes f; and fs belong to a specific class
Cy is the probability of f; and f, occurring, given that C), occurs multiplied by

the probability that C, occurs.

4.4.2 Time-window Based Approach

One of the most widely used methods for adapting classifiers to work over evolv-
ing streams is the sliding windows approach (this is also referred to as batch-
incremental) [48, 224]. This method has been extensively made use of in the
literature to process data streams over sequences of windows in a way that en-
sures only the most recent data items are used to train the classifier. Typically,
classifiers are constantly reconstructed with the arrival of a new batch of streams.
In the approach proposed here, a number of different titled-time windows are used
in order to detect the periodic patterns (the daily and seasonal patterns) which
exist in the evolving streams across different time intervals. Using the titled-time
windows approach, the most recent data are given more importance than old data,
without discarding the old data items in data stream [72, 187, 214]. The structure
of the titled-time window technique was described previously in Section 3.2.2.
Because of the complex situation represented by the intersection between con-
cept drift and imbalanced classes, it is difficult to choose the most appropriate
size for the windows. In general, the window size should be adapted according to
the drift speed of the data stream. The use of larger window sizes is more efficient
(in terms of processing resources) during periods of slow concept drift, but shorter
window sizes generate better results during periods of faster drift [38, 113, 175].
Thus, small windows should be chosen during periods of fast drift, and large win-
dow sizes must be selected for periods of slow drift. On the other hand, while
increasing the size of a window would increas the probability of concept drift
occurring in that window [38, 113, 175], this also allows a sufficient number of ex-

amples of all classes (i.e., including instances from the minority classes) to appear
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in the data stream [28, 289, 295].

4.4.3 Minority Classes Window

The minority classes problem occurs when classes are not represented equally in
the data stream. For example (the worst case) when an instance of one of the
minority classes appears in the test set, and none of this class’ instances has been
seen before in the training set. To overcome this problem in the ICE-Stream
technique proposed here, the training set will be modified as processing proceeds
in order to ensure that the problem of class imbalance is addressed at the dataset
level. In particular, every window-batch, JStrr, is used first for testing and then
for training, so once the window-batch, JStry, has been used for testing, it will
be taken account of, by the ICE-Stream technique, to maintain a window, W,
of the incorrectly classified instances. This window, W ,,;,,, only stores a minimum
number of falsely classified instances (i.e., if a number of identical attributes are
misclassified under the same label, only one instance is stored in the window),
so it does not affect other classes distributions. The choice of the number of
examples maintained to represent the false classification depends on the domain
of the problem, this imposes the need to have an understanding of the classes
in the underlying domain. The examples from this false classification window,
W nin, are included in the training set for subsequent windows. Moreover, W,
is updated on the arrival of each new window-batch JStryr,,. This will help the
system to “be aware” of the exceptional situations in (for instance) the parking
lots as it maintains a record of them for future reference.

A simple pseudo code description of the proposed ICE-Stream technique is

provided in Algorithm 1.
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Algorithm 1: ICE-Stream algorithm for learning from imbalanced evolv-
ing streams

1 ICE-Stream
Input : IoT — Stream: joint stream from heterogeneous IoT streams
L: length of time windows specified by the user, L > 0
N: length of the stream specified by the user, N > 0
Output: Labels: the class labels for items in IoT — Stream
2 r=1
3 Wmm - (Z)
4 Wtrainmg - (Z)
5 for each incoming window JStry, in I[oT — Stream over Ty[ty,tpir—1] ;
(x+L) < N do

6 Wtraining = JStrTI

7 if JStrp, is the first window in the stream then

8 ‘ N B — model = build-the-classifier (Wi qining, JStrr,)

9 else

10 Wtraining = Wtraining + szn

11 NB — model = update-the-classifier (Wi qining, JStrr,)

12 Winin = Wiin + the falsely classified instances (N B — model)
13 end

14 Ps = prior probabilities from N B — model

15 C'Ps = the conditional probabilities from N B — model
16 PPs = calculate-the-post-probabilities(Ps, C'Ps)

17 | Labels = find-classes-labels( PPs, JStrr,)

18 r=x+1

19 end
20 return Labels;

4.4.4 Evaluating the Classifier Performance

There are two common approaches to evaluating the classifiers which work on
streaming data:(i) Hold out evaluation, which makes use of hold out set (this in-
cludes hold out set gathered at periodical intervals) for test, and (ii) Prequential
evaluation — predictive sequential evaluation — which involves the interleaved
testing then training of data items (or data chunks) [106-108]. While, for pre-
quential evaluation, each example or window of examples, is first used to test
the current model, then used for training, only some instances of the stream are
used for testing when using the periodical hold out evaluation method. More
specifically, hold out evaluation estimates the accuracy of the classifier only on

the most recent data, and it may overestimate the classifier’s performance overall
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if it is applied during a less volatile period. Therefore, interleaved testing then
training of chunks of data [48] has been chosen for the evaluation of the classifier

implemented by the proposed ICE-Stream technique.

4.5 Experimental Work

In this section, the implementation of the proposed ICE-Stream technique is shown
as applied to the IoT streams generated from the parking lots setting of a typical
University. Three data streams generated from a simulation of the University of
Essex car parking lots scenario, which has been described in Section 3.3.3 in the
previous chapter, have been used to construct the experimental setting. Theses
streams come from multiple devices and demonstrate multi-class imbalance prob-
lem. Thus, it is possible to demonstrate experimentally the efficiency of extending
concept drift adaptation techniques to the multi-class imbalanced evolving streams

context.

4.5.1 Data Analysis and Pre-processing

For the purposes of this experiment, the simulated car movement data for the
parking lots over the autumn term of year 2015-2016 was chosen. This term
consisted of 11 weeks, from Monday 5 October 2015 to Friday 18 December 2015.
Only working days within this period were selected for consideration; the working
day was considered to start from 07:00 in the morning and to end at 16:00 in the
afternoon (cleaners and maintenance staff tend to start their shifts earlier than
09:00 am).

As the streaming environment in this work is based on University parking lots,
and the lectures are generally of one hour long, therefore, one-hour was selected
as the appropriate time window interval. The proposed algorithm will applied
on one-hour windows, these windows will not be discarded after been processed,

instead, the summary of these windows will be transferred to the upper window.
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When nine one-hour windows are accumulated, a one day window will be formed;
similarly, five days, from Monday to Friday, will generate a one week window, and
11 week windows form the one-term window, so the maximum number of windows
which the proposed approach may deal with is 51 windows per week (i.e., 45 one-
hour window, five days window, and one week window). The structure of the
titled-time windows over the Autumn term used in this approach is shown in
Figure 4.1.

Before applying the proposed ICE-Stream algorithm, the data streams must
be prepared for processing. The streams from the camera sensors, the pay stations
and the mobile app are all simulated; hence the data is complete and clean and
contain no redundancies. These three simulated streams, Stry, Stry, and Strs
were joined (only including the cars’ entry data) over the term window, based
on the car registration (plate) numbers using MS-SQL. After this, the rows that
contained null values were removed, and the parking durations were derived from
the payment information. Moreover, as the naive Bayes had been chosen as the
base classifier for ICE-Stream algorithm, and in order to prepare the joint data
stream for this next step, the entry time values were converted into three intervals
— peak, off-peak and high-peak. In addition, the parking duration values were
converted into categorical features; it is common practice when using the naive

Bayes techniques to discretise all numeric features so that all features are categori-

DIDITDITDIOMIIIIIIIIIBT:

. Drary o Day
Day-Window-1 Window 5 AR Window 55
Week Week
Week Window 1 Window 10 Window 11

Term Window 1

Figure 4.1: the structure of the titled-time windows in the proposed approach
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Table 4.1: The details of the classes in the parking lots data set

Class Number of instances | % of total | Class type
Class 1 (staff member) 74,105 66.45% majority class
Class 2 (student) 31,453 28.20% majority class
Class 3 (gym member) 4,439 4% minority class
Class 4 (visitor) 1,508 1.35% minority class

cal [178]. Furthermore, as we noted in Section 4.4.1, the naive Bayes assumes that
given a class variable, the other features of this class are independent variables
(features independence), this can be observed in the parking lots data set (i.e.,
given the class: type of driver; the other features: parking duration, parking loca-
tion, and the camera sensor location are independent). Overall, the total number
of instances to be classified in the data set was 111,505, over two majority classes
and two minority classes. Table 4.1 provides the details of the classes represented

in the data set.

4.5.2 Building the Adaptive Learner Model

After joining the data streams, a classification of the data items representing the
cars arriving at the parking lots is sought. The type of driver must be determined,
based on the collected parking information (parking location and parking dura-
tion). Accordingly, the base learner, the naive Bayes, is applied to the joint stream,
JStr. The algorithm was implemented using the e1071 package [195] written in
R [145, 253], an open source language and environment for statistical computing
and graphics, and the MOA software framework [29] — which contains implemen-
tations of several state of the art classifiers and evaluation methods. Furthermore,
an interleaved process of testing then training chunks of data from one-hour win-
dows was used to evaluate the classifier, whereby each window, JStry, was used
first for testing, then with the arrival of a new window, it is used for training the

classifier.
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4.5.3 Comparative Assessment

The main aim of this comparison is to assess the proposed method and investigate
the effectiveness of applying adaptive learning technique to imbalanced evolving
streams scenarios. Thus, the performance of the proposed adaptive learning tech-
nique is compared with the performance of a number of benchmark classification
approaches: four of these are state-of-the-art dynamic ensemble learning methods
which are designed specifically for data stream learning. Namely, the naive Bayes
using interleaved chunks sourced from windows of one-hour each, is compared
with the following methods: the Accuracy Updated Ensemble classifier [45], Ac-
curacy Weighted Ensemble classifier [267], Adaptive Random Forest algorithm for
evolving data stream [119], Adaptive Random Forest Hoeffding Tree [27]. These
algorithms were described in details in Section 2.5.1. In addition, it compared
with the K-nearest Neighbours classifier [67] which is a simple and powerful clas-
sification algorithm that uses voting from nearest neighbors and which has been
used the literature for concept drif [137], the Rule classifier, the Majority Class
classifier and the No-change classifier. All these algorithms are available within
MOA framework [29, 32].

Table 4.2 shows the results obtained from the performance evaluation of the
aforementioned algorithms; the results can be compared using Figure 4.2. Based
on mean accuracy and Kappa metrics [65], , which allows better estimations for
datasets with imbalanced classes [119], the naive Bayes was able to achieve a high
learning performance, it is ranked fourth among the other approaches, with high
mean accuracy and Kappa (k) values ! : 99.88% and 99.76% respectively. It is
apparent that there is no observed difference in the performance between the naive
Bayes and the ensemble classifiers; for instance, the Accuracy Updates Ensemble
classifier was ranked first with 99.98% and 99.96% mean accuracy and Kappa

respectively which means that it was able to classify the evolving data stream

'Kappa, &, values in this chapter are calculated using the MOA framework and are shown
in percentage [29]
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Table 4.2: The results of the comparative performance evaluation between the

classifiers
Accuracy (%) | Kappa (%) | Time (sec)
= =z =
= g =
= = =
= = - =
O ] ) = 5} e
% |8 7 | g % |
Classifier S| B = 5 g
The Adaptive learning classifier (naive Bayes) | 99.98 | 99.88 | 99.95 99.76| 0.14 | 0.08
Accuracy Updated Ensemble classifier 100 | 99.98 | 99.99 99.96| 1.39 | 0.76
Accuracy Weighted Ensemble classifier 99.99 | 99.97 | 99.98 99.93| 5.88 | 3.02
Adaptive Random Forest classifier 99.99 | 99.95 | 99.98 99.90| 2.71 | 1.41
Adaptive Random Forest Hoeffding Tree 98.77 | 97.49 | 97.41] 94.63| 0.19 | 0.11
K-nearest Neighbours classifier 98.60 | 98.39 | 97.04 96.59| 6.10 | 3.16
Rule classifier 84.27 | 74.29 | 62.18 29.15| 5.90 | 2.09
Majority Class classifier 66.44 | 66.27 | 32.25 31.88| 0.12 | 0.08
No-change classifier 52.63 | 52.63 | 4.37 | 4.32 | 0.09 | 0.06
ETime WEKappa W ACcuracy
Mo-change classifier |m
Majority Class classier | ——
Rule Classifier
] K-nearest Neighbours [ —
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2 Adaptive Random Forest |
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Figure 4.2: A comparison of the performance evaluation results between the

classifiers

and takes the class imbalance in account. Moreover, the naive Bayes classifier

surpasses the ensemble classifiers in respect of average processing time.

As the accuracy might be misleading in relation to the unbalanced data, the

output of the naive Bayes is compared manually with the ground truth (the actual

classes labels in the simulated stream), by comparing the predicted target values

from the classifier with the actual target values. Accordingly, out of 495 one-

hour time windows which were tested, misclassification occurred in 59 windows,
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Table 4.3: An analysis of the naive Bayes errors over the Autumn term
2015-2016 interval (11 weeks)

Observed misclassified
windows | instances | windows | instances
495 111,505 59 147

only two misclassification cases were repeatedly observed (i.e., the two cases were
repeated in 147 instances). Table 4.3 ? summarises the analysis of the errors made
by the adaptive learning technique (the naive Bayes) over the 11 weeks interval,
the Autumn term 2015-2016, and a detailed confusion matrix is presented in
Table 4.4. What is interesting to see from these data is the ability of the proposed
adaptive learner to detect the minority classes. However, the adaptive learning
technique alone is not adequate for the task of classifying all instances of the
minority classes properly, i.e., 5.4% of class 4 instances are classified incorrectly.
Furthermore, this adaptive learning technique also fails to discover the drift in the
minority classes. The reason for this is that the adaptive learner was applied over
time windows, this approach can detect/adapt with the concept drift in balanced
data, but it is difficult to recognise the change in the minority classes over time,
where often there are none or only few instances of the minority classes appear
in the window. The next section shows experimentally how could modifying the
training set affect the adaptive learning technique’s performance. This experiment

was attempted in order to try to improve the classification reliability.

4.5.4 Improved Detection of Minority Classes

For the purposes of improving the reliability of the implemented adaptive learning
technique described in Section 4.5.2, construction of the training set was modified
as follows: once a new window was received for use in testing (the naive Bayes),

the misclassified instances are stored in a window, W ,;,. This window keeps the

2 A misclassified window is which contains at least one misclassified instance, and all misclas-
sified instances belong to the misclassified windows
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Table 4.4: The confusion matrix for the naive Bayes classifier over the Autumn
term 2015-2016 interval (11 weeks)

Predicted class Actual class
class 1 | class 2 | class 3 | class 4
class 1 74,105 65 0 0
class 2 0 31,388 0 82
class 3 0 0 4,439 0
class 4 0 0 0 1,426

minimum necessary number of misclassified instances. In this experiment, related
to the University scenario, the window W,,;, keeps just a single instance for each
misclassified case. Then, these instances (one for each misclassification) are all
included in the next training window. After this, the window W,,;, is updated
with the data from the processing of the new batch of the joint stream. in fact,
out of the 495 one-hour time windows which were tested, misclassification only
occurred in two windows. Table 4.5 summarises the analysis of the proposed
ICE-Stream technique (the adaptive learner + W,,;, window) errors over the 11
weeks — the Autumn term 2015-2016 interval. Also, the confusion matrix for the
ICE-Stream algorithm’s results was calculated in and is shown in Table 4.6. As
can be seen from this table, very few instances were classified inaccurately by the
proposed ICE-Stream algorithm — 5 out of 111,505 instances.

To evaluate the effects of the information from the proposed window Wi,
on the implemented adaptive learning technique’s performance, we compared the
performance of the two variants: the adaptive learning method without the mod-
ification of the training set and the ICE-Stream method. It is apparent from the

Table 4.5: An analysis of the proposed ICE-Stream algorithm’s errors over the
Autumn term 2015-2016 interval (11 weeks)

Observed misclassified W nin
windows | instances | windows | instances | windows | instances
495 111,505 2 5 1 2
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Table 4.6: The confusion matrix for the proposed ICE-stream algorithm over
the Autumn term 2015-2016 interval (11 weeks)

Predicted class Actual class
class 1 | class 2 | class 3 | class 4
class 1 74,105 4 0 0
class 2 0 31,449 0 1
class 3 0 0 4,439 0
class 4 0 0 0 1,507

information shown in Table 4.4 and Table 4.6, that there are only a few instances
which are classified incorrectly by the adaptive learner only algorithm; however,
this number is reduced further by the use of the proposed ICE-Stream method.
For example, in the first week of the Autumn term, on Tuesday between 11:00
and 12:00, when some students parked in the Multi-deck Car Park, both classifiers
failed to classify four instances of class 1 (student) correctly and instead classified
them as class 2 (staff). The reason is that the Multi-deck Car Park is designated
for staff member use, so students rarely park there: i.e., only when the other park-
ing lots are full. However, when this situation occurred again in the same week,
after nine window batches, on Wednesday between 10:00 and 11:00, the proposed
ICE-Stream algorithm was able to detect the fact that students parked in the
Multi-deck Car Park, and classified these drivers correctly, whereas the adaptive
learner only algorithm classified them inaccurately again.

Figure 4.3 shows the comparison between the performances of the two classi-
fiers. Typically, techniques that learn from an evolving stream are focused on the
most recent data (the latest window), as it is time consuming to train the learner
on all the data items which have already been seen [118, 225, 262]. As far as we
know, this is the first method proposed which has shown experimentally that it
is possible to learn from imbalanced evolving streams in a straightforward man-
ner and detect the instances of minority classes within these streams by applying
adaptive learning approaches and balancing the current training set by adding mi-

nority instances from previous blocks/windows. Different from other approaches

82



Chapter 4. Learning from Imbalanced Evolving Data Streams

W The Adaptive learner (naive Bayes only) B The ICE-Sream

111,200 111,300 111,400 111,500 111,500

The classifier

Mo. of correctly classifiedinstances

Figure 4.3: A comparison between the performance of the implemented
adaptive learner and the proposed ICE-Stream algorithm

proposed in the literature which only use ensemble classifiers to cope with con-
cept drifts in imbalanced data streams (discussed previously in Section 4.3), this
study has demonstrated experimentally, for the first time, that other concept drift
adaptation approaches: adaptive learning and modifying the training set can be

extended in imbalance classes scenarios.

4.5.5 Analysis of Real-world Data Sets

The main goal of this experimental evaluation was to study the behaviour of the
proposed technique in terms of performance and model complexity (measured in
terms of learning times). In order to perform this evaluation, at first, we looked for
real datasets which could be used to evaluate the ICE-Stream method. However,
it proved difficult to find large-scale real-world data sets for use as benchmarks
— wherein the distributions underlying the data change over time, and which
exhibit the presence of multiple classes. The UCI machine learning repository
[86] contains a number of real-world data sets which can be used for the purpose
of evaluating machine learning techniques, and two of these real-world data sets

were chosen in order to test the efficiency of the ICE-Stream algorithm: the UCI
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Table 4.7: The specifications of the benchmark data sets used

Data set No. of instances | No. of attributes | No. of Classes
The Electricity 45,312 9 2
Connect-4 67,557 43 3

Electricity data set 3 [129], and the UCI Connect-4 data set . These data sets
both contain at least two classes: at least one majority class and one minority
class. In the following, a brief description of these data sets is presented, and a

summary of their specifications is shown in Table 4.7.

e The UCI Electricity data set: is a popular benchmark in relation to test-
ing adaptive classifiers [30]; it was originally acquired from the Australian
New South Wales Electricity Market, and spans the two years dated from
7 May 1996 to 5 December 1998. In total, the Electricity data set contains
45,312 instances; these record electricity prices at 30 minute intervals (i.e.,
there are two observations per hour). There are nine attributes involved,
and the class label (of each instance) makes a prediction of the next change
in the electricity price (up or down) related to a moving average calculated
over the previous 24 hours. The electricity prices do not remain stationary;
this is due to changing consumption habits, unexpected events and also to
seasonality. This data set is associated with only two classes, Up and Down,
which can be considered as one majority class (Down: 26,075 instances) and

one minority class (Up: 19,237 instances).

e UCI Connect-4 data set: this is a popular benchmark data-set used, in
particular, for testing systems which deal with concept drift [94], it contains
67,557 instances and these, together, represent all the legal 8-ply positions of
the game of connect-4, in which neither player has yet won and in which the

next move is not forced. In all, there are 43 attributes involved, representing

3 Available on: https://www.openml.org/d/151
4Available on: https://www.openml .org/d/40668

84


https://www.openml.org/d/151
https://www.openml.org/d/40668

Chapter 4. Learning from Imbalanced Evolving Data Streams

the board positions (each one being blank, occupied by the first player or
occupied by the second player) on a 6x6 board. The outcome class represents
the game-theoretical value in relation to the first player (2: win, 1: loss, 0:
draw). Thus, the data set yields three classes, one majority class and two

minority classes, Table 4.8 provides the details of these classes.

We applied the proposed ICE-Stream method to the UCI Electricity data set.
The method was tested on this data set using various different window sizes, be-
cause the speed of the concept drift within the data set is unknown (the changes in
the electricity prices respond to market supply and demand). Thus, three different
time window sizes were selected: 5-day windows (each consists of 10 instances),
50-day windows (each consists of 100 instances) and 250-day windows (each con-
sists of 500 instances). The adaptive learner was applied ‘raw’ (i.e., without the
modification of the training set performed via the ICE-Stream), and then its per-
formance was compared with that of other state-of—the-art classifiers, using the
same settings. Particulary, it compared with the Accuracy Updated Ensemble
classifier [45], Accuracy Weighted Ensemble classifier [267], Adaptive Random
Forest algorithm for evolving data stream [119], and the Majority Class classifier.
As explained earlier, all these algorithms have been implemented in R [145, 253]
and within the MOA framework [29]. Table 4.9 presents the experimental set-
tings and the results obtained from applying the proposed adaptive learner on
the Electricity data set (the performance measures represent the mean value per

window).

Table 4.8: The details of the classes yielded by the UCI Connect-4 data set

Class Number of instances | Class type
Class 1 (Win) 44,473 majority class
Class 2 (Loss) 16,635 minority class
Class 3 (Draw) 6,449 minority class
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Table 4.9: The results of the performance evaluation carried out using the UCI
Electricity data set

Classifier Window length | Accuracy(%) | Kappa (%) | Time(sec)
5-days 76.25 49.50 0.19
The adaptive learner 50-days 76.18 49.27 0.15
(naive Bayes) 250-days 76.11 49.12 0.15
5-days 81.25 60.12 1.85
Accuracy Update 50-days 80.45 59.75 1.66
FEnsemble Classifier 250-days 76.41 51.63 1.57
5-days 79.40 56.40 2.70
Accuracy Weighted 50-days 78.60 56.29 2.25
Ensemble Classifier 250-days 68.43 36.79 1.77
5-days 88.83 77.02 15.25
Adaptive Random 50-days 88.83 77.01 11.73
Forest Classifier 250-days 88.81 76.96 4.98
5-days 57.46 0.09 0.09
Majority Class 50-days 57.44 0.08 0.09
Classifier 250-days 57.44 0.07 0.07

Subsequently, the ICE-Stream method was applied in order to modify the
training set used and then the performance of the method as a whole (including
the adaptive learner) was compared with that of the adaptive learner alone. In
order to understand how the window set-up proposed for the ICE-Stream method
may affect classifier performance, we compared the performance of the adaptive
learning technique only (with no additional process for modifying the training set)
with the ICE-Stream technique itself (which includes the same adaptive learning
technique plus a process for modifying the training set), in terms of the ground
truth. Table 4.10 presents a comparison between the results yielded by applying
these two methods on the UCI Electricity data set.

In a similar way, we applied the ICE-Stream method on the UCI Connect-4
dataset, using four different window sizes. This dataset does not contain any
time-based information; it simply represents all the different possibilities in terms
of board positions; so we decided to select windows based on the number of in-
stances per window as follows: 10 instances, 100 instances, 500 instances, and

1,000 instances. As in the previous experiment, the adaptive learner was applied

86



Chapter 4. Learning from Imbalanced Evolving Data Streams

Table 4.10: A comparison between the performance of the implemented
adaptive learner only and the full ICE-Stream algorithm (the UCI Electricity

dataset)
Window The adaptive learner ICE-Stream
length | misclassified instances | time (sec) | misclassified instances | time (sec)
5-days 14,105 35.59 13,258 45.35
50-days 12,664 9.73 12,591 11.23
250-days 11,023 8.06 14,637 8.24

on its own first, and then its results were compared with other state-of-the-art
classifiers using the same settings. As the previous experiment, the adaptive
learner was compared with the Accuracy Updated Ensemble classifier [45], Accu-
racy Weighted Ensemble classifier [267], Adaptive Random Forest algorithm for
evolving data stream [119], and the Majority Class classifier. Table 4.11 presents
the experimental settings and the results obtained from applying the proposed
adaptive learner on the UCI Connect-4 dataset (the performance measures rep-
resent the mean value per window). Moreover, the full ICE-Stream method (in-
cluding training set modification) was applied and then its results compared with
that of the adaptive learner alone. Then, the performance of the adaptive learn-
ing technique only (without modification of the training set) was compared with
the full ICE-Stream technique (adaptive learning technique + modification of the
training set), in terms of the ground truth. A comparison between the results

from the two methods is provided in Table 4.12.
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Table 4.11: The results of the performance evaluation on the UCI Connect-4

dataset

Classifier Window size | Accuracy(%) | Kappa(%) | Time(sec)
10 71.38 32.51 2.17
The adaptive learner 100 71.39 32.54 0.43
(naive Bayes) 500 71.38 32.60 0.30
1000 71.41 32.63 0.27
10 53.60 19.02 7.67
Accuracy Update 100 70.73 31.00 3.31
Ensemble Classifier 500 69.97 28.79 3.66
1000 64.95 23.34 4.17
10 42.11 13.30 59.51
Accuracy Weighted 100 58.15 24.81 9.54
Ensemble Classifier 500 57.04 23.91 5.04
1000 56.94 22.93 3.95
10 77.20 41.80 6.57
Adaptive Random 100 78.12 44.06 72.06
Forest Classifier 500 77.18 41.78 7.74
1000 77.20 41.80 6.88
10 69.57 0.02 1.71
Majority Class 100 69.56 0.01 0.28
Classifier 500 69.51 2.15 0.20
1000 69.49 2.11 0.19

Table 4.12: A comparison between the performance of the implemented
adaptive learner and the ICE-Stream algorithm on the UCI Connect-4 dataset

Window The adaptive learner ICE-Stream
size misclassified instances | time (sec) | misclassified instances | time (sec)
10 20,146 312.01 18,020 498.09
100 20,558 72.02 19,103 90.03
500 23,207 51.58 21,382 55.75
1000 24,176 47.88 21,928 50.54

4.5.6 Results and Discussion

The experiments presented in this chapter were conducted on three datasets: data
streams generated from a simulation of the University of Essex parking lots, the
UCI Electricity dataset, and the UCI Connect-4 dataset. The results obtained
from applying the proposed ICE-Stream technique on the real (UCI) datasets

matched those observed from applying the ICE-Stream technique on the het-
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erogeneous data streams generated from the simulation model of the University
parking lots (as discussed above).

It is apparent, from the comparisons shown in Table 4.9 and Table 4.11, that it
is effective to apply the adaptive learner using a window based approach. When
the ICE-Stream technique is applied on the UCI Electricity dataset, the naive
Bayes is ranked fourth among the other approaches (using a 5-day window). This
is comparable to the results from the first experiment on the parking lots dataset;
there, the naive Bayes yielded acceptable mean accuracy and Kappa values of
76.25% and 49.50% respectively. This is close to the performance of the Accu-
racy Weighted Ensemble Classifier which is ranked third with mean accuracy and
Kappa values of 79.40% and 56.40% respectively.

In addition, applying the ICE-Stream technique on the UCI Connect-4 dataset,
made the adaptive learner (naive Bayes) the second best classifier (using a 500-
instance window) with mean accuracy and Kappa values of 71.39% and 32.50%
respectively. The performance of the naive Bayes exceeded the performance of
two other ensemble classifiers and came second after the Adaptive Random Forest
Classifier (also an ensemble classifier) which had mean accuracy and Kappa values
of 77.18% and 41.78%, respectively, using the same window length. It is important
to note, here, that the Majority Classifier may seem to have yielded a high mean
accuracy, 59.61%, but this came with a very low Kappa value, 2.15%, which means
that this classifier has poor performance as regards class imbalance.

In addition, it is clear from comparing the results in relation to both datasets,
that changing the size of the window does affect the performance of the ensemble
classifiers; however, the naive Bayes has a stable performance regardless of the size
of the window. Moreover, this adaptive learner (the naive Bayes) is much faster,
in terms of computation, than the other algorithms, where all experiments in this
chapter were performed using Windows 7 Enterprise 64 Bit operating system, on
i5 3.30GHz processor, and 8GB 1600Mhz DDR3 RAM memory. For example, the

average execution time for the naive Bayes, on a 5-days window extracted from
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the Electricity dataset and on a 500-instance window from the Connect-4 dataset,
was 0.19s and 0.30s respectively; this should be compared with 1.85s and 2.70s
(for the Accuracy Update Ensemble Classifier); 15.25s and 3.66s (for the Accuracy
Weighted Ensemble Classifier); and 5.04s and 7.74s (for the Adaptive Random
Forest Classifier). These are average execution times relating to the 5-day window
and the 500-instance window, respectively.

Even though the naive Bayes classifier did not exceed the performance of the
Adaptive Random Forest Classifier, this is mitigated by the fact that an ensemble
technique deploys many different classifiers in order to perform its task and so
every time an ensemble method is used for classifying data stream, all its classifiers
must be trained and then tested, which results in much greater execution times
than are achievable with just naive Bayes.

Moreover, by comparing Table 4.10 and Table 4.12, where the relationships
between the classification results of the ICE-Stream with the use of the proposed
minority window W ,,;, and without the use of the minority window W,,;, can be
seen in terms of the ground truth, it is clear that the number of instances (among
the differing windows extracted from both real datasets) which were classified in-
correctly was reduced by the maintenance of W,,;, and the of use this window to
modify the training set for the following windows. The only exception whereby
the use of W,,;, increased the number of misclassified instances, was over a rela-
tively long window, a 250-day window from the Electricity dataset. One possible
explanation for this was that it was due to the choice of the length of the time
window. It seems that the drifts in the Electricity dataset generally occur over a
short space of time; therefore, selecting large windows for the adaptive classifier
will result in the W,,;, retaining old concepts which may will change over the
subsequent intervals. This consideration is reasonable in relation to the energy
consumption domain: there is a direct relationship between the season of the year
and energy consumption (a season lasts between 90-120 days). These results sug-

gest that understanding of the seasonality or domain can lead to better results
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as the windows can be optimally chosen. Furthermore, these results provide fur-
ther support for the hypothesis that using the proposed minority window W,
improved the performance of the ICE-Stream.

Furthermore, there is a noticeable difference between the performance of the
proposed ICE-Stream method on the data streams produced by the simulation
model, and its performance on the real datasets. The ICE-Stream method achieved
high performance in relation to the parking lots dataset, both as regards Kappa
and accuracy, and achieved good/moderate performance in relation to the other
datasets. These differences can be explained as follows: in terms of the parking
lots dataset, there was a clear understanding of the domain and the relation be-
tween the input variables and the target class, as well as of the speed of the drift;
all these factors assisted in the design of a good classifier. In contrast, there was a
lack of knowledge about the domain as regards the real datasets; all the attributes
were used for building the classification, regardless of their relevance, and there
was insufficient information about the nature and the speed of the drift (which,
critically, affects the choice of window size for the adaptive learner). Another
possible explanation for these differences is that, in the parking lots dataset, the
data streams were generated by a simulation model, so it was to be expected that
the proposed ICE-Stream method would yield better performance in relation to
these streams, than in relation to real datasets; this is a reasonable proviso since
all the other ensemble classifiers — used in the performance evaluation above —

also achieved better performance on the parking lots dataset.

4.6 Chapter Summary

A large and growing body of literature investigates data mining techniques which
operate on data streams that exhibit concept drift and/or class imbalance [46, 198,
271, 274]. Despite this, little progress has been made in relation to the multi-class

imbalance problem as this may emerge in non-stationary streams. In addition,
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two of the main methods used for dealing with concept drift, the adaptive learning
model and modification of the training set, have not been examined yet in relation
to the multi-class imbalance problem in streaming data.

In this chapter, a novel technique is presented; this is one which is capable of
classifying non stationary data streams, detecting and adapting to changes in the
underlying concepts being represented in these streams, and dealing with class
distributions resulting in imbalance. The contribution described in this chapter
is two-fold. First, we extend the adaptation techniques focused on concept drift
into imbalanced stream scenarios; specifically, we developed an adaptive classifier
which is capable of performing classification across multiple streams over a se-
quence of titled-time windows. We chose naive Bayes as the base classifier, due to
its incremental nature and its ability to adapt to drift without external drift de-
tectors [104, 225]. As the adaptive learner works using a window-based approach,
the classifier will be re-trained on the most recent window of the data stream.
Second, our proposed system maintains a holding window containing incorrectly
classified instances; this window is then used to modify the training set to be used
by the adaptive learner over the subsequent windows, in order to enhance the
classifier’s performance (i.e., in relation to the ability to classify instances from
the minority classes correctly).

The empirical findings of this investigation clearly show the feasibility of ap-
plying the ICE-Stream method, efficiently and effectively, to the classifying of
evolving streams with skewed distributions. This clearly demonstrates the usabil-
ity of applying adaptive learner approaches which use modification of the training
set to cope with concept drift encountered in in the multi-class imbalance scenar-
ios. While ensemble techniques are the most common approach used for coping
with multi-class imbalance problems in evolving streams, this work is the first, to
our knowledge, which has shown experimentally the efficiency of extending other
concept drift adaption techniques, namely adaptive learning technique and mod-

ifying the training set technique, to the multi-class imbalanced evolving stream
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context. Moreover, to the best of our knowledge, ICE-Stream is the first proposal
which has been developed to tackle the multi -class imbalance problem (involving
more than two classes) in non-stationary streams.

Although this investigation was conducted, primarily, in relation to a car
parking lots environment, the proposed ICE-Stream method can be adapted to
any such real-world application, regardless of domains, where heterogeneous data
streams are produced by dynamic environments. It should be said, however, that
the generalisation of the results obtained in this investigation is subject to cer-
tain limitations. For instance, the performance of the adaptive learner is affected
by the choice of window size. It might be difficult to find a compromise choice
between small windows which adapt quickly with concept drifts, and large win-
dows which lead to a good generalisation, in cases where there is a lack of domain
knowledge. Another limitation is related to how the minority window in the ICE-
Stream method is maintained, specifically, in terms of deciding when items in the
window should be discarded. Minority classes may evolve over time and accord-
ingly the instances stored in the minority window (i.e., instances which belong to
the old concept) may affect the classifier performance (i.e., by including instances
of old concepts in the training). Furthermore, for the purpose of evaluating the
performance of the proposed ICE-Stream, we used Kappa statistics [65] which
take class imbalance into account, calculated the accuracy, and compared the re-
sults to the ground truth. Further investigations to find measures for evaluating
not only single aspects of stream mining algorithms, but also ways of combining
several aspects (i.e., concept drift, imbalanced distributions) into the evaluation
procedure, will need to be undertaken [168]. More performance evaluation metrics
for data stream are required which are sensitive to multi-class imbalance [31] and

which can detect change in more than one minority class.
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Chapter 5

Pattern Discovery from

Heterogeneous Data Streams

5.1 Introduction

In the field of data mining, pattern discovery has become a powerful tool for
extracting valuable information from mass data sources [90, 116, 125]. In the lit-
erature, research into pattern mining has focused mostly on the mining of frequent
item sets [125]. Apriori [6] was the first algorithm proposed for the purpose of
mining frequent patterns; it was designed for supermarket basket analysis. Sub-
sequently, many other algorithms have been proposed which do not use candidate
generation, such as the FP-Growth algorithm [123]. The rare pattern dilemma
[179] has been a major issue in these studies [113, 123, 156, 179]; single or multiple
fixed thresholds were used to identify the frequent patterns over the entire data
set, as a result, patterns that appeared in only a few data items, i.e. rare pat-
terns, were not captured [179]. In many real-world applications, the rare patterns
encountered can convey a great deal of information of interest. For example, the
detection of rare items can help to prevent fraud in financial transactions [277],
identify diseases in medical domains, or detect faults via monitoring systems [264].

Pattern mining is more challenging in streaming scenarios, where algorithms may
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only make a single pass over the data, and where, often, only some of the data
stream items are available when the pattern mining process commences. The situ-
ation is aggravated when the environment is non-stationary and the streams have
skewed distributions; the frequency counts of item sets may change significantly
over time, resulting in the appearance of new patterns or in changes to existing
ones [132, 141, 142].

This chapter presents a new method for learning Frequent Patterns from imbal-
anced Evolving Streams (FP-EStream). A dynamic support threshold is proposed
in order to facilitate the discovery of frequent patterns within such streams. The
proposed algorithm is capable of detecting rare patterns, as well as of handling
any concept drift in the emerging patterns efficiently. The reader should bear in
mind that we do not intend to investigate the frequent items from the various
streams in any detail; instead, the main aim of this investigation is to develop
methods for discovering patterns, found in imbalanced evolving streams, which
represent meaningful real-world situations.

The rest of this chapter is structured as follows. The following section presents
the background of pattern mining as it is relevant to this chapter. Section 5.3
describes the details of the proposed FP-EStream method. Then the experimental
work and results will be discussed in Section 5.4. Finally, the chapter concludes

by providing a summary of the work undertaken in Section 5.5.

5.2 Basic Concepts

It is necessary here to clarify and make more precise some terms that are used in

this chapter before moving on to present the proposed FP-EStream method.

Definition 4. A Pattern, P, from the data stream, JStr, over the time interval,
T, is defined as the set of data items, piq, pia, ..., pi; that represent a particular

information element extracted from the most recent window, RW, of the data
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stream, S:

P = {pilapi% cee 7p7fk}
where

e [ is the number of data items in P: i.e., P can be termed a k — itemset,

k>1;

e |RW| is the size of the window, RW: i.e., the number of recent data stream

items (tuples) considered for processing;

e Country (P) is the number of stream data items (tuples) that were found

to contain P in the recent window RW.

Then, the minimum support threshold is a measure of the user’s interest in
item sets whereas the support of pattern, Supgrw (P), is defined by the ratio of
the number of stream items in RWW that contains P to the total number of data

items in RW.

Countrw (P)

e (5.1)

Supr(P) =

Definition 5. A pattern, P, is considered to be a Frequent Pattern if its support,

Suprw (P), is equal or exceeds a predefined support threshold, T'hreshold.

Suprw (P) > Threshold (5.2)

Definition 6. A pattern, P, is considered to be a Rare Pattern, if its support,

Suprw (P), is less than a predefined support threshold T'hreshold.

Suprw (P) < Threshold (5.3)
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The rare pattern dilemma is often encountered when mining for patterns in
real-world application data. Generally, if we pick a high value for the minimum
support threshold, this will reduce the number of patterns extracted: i.e., the
mining technique will not be able to detect rare patterns. In contrast, selecting
a low value for the minimum support threshold will generate a large number of

insignificant patterns — leading to high processing costs[155, 179].

5.3 FP-EStream Technique

Extracting the interesting patterns from evolving data streams is difficult and time
consuming since a huge number of patterns can emerge from such data; therefore,
patterns must be identified according to their level of interest to the user. For
the purposes of this thesis, the FP-EStream algorithm has been proposed. This
method is based on an integration of two mining techniques; a classification tech-
nique which identifies the patterns of interest (described in the previous chapter),
and a pattern mining technique based on a modified version of the FP-Growth
algorithm, which uses a dynamically calculated support. An abstract model of
this approach to pattern discovery from evolving IoT data streams is shown in

Figure 5.1.

-

loT devices streams _ current
G (5try,...Str,) - window-batch
- {15ty )
join streams
[ ] join probabilities
: values (1P, }
L 4
detect frequent patterns calculate the support classify the joint
reshol stream
(FPs) ) (Threshold] * +

Figure 5.1: Pattern Discovery Abstract Model
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5.3.1 Dynamic Support Threshold

Defining the support threshold value is a significant element in the proposed pat-
tern discovery approach; a dynamic support threshold has been chosen as a means
to detect the patterns of interest. It is typical of evolving, skewed streams that
some items appear very frequently in the data set while others only rarely ap-
pear, and some of the initially frequent items may become less frequent over time.
Therefore mining patterns from these streams using a fixed support threshold is
insufficient; as stated before, choosing a low threshold value will identify a large
number of meaningless patterns, whereas a high threshold value may omit some
significant patterns.

Based on the definition of the concept of a support value given in Equation 5.1,
and the definition of joint probability, JP, given in Equation 4.5, which indicates
the occurrence of items together, the minimum joint probability indicated by
the adaptive learner (implemented in the previous chapter) is selected to be the

dynamic support threshold value for FP-EStream algorithm, as follows:

Threshold = min(JPsgw) (5.4)

Accordingly, the minimum joint probability of the recent window batch, RW,
which is calculated by the naive Bayes classifier, is chosen to be the support
threshold value of this window Supgrw; this value will thus be updated for each
window batch, JStry. This method of calculating the support dynamically can
be used with real-time or near real-time data since these calculations depend only
on the current and previous time windows (the previous time window is used to

train the naive Bayes classifier).

5.3.2 Extracting Patterns from Imbalanced Evolving Streams

The proposed FP-EStream technique is based on the FP-Growth algorithm [123],

which is discussed previously in Section 2.5.3 and which is used widely for static
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data, and in order to make it applicable to imbalanced evolving streams, two main

modifications were made:

1. The use of a dynamic support threshold value, Threshold, instead of the
fixed threshold value used in FP-Growth.

2. The use of the naive Bayes technique to construct and update the FP-tree.
This represents a significant difference in relation to the original FP-Growth
algorithm (which scans the data set twice, first to get the frequencies then
to find the frequent patterns). The joint probabilities, which are calculated
by the naive Bayes classifier, are used to indicate the frequencies and so to
construct the frequent items list, F'IS. Accordingly, the frequent item list is
constructed based on the classifier fields (f1,..., f., class) in a descending
order, this helps to ensure the tree maintains as much prefix sharing as
possible. Subsequently, the items in the recent window are compressed into
a tree of frequent patterns F'P — tree, derived from the frequent items list,
FIS. Each path in the tree of frequent patterns, F'P — tree, represents
a pattern. It is important to note here that, the frequent item list, F'I.5,
and the tree of frequent patterns F'P — tree, are constructed for the initial
window, RW. Then they are updated with the arrival of each window-batch
JStry;; this reduces the cost in terms of processing time and data-storage

needed to scan the data set.

Here, frequent pattern sets can be maintained for each titled time window,
an example of the structure of the FP-EStream proposed is shown in Figure
5.2. Using this approach will help to identify frequent patterns over the period
T (i.e., time window), also it can be used to find periods which within specific
patterns became frequent or changed (i.e., become less frequent). Furthermore, a

description of our proposed FP-EStream algorithm is given in Algorithm 2.
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Figure 5.2: An example of the structure of the FP-EStream proposed

Algorithm 2: FP-EStream algorithm for pattern discovery from imbal-
anced evolving streams

1 FP-EStream
Input : I0T — Stream : joint stream of heterogeneous IoT streams
L: length of time windows specified by the user, L > 0
N: length of the stream specified by the user, N > 0
Output: F'Ps : Frequent patterns from IoT — Stream
2 z=1
3 for each JStrr, in [oT — stream over T,[t,,t,1r-1] ; (x+L) < N) do
4 apply NB — model on (JStrr,)
5 Ps = prior probabilities from N B — model (JStrr,)
6 CPs = the conditional probabilities from N B — model (JStrr,)
7 PPs = calculate-the-post-probabilities(Ps, C' Ps)
8 JPs = calculate-the-joint-probabilities(Ps, C'P)
9 Threshold = find-minimum-joint-probability(.J Ps)
10 if FIL = () then

11 FIL = build-frequent-item-list( JPs)
12 Build FP — tree (JStrr,)

13 else

14 Update FIL

15 Update F'P —tree

16 end

17 F Ps = mining-the-frequent-patterns (T'hreshold, F'P — tree )
18 r=z+1

19 end

20 return F'Ps;
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5.4 Experimental Work

In this section, the experimental work started in Chapter 4 is continued, using
the simulated streams based on the University of Essex parking lots setting. The
naive Bayes classifier has already been applied and evaluated via the ICE-Stream
algorithm, as shown in the previous chapter. In brief, an adaptive learner had
been applied to one-hour-window batches, and based on this naive Bayes model,
the joint probabilities have been calculated for each window. Table 5.1 presents

the characteristics of the parking lots data set.

5.4.1 Pattern Discovery Model

The FP-EStream algorithm was implemented using the R [253] and Java program-
ming language. In particular, the rJava package [260] was used to integrate Java
code with R code (for the ICE-Stream model). Moreover, the modified FP-Growth
technique was implemented based on the implementation of the FP-Growth al-
gorithm found in the SPMF library, the Java open-source pattern mining library
[95].

Once the most recent window has arrived, the joint stream is classified by
the ICE-Stream technique and the joint probabilities are calculated. Then, the
minimum value of the joint probabilities is selected to be the support thresh-
old for extracting the frequent patterns of this window. After that, for the first
scanned window only, the frequent items list, F'I.S, is built using the joint proba-
bilities. The items are ordered based on the classifier attributes (sensor, parking
location, driver type) in descending order. Then, the tree of frequent patterns

FP — tree is constructed based on the classified window — in accordance with

Table 5.1: The characteristics of the University parking lots data set

Number of windows | Number of tubles | Number of items
495 111,505 21
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Table 5.2: Details of the patterns which emerge from over the University
parking lots data set

Threshold Number of patterns | Number of rare patterns
0.001 < threshold < 0.01 12 5

the frequent items list F'I.S. For the subsequent windows, the frequent items
list F'IS is updated according to the joint probabilities then the tree of frequent
patterns, I'P — tree, is updated as well.

A number of different patterns were extracted from the 495 one-hour windows.
Table 5.2 shows the details of the patterns extracted over these intervals. Overall,
the number of patterns extracted ranges between 8 and 11 patterns per one-hour
window — where the dynamic threshold varies from 0.001 to 0.01. There are 12
different patterns altogether; two of them are rare patterns, and there are another
three frequent patterns that become rare over some windows.

In addition, screen-shot in Figure 5.3 shows the emerging patterns encountered
on Monday morning, between 09:00 and 10:00 during the first week of October in
the Autumn term 2015-2016.

In relation to this same Monday, Figure 5.4 shows the difference between the
patterns which emerge at the beginning of this working weekday, from 08:00 to
09:00 in the morning, and those that emerge at the end of it, from 14:00 to 15:00

Figure 5.3: The emerging patterns over a one-hour window, in the first week of
the Autumn term 2015-2016

Transactions count from this window : 583
Frequent item set count : 11
Total time ~1 ms

sensor Park Driver Freguency

1 52 BPARK Student 9
2 51 WPARK wistier 18
3 53 NPARK Student 12
4 51 CPARKE Staff 14
5 52 BPARK GymMember 18
E S1 APARK Student 28
7 51 WVPARK Staff 45
8 52 BPARK Staff B2
9 53 MNPARK Staff L]
18 51 VPARK Student 57
11 52 MPARK Staff 112
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Figure 5.4: The changes in the emerging patterns over a one day interval of
the Autumn term 2015-2016

=====FP-E5tream========= =====FF-EStream=========
Transactions count from this window : 581 Transactions count from this window : 78
Freguent item set count @ 11 Frequent item set count : 18
Total time ~1 ms Total time ~1 ms
senser Park Driver Freguency sensor Park Driver Frequency
1 51 WVPARK Wwistior g 1 51 WVPARK Wwistier 1
2 53 NPARK Student 12 2 53 NPARK Student 2
3 52 BPARK Student 12 nconn 3 52 BPARK Student 2 A
4 52 BPARK GymMember 24 4 51 aPark Student 3 14:00
5 51 CPaRk Sstaff 33 5 52 BPARK GymMember 4
& 51 VPARK Staff S & 51 VPARK Staff &
7 52 MPARK Staff B2 7 51 CPARK Staff 12
B 51 APARK Student [=2:] & 51 VPARK Student 13
9 S1 VPARK Student 7E 9 S2 BPARK Staff 14
18 52 BPARK Staff 24 18 53 NPARK Staff 21

11 53 MNPARK Staff 96

in the afternoon. Furthermore, there is a notable change in the patterns which
emerge at the beginning of a term and those that emerge at the end of the same
term; for example, Figure 5.5 shows the patterns which emerged on two Thursday
mornings from the same interval from 10:00 to 11:00 on each day. These Thursdays
are the first and last week of the Autumn term, 2015-2016. By investigating the
patterns obtained over different intervals, daily, weekly and at different points over
the Autumn term, it becomes apparent that these patterns are consistent with
those in the real data (as understood from interviews and reports). For example,
as Figure 5.4 shows, there is a significant decrease in the car arrival rate in the
afternoon. In addition, as shown in Figure 5.5, there is a considerable drop in the
car arrival rate at the end of the term, particularly in Car Park A, the student’s

car park.

5.4.2 Comparative Evaluation

To validate the effectiveness of the dynamically calculated support threshold used
in the proposed FP-EStream method, we compared the number of patterns de-
tected from the joint IoT stream JStr using a low fixed threshold value, a high
fixed threshold value, and the proposed dynamically calculated threshold value

— over different window-batches. A number of windows from the investigated
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Figure 5.5: The changes in the emerging patterns over the Autumn term
2015-2016

Transactions count from this window : 251 ==== = } }
Freguent item set count : 18 Transactions count from this window : 197

Total time ~8 ms Frequent item set count : 9
Total time ~1 ms

sensoer Park Driver Freguency SESSSsSsssssssssssssssss
53 BPARK Student 3 sensor Park Driver Freguency

; 51 VPARK vistior 4 1 51 VPARK Vistlor 2

3 S2 BPARK GymMember 5 2 52 BPARK Student 3

4 51 APARK Student 5 3 52 BPARK GymMember &

5 53 NPARK Student 7 Weekl 4 53 NPARK Student 6 Week 11
& S2 BPARK Staff 18 5 51 VPARK  staff 18

7 S1 VPARK Staff 21 6 52 BPARK Staff 28

B S1 VPARK Student 44 7 51 VPARK  student 28

9 53 NPARK Staff 54 8 53 NPARK staff 42

1 5 52 MPARK Staff 55

@ 52 MPARK sStaff S5e

dataset were selected and were processed using these different threshold values;
the patterns which were detected by these procedures were then compared. For
this comparison, the nine consecutive windows from 07:00 in the morning until
16:00 in the afternoon, on Wednesday of the first week of the Autumn term, from
the joint stream, JStr, were chosen. It is important to note here, that windows
were selected from the beginning of the term (the third day out of 55 days), this to
ensure that FP-EStream has been trained on some windows (but not a significant
number of examples), and in order to evaluate how the FP-EStream proposed
works when new patterns emerge/change. We attempted the detection of the

frequent patterns in these window-batches using the following three techniques:

1. FP-Growth algorithm with a low fixed threshold (T"hreshold = 0)
2. FP-Growth algorithm with a high fixed threshold (T'hreshold = 0.05)

3. The proposed technique FP-EStream, where the support threshold is dy-
namically calculated (T'hreshold € [0.001,...,0.01])

The FP-Growth algorithm was applied on the joint stream, JStr, using the
SPMF library [95], and in order to obtain comparable results, the inputs provided
to FP-Growth were the same inputs which were provided to the classifier used in
the proposed FP-EStream technique. A comparison between the three methods is

shown in Figure 5.6. It can be seen clearly that the number of patterns extracted
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Figure 5.6: A comparison between the number of patterns extracted using
FP-EStream and FP-Growth on the parking lots data set

by the low threshold (T'hreshold = 0) was nearly double the number of patterns
which were extracted using the dynamic threshold. However, some of the patterns
which were found using threshold (T'hreshold = 0) were insignificant (e.g., pattern
consists of one item) and so would dictate the use of an additional pruning step. By
contrast, the number of patterns extracted using the high threshold (T'hreshold =
0) was less than the number of patterns extracted using the dynamic threshold:
the high threshold failed to detect any pattern relating to visitors, gym-members
or Car Park A. In general, choosing a fixed low threshold increases the number
of detected patterns; however, such an expanded pattern set would require an
additional filtering step. On the other hand, choosing a high threshold not only
decreased the number of detected patterns, but also failed to detect any of the rare
patterns. It is clear from the graph, that the number of patterns discovered by the
proposed dynamic threshold is in between the numbers discovered by the other
two; the use of a dynamic threshold avoids the returning of too many insignificant
patterns and also enables the detection of rare patterns. Interestingly, the use of
this threshold identified all the patterns which were detected by the use of the

lower threshold (of 0), including the rare patterns (but no filter needed).
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Speed is the main performance measure which must be monitored in relation to
the mining of frequent patterns. In this regard, all experiments in this chapter were
performed using Windows 7 Enterprise 64 Bit operating system, on i5 3.30GHz
processor, and 8GB 1600Mhz DDR3 RAM memory. The classifier used in our
method, as opposed to those used in the multiple conditional tree generation and
test approaches, narrows the number of derived patterns down to only the ones
which may be of interest — without the need for repeated scans. This reduces
the cost of the stream scanning process, and the pruning search, it also speeds
up the mining process as well. The average time required to discover patterns
from a one-hour window derived from the first week of the Autumn term using
the FP-EStram is 5ms, faster than the average time required for the same interval
by the FP-Growth algorithm, 11ms (Threshold = 0). Moreover, when applied to
the whole term, our algorithm took 7.162s while the FP-Growth algorithm took
14.268s. It is quite likely that this will scale up directly (i.e., as window size
increase, the difference of the speed between the two algorithms increases too),
so that these efficiency improvements (resulting from the application of the FP-
EStram algorithm) will pertain to its application to larger data sets in real-time.

Moreover, we use the same interval above (the nine windows) to compare the
performance of the FP-EStream technique proposed here with two state-of-art
algorithms: the CFP-Growth++ algorithm [156] which use multiple (fixed) min-
imum support thresholds to mining frequent itemsets, and the RP-Growth [258],
an adaptation of the FP-Growth which presented for discovering rare item sets
in transaction databases (using two threshold values: Minsup and Minraresup).
These two algorithms were discussed in detail previously in Section 2.5.3, further-
more, they were implemented for this experiment using the SPMF library [95],

and the settings used as follows:

e For the CFP-Growth++ algorithm, in order to build the list of minimum
support threshold, it was not clear how the minimum value for each item

should be selected. Therefore, the minimum values were chosen to be nearly
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equal to the frequency value of the least occurring element, for instance, the
appearance value of “visitor” item varies from zero to six per window, so
the minimum support values were chosen to be five. Furthermore, the items
in each tuple were sorted by lexicographical order (algorithm requirement
that items are assumed to be sorted in the transaction by lexicographical

order), and the minimum confidence was chosen to be %50.

e For the RP-Growth algorithm, the items in each tuple were also sorted by
lexicographical order, then the minimum support value (upper boundary of
what is considered rare) and the minimum rare support value (the lower
boundary of what is considered rare) were chosen to be 0.05, and 0.001 re-
spectively. The choice of the minimum rare support value was based on
the observed value in our proposed algorithm, and the choice of the min-
imum support value was based on the high threshold used in FP-Growth
experiment (we tried the highest minimum threshold 0.01 but it gave zero
patterns), important to note here that using the maximum value of the dy-
namic threshold as the minimum support value in the RP-Growth results in

zero rare patterns in this experiment.

The result of the comparison between these methods and the proposed FP-
EStream technique is shown in Figure 5.7. It is clear from the bar chart that
the number of patterns which are obtained using our proposed FP-EStream Al-
gorithm is less than the number of patterns obtained by the other two methods.
It is apparent from investigating the patterns obtained (using the three methods
over nine hour-window interval), that the patterns obtained from the RP-Growth
algorithm and the CFP-Growth++ algorithm contain large number of trivial pat-
terns. What is interesting in this comparison, is that the number of all patterns
extracted using our proposed method, over nine hour-window interval, is less than
the number of patterns obtained using the RP-Growth algorithm over the same

windows (the RP-Growth algorithm is designed for discovering the rare patterns
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Figure 5.7: A comparison between the number of patterns extracted using
FP-EStream, CFP-Growth++4, and RP-Growth techniques on the parking lots
data set

only). This result may be explained by the fact that both the CFP-Growth++
algorithm and the RP-Growth algorithm used fixed support values: the CFP-
Growth++ algorithm used a list of predefined minimum support threshold; and
the RP-Growth algorithm used two fixed values as the minimum support and the
minimum rare support; thus, as the support value decreases, the number of fre-
quent item sets increases exponentially. It is important to note that windows used
here were chosen across different intervals (in the morning in the afternoon), these
windows have different patterns, including rare patterns. Therefore, it is likely
that results will apply across different windows as the Threshold is computed

dynamically for each window.

5.4.3 Analysis of a Real-world Data Set

In order to evaluate the FP-EStream method proposed here within more challeng-
ing settings, we applied FP-EStream on a real-world benchmark data set, the UCI
Connect-4 data set, which was described earlier in Chapter 4. In the last chapter,
four different window lengths (10, 100, 500, and 1000 instances) were used during

the classification of this Connect-4 dataset. The instances of this dataset consist
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of 43 attributes and applying FP-Growth on this data set (over any significant
window size) generates very large numbers of patterns. Thus, we decided to test
the FP-EStream only on five consecutive windows (each window consists of 10
instances); this was to simplify the comparison of the results with those of the
other methods. Accordingly, the first five windows were selected and then the
proposed FP-EStream was tested using these windows and then its performance
was compared with that of both the FP-Growth technique, and the RP-Growth

technique as follows:

e In the FP-EStream technique, the FP — list is built for the first window,
based on the class attributes (class, G6, G5,..., A2, Al) — generated by
the ICE-Stream classifier in the previous chapter. As explained previously
there, these attributes represent the board positions (each one being blank,
occupied by the first player or occupied by the second player) on a 6x6
board, whereas class represents the game-theoretical value in relation to the
first player (2: win, 1: loss, 0: draw). The F'P — list was then used with
the dynamically calculated support, the T'hreshold, to build the F'P — tree,
which then could be mined, instead of the whole data set, in order to discover
patterns in the window. With the arrival of each new window, the F'P — list
and the F'P — tree were updated, as well as the minimum joint probability
values which were calculated for each window (using the priors and the
conditional probabilities from the naive Bayes classifier). These latter were
then employed to identify the T'hreshold for the current window. In fact,

over this interval, the T hreshold value varied from 0.05 to 0.1.

e In terms of the original FP-Growth technique, we selected the minimum
support value based on the observed T'hreshold values by our proposed al-
gorithm. Accordingly, we tested the minimum support value, 0.1, which is
the highest T'hreshold value returned by our proposed algorithm. however,

it has been clearly observed that applying the FP-Growth algorithm takes
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a significant amount of computational time, for instance, by selecting 0.1 as
the minimum support value, the FP-Growth algorithm needed 18.29 min-
utes to extract 53,194 patterns from one window (the first window W1).
Therefore, we sought for testing a higher values (minimum support values)
in order to reduce the computational time (i.e., increasing the minimum
support value will reduce the scanning time, as items that have supports
under the minimum support value will be ignored). Specifically, the fol-
lowing support values (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) were tested for this
exercise in order to identify the most appropriate level. We observed that
when we increased the minimum support value, the number of extracted
patterns and the required time were decreased. For instance, using the min-
imum support value, 0.8, the FP-Growth algorithm required 4.3 minutes
to extract 36,513 patterns from the same window, W1. As a result, we
tested a higher support value: 0.85; using this threshold, the FP-Growth
algorithm required between 16ms and 64ms (i.e., this is comparable to the
time required by our proposed algorithm) to extract number of patterns
ranges from 30 to 78 patterns per window. The choice of threshold 0.85
as the minimum support value allowed for the extraction of large number
of patterns in shorter time than the other tested values (i.e., lower support
value would increase the number obtained patterns to unsupportable levels

and reduce the algorithm’s performance).

e In terms of the RP-Growth technique, the items in each tuple were sorted by
lexicographical ordering, and then the minimum support and the minimum
rare support values were selected as 0.1, and 0.05 respectively. The choice
of these values was based on the observed values yielded by our proposed

algorithm: the highest and the lowest T'hreshold values returned.

The comparison between the numbers of patterns obtained using the three

techniques, with the above specification, over five consecutive windows is provided
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by the bar chart in Figure 5.8, this will be discussed in detail in the following

section.

5.4.4 Results Discussion

The experiments presented in this chapter were conducted on two data sets: data
streams generated from a simulation of the University of Essex parking lots, and
the ICU Connect-4 data set. The results obtained from applying the proposed
FP-EStream technique on the real data set (the Connect-4 data set) support
the findings obtained from applying the FP-EStream on the heterogeneous data
streams generated from the simulation model of the University parking lots (dis-
cussed above).

It is apparent, from Figure 5.8, that the number of patterns extracted by our
proposed algorithm was less than the number extracted using the FP-Growth
algorithm. Moreover, by investigating these patterns, we found that the ones our
method extracted each consisted of eight or nine items, whereas the length of the
patterns extracted using FP-Growth varies between two to 11 items. This can

be explained by the circumstance that each instance in the UCI Connect-4 data

B RP-Growth (rare pattern only)  EFP-Growth FP-EStream
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Figure 5.8: A comparison between the number of patterns extracted using the
FP-EStream, the RP-Growth, and the FP-Growth techniques on the UCI
Connect-4 data set
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set can exhibit up to 43 attributes, one representing the class and each one of
the remaining 42 attributes taking one of three values (blank, first player, second
player); so although our proposed algorithm used a low value for the T'hreshold, it
only extracted the positions which exhibit both player and class; for instance, the
simplest case of such a position is where the two players choose to make parallel
lines as in the image ! in Figure 5.9.

In contrast, it was somewhat surprising to discover that the RP-Growth al-
gorithm — using the same threshold values that were derived by our algorithm
— did not discover any pattern. As explained in Section 2.5.3, the RP-Growth
algorithm builds the RP-tree based on item sets which have support values in the
range [Minraresup, Minsup|, therefore, we tried to extend this range by increasing
the minimum support value, Minsup, in order to discover patterns (i.e., increase
the upper boundary of the rare items would allow more items to be included in the
RP-tree). Accordingly, we changed the minimum support value to be 0.2 instead
of 0.1, and then, surprisingly again, it extracted a huge number of patterns (be-

tween 4,608 and 7,680). Furthermore, the total execution time for our proposed

!Play Connect-4 online on: https://www.mathsisfun.com/games/connect4.html

Red wins! New Game ‘])

Figure 5.9: An example of a position involving players of the Connect-4 game
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algorithm was between 15ms and 36ms; this was lower than the FP-Growth exe-
cution time, of between 16ms and 64ms, but exceeded the execution time of the
RP-Growth algorithm (using threshold 0.1) of between 8ms and 20ms. However,
this latter time was used by RP-Growth without any pattern being extracted; this
time expanded using a higher threshold, 0.2, RP-Growth took between 76ms and
126ms to extract up to 7,680 patterns but most of these patterns were then found
to be trivial (e.g., pattern which represents one position).

These findings, in addition to the above discussed results from applying the
FP-EStream algorithm to the parking lots data set, further support the idea
of using a dynamically calculated threshold to discover pattern from evolving
data stream with skewed distributions. The results show the efficiency of the
proposed algorithm for overcoming the rare patterns problem; specifically, the
low T'hreshold values must help to extract the rare patterns encountered in the
data set, and at the same time, these low values do not cause an explosion in the
number of patterns discovered — as such low thresholds do when used with other
methods. Reducing the number of patterns extracted results in a decrease in the

memory costs.

5.5 Chapter Summary

Discovering patterns from dynamic streams which have skewed distributions is
challenging in terms of complexity and execution time. The FP-Growth mining
technique is based on a compact frequency-descending FP-tree structure [123],
and a number of different variants of this technique have been applied widely
on conventional data sets [140, 156, 258]. However, it was difficult to extend
these techniques into the evolving streams scenarios which also exhibited skewed
distributions. There are two main reasons why these algorithms are restricted to

conventional data sets:

e These FP-Growth based techniques require multiple scans of the data set.

113



Chapter 5. Pattern Discovery from Heterogeneous Data Streams

With data streams, often only some of the items are available when the
pattern mining process commences. Moreover, algorithms which operate on
data streams should only make a single or a few passes over the data before

the data are discarded — due to the arrival of new data.

e These techniques use predefined single/ or multiple threshold(s) to enable
them to discover patterns from data sets. And in fact, choosing a high
threshold value causes the rare pattern problem (patterns which appear
infrequently in the data stream are not captured) whereas selecting a low
threshold value (in order to discover the rare patterns) is considered to
be costly and inefficient, as it can produce a huge number of meaningless

patterns.

This chapter introduced a novel technique, the FP-EStream technique, for
pattern discovery, which operate over evolving data streams with skewed distri-
butions. The contribution of this investigation is two-fold: first, a new pattern
discovery method was presented which is capable of discovering both frequent
and rare patterns efficiently. Second, the proposed FP-EStream technique has
the ability to capture the changing dynamics of patterns emerging from hetero-
geneous streams efficiently. Specifically, this technique used an adaptive learner
technique, naive Bayes, over a sequence of titled time window, to build the fre-
quent item list which could then be used to construct the FP-tree. Classifying
the streams reduced the number of patterns which were detected from the het-
erogeneous streams. Furthermore, a dynamically calculated threshold was used
to identify patterns contained within these heterogeneous streams; this threshold
was computed for each window based on the minimum joint probability obtained
from the naive Bayes classifier. The results, from applying the proposed algorithm
to both the data streams generated from the simulation model and to the real data
set, show that the technique produced can efficiently extract both frequent and

rare patterns; it can also handle the issue of concept drift as encountered in rela-
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tion to patterns which emerge from such streams. Furthermore, the results sup-
port the merit of using the proposed dynamic support threshold to overcome the
rare patterns problem in non-stationary streams exhibiting multi-class imbalance.
This technique does not need to generate candidates or scan the database many
times, unlike other pattern discovery approaches (e.g., FP-growth). Although the
proposed technique was tested primarily on a car parking lots environment in this
study, it could be adapted to be used in many differing domains: e.g., it could be
applied to the discovery of patterns in a wide variety of [oT streams (tube fault

diagnosis, or water leakages monitoring).
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Chapter 6

Deep Learning for Non-stationary
Multivariate Time Series

Forecasting

6.1 Introduction

Forecasting, the process of making predictions about future events based on the
past and on current data, plays a major role in decision making across a broad
range of domains: e.g., weather, energy, transportation, business, and entertain-
ment [14, 144, 200]. Time series data derived from dynamic environments capture
the dynamic behaviours and provide the means by which to monitor and predict
changes in these environments [144]. While time series forecasting has been exten-
sively studied by statisticians, the rapid growth in the complexity and size of time
series data streams, generated by many real-world applications, pose significant
challenges for the existing statistical techniques [40, 41, 144]. Thus, there is an
increasing necessity to develop time series modelling and forecasting techniques
that deal with large volumes of data generated at high speed (i.e., from dynamic
environments) which are governed by multiple variables, complex seasonality and

produced over multiple time steps.
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This chapter presents an empirical exploration of deep learning techniques used
for forecasting from non-stationary multivariate time series. The main purpose of
this investigation is to determine if we can develop accurate parking availability
forecasts in real time, via Gated Recurrent Units (GRUs) and the multivariate
time series collected from the IoT devices in parking lots. The prediction of
parking availability mainly depends on the multiple seasonal patterns exhibited
in the parking lots and on the real-time occupancy data. Therefore, we seek to
build a deep learning model using multiple data streams, generated from a limited
number of existing IoT devices, to provide predictions which are as accurate as
possible across a variety of parking lots. This is unlike most of the solutions
already proposed in the literature, many of which are based on the installation
of additional hardware, e.g., cameras or sensors at each parking space, for the
achievement of their aims [112, 115, 233, 293]. Such approaches imply extra
installation costs and ongoing maintenance expenses.

The rest of this chapter is structured as follows. The next section presents a
brief discussion of related works. Section 6.3 will provide the problem scenario and
the framework used in this exploration, this will be followed by the experimental
work in Section 6.4, where the results will be discussed. Finally, Section 6.5

provides the the chapter summary and conclusions.

6.2 Related Work

In the United Kingdom, drivers spend 91 hours, on average, every year (nearly
four days) looking for parking spaces, according to a study [15] produced by the
British Parking Association (BPA) in 2016. Furthermore, a driver can often take
about eight minutes to find a parking space in London, whereas five minutes of
searching is more likely in the East of England and the East Midlands [15].
Predicting parking availability has received significant attention in the litera-

ture [112, 115, 209, 228, 233, 265, 293]. However, most studies have focused only

117



Chapter 6. Deep Learning for Non-stationary Multivariate Time Series
Forecasting

on predicting parking availability in the situation where additional hardware and
sensors for monitoring parking lot occupancy have been deployed in the parking
lots in question for precisely this purpose. For example, automated clustering
and anomaly detection techniques were applied to parking datasets collected from
8,200 sensors in San Francisco — in order to identify the trends and events over
a two week period [293]. In another example, a number of different Multi-Layer
Perceptron (MLP) neural networks were applied to a number of different parking
lots, using the data collected from 253 sensors installed across Santander city in
Spain for the purpose of predicting parking occupancy [265]. More recent work
[228] has applied Long-Short Term Memory (LSTM) networks [135] to situations
where there were fewer parking sensors and a variety of data sets — involving
meteorological data, events, map mobility trace data and navigation data — to

predict parking availability.

6.3 Deep Learning for Time Series Forecasting

The goal here is to design a generic time series forecasting model that is accurate
and applicable to non-stationary multivariate time series. To achieve this, we
examined the recently introduced Gated Recurrent Units (GRUs) [58] in relation
to the task of forecasting time series. This section presents an abstract framework
for the forecasting of non-stationary multivariate time series before discussing the

proposed forecasting model.

6.3.1 Problem Scenario

The proposed forecasting model seeks to use the various seasonal patterns in the
usage of each parking lot and its nearby parking lots, in addition to the real-time
occupancy data, to forecast the availability of free parking spaces at each parking

lot, across the following time intervals.
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Let O be the set of n multivariate time series that represent the occupancy of

the various parking lots P:

0=1{0,...0,}

As mentioned in Chapter 2, a multivariate time series has more than one time-
dependent variable, where each variable depends not only on its past values but
also has some dependency on other variables [42, 144, 240]. The occupancy, O;,

of a parking lot P;, where j ranges from 1 to n, at time ¢ can be represented as:

number of the parked cars in P,

77 Yotal number of parking spaces in P; (6.1)
Where P is the set consisting of n parking lots, {P; ... P,}, monitored by k IoT
devices (i.e., smart pay machines, camera sensors, and/or mobile applications),
and where the [oT devices generate k data streams as described earlier in Chapter
3. Typically, the parking availability changes continuously over time, and the past
parking patterns of each parking lot and its nearby locations may affect the current
parking availability; this can be quite effectively handled by the Recurrent Neural
Network (RNN) model which has been proven to be a powerful technique for
dealing with sequential data [120, 133, 248].

Typically, one would expect that the occupancy of parking lots is likely to be
time dependent. The date-time attributes in the time series may imply a great
deal of information, and it can be difficult for a forecasting model to exploit all
of this information if the date-time attribute is in the standard format (e.g., DD-
MM-YY, HH:MM:SS). Thus, the date-time data-item must be decomposed into
its constituent parts, and this may allow the forecasting models to more easily
discover the various seasonal patterns in the dataset. The process of extracting
more information from the existing data is known in the literature as Feature En-

gineering (FE) [84, 151]. As the efficacy of a machine learning algorithm depends

on the input features [84], FE can have a remarkable impact on prediction perfor-
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mance, for example, authors in [19] analysed an individual card holders behaviour
for card fraud detection problem, and found that feature engineering increases the
performance of the learning algorithm.

Let T'S be the set of m multivariate time series that contain the time data
associated with the above set of parking lot occupancy time series, O. The choice
of the number, m, depends on the number of regular seasonal patterns in the time
series data set. That is, the time series data set might have any combination of
yearly, quarterly, monthly, weekly, daily or sub-daily seasonal patterns. If a time
series is relatively short, it can be expected that fewer seasonal components are
present.

In this scenario, let X be defined as the multivariate time series inputs, where
X =TS UO, the number of input time series equals m + n, and the recent se-
quence over the interval a is represented as: X, = (24_q_1,%4_q_2, .., ¥;). Whereas
Y is defined as the target multivariate time series (i.e., the outputs), ¥ = O, and
the number of outputs is n time series. Furthermore, as the forecasting model aims
to predict different following intervals, the number of the time-steps to forecast is

defined as N.S. The forecasting model can be represented as follows:

Y, = f(Xe—1, ... Xins) (6.2)

In words, we consider the inputs as multiple time series that composed of
multiple variables/measurements and which represent the occupancy of multiple
parking lots at multiple temporal granularities, together with additional variables
that encode temporal instants (i.e., stating the hour, day of the week, month,
etc.) and we consider the outputs as multiple time series which represent the
occupancy of multiple parking lots for following intervals (i.e., a given number of

the time-steps).
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6.3.2 Time Series Forecasting Model

In the proposed method, the GRU has been chosen as the deep learning model for
forecasting the non-stationary multivariate time series, derived from the heteroge-
neous data streams. As mentioned in Section 2.7.1, GRUs are special variants of
LSTMs [135] and they consist of two gates: reset gate and update gate that control
the flow of information through the model and refine outputs. These models can
retain information over a period of time have both been shown to perform well in
tasks that require capturing long-term dependencies [61, 149, 248]. Furthermore,
it is possible to integrate any type of feature into the GRUs model (e.g., numerical
or categorical, time-dependent or series-dependent) [58, 61]. Despite the fact that
deep LSTMs have been extensively studied in the literature, and have been shown
to have better performance in terms of modelling time series than statistical mod-
els [173, 228, to our knowledge, GRUs have not yet been explored in relation to
the task of forecasting time series.

Accordingly, the heterogeneous data streams from the [oT devices are used,
first, to generate the required set of multiple time series, O, which represent the
occupancy of the parking lots. Then in order to capture the different seasonal
patterns in the time series, the T'S time series set is extracted from the IoT data
streams as well. In particular, the time of day, the day of the week and the month
are included as input features to the GRUs model. By including these features
explicitly, we attempt to make the forecasting model sufficiently flexible that it
can capture the various different seasonality correlations in the multivariate time
series. The input, X,, and the target time series, Y,, are selected as described
in the previous section; then the target data are shifted by the number of time-
steps required to make the forecast N.S. Furthermore, z; is fed into the GRUs
model, which then outputs a hidden state, h;, and the sequence of hidden states
over the interval, a, are concatenated as %a; these states are then fed through a

fully connected layer h,, the outputs of which are then fed through another fully-
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Figure 6.1: An abstract framework for the proposed forecasting model

connected layer and the output of this is then the parking availability, y;, at time
interval t, according to the Equations 2.11, 2.12 | 2.13, and 2.14. The diagram in
Figure 6.1 shows an abstract of the forecasting model.

Obviously, time series are time-dependent and past observations are used to
predict future observations. Therefore, it was not possible to split the dataset into
training and testing sets using the standard cross-validation method; because the
standard cross-validation method splits the data randomly and does not preserve
the time ordering. Therefore, we trained the data using a walk-forward cross-
validation. The walk-forward method is a well-known technique used in time
series analysis where the first part of the series is utilised as training data and the
last part is utilised as testing data [144, 157]. The training set will be updated
only with the arrival of a new batch (sliding window) of data. The diagram in

Figure 6.2 illustrates how walk-forward cross-validation works.

6.4 Experimental Work

The experiments discussed in this chapter were conducted on data derived from
the parking lots scenario at the University of Essex. In paticular, the simulated

data streams described in Chapter 3 were used to construct the multivariate time
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training em!uaﬁngi predict
1

Time
Figure 6.2: Walk-forward cross-validation for time series

series that represent the occupancy of the parking lots. Furthermore, in order to
get a detailed analysis of the architectures and methods proposed in this chapter,
we run the proposed models on different datasets. Particulary, 10 different itera-
tions of the simulator generated in Chapter 3 were used to generate 10 different
datasets for the same Autumn term 2015-16. First, this section will show how the
occupancy time series were constructed from the simulated IoT streams. This will
be followed by a detailed description of the multivariate time series dataset that
represents the occupancy of the parking lots at the University of Essex. Then,
the GRUs model will be implemented. Specifically, Keras [59] with a TensorFlow
backend [252] has been used to build the neural network models in Python [121].
Keras is a high-level neural networks Application Programming Interface (API),
written in Python and capable of running on top of TensorFlow, or Theano [201],
and TensorFlow is an open source library for developing and training machine
learning models. Finally, forecasting results will be compared with those result-
ing from the use of LSTMs which used for this type of problems in literature
(173, 228], shallow MLP models and from the use of the benchmark statistical

methods such as TBATS [76].
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6.4.1 The Occupancy of the Parking Lots Time Series

As has been described in Chapter 3 in relation to the experimental framework,
three data streams were simulated for the Autumn term 2015-16: the combination
of the payment streams from both the pay stations, the stream from the mobile
application, and the sensors stream from the three camera sensors. So in order
to estimate an approximation of the occupancy in the parking lots, a counter is
associated with each parking lot; these counters are increased in line with the
arrival of new items in the payment streams (i.e., a counter is increased when a
driver pays a parking fee). And conversely, the counters are decreased in line with
the arrival of new items in the sensors stream that indicate that cars, linked with
payment information, have left the parking lot. It is important to note here that
counters are increased based on the payment stream, not on the sensors stream.
Although there is generally a short gap in time between finding a parking space
and paying parking fee, the payment streams give a better indicator of the real
situation than the sensor streams. Subsequently, the three streams were joined
using MS-SQL — ordered by time of payment and time of leaving the parking
lot. The parking lots are monitored only for part of the day, from 07:00 in the
morning until 16:00 in the afternoon, and the counters were initialized (zeroed)
with the arrival of each new day-window (starting at 7.00 am). These processes
resulted in a time series of 184,323 observations in total !, for the 11 weeks of the
Autumn term, from 5 October 2015 until 18 December 2015. For simplicity, the
size of this time series has been reduced to 5,940 observations (for each dataset) by
keeping only the information regarding the occupancy of the parking lots which is
available at the end of each 5 minute period, from 07:00 in the morning to 16:00 in
the afternoon of the week days of the Autumn term 2015-2016 (108 observations
per day, 540 observations per week). As mentioned in Chapter 3, there are six

parking lots: parking lot A for students; Valley parking lot for staff members,

!These observations collected in the first dataset, observations collected from the other 9
datasets range between 184,265 and 184,473
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students, and visitors; the Constable Building parking lot for staff members and
the hotel visitors; parking lot B for students, staff members, and Gym members;
the Multi-deck parking lot for staff members; and the North parking lot for staff
members, students, and the university’s nursery. It is worth exploring what is
known about the (simulated) occupancy of these parking lots before applying the
forecasting model. The diagram in Figure 6.3 shows the occupancy of the parking
lots over the Autumn term 2015. In more detail, the diagrams in Figure 6.4,
Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8, and Figure 6.9 provide an overview
of the occupancy patterns for a period of a single day (the first day of the Autumn
term 2015-16), and the occupancy over the whole term (11 weeks) for each parking
lot separately 2. Clearly, there are direct correlations between the occupancies of
the various different parking lots; therefore, the occupancies of a parking lot and

its nearby parking lots are extracted to represent the occupancy features.

2these diagrams represent the occupancy patterns for the first dataset, diagrams of the oc-
cupancy patterns for the other 9 datasets are provided in Appendix D
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(b) Over the Autumn term 2015-2016 (11 weeks)

Figure 6.6
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(b) Over the Autumn term 2015-2016 (11 weeks)

Figure 6.7
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(b) Over the Autumn term 2015-2016 (11 weeks)

Figure 6.8
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6.4.2 Time Features Extraction

Obviously, the occupancy of the University parking lots is affected by the time
of day, the day of the week, etc. Although the data relating to off-peak periods
and to the holidays have already been removed from the datasets, the diagrams
of the parking lots occupancy, presented in the previous section, show multiple
seasonal patterns. In particular, there is clear daily and weekly seasonality in
the datasets. Moreover, there is a term seasonality, but since the time series
datasets are only one term long, this appears just as a decreasing trend. Although
each dataset contains date and time information for each observation, this is only
used as an index for ordering the data, therefore, a number of time related data
items (attributes) have been added to the occupancy time series in order to help
the proposed model in making predictions. Namely, five time items have been
added: month, week of the academic year, day of the week, and time of day (hour
and minute); then different combinations of these inputs have been tested and

compared.

6.4.3 Building the Prediction Model

In this section, it is shown how a number of different Gated Recurrent Units
(GRUs) models were applied to the datasets using the month of the year, the day
of the week, the time of day, and the occupancy of the parking lots as inputs; the
target outputs were the predicted occupancy of the six parking lots. Table 6.1
shows the different inputs/outputs variables that constitute the input multivariate
time series and the output multivariate time series. Specifically, five different

models were tested, as follows:
1. Forecast the parking availability in the next hour
2. Forecast the parking availability in the next two hours

3. Forecast the parking availability in the next three hours
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Table 6.1: The detail of variables in the input multivariate time series and the
output multivariate time series

Inputs Outputs
Month
Day Occupancy of Park A
Time Occupancy of Park B
Occupancy of Park A Occupancy of the Constable Park
Occupancy of Park B Occupancy of Valley Park
Occupancy of the Constable Park | Occupancy of the Multi-deck Park
Occupancy of Valley Park Occupancy of the North Park
Occupancy of the Multi-deck Park
Occupancy of the North Park

4. Forecast the parking availability for the next day

5. Forecast the parking availability for the next week

For each model, we shifted the target-data according to the number of time-
steps which were to be forecast. As has been said, the data set has observations
for every five minute period (i.e., one time-step corresponds to five minutes), so
12 time-steps corresponds to one hour, and 12 x 9 x 5 time-steps corresponds to
one week. To predict the occupancy in the next hour, the data must be shifted 12
time steps, similarly if want to predict the occupancy for the next day, the data

must be shifted 9 * 12 time-steps, the number of shift-steps for each dataset can

be defined as:

shift steps (hours) = hours to predict * 12
shift steps (days) = days to predict * 9 % 12
shift steps (weeks) = weeks to predict % 5 % 9 % 12

Then each dataset was splitted into three sub sets: 70% of the dataset for
training, 15% for validation to monitor the model’s performance, and 15% for
testing. As the input features are on different scale, we need to normalise the

features, accordingly, the data was then scaled using scikit-learn (Min Max scalar)
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[66] before the GRU model was applied; this was done because the neural networks
used work best on values between -1 and 1, approximately. There are 5,940
observations in each dataset, and the model took 10 inputs and produced 6 outputs
for each observation, but training the GRU models over the complete sequence of
observations resulted in poor performance, so instead of using the whole training
set, we created batches of shorter sub-sequences; these sequences were picked
randomly from the training-data. Two different batches constructed in this way
have been tested: the first batch consisted of 108 sequences each with a sequence-
length of 540, which meant that each random sequence contained observations
for a five day period; and the second batch consisted of 540 sequences each with
a sequence length of 108, which meant that each random sequence contained
observations for the previous day. The GRUs models were implemented using
three layers (two hidden layers and one output layer 3); the first layer mapped
the inputs from the dataset onto 64 or 128 outputs. The choice of using either 64
or 128 such outputs was based on trying a variety of different values to see which
ones fitted with the data set. Then a fully-connected (dense) layer was added
(also 128 or 64 units wide), then another fully-connected layer was added which
mapped (128 or 64) values down to only 6, using the hard-sigmoid function —
this is faster to compute than the standard sigmoid function [207]. Either of these
functions can be used to map the data to outputs between 0 and 1; the standard

sigmoid function can be calculated as follows [207]:

1

f(z) = T+ oxp—s (6.3)

whereas the hard-sigmoid can be written as [207]:

1 = mas (0.min (1.0 »

3note that the input layer is not counted in the number of layers when calculating the depth
of network [93, 291]
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Layer (type) Qutput Shape Param #
gru_1_Input o (Mane, No_r:;, 10) TZI'__
gru_1 (GRU) (None, Mone, 128) 83376
dense_1 (Dense) (None, None, 64) 8256
dense_2 [Dense) (None, Mone, &) 390
Total params:_ﬁ_z_,lilzz o o
Trainable params: 62,022

Mon-trainable params: 0

Layer (type) Qutput Shape Param #
gru_1_Input o (Mone, N_o_n_e, 10) __III_
gru_1 (GRU) (Mone, None, 128) 83378
dense_1 (Dense) (Mone, None, 128) 16512
dense_2 (Dense) (Mone, None, &) 774

Total params: 70,662
Trainable params: 70,662
Mon-trainable params: 0

Figure 6.10: Details of layers in the proposed GRUs models

Details of the layers are shown in Figure 6.10. Moreover, the Mean Squared
Error (MSE) which has been described previously in Equation 2.7, was used to
calculate the loss function. We used a warmup period of 12 time-steps at the
beginning of the training, the results from which were discarded for the purposes
of calculating the loss function; this was in order to improve the accuracy of the
calculation in relation to the results as a whole. Moreover, we used RMSprop
[1], with an initial learning rate of le — 3, as the model optimizer. Furthermore,
for each generated batch, we used 20 epochs with 10 steps for each epoch. Table
6.2 illustrates the specifications of each model then the forecasting performance
from these GRUs models for the University parking lots scenario (i.e., on the 10

simulated datasets) are summarized in Figure 6.11.
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Table 6.2: The specifications of the GRUs models used

Model | GRUs Model | No. steps Sequences
( neurons) | to forecast | in the batch
1 10,128,128.,6 1 hour 108
2 10,128,128,6 1 hour 540
3 10,128,64,6 1 hour 108
1 10,128,64,6 1 hour 540
5 10,128,128,6 2 hours 108
6 10,128,128,6 2 hours 540
7 10,128,64,6 2 hours 108
8 10,128,64,6 2 hours 540
9 10,128,128.,6 3 hours 108
10 10,128,128,6 3 hours 540
11 10,128,64,6 3 hours 108
12 10,128,64,6 3 hours 540
13 | 10,128,128,6 1 day 108
14 10,128,64,6 1 day 108
15 | 10,128,128,6 | 1 week 108
16 10,128,64,6 1 week 108

Overall, the results show that the GRUs models achieved a good performance
with low values of error measures: MSE and MAE. It is apparent from the re-
sults that using a bigger batch size (540 instead of 108) slightly increased the
performance of the GRUs models, however, this may mean that the model was
over-fitted, it is easy that such a high-information capacity model became over-
fitting on short time series. The Mean Absolute Error (MAE) values of these
models varied between 0.043829 and 0.090664, whereas the Mean Squared Error
(MSE) values varied between 0.0041 and 0.01655. Moreover, for each dataset in
Figure 6.11, the reported performance values are the mean of the performance
values over all outputs (i.e., the reported value is the sum of the measure val-
ues divided by the number of outputs). For example, the reported MSE value
for each observation in Figure 6.11 is the mean of six MSE values (over the six
outputs). Moreover, the details of MSEs of the proposed models on all datasets
are presented in Appendix E. Furthermore, diagrams in Figure 6.12 show the loss

function demonstrated by these models.
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As explained earlier in the experimental work section, the reason that the
proposed models were run on multiple datasets: instead of comparing the perfor-
mance of the proposed models based on single value (e.g., single MSE value), we
compared the performance of these models based on multiple values from multi-
ple datasets. It is clear from Figure 6.11, the mean MSE values over the multiple
datasets range from 0.00547 and 0.01285, where the mean MAE values range
from 0.05026 and 0.07488. Therefore, we decided to compare the performance
results statically to see if there is a significant difference in the performance of
the proposed models. Accordingly, we chose repeated measures one-way Analy-
sis of Variance (ANOVA) test [114], which commonly referred to as ANOVA for
correlated samples, to compare the proposed models. One-way ANOVA [230] is
a statistical technique to test for differences among two or more groups. It is an
extension of the t-test which is used to determine if there is a significant differ-
ence between the means of two groups. Simply, the one-way ANOVA calculates
I — statistic; the ratio of the variance calculated among the means to the vari-
ance within the groups, in order to infer whether there are significant differences
between the means of these groups. Repeated measures ANOVA is the extension
of the dependent t-test, it compares means across one or more variables that are
based on repeated observations [24, 114].

Before moving to the test, it will be necessary to explain what does the signif-

icance test mean. Simply, the null hypothesis Hj states that the means are equal:

Ho:pg=pe=-=py (6.5)

where p is the population mean and ¢ is the number of related groups. The
alternative hypothesis H, states that at least two means are significantly different

[114, 230]. Moreover, the p — value is the probability of obtaining the observed
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results of a test, assuming that the null hypothesis is true. So if:

p —value < o (6.6)

where the significant level of 0.05 is the most commonly used value for « in liter-
ature [24, 278], then we reject the null hypothesis, Hy, and accept the alternative
hypothesis, H, [278].

Accordingly, we used repeated measures one-way ANOVA test to compare
the 16 GRU models in R [253]. Figure 6.13 shows the result of the test, where
F-value indicates the obtained F' — statistic, Pr specifies the p-value. More-
over, critical — F' — value is calculated using the probability level o = 0.05, the
numerator degrees of freedom 1, df; = 15, and the denominator degrees of free-
dom 2, df; = 135. It appears from the result that F' — statistic is greater than
critical — F' — value: 25.4 > 1.74106594. This indicates that there is a signifi-
cant difference between models, but ANOVA test does not indicate which models
were different. Therefore, we performed a multiple pairwise paired t-tests between
models, in order to determine which models had a significant difference. Moreover,
p-values were adjusted using the Bonferroni multiple testing correction method
[36]. Bonferroni correction is a simple method which is used commonly to solve
the multiple testing problem (i.e., when the number of tests (null hypothesis) in-
creased, the problem of getting a significant difference due to chance is increased
too). Simbly, the Bonferroni correction sets the significance by dividing a by the
number of tests being performed [36]. Pairwise comparisons with a Bonferroni
adjustment revealed that not all the pairwise differences between models were
statistically significantly different (i.e., not all p — values <= «). Specifically,
model 16 and model 15, where the number of steps to forecast is 1 week, were
significantly different from models (1 to 12) which predicted three hours ahead or
less. Model 13 and model 14 predicted one day ahead and they were significantly

different from most models (1 to 12) that predicted 3 hours ahead or less, except
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epeated measures ANOVA

| 2l

Error: data
of sum Sg Mean Sg F wvalue Pr(=F)
Residuals 9 6.333e-05 7.25%e-06

Error: data:model

of sum Sg  Mean Sg F value Pr(=F)
mode] 15 0.0007337 4.892e-05 25.4 <le-1p ww%
Residuals 135 0.0002600 1.930e-06

Signif. codes: © “#%%' 0,001 ‘#*' Q.01 ‘*' Q.05 “." 0.1 °* " 1

Figure 6.13: The results of repeated measures ANOVA test on GRU models

models that used a bigger batch size (e.g, model 14 is significantly different from
models 2, 4, 6, and 12). The results from pairwise comparisons is provided in Ap-
pendix E. It appears from the results above that models that predicted one day
ahead or one week ahead had a better performance than models which predicted
up to three hours ahead using small batches, and there is no significant difference
between the performance that predicted one day ahead and those which predicted

one week ahead.

6.4.4 Results and Discussion

To evaluate the performance of the GRU models, we applied different forecasting
models on the same datsets to forecast one day ahead, the choice of number of
steps to forecast was in order to test the performance of the propsed models under
a complex seasonality. Accordingly, we compare GRU models to a deep LSTMs
model, shallow MLP models and TBATS model.

6.4.4.1 Deep LSTMs Model

Firstly, a deep LSTM model was applied on the same ten datasets. As men-
tioned in Section 2.7, the RNNs have been used successfully in literature for
sequence learning tasks [120, 236], LSTMs allow RNN to learn temporal depen-
dency and have been used for forecasting problems [228, 292]. Accordingly, we

applied LSTMs model with the same inputs and the target outputs of the GRU

144



Chapter 6. Deep Learning for Non-stationary Multivariate Time Series
Forecasting

models in the previous experiment. Each dataset was divided into three sub-sets:
70% training set; 15% validation set and 15% for testing. The experiment was run
in a similar way to the setting of the GRU models; we generated random batches
from the training set, each consisted of 108 sequences, instead of using the entire
training set. The LSTM models on the datasets were implemented using three
layers (two hidden layers and one output layer); the first layer mapped the inputs
from the dataset onto 128 outputs, this followed by a fully-connected (dense) layer
of 128 neurons, then another fully-connected layer was added which mapped 128
values down to only 6, using the hard-sigmoid function. The details of the layers
are shown in Figure 6.14.

In addition, the loss function was calculated for the as the previous GRUs
models and the performance measures are shown in Figure 6.15, and we explained
in the previous section, each measure value is the mean of measure values on the
six outputs. By comparing these results with results from applying GRU model 14
which has same number of layers and number of neurons in each layer, and provides
forecasting for the same number of steps (i.e., one day ahead); the mean MSE and
mean MAE for LSTM model are 0.00882 and 0.06243 respectively, slightly higher
than the mean MSE and mean MAE for GRU model are 0.00761 and 0.05830

respectively, these results will be discussed further later in this section.

Layer (type) Qutput Shape Param #
'I5trr1_1_|nput7__ [(Mone, Nc:_n_e_, 10] _EI'_
Istm_1 [LSTM) (Mone, Mone, 128) 71168
dense_1 (Dense) (None, Nane, 128) 16512
dense_2 (Dense) [None, Nane, &) 774

Total params: 88,454
Trainable params: 85,454
Mon-trainable params: 0

Figure 6.14: Details of layers in LSTM model
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6.4.4.2 Shallow MLP Models

Secondly, shallow Multi-Layer Perceptron (MLP) models were applied to the same
datasets using three different settings, the Multi-Layer Perceptron (MLP) models
have been used widely in literature for time series forecasting [16, 169, 265, 275].

In particular, three sets of inputs were used for this testing, as follows:

1. the month, the day of the week, time of day, and the occupancy of the

parking lots (the same attributes used in the above GRUs models).

2. the week of the academic year, the day of the week, the time of day, and

the occupancy of the parking lots.
3. the time of day, and the occupancy of the parking lots.

Where the target outputs for all these sets were the occupancy of the parking
lots. Furthermore, similar to the GRUs models in the previous section, each
dataset was divided into three sub-sets: 70% training set; 15% validation set,
to monitor the model’s performance; and 15% for testing. After this, the data
was scaled as in the previous experiments. We applied the MLP on the same
ten datasets for this experiment. There were 5,940 observations in each dataset,
and there were 10 inputs and 6 outputs (9 inputs in the third experiment) to
each model. The testing proceeded in a similar way to the testing of the GRUs
models; we generated random batches from the training set instead of using the
entire training set for training the MLP models — with 25 epochs, and 6 steps
for each epoch. The MLP models were implemented using two layers (one hidden
layer and one output layer), the first layer mapped the inputs to 512 outputs, and
the choice of this number was based on trying different values to see which one
fitted best with the data set; then we add a fully-connected (dense) layer which
mapped the 512 values down to only 6 values, using the hard-sigmoid function.

The details of the layers are shown in Figure 6.16.
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Layer (type) Output Shape Param # Layer (type) Output Shape Param #
dense_1_Input {None, None, 10) 0 dense_1_Input {None, None, 9) 4]
dense_1 (Dense) (Mone, Mone, 512} 5632 dense_1 (Dense) (Mone, None, 512} 5120
dense_2 (Dense) (None, None, &) 3078 dense_2 (Dense) (None, None, &) 3078
Total params: 8,710 Total params: 8,198

Trainable params: 8,710 Trainable params: 8,198

Mon-trainable params: 0 Non-trainable params: 0

Figure 6.16: Details of layers in MLP models

Moreover, Mean Squared Error (MSE) was used to calculate the loss function,
and RMSprop with an initial learning rate of le — 3 was used as the model op-
timizer. The diagrams in Figure 6.17 show the loss function (for Dataset 1 only)
demonstrated by the three experiments. The various results from applying the
three MLP models on the test sets are shown in Figure 6.18. It appears that the
first model, which use same inputs and outputs of GRU models, has the least
mean MSE and mean MAE values: 0.00340 and 0.04268, where the third model
which used only the time of the day and the occupancy of parking lots as inputs,
has the highest mean MSE and mean MAE values: 0.0095 and 0.0713. These
results will be discussed in detail later in this section, and the details of MSEs of

the MLP models on all datasets are presented in Appendix E.

148



Chapter 6. Deep Learning for Non-stationary Multivariate Time Series

Forecasting

Loss.
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Figure 6.17: The loss of the MLLP models on the University parking lots
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6.4.4.3 TBATS Model

Moreover, we decided to compare the GRU results with those that could be ob-
tained from purely statistical methods. We sought to find a statistical method
that deals with multivariate time series and complex seasonality at the same time.
So, for this experiment, we settled on TBATS [76] as the method to be used, it
is a statistical forecasting technique that deals with complex seasonality in au-
tomated way with no seasonality constraints, and it was described previously in
Section 2.6. This method can deal efficiently with complex seasonality exhibited
by isolated time series (each parking lot alone), each dataset was splitted as the
previous experiments into 70% and 15% for training and validation sets and 15%
for testing sets. Figure 6.19 shows the performance metrics of the forecasting
model in on the test data, these metrics were aggregated based on the mean value
(i.e., for each dataset, the total sum of performance measure values on multiple
parking lots was divided by the number of parking lots). The mean of perfor-
mance values are higher than those for GRU models with MSE and mean MAE
values: 3.5369 and 4.2327 respectively. Moreover, screen-shots of predictions from
the proposed models in this chapter are provided in Appendix F.

It is clear from comparing the results in Figure 6.11, Figure 6.15, Figure 6.18,
and Figure 6.19 that the GRU models, LSTM model and MLP models perform
better than the TBATS statistical model, the performance measures of GRU
models are always below one. For the same number of steps to forecast (one day
ahead) on the same ten datasets, the MSE values of GRUs model 14 range be-
tween 0.00674 and 0.00928, and MAE values range between 0.05539 and 0.06039.
Whereas MSE values of the LSTM model range between 0.006937 and 0.01886
and MAE values range between 0.05587 and 0.068622. The MSE values of the
MLP model 1 range between 0.00187 and 0.004 and MAE values range between
0.03043 and 0.05971. The MSE values of the TBATS model range between 3.4726
and 3.6105 and MAE values range between 3.9754 and 4.4401. In addition, it is
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apparent from comparing the first MLP model, which uses the same inputs of the
GRU models that the simple MLP model has a lower performance values than
the GRUs model, with mean MSE value 0.00340 less than the mean MSE value
obtained of the GRUs model 14: 0.00760, and with mean MAE values: 0.04268 for
the MLP model, and 0.05830 for the GRUs model. A possible explanation for this
might be that GRUs need more training data (e.g., one year), so they can model
the different seasonality in the time series. In order to find if the differences in
the performance of these models were significant, we run repeated measures one-
way ANOVA test which followed by a pairwise comparisons with a Bonferroni
adjustment (similar to the test in Section 6.4.3). The test result in Figure 6.20
shows that these models were significantly different, F' — statistic is greater than
critical — F — value: 58343 > 2.96035135, however, the pairwise t-tests indicate
that the difference between GRU, LSTM, and MLP is not significant; because all
p—values between each pair of these models were greater than «, so we could not
reject the null hypothesis. The only significant difference was between these mod-
els and the TBATS model, p —values between each pair of these models were less
than a. These results would seem to suggest that the deep GRU models would
outperform the statistical forecasting techniques which operate on multivariate
time series data streams. However, GRU models might not be the best approach
for forecasting multivariate time series from dynamic streams, as the simple MLP

models achieved similar performance.

6.5 Chapter Summary

There are few real-time parking availability systems due to the high cost of the
technologies required for building and maintaining the necessary real-time parking
information. The increasing proliferation of IoT technologies across many real-
world applications, where heterogeneous data streams are produced by multiple

sources rapidly, provides the means to develop applications which can provide
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pf sum sq Mean sq F value Pri=F)
Residuals 9 0.004812 0.0005347
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Figure 6.20: The results of repeated measures ANOVA test on the four
models: GRU, LSTM, MLP, and TBATS

real or near-real time forecasting from these time series. However, the accelerated
growth of time series data streams, in terms of their size and complexity, has
become a major obstacle to the application of existing statistical techniques to
these data streams.

This chapter presents a system which sought to produce near-real time pre-
dictions in a car-parking lots dynamic environment equipped with a number of
different IoT devices. Furthermore, it provided an empirical exploration of the
application of Gated Recurrent Units (GRUs) models, which are designed to han-
dle sequence encoding and decoding. This exploration attempted to determine
the efficiency of applying these deep learning models to produce near-real time
predictions in dynamic environments, over multiple time steps, and to explore
their (these models’) ability to handle the multiple variables, and complex sea-
sonality which are encountered in such data streams. The contribution of this
chapter is two-fold. First, it shows the development of a model which provides

an as-accurate-as-possible near-real- time parking availability forecast, across a
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variety of parking lots, by using the GRUs technique and the multivariate time
series collected from the IoT devices in the parking lots. This is unlike most of the
solutions which have already been proposed in the literature, many of which are
based on the installation of additional hardware, e.g., cameras or sensors at each
parking space [112, 115, 233, 293]; such approaches imply extra installation costs
and ongoing maintenance expenses. Second, the chapter presented an empirical
exploration of the use of deep learning approaches for forecasting multiple time
series obtained from heterogeneous data streams. In particular, different GRU
models were tested on parking information which was collected from a variety of
[oT devices. The experiments were conducted on six parking lots at the University
of Essex, where there were six smart pay stations and only three camera sensors.
To the best of our knowledge, this is the first study which has empirically explored
GRU models in association with time series forecasting. The results show the ef-
fectiveness of using GRU models in terms of providing accurate predictions in
dynamic environments. Moreover, the results indicate that GRU models outper-
form the existing statistical methods, for this task, since GRU models can handle
the complex seasonality across multiple time series data streams. However, the
results show that there is no significant difference in the performance between a
simple Multi-Layer Perceptron model (MLP) and a deep GRUs model. We argue
that GRU models may perform equal to simple MLPs models in the task of fore-
casting time series. In fact, deep is not necessarily better; deep networks often
have more parameters, thus, they are more likely to be over-fitted. However, this
needs a further investigation using larger datasets, and datasets from different

domains.
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Conclusion

This study was undertaken for the purpose of exploiting real-time heterogeneous
data streams produced by a variety sources. It explored data mining techniques
which operate on non-stationary streams of this kind. In particular, it investi-
gated problems which are encountered in the course of mining such data streams
that exhibit skewed distributions in non-stationary environments. Novel methods
were developed, capable of learning from such data streams, which can capture
the dynamic of the patterns which emerge and thus predict future behaviour re-
lating to items in these streams. The novelty of the techniques presented here
lies in the fact that they tackle the joint problems of concept drift and multi-
class imbalance in data streams scenarios. A new technique was presented to
extend concept adaptation techniques into class imbalance scenarios (more than
two classes). Moreover, an algorithm using dynamically calculated thresholds
was presented aimed at discovering patterns from evolving streams, tackling the
changes in emerging patterns, and overcoming the rare patterns problem. More-
over, a new forecasting model for time series data streams was developed for the
purpose of handling the complex seasonality in these data streams, and provid-
ing as-accurate-as-possible predictions across multiple time series data streams

generated by dynamic environments.
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This chapter provides a brief summary of the work presented in this thesis; it
identifies the main contributions of this work, and highlights the findings, indi-
cating the strengths and weaknesses of the approaches taken. The chapter then
describes some potential areas for future research by which this work can be ex-

tended.

7.1 Summary

In summary, this thesis aims to contribute to the research focused on mining
evolving data streams which have been generated from heterogeneous sources,
and to addressing of the multi-class problem related to such streams.

Chapter 2 presented a survey of the state-of-the-art work related to mining
data streams. That chapter identified the challenges that may emerge when min-
ing data streams; particularly, it focused on three problem: concept drift, class
imbalance, and the discovering of patterns from evolving data streams and thus
the tackling of the change in the patterns which are encountered. It illustrated
how drifts occur in streaming scenarios, and discussed the methods presented in
the literature relating to concept drift adaptation. A detailed description of the
class imbalance problem and the impact of this problem on data mining techniques
was given, in terms of developments and evaluations. In addition, it discussed the
difficulty of discovering patterns from evolving data streams using the existing ap-
proaches - which require multiple scans of the data set and predefined thresholds
values. In addition, an overview related to time series forecasting was provided,
with regard to both machine learning approaches designed for forecasting time
series and also current statistical techniques. Furthermore, a brief discussion was
presented with regard to deep learning approaches and artificial neural networks,
focusing on the Gated Recurrent Unit models.

Chapter 3 presented the formalisation of the problem of working with multiple

streams of data from a variety of IoT devices. An illustrative scenario involving a
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number of different data streams derived from the same dynamic environment — a
scenario concerned with car movements within a parking lots environments — was
presented in Chapter 3. The chapter identified the characteristics of the sample,
data from the University of Essex parking lots, which was selected to represent the
research problem and which was used to create the simulation model. This simu-
lation sought to produce the necessary heterogeneous data streams which change
dynamically and which exhibit multi-class imbalance problem. This simulation
can also serve as a benchmark to facilitate the development and the evaluation of
data mining techniques which operate over non-stationary data streams.

Data mining techniques presented in the literature capable of classifying non-
stationary data streams which exhibit internal imbalance were focused on the use
of ensemble classifiers [137, 271, 274]. Chapter 4 presented means by which con-
cept drift adaptation techniques can be extended, specifically, the developing of
adaptive learning models and training set modification into the area of imbal-
anced data streams. While the work presented in the literature focused on only
two class problems [46, 137, 198, 271, 274], this chapter addressed multi-class
imbalance problems and presented a new method, the ICE-Stream technique, ca-
pable of classifying evolving imbalanced data streams. An adaptive learning model
was developed using a time-window based approach. A window of the instances
which were found to have been classified incorrectly was maintained and used
to modify the training window of the adaptive classifier which was used for the
subsequent time-windows. The experiments were conducted on the data streams
derived from the simulation model, and from two other, real, data sets. As far
as we know, no previous study has investigated the application of adaptive learn-
ing models or the modification of training sets for tackling the class imbalance
problem in non-stationary streams [137, 274]. The results obtained from the ICE-
Stream technique, which were presented in this chapter, showed the efficiency of
the proposed technique in adapting to changes in the underlying concepts being

represented in these streams, and for detecting instances from minority classes.
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Extracting patterns of interest from evolving data streams is difficult and time
consuming as a huge number of patterns can emerge from such streams; therefore,
the patterns should be identified in relation to their to level of interest. Chap-
ter 5 was focused on discovering patterns from differing data streams which have
skewed distributions and which emerge from dynamic environments. The chapter
presented a novel technique, the FP-EStream, for extracting both frequent and
rare patterns from such streams. This technique was developed based on the inte-
gration of two mining techniques: classification, used to extract the only patterns
of interest; and frequent pattern mining, using a variant of FP-Growth algorithm
and a dynamically calculated support threshold. The chapter showed the way
in which the FP-Growth technique [123] was extended into evolving data stream
scenarios. Thus, a new method, which uses the joint probabilities calculated by
the naive Bayes classifier, was presented for building the frequent items list, F'1.S,
for the FP-Growth algorithm [123], and then construction of the FP-tree using
the classifier attributes. It also presents a novel method for defining a dynamically
calculated threshold; this threshold was computed for each time-window, based
on the minimum joint probability derived from the classifier; it was then used
to identify patterns and tackle the drifts in these patterns as obtained from the
evolving streams. The experiments were conducted on the data streams derived
from the simulation model and also on a real data set. The results showed the
usability of the proposed technique in terms of its ability to reduce the number
of meaningless patterns returned. In addition, the results supported the merit of
using a dynamically calculated, instead of a fixed, threshold to detect the rare
patterns over evolving imbalanced data streams.

Time series data derived from dynamic environments capture their dynamic
behaviours and provide the means by which to monitor and predict changes in
these environments. With the proliferation of data streams generated from our ev-
eryday activities, there is an increasing necessity to develop time series forecasting

techniques which can deal with data generated at high speed and which exhibit
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the presence of multiple variables and complex seasonality. Existing statistical
forecasting techniques cannot handle complex seasonality in multiple time series
data [40, 41, 144]. Chapter 6 described a new method for providing near-real
time prediction for a car-parking system, across a variety of parking lots. Unlike
existing parking prediction methods which require the installation of extra hard-
ware, the proposed method used the data streams derived from the existing loT
devices, deployed in the parking lot infrastructure, to develop Gated Recurrent
Unit models. The forecasting models presented were capable of providing accurate
near-real time prediction over multiple time intervals. In addition, this chapter
presented an empirical exploration of using GRU models to forecast time series
derived from dynamic environments. To the best of our knowledge, no previous
work has investigated the use of GRU models for forecasting time series. The
results obtained revealed that the exiting statistical forecasting techniques can be
outperformed by the GRU models. Interestingly, there is no significant difference
between the results obtained from the deep learning approach using GRU models
and a simple Multi-Layer Perceptron (MLP) model, the results indicated that
GRU models may perform equal or worse than simple MLP models in the task of

forecasting time series.

7.1.1 Contributions

The contributions of the work presented here can be summarised for the reader as
follows: first, we extended the adaptation techniques of concept drift into imbal-
anced classes scenarios. The ICE-Stream technique, an adaptive classifier using
naive Bayes and with an incremental nature, was developed in order to classify het-
erogeneous streams over a sequence of titled time windows. The adaptive learner
worked based on a windows approach; thus, it was retrained with the arrival of
each new window batch of the data stream. As far as we know, the ensemble

classifiers technique is the only approach which has been used (up until now) for
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classifying non stationary data streams which exhibit the presence of class imbal-
ance. However, there are two other adaptation techniques which have not as yet
been investigated in relation to the class imbalance problem often encountered in
evolving streams. This present study represents the first time that an adaptive
learner has been used, even experimentally, to classify evolving data streams and
handle class imbalance across more than two classes.

Then, we maintained a window of the instances which had been incorrectly
classified by the adaptive learner; this window was then used to modify the train-
ing set to be used by the adaptive learner; the contents of this window were added
to the training sets for subsequent windows. This was in order to enhance the
performance of the classifier of the ICE-Stream method and to reduce the num-
ber of incorrectly classified instances (often these instances belong to a minority
class). To the best of our knowledge, the ICE-Stream method presented here is
the first proposal which has been developed to tackle the multi-class (more than
two classes) imbalance problem as it can occur in evolving streams.

Moreover, we presented a novel technique, FP-EStream, for detecting patterns
from evolving imbalanced data streams, which uses a variant of the FP-Growth
mining technique. The means of constructing the frequent item list was changed;
this list was built using the joint probabilities derived from the classifier, whereby
items were ordered according to their class attributes. Unlike other pattern dis-
covery methods presented in the literature [156, 179, 258], this technique does not
generate candidates, and it accelerates the algorithm execution time by reducing
number of data set scans. This methodology also helps to reduce the number of
patterns derived from the huge amounts of data items likely to be encountered in
evolving data streams — by omitting meaningless patterns.

In addition, we presented a dynamically calculated threshold which was used
to identify patterns which emerged over titled time windows. The threshold val-
ues varied across different time windows, and they were computed based on the

minimum join probabilities derived from the classier used in the ICE-Stream tech-
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nique. In contrast to other methods which utilise predefined single/ or multiple
threshold(s) to discover patterns from data sets, the FP-EStream’s dynamically
calculated threshold value allows the method to detect rare patterns appearing in
imbalanced non-stationary data streams.

Furthermore, we provided an empirical exploration of the forecasting of multi-
ple time series data streams which exhibit more than one seasonal pattern, using
GRU based models. The results showed the ability of GRU models to provide
an accurate prediction over multiple time steps across a variety of time series
data streams. The performance of the GRUs model used here surpassed the
performance of current statistical methods, which can either deal with complex
seasonality in only one time series, or deal with multiple time series which exhibit
only one seasonal component. This is the first time that GRU based models were
experimentally tested on forecasting multiple time series.

Moreover, we presented a new method for predicting car-parking space avail-
ability using deep learning GRU models and multivariate time series (occupancy/time)
derived from heterogeneous data streams, where these data streams were gener-
ated by diverse kinds of IoT devices already deployed in the parking lot infrastruc-
ture. This is unlike the parking prediction solutions discussed in the literature
which entail extra costs relating to the installation and maintenance of special

sensors at each parking space.

7.2 Future Work

This research has enhanced the data mining techniques which are available to
operate over evolving data streams generated from a variety of sources, especially
with regards to the multi-class imbalance problem. Despite the fact that a wide
range of issues have been addressed in this study, and that it has achieved its
intended aim and objectives, further improvements to the proposed techniques

can be pointed to; further work along these lines would extend this study and
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provide additional insights into mining techniques for evolving imbalanced data

streams.

e Although we have established the functionality of an adaptive learning tech-
nique which can cope with class imbalance in non-stationary streams, it
would nevertheless be possible, and possibly instructive, to experiment with
different types of base classifiers in place of the naive Bayes classier (e.g.,
the k-Nearest Neighbour algorithm). This in order to support empirically
the insights from applying adaptive learners into imbalanced evolving data
streams and to improve the accuracy of adaptive learners on the minority

classes.

e To evalute the adaptive learner performance in this work, we used Kappa
statistics [65] that take class imbalance into account, comparing relative to
the ground truth, and the accuracy to identify the performance of the pro-
posed technique and to compare it with other approaches. One of the most
significant current discussions in the literature is how streaming classifiers
should be evaluated [31, 137]. An important limitation of this research lies
in the fact that not only we need measures for evaluating single aspects of
stream mining algorithms, but also ways of combining several aspects (i.e.,
concept drift, imbalanced distributions) into the evaluation procedure [168],
for example, more performance evaluation metrics for data stream are re-
quired which are sensitive to multi-class imbalance [31] and which can detect

change in more than one minority class.

e Although the proposed ICE-Stream method was tested on real-world datasets,
the generalisation of the results obtained in this investigation is subject to
certain limitations; for instance, the choice of the window size in terms of
the adaptive learner’s input. Further research regarding the choice of the
size of the time based windows would be worthwhile. It would be interesting

to attempt to adjust the size of the window dynamically while the mining
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and processing of data streams carries on, in order to find the appropriate

window size in cases where there is a lack of domain knowledge.

e The issue of how to maintain the minority window for the ICE-Stream
method is an intriguing one which could be usefully explored further and
improved in future research, in terms of deciding when items in the window
should be discarded. For example, minority classes may evolve and instances
stored in the minority window which belong to the old concept may affect

the classifier performance (training using old concepts).

e Although the proposed FP-EStream technique was tested, here, only on a
car parking lot environment, the technique itself could be adapted and used
across many different application domains: for discovering patterns in IoT
streams (e.g., tube fault diagnosis, or water leakages monitoring), where
we have meters, sensors, and open-data sources. The method presented in
this study could be applied to the analysis of these streams in relation to
the detection of anomalous behaviour patterns (e.g. leakages), and may help

reacting quickly to critical situations and so support predictive maintenance.

e Considerably more work on very large data streams and on using data sets
from different domains, will need to be done in order to determine if the
deep learning technique using the GRU based models are really appropriate
for forecasting multiple time series derived from heterogeneous sources and
which exhibit complex seasonality. Deep learning models can be easily over-
fitted when they are trained on short time series data streams, this may
lead to poor generalisation and worsen the performance of the forecasting
model. These models should be investigated for both short-term and long-

term forecasting.

We aim to explore some of these avenues in future research.

164



Acronyms

AL Active Learning. 17

ANN Artificial Neural Network. 35

ANOVA Analysis of Variance. 142, 143, 153

ARF Adaptive Random Forest algorithm. 25

ARIMA Auto Regressive Integrated Moving Average. 32, 33
AUE Accuracy Updated Ensemble technique. 24, 25

AWE Accuracy Weighted Ensemble technique. 24, 25

BATS Box-Cox transformation, ARMA errors, Trend and Seasonal components.

33

CEPs Complex Event Processing Systems. 19
CFP-Growth Conditional Frequent Pattern-Growth. 29, 30
CFP-Growth++ Conditional Frequent Pattern-Growth++4. xi, 29, 106-108

CNNs Convolutional Neural Networks. 35

DBMSs Database Management Systems. 19
DBNs Deep Learning Belief Networks. 34

DDM-OCI Drift Detection Method for Online Class Imbalance. 67

165



Acronyms

DL Deep Learning. 17, 34

DSMSs Data Stream Management Systems. 19

ES Exponential Smoothing. 32

FP-EStream Frequent Patterns from imbalanced Evolving Streams. xi, 8, 95,

97-99, 101, 103, 104, 106-109, 111, 113, 114, 159, 161, 162, 164

FP-tree Frequent Pattern Tree. 29, 30, 99, 101, 102, 109, 113, 114, 159

GRU Gated Recurrent Unit. 8, 35-38, 117, 118, 121, 123, 133, 135-137, 144,
145, 147, 148, 151, 153-155, 157, 160, 162, 164, 231

ICE-Stream Imbalanced Classes in Evolving Streams. 7, 68, 73, 75, 76, 81-83,
85-93, 101, 109, 158, 160, 161, 163, 164

ToT Internet of Things. 1-7, 40, 41, 43, 44, 50, 52, 53, 62, 75, 97, 103, 115, 117,
119, 121, 123, 153-155, 157, 160, 162, 164

KDD Knowledge Discovery in Databases. 16

LMS least minimum support. 30

LSTM Long-Short Term Memory. viii, 35, 36, 38, 39, 118, 121, 123, 144, 145,
151, 153

MAE Mean Absolute Error. 32, 137, 142, 145, 148, 151, 153

MIS minimum support thresholds. 29, 30

MLP Multi-Layer Perceptron. viii, 35, 118, 123, 144, 147, 148, 151, 153, 155,
160, 236

MOA Massive Online Analysis. 77, 78, 85

166



Acronyms

MSE Mean Squared Error. 32, 136, 137, 142, 145, 148, 151, 153, 231, 236

OOB Oversampling-based Online Bagging. 26

RL Reinforcement Learning. 17

RMSE Root Mean Squared Error. 32

RNN Recurrent Neural Network. 35, 36, 119, 144

ROC curve Receiver Operating Characteristic curve. 28

SADEs Stacked Denoising Auto-Encoders. 33

SARIMA the seasonal ARIMA. 33

SEA Streaming Ensemble Algorithm. 24

SL Supervised Learning. 16

SSL Semi-supervised Learning. 16

SVR Support Vector Regression. 34

TBATS Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend

and Seasonal components. viii, x, 33, 34, 123, 144, 151, 153

UL Unsupervised Learning. 16

UOB Undersampling-based Online Bagging. 26

VARIMA Vector ARIMA. 33

167



References

1]

Keras documentation: Optimizers. online; https://keras.io/optimizers; ac-

cessed 10 March 2019.

C. C. Aggarwal. On biased reservoir sampling in the presence of stream
evolution. In Proceedings of the 32nd international conference on Very large

data bases, pages 607-618. VLDB Endowment, 2006.

C. C. Aggarwal. Data streams: models and algorithms, volume 31. Springer

Science & Business Media, 2007.
C. C. Aggarwal. Data mining: the textbook. Springer, 2015.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering
evolving data streams. In Proceedings of the 29th international conference

on Very large data bases-Volume 29, pages 81-92. VLDB Endowment, 2003.

R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules.
In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages
487-499, 1994.

D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms.
Machine learning, 6(1):37-66, 1991.

M. Almuammar and M. Fasli. Pattern discovery from dynamic data streams
using frequent pattern mining with multi-support thresholds. In 2017 Inter-
national Conference on the Frontiers and Advances in Data Science (FADS),

pages 35-40. IEEE, 2017.

168



References

[9]

[10]

[11]

[12]

[14]

[15]

M. Almuammar and M. Fasli. Learning patterns from imbalanced evolving
data streams. In 2018 IEEFE International Conference on Big Data (Big

Data), pages 2048-2057. IEEE, 2018.

M. Almuammar and M. Fasli. Deep learning for non-stationary multivariate
time series forecasting. In 2019 IEEE International Conference on Big Data

(Big Data), pages 2097-2106. IEEE, 2019.

P. Anantharam, P. Barnaghi, K. Thirunarayan, and A. Sheth. Extracting
city traffic events from social streams. ACM Transactions on Intelligent

Systems and Technology (TIST), 6(4):43, 2015.

H. C. Andrade, B. Gedik, and D. S. Turaga. Fundamentals of stream pro-
cessing: application design, systems, and analytics. Cambridge University

Press, 2014.

S. M. Arisona, G. Aschwanden, J. Halatsch, and P. Wonka. Digital Urban

Modeling and Simulation, volume 242. Springer, 2012.

J. S. Armstrong. Principles of forecasting: a handbook for researchers and

practitioners, volume 30. Springer Science & Business Media, 2001.

T. B. P. Association. Searching for parking spaces report, 2016. on-
line; https://www.britishparking.co.uk /News/motorists-spend-nearly-four-

days-a-year-looking-for-a-parking-space; accessed 10 February 2019.

E. M. Azoff. Neural network time series forecasting of financial markets.

John Wiley & Sons, Inc., 1994.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 1-16. ACM, 2002.

169



References

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. H. Bach and M. A. Maloof. Paired learners for concept drift. In 2008
Fighth IEEE International Conference on Data Mining, pages 23-32. IEEE,
2008.

A. C. Bahnsen, D. Aouada, A. Stojanovic, and B. Ottersten. Feature en-
gineering strategies for credit card fraud detection. Fapert Systems with

Applications, 51:134-142, 2016.

D. W. Bates, S. Saria, L. Ohno-Machado, A. Shah, and G. Escobar. Big
data in health care: using analytics to identify and manage high-risk and

high-cost patients. Health Affairs, 33(7):1123-1131, 2014.

R. J. Bayardo Jr and R. Schrag. Using csp look-back techniques to solve

real-world sat instances. In Aaai/iaai, pages 203-208. Providence, RI, 1997.

M. Ben-Akiva, M. Bierlaire, H. Koutsopoulos, and R. Mishalani. Dynamit:
a simulation-based system for traffic prediction. In DACCORD Short Term

Forecasting Workshop, pages 1-12. Delft The Netherlands, 1998.

M. Ben-Akiva, M. Bierlaire, H. N. Koutsopoulos, and R. Mishalani. Real
time simulation of traffic demand-supply interactions within dynamit. In
Transportation and network analysis: current trends, pages 19-36. Springer,

2002.

V. Bewick, L. Cheek, and J. Ball. Statistics review 9: one-way analysis of

variance. Critical care, 8(2):130, 2004.

M. Beyer. Gartner says solving’big data’challenge involves more than just

managing volumes of data. Gartner. Archived from the original on, 10, 2011.

A. Bifet and R. Gavalda. Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM international conference on

data mining, pages 443-448. STAM, 2007.

170



References

[27]

[28]

[31]

[34]

[35]

A. Bifet and R. Gavalda. Adaptive learning from evolving data streams.
In International Symposium on Intelligent Data Analysis, pages 249-260.
Springer, 2009.

A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavalda. New en-
semble methods for evolving data streams. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining,

pages 139-148. ACM, 2009.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa: Massive online

analysis. Journal of Machine Learning Research, 11(May):1601-1604, 2010.

A. Bifet, J. Read, I. Zliobaite, B. Pfahringer, and G. Holmes. Pitfalls in
benchmarking data stream classification and how to avoid them. In Joint
FEuropean Conference on Machine Learning and Knowledge Discovery in

Databases, pages 465-479. Springer, 2013.

A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and B. Pfahringer.
Efficient online evaluation of big data stream classifiers. In Proceedings of
the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pages 59-68. ACM, 2015.

A. Bifet, R. Gavalda, G. Holmes, and B. Pfahringer. Machine learning for

data streams: with practical ezamples in MOA. MIT Press, 2018.

A. Bifet, J. Read, G. Holmes, and B. Pfahringer. Streaming data mining
with massive online analytics (moa). SERIES IN MACHINE PERCEP-
TION AND ARTIFICIAL INTELLIGENCE, 83(1):1-25, 2018.

D. Billsus and M. J. Pazzani. User modeling for adaptive news access. User

modeling and user-adapted interaction, 10(2-3):147-180, 2000.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

171



References

[36]

[37]

[38]

[39]

[41]

[42]

[43]

[44]

J. M. Bland and D. G. Altman. Multiple significance tests: the bonferroni

method. Bmyj, 310(6973):170, 1995.

G. Bontempi, S. B. Taieb, and Y.-A. Le Borgne. Machine learning strategies
for time series forecasting. In Furopean business intelligence summer school,

pages 62-77. Springer, 2012.

R. J. C. Bose, W. M. van der Aalst, I. Zliobaité, and M. Pechenizkiy. Han-
dling concept drift in process mining. In International Conference on Ad-

vanced Information Systems Engineering, pages 391-405. Springer, 2011.

G. E. Box and G. M. Jenkins. Time series analysis forecasting and control.
Technical report, WISCONSIN UNIV MADISON DEPT OF STATISTICS,
1970.

J. C. Brocklebank, D. A. Dickey, and B. Choi. SAS for forecasting time

series. SAS institute, 2018.

P. J. Brockwell, R. A. Davis, and M. V. Calder. Introduction to time series

and forecasting, volume 2. Springer, 2002.

J. Brownlee. Deep Learning With Python: Develop Deep Learn-
ing Models on Theano and TensorFlow Using Keras. Machine
Learning Mastery. Online; https://machinelearningmastery.com/

deep-learning-with-python/; accessed 19 September 2018.

J.BROZYNA, G. Mentel, B. Szetela, and W. Strielkowski. Multi-seasonality
in the tbats model using demand for electric energy as a case study. FEco-
nomic Computation & FEconomic Cybernetics Studies €& Research, 52(1),

2018.

R. Bruns, J. Dunkel, H. Masbruch, and S. Stipkovic. Intelligent m2m:
Complex event processing for machine-to-machine communication. FEzxpert

Systems with Applications, 42(3):1235-1246, 2015.

172


https://machinelearningmastery.com/deep-learning-with-python/
https://machinelearningmastery.com/deep-learning-with-python/

References

[45]

[46]

[48]

[49]

[50]

[51]

[52]

[53]

D. Brzezinski and J. Stefanowski. Accuracy updated ensemble for data
streams with concept drift. In International conference on hybrid artificial

intelligence systems, pages 155-163. Springer, 2011.

D. Brzezinski and J. Stefanowski. Prequential auc for classifier evaluation
and drift detection in evolving data streams. In International Workshop on

New Frontiers in Mining Complex Patterns, pages 87—101. Springer, 2014.

D. Brzezinski and J. Stefanowski. Prequential auc: properties of the area
under the roc curve for data streams with concept drift. Knowledge and

Information Systems, 52(2):531-562, 2017.

D. Brzezinski and J. Stefanowski. Ensemble classifiers for imbalanced and
evolving data streams. SERIES IN MACHINE PERCEPTION AND AR-
TIFICIAL INTELLIGENCE, 83(1):44-68, 2018.

W. Burghout, H. N. Koutsopoulos, and I. Andreasson. Hybrid mesoscopic—
microscopic traffic simulation. Transportation Research Record, 1934(1):

218-225, 2005.

F. Caicedo, C. Blazquez, and P. Miranda. Prediction of parking space avail-
ability in real time. Expert Systems with Applications, 39(8):7281-7290,

2012.

J. G. Carbonell, R. S. Michalski, and T. M. Mitchell. An overview of machine

learning. In Machine learning, pages 3-23. Elsevier, 1983.

R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on

Machine learning, pages 161-168. ACM, 2006.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 20009.

173



References

[54]

[55]

[56]

[59]

[60]

[61]

[62]

O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised Learning. The MIT
Press, 2010.

C. P. Chen and C.-Y. Zhang. Data-intensive applications, challenges, tech-
niques and technologies: A survey on big data. Information sciences, 275:

314-347, 2014.

M. Chen, Y. Ma, J. Song, C.-F. Lai, and B. Hu. Smart clothing: Connecting
human with clouds and big data for sustainable health monitoring. Mobile

Networks and Applications, 21(5):825-845, 2016.

S. Chen, H. He, K. Li, and S. Desai. Musera: Multiple selectively recur-
sive approach towards imbalanced stream data mining. In The 2010 inter-

national joint conference on neural networks (IJCNN), pages 1-8. IEEE,
2010.

K. Cho, B. Van Merriénboer, D. Bahdanau, and Y. Bengio. On the prop-
erties of neural machine translation: Encoder-decoder approaches. arXiv

preprint arXiw:1409.1259, 2014.

F. Chollet. Keras: The python deep learning library, 27 March 2015. online;

https://keras.io; accessed 28 November 2018.

P. H. Christian Chabot, Chris Stolte. Tableau : An interactive data vi-
sualization software, 2003. online; https://www.tableau.com/; accessed 20

August 2016.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXw preprint

arXiw:1412.3555, 2014.

K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan. Data mining:

a knowledge discovery approach. Springer Science & Business Media, 2007.

174



References

[63]

[64]

[69]

[70]

[71]

[72]

K. J. Cios, W. Pedrycz, and R. W. Swiniarski. Data mining methods for

knowledge discovery, volume 458. Springer Science & Business Media, 2012.

L. Codeca, R. Frank, and T. Engel. Luxembourg sumo traffic (lust) sce-
nario: 24 hours of mobility for vehicular networking research. In 2015 IEFEE
Vehicular Networking Conference (VNC), pages 1-8. IEEE, 2015.

J. Cohen. A coefficient of agreement for nominal scales. FEducational and

psychological measurement, 20(1):37-46, 1960.

D. Cournapeau. scikit-learn: Machine learning in python, June 2007. online;

https://scikit-learn.org; accessed 20 January 2019.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE trans-

actions on information theory, 13(1):21-27, 1967.

G. Cugola and A. Margara. Processing flows of information: From data
stream to complex event processing. ACM Computing Surveys (CSUR), 44
(3):15, 2012.

A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over
data streams. In Proceedings of the 2003 ACM SIGMOD international con-

ference on Management of data, pages 40-51. ACM, 2003.

S. Das, W.-K. Wong, T. Dietterich, A. Fern, and A. Emmott. Incorpo-
rating expert feedback into active anomaly discovery. In 2016 IEEE 16th
International Conference on Data Mining (ICDM), pages 853-858. IEEE,
2016.

A. V. Dastjerdi and R. Buyya. Fog computing: Helping the internet of

things realize its potential. Computer, 49(8):112-116, 2016.

M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statis-
tics over sliding windows. SIAM journal on computing, 31(6):1794-1813,
2002.

175



References

[73]

[74]

[80]

[81]

A. P. Dawid. Present position and potential developments: Some personal
views statistical theory the prequential approach. Journal of the Royal Sta-
tistical Society: Series A (General), 147(2):278-290, 1984.

G. De Francisci Morales, A. Bifet, L. Khan, J. Gama, and W. Fan. ot big
data stream mining. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 2119-2120.
ACM, 2016.

J. G. De Gooijer and R. J. Hyndman. 25 years of time series forecasting.

International journal of forecasting, 22(3):443-473, 2006.

A. M. De Livera, R. J. Hyndman, and R. D. Snyder. Forecasting time series
with complex seasonal patterns using exponential smoothing. Journal of the

American Statistical Association, 106(496):1513-1527, 2011.

A. M. De Livera et al. Automatic forecasting with a modified exponen-
tial smoothing state space framework. Monash Econometrics and Business

Statistics Working Papers, 10(10), 2010.

L. Deng, D. Yu, et al. Deep learning: methods and applications. Foundations
and Trends®) in Signal Processing, 7(3-4):197-387, 2014.

G. Ditzler and R. Polikar. Incremental learning of concept drift from stream-
ing imbalanced data. IEEE Transactions on Knowledge and Data Engineer-

ing, 25(10):2283-2301, 2013.

G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonstationary
environments: A survey. I[EEE Computational Intelligence Magazine, 10(4):
12-25, 2015.

A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing complex

aggregate queries over data streams. In Proceedings of the 2002 ACM SIG-

176



References

[82]

[33]

[84]

[36]

[87]

[89]

[90]

MOD international conference on Management of data, pages 61-72. ACM,
2002.

P. Domingos and G. Hulten. Mining high-speed data streams. In Kdd,

volume 2, page 4, 2000.

P. Domingos and M. Pazzani. On the optimality of the simple bayesian

classifier under zero-one loss. Machine learning, 29(2-3):103-130, 1997.

P. M. Domingos. A few useful things to know about machine learning.

Commun. acm, 55(10):78-87, 2012.

D. Dorner, M. Books, and H. Holt. The logic of failure: Why things go wrong
and what we can do to make them right. FACILITATION: AResearch &
APPLICATIONS, page 86, 2001.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

P. Duda, M. Jaworski, and L. Pietruczuk. On pre-processing algorithms for
data stream. In International Conference on Artificial Intelligence and Soft

Computing, pages 56—63. Springer, 2012.

R. Elwell and R. Polikar. Incremental learning of concept drift in non-
stationary environments. [EEE Transactions on Neural Networks, 22(10):

1517-1531, 2011.

B. Fang, Q. Xu, T. Park, and M. Zhang. Airsense: an intelligent home-based
sensing system for indoor air quality analytics. In Proceedings of the 2016

ACM International joint conference on pervasive and ubiquitous computing,

pages 109-119. ACM, 2016.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery in databases. Al magazine, 17(3):37-37, 1996.

177


http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

References

[91]

[92]

93]

[94]

[95]

[96]

[97]

[99]

[100]

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, et al. Knowledge discovery
and data mining: Towards a unifying framework. In KDD, volume 96, pages

82-88, 1996.

A. Fernandez, S. Garcia, M. Galar, R. C. Prati, B. Krawczyk, and F. Her-

rera. Learning from imbalanced data sets. Springer, 2018.

E. Fiesler. Neural network classification and formalization. Computer Stan-

dards & Interfaces, 16(3):231-239, 1994.

P. Flach. Machine learning: the art and science of algorithms that make

sense of data. Cambridge University Press, 2012.

P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, and
V. S. Tseng. Spmf: a java open-source pattern mining library. The Journal

of Machine Learning Research, 15(1):3389-3393, 2014.

W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge dis-

covery in databases: An overview. Al magazine, 13(3):57-57, 1992.

M. Freire, A. Serrano-Laguna, B. M. Iglesias, I. Martinez-Ortiz, P. Moreno-
Ger, and B. Fernandez-Manjén. Game learning analytics: learning analytics
for serious games. Learning, Design, and Technology: An International

Compendium of Theory, Research, Practice, and Policy, pages 1-29, 2016.

K. Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological

cybernetics, 36(4):193-202, 1980.

J. Gabrys, H. Pritchard, and B. Barratt. Just good enough data: Figuring
data citizenships through air pollution sensing and data stories. Big Data

¢ Society, 3(2):2053951716679677, 2016.

J. Gama. Knowledge discovery from data streams. Chapman and Hall/CRC,
2010.

178



References

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

J. Gama. A survey on learning from data streams: current and future trends.

Progress in Artificial Intelligence, 1(1):45-55, 2012.

J. Gama and M. M. Gaber. Learning from data streams: processing tech-

niques in sensor networks. Springer, 2007.

J. Gama and P. P. Rodrigues. Data stream processing. In Learning from

Data Streams, pages 25-39. Springer, 2007.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift
detection. In Brazilian symposium on artificial intelligence, pages 286—295.

Springer, 2004.

J. Gama, P. P. Rodrigues, and R. Sebastiao. Evaluating algorithms that
learn from data streams. In Proceedings of the 2009 ACM symposium on

Applied Computing, pages 1496-1500. ACM, 2009.

J. Gama, R. Sebastiao, and P. P. Rodrigues. Issues in evaluation of stream
learning algorithms. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 329-338. ACM,
2009.

J. Gama, R. Sebastiao, and P. P. Rodrigues. On evaluating stream learning

algorithms. Machine learning, 90(3):317-346, 2013.

J. Gama, I. Zliobaiteé, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A
survey on concept drift adaptation. ACM computing surveys (CSUR), 46
(4):44, 2014.

J. Gao, B. Ding, W. Fan, J. Han, and S. Y. Philip. Classifying data streams
with skewed class distributions and concept drifts. IEEE Internet Comput-
ing, 12(6):37-49, 2008.

S. Garcia, J. Luengo, and F. Herrera. Data preprocessing in data mining.

Springer, 2015.

179



References

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

119]

[120]

M. Garofalakis, J. Gehrke, and R. Rastogi. Data stream management: pro-

cessing high-speed data streams. Springer, 2016.

Y. Geng and C. G. Cassandras. New “smart parking” system based on re-
source allocation and reservations. IEEFE Transactions on Intelligent Trans-

portation Systems, 14(3):1129-1139, 2013.

C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining frequent patterns
in data streams at multiple time granularities. Next generation data mining,

212:191-212, 2003.
E. R. Girden. ANOVA: Repeated measures. Number 84. Sage, 1992.

T. Giuffre, S. M. Siniscalchi, and G. Tesoriere. A novel architecture of park-
ing management for smart cities. Procedia-Social and Behavioral Sciences,

53:16-28, 2012.

M. Goebel and L. Gruenwald. A survey of data mining and knowledge
discovery software tools. ACM SIGKDD explorations newsletter, 1(1):20-

33, 1999.

L. Golab and M. T. Ozsu. Issues in data stream management. ACM Sigmod
Record, 32(2):5-14, 2003.

H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet. A survey on
ensemble learning for data stream classification. ACM Computing Surveys

(CSUR), 50(2):23, 2017.

H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck, B. Ptharinger,
G. Holmes, and T. Abdessalem. Adaptive random forests for evolving data

stream classification. Machine Learning, 106(9-10):1469-1495, 2017.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

180



References

[121]

122]

[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

[131]

P. S. F. Guido van Rossum. Python: an interpreted, high-level, general-
purpose programming language, 1990. online; https://www.python.org; ac-

cessed 10 July 2018.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The weka data mining software: an update. ACM SIGKDD ezxplorations
newsletter, 11(1):10-18, 2009.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In ACM sigmod record, volume 29, pages 1-12. ACM, 2000.

J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang, and Y. D.
Cai. Stream cube: An architecture for multi-dimensional analysis of data

streams. Distributed and Parallel Databases, 18(2):173-197, 2005.

J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current
status and future directions. Data mining and knowledge discovery, 15(1):

55-86, 2007.

J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques.

Elsevier, 2011.
D. J. Hand. Principles of data mining. Drug safety, 30(7):621-622, 2007.

J. Harri, F. Filali, and C. Bonnet. Mobility models for vehicular ad hoc net-

works: a survey and taxonomy. IEEE Communications Surveys € Tutorials,

11(4):19-41, 2009.

M. Harries and N. S. Wales. Splice-2 comparative evaluation: Electricity

pricing. 1999.
P. Harrington. Machine learning in action. Manning Publications Co., 2012.

H. Hassani and E. S. Silva. Forecasting with big data: A review. Annals of
Data Science, 2(1):5-19, 2015.

181



References

[132]

[133]

134]

[135]

[136]

137]

[138)]

[139]

[140]

C. S. Hemalatha, V. Vaidehi, and R. Lakshmi. Minimal infrequent pattern
based approach for mining outliers in data streams. Fxpert Systems with

Applications, 42(4):1998-2012, 2015.

M. Hermans and B. Schrauwen. Training and analysing deep recurrent
neural networks. In Advances in neural information processing systems,

pages 190-198, 2013.

J. Hipp, U. Giintzer, and G. Nakhaeizadeh. Algorithms for association
rule mining—a general survey and comparison. ACM sigkdd explorations

newsletter, 2(1):58-64, 2000.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735-1780, 1997.

V. Hodge and J. Austin. A survey of outlier detection methodologies. Ar-
tificial intelligence review, 22(2):85-126, 2004.

T. R. Hoens, R. Polikar, and N. V. Chawla. Learning from streaming data
with concept drift and imbalance: an overview. Progress in Artificial Intel-

ligence, 1(1):89-101, 2012.

C. Holt. Forecasting seasonals and trends by exponentially weighted moving

averages, office of naval research. Research memorandum, 52, 1957.

Y. Hu, B. Feng, X. Zhang, E. Ngai, and M. Liu. Stock trading rule dis-
covery with an evolutionary trend following model. Ezpert Systems with

Applications, 42(1):212-222, 2015.

Y.-H. Hu and Y.-L. Chen. Mining association rules with multiple mini-
mum supports: a new mining algorithm and a support tuning mechanism.

Decision Support Systems, 42(1):1-24, 2006.

182



References

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

D. Huang, Y. S. Koh, and G. Dobbie. Rare pattern mining on data streams.
In International Conference on Data Warehousing and Knowledge Discov-

ery, pages 303-314. Springer, 2012.

D. T. J. Huang, Y. S. Koh, G. Dobbie, and R. Pears. Detecting changes in
rare patterns from data streams. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pages 437-448. Springer, 2014.

G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data
streams. In Proceedings of the seventh ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 97-106. ACM, 2001.

R. J. Hyndman and G. Athanasopoulos. Forecasting: principles and prac-
tice. OTexts, 2018. Online; https://otexts.com/fpp2/; accessed 15 Oc-
tober 2018.

R. Thaka and R. Gentleman. R: a language for data analysis and graphics.

Journal of computational and graphical statistics, 5(3):299-314, 1996.

M. Jafari, A. Gauchia, K. Zhang, and L. Gauchia. Simulation and analysis
of the effect of real-world driving styles in an ev battery performance and
aging. IEEE Transactions on Transportation Electrification, 1(4):391-401,
2015.

N. Japkowicz and M. Shah. Evaluating learning algorithms: a classification

perspective. Cambridge University Press, 2011.

J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami. An information frame-
work for creating a smart city through internet of things. IEEFE Internet of

Things journal, 1(2):112-121, 2014.

R. Jozefowicz, W. Zaremba, and 1. Sutskever. An empirical exploration of
recurrent network architectures. In International Conference on Machine

Learning, pages 2342-2350, 2015.

183


https://otexts.com/fpp2/

References

[150]

151]

[152]

[153]

[154]

[155]

[156]

[157]

158

S. Kaisler, F. Armour, J. A. Espinosa, and W. Money. Big data: Issues and
challenges moving forward. In 2013 46th Hawait International Conference

on System Sciences, pages 995-1004. IEEE, 2013.

J. M. Kanter and K. Veeramachaneni. Deep feature synthesis: Towards
automating data science endeavors. In 2015 IEEE International Conference

on Data Science and Advanced Analytics (DSAA), pages 1-10. IEEE, 2015.

K. K. Khedo, R. Perseedoss, A. Mungur, et al. A wireless sensor network

air pollution monitoring system. arXiv preprint arXiw:1005.1757, 2010.

D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams.
In Proceedings of the Thirtieth international conference on Very large data

bases-Volume 30, pages 180-191. VLDB Endowment, 2004.

G.-H. Kim, S. Trimi, and J.-H. Chung. Big-data applications in the govern-
ment sector. Communications of the ACM, 57(3):78-85, 2014.

R. U. Kiran and M. Kitsuregawa. Mining correlated patterns with multiple
minimum all-confidence thresholds. In Pacific-Asia Conference on Knowl-

edge Discovery and Data Mining, pages 295-306. Springer, 2013.

R. U. Kiran and P. K. Reddy. Novel techniques to reduce search space
in multiple minimum supports-based frequent pattern mining algorithms.
In Proceedings of the 14th international conference on extending database

technology, pages 11-20. ACM, 2011.

C. D. Kirkpatrick II and J. A. Dahlquist. Technical analysis: the complete

resource for financial market technicians. F'T press, 2010.

J. Kleinberg. Bursty and hierarchical structure in streams. Data Mining

and Knowledge Discovery, 7(4):373-397, 2003.

184



References

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

R. Klinkenberg. Meta-learning, model selection, and example selection in
machine learning domains with concept drift. In LWA, volume 2005, pages

164-171, 2005.

M. M. Kokar and K. Baclawski. Modeling combined time-and event-driven
dynamic systems. In Proc. 9th OOPSLA Workshop on Behavioral Seman-

tics, pages 112-129. Citeseer, 2000.

Y. Koren. Collaborative filtering with temporal dynamics. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 447-456. ACM, 2009.

S. Kostadinov. Understanding gru networks, December 2016. online;
https://towardsdatascience.com/understanding-gru-networks-2ef37d{6c9be

; accessed 10 April 2019.

I. Koychev. Tracking changing user interests through prior-learning of con-
text. In International Conference on Adaptive Hypermedia and Adaptive

Web-Based Systems, pages 223-232. Springer, 2002.

D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker. Recent develop-
ment and applications of sumo-simulation of urban mobility. International

Journal On Advances in Systems and Measurements, 5(3&4), 2012.

B. Krawczyk. Learning from imbalanced data: open challenges and future

directions. Progress in Artificial Intelligence, 5(4):221-232, 2016.

B. Krawczyk and M. Wozniak. One-class classifiers with incremental learn-
ing and forgetting for data streams with concept drift. Soft Computing, 19
(12):3387-3400, 2015.

B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Wozniak.
Ensemble learning for data stream analysis: A survey. Information Fusion,

37:132-156, 2017.

185



References

[168]

[169]

[170]

[171]

[172]

173]

[174]

[175]

[176]

[177]

G. Krempl, I. Zliobaite, D. Brzeziriski, E. Hiillermeier, M. Last, V. Lemaire,
T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, et al. Open challenges for
data stream mining research. ACM SIGKDD explorations newsletter, 16(1):

1-10, 2014.

T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi. Time series
forecasting using a deep belief network with restricted boltzmann machines.

Neurocomputing, 137:47-56, 2014.

K. P. Lakshmi and C. Reddy. Efficient classifier generation over stream slid-
ing window using associative classification approach. International Journal

of Computer Applications, 115(22), 2015.
F. Landriscina. Simulation and learning. Springer, 2013.

P. Langley, W. Iba, K. Thompson, et al. An analysis of bayesian classifiers.

In Aaai, volume 90, pages 223228, 1992.

N. Laptev, J. Yosinski, L. E. Li, and S. Smyl. Time-series extreme event
forecasting with neural networks at uber. In International Conference on

Machine Learning, number 34, pages 1-5, 2017.

D. T. Larose and C. D. Larose. Discovering knowledge in data: an intro-

duction to data mining. John Wiley & Sons, 2014.

M. M. Lazarescu, S. Venkatesh, and H. H. Bui. Using multiple windows to

track concept drift. Intelligent data analysis, 8(1):29-59, 2004.

C. K.-S. Leung and B. Hao. Mining of frequent itemsets from streams of un-
certain data. In Data Engineering, 2009. ICDE’09. IEEE 25th International
Conference on, pages 1663-1670. IEEE, 2009.

H.-F. Li and S.-Y. Lee. Mining frequent itemsets over data streams using
efficient window sliding techniques. Ezpert systems with applications, 36(2):

14661477, 2009.

186



References

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

R. N. Lichtenwalter and N. V. Chawla. Learning to classify data streams
with imbalanced class distributions. New Frontiers in Applied Data Mining.

LNCS. Springer, Heidelberg, 2009.

B. Liu, W. Hsu, Y. Ma, et al. Mining association rules with multiple mini-

mum supports. In KDD, volume 99, pages 337-341, 1999.

J. N. Liu, Y. Hu, J. J. You, and P. W. Chan. Deep neural network based
feature representation for weather forecasting. In Proceedings on the Inter-
national Conference on Artificial Intelligence (ICAI), page 1. The Steering

Committee of The World Congress in Computer Science, Computer, 2014.

L.-M. Liu. Identification of seasonal arima models using a filtering method.

Communications in Statistics-Theory and Methods, 18(6):2279-2288, 1989.

Z. Liu, D. Rexachs, E. Luque, F. Epelde, and E. Cabrera. Simulating
the micro-level behavior of emergency department for macro-level features

prediction. In Proceedings of the 2015 winter simulation conference, pages

171-182. IEEE Press, 2015.

D. J. MacKay and D. J. Mac Kay. Information theory, inference and learning

algorithms. Cambridge university press, 2003.

S. Madden. From databases to big data. IEEE Internet Computing, 16(3):
4-6, 2012.

T. Mahapatra, I. Gerostathopoulos, and C. Prehofer. Towards integration
of big data analytics in internet of things mashup tools. In Proceedings of
the Seventh International Workshop on the Web of Things, pages 11-16.

ACM, 2016.

G. Manogaran, V. Vijayakumar, R. Varatharajan, P. M. Kumar, R. Sun-

darasekar, and C.-H. Hsu. Machine learning based big data processing

187



References

187]

[188)]

[189)]

[190]

[191]

[192]

193]

framework for cancer diagnosis using hidden markov model and gm clus-

tering. Wireless personal communications, 102(3):2099-2116, 2018.

S. Mansalis, E. Ntoutsi, N. Pelekis, and Y. Theodoridis. An evaluation of
data stream clustering algorithms. Statistical Analysis and Data Mining:

The ASA Data Science Journal, 11(4):167-187, 2018.

F.-J. H. Marc’Aurelio Ranzato, Y.-L. Boureau, and Y. LeCun. Unsuper-
vised learning of invariant feature hierarchies with applications to object

recognition. In Proc. Computer Vision and Pattern Recognition Conference

(CVPR’07). IEEE Press, volume 127, 2007.

A. Margara, J. Urbani, F. Van Harmelen, and H. Bal. Streaming the web:
Reasoning over dynamic data. Web Semantics: Science, Services and Agents

on the World Wide Web, 25:24-44, 2014.

D. L. Mark Beyer. The importance of ’big data’: A definition, 21 June
2012. online; https://www.gartner.com/en/documents/2057415; accessed
12 February 2019.

B. Marr. How muuch data we create every day?, 21 May 2018. online;
https://www.forbes.com/sites/bernardmarr/2018/05/21 /how-much-data-
do-we-create-every-day-the-mind-blowing-stats-everyone-should-read;

accessed 15 May 2019.

MathWorks. Simulink: Simulation and model-based design, 2002. online;
https://www.mathworks.com/products/simulink.html; accessed 28 Febru-

ary 2016.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115-133,
1943.

188



References

[194]

[195]

196]

[197]

[198]

[199]

[200]

201]

[202]

[203]

C. J. Merz, D. S. Clair, and W. E. Bond. Semi-supervised adaptive res-
onance theory (smart2). In [Proceedings 1992] IJCNN International Joint

Conference on Neural Networks, volume 3, pages 851-856. IEEE, 1992.

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, C.-C.
Chang, C.-C. Lin, and M. D. Meyer. Package ‘€1071’, 2019.

L. L. Minku, A. P. White, and X. Yao. The impact of diversity on online
ensemble learning in the presence of concept drift. IEEE Transactions on

knowledge and Data Engineering, 22(5):730-742, 2009.

B. Mirza, Z. Lin, J. Cao, and X. Lai. Voting based weighted online sequential
extreme learning machine for imbalance multi-class classification. In ISCAS,

pages 565-568, 2015.

B. Mirza, Z. Lin, and N. Liu. Ensemble of subset online sequential extreme
learning machine for class imbalance and concept drift. Neurocomputing,

149:316-329, 2015.

S. Mohamad. Active learning for data streams. PhD thesis, Bournemouth

University, 2017.

D. C. Montgomery, C. L. Jennings, and M. Kulahci. Introduction to time

series analysis and forecasting. John Wiley & Sons, 2015.

U. o. M. Montreal Institute for Learning Algorithms (MILA). Theano:
a python library, 2007. online; http://deeplearning.net/software/theano;
accessed 20 April 2019.

A.Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. In Advances in neural

information processing systems, pages 841-848, 2002.

M. Nielsen. Neural networks and deep learning, October 2018. online;

http://neuralnetworksanddeeplearning.com; accessed 20 April 2019.

189



References

204]

[205]

[206]

[207]

[208]

[209)]

[210]

211]

M. A. Nielsen. Neural networks and deep learning, volume 25. Determination

press San Francisco, CA, USA:, 2015.

K. Nishida, K. Yamauchi, and T. Omori. Ace: Adaptive classifiers-ensemble
system for concept-drifting environments. In International Workshop on

Multiple Classifier Systems, pages 176—185. Springer, 2005.

K. Nishida, S. Shimada, S. Ishikawa, and K. Yamauchi. Detecting sudden
concept drift with knowledge of human behavior. In 2008 IEEE Inter-

national Conference on Systems, Man and Cybernetics, pages 3261-3267.
IEEE, 2008.

C. Nwankpa, W. Tjomah, A. Gachagan, and S. Marshall. Activation func-
tions: Comparison of trends in practice and research for deep learning. arXiv

preprint arXiw:1811.03378, 2018.

I. of Transportation Systems/ DLR. Sumo: Simulation of urban mobility,

2001. online; http://sumo.sourceforge.net/; accessed 10 March 2016.

O. Orrie, B. Silva, and G. P. Hancke. A wireless smart parking system.
In IECON 2015-/1st Annual Conference of the IEEE Industrial Electronics
Society, pages 004110-004114. IEEE, 2015.

V. E. Owen, D. Ramirez, A. Salmon, and R. Halverson. Capturing learner
trajectories in educational games through adage (assessment data aggrega-
tor for game environments): a click-stream data framework for assessment
of learning in play. In American Educational Research Association Annual

Meeting, pages 1-7, 2014.

A. K. Palit and D. Popovic. Computational intelligence in time series fore-

casting: theory and engineering applications. Springer Science & Business

Media, 2006.

190



References

212]

213]

214]

[215]

[216]

217]

218]

[219]

B. Pan, Y. Zheng, D. Wilkie, and C. Shahabi. Crowd sensing of traffic
anomalies based on human mobility and social media. In Proceedings of the
21st ACM SIGSPATIAL international conference on advances in geographic

information systems, pages 344-353. ACM, 2013.

E. Panigati, F. A. Schreiber, and C. Zaniolo. Data streams and data stream
management systems and languages. In Data Management in Pervasive

Systems, pages 93—111. Springer, 2015.

K. Patroumpas and T. Sellis. Window specification over data streams. In
International Conference on Extending Database Technology, pages 445-464.
Springer, 2006.

B. R. Prasad and S. Agarwal. Stream data mining: platforms, algo-
rithms, performance evaluators and research trends. International Journal

of Database Theory and Application, 9(9):201-218, 2016.

Y. Qin, Q. Z. Sheng, N. J. Falkner, S. Dustdar, H. Wang, and A. V. Vasi-
lakos. When things matter: A survey on data-centric internet of things.

Journal of Network and Computer Applications, 64:137-153, 2016.

X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga. Ensemble
deep learning for regression and time series forecasting. In 2014 IEFEFE sym-

posium on computational intelligence in ensemble learning (CIEL), pages

1-6. IEEE, 2014.

W. Raghupathi and V. Raghupathi. Big data analytics in healthcare:

promise and potential. Health information science and systems, 2(1):3, 2014.

T. Rajabioun and P. A. Toannou. On-street and off-street parking availabil-
ity prediction using multivariate spatiotemporal models. IEEE Transactions

on Intelligent Transportation Systems, 16(5):2913-2924, 2015.

191



References

[220]

[221]

222

223

[224]

[225]

[226]

[227]

A. Rajaraman and J. D. Ullman. Mining of massive datasets. Cambridge

University Press, 2011.

S. Ramirez-Gallego, B. Krawczyk, S. Garcia, M. Wozniak, and F. Herrera.
A survey on data preprocessing for data stream mining: Current status and

future directions. Neurocomputing, 239:39-57, 2017.

P. Rashidi and D. J. Cook. Keeping the resident in the loop: Adapting the
smart home to the user. IEEE Trans. Systems, Man, and Cybernetics, Part
A, 39(5):949-959, 2009.

M. M. Rathore, A. Ahmad, A. Paul, and S. Rho. Urban planning and
building smart cities based on the internet of things using big data analytics.

Computer Networks, 101:63-80, 2016.

J. Read, A. Bifet, G. Holmes, and B. Pfahringer. Scalable and efficient
multi-label classification for evolving data streams. Machine Learning, 88

(1-2):243-272, 2012.

J. Read, A. Bifet, B. Pfahringer, and G. Holmes. Batch-incremental versus
instance-incremental learning in dynamic and evolving data. In Interna-
tional Symposium on Intelligent Data Analysis, pages 313-323. Springer,
2012.

I. Rish, J. Hellerstein, and J. Thathachar. An analysis of data characteristics
that affect naive bayes performance. IBM TJ Watson Research Center, 30,
2001.

P. Romeu, F. Zamora-Martinez, P. Botella-Rocamora, and J. Pardo. Time-
series forecasting of indoor temperature using pre-trained deep neural net-
works. In International Conference on Artificial Neural Networks, pages

451-458. Springer, 2013.

192



References

[228]

[229]

[230]

[231]

232]

233

[234]

[235]

Y. Rong, Z. Xu, R. Yan, and X. Ma. Du-parking: Spatio-temporal big
data tells you realtime parking availability. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery € Data Mining,
pages 646-654. ACM, 2018.

F. Rosenblatt. Principles of neurodynamics. perceptrons and the theory of

brain mechanisms. Technical report, Cornell Aeronautical Lab Inc Buffalo

NY, 1961.

H. Rouanet and D. Lepine. Comparison between treatments in a repeated-
measurement design: Anova and multivariate methods. British Journal of

Mathematical and Statistical Psychology, 23(2):147-163, 1970.

Y. D. Rubinstein, T. Hastie, et al. Discriminative vs informative learning.

In KDD, volume 5, pages 49-53, 1997.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. Technical report, California Univ San

Diego La Jolla Inst for Cognitive Science, 1985.

I. Samaras, A. Arvanitopoulos, N. Evangeliou, J. Gialelis, and S. Koubias.
A fuzzy rule-based and energy-efficient method for estimating the free size
of parking places in smart cities by using wireless sensor networks. In Pro-
ceedings of the 2014 IEEE Emerging Technology and Factory Automation
(ETFA), pages 1-8. IEEE, 2014.

L. Sanchez, L. Munoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez,
R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, et al. Smartsantander:

lot experimentation over a smart city testbed. Computer Networks, 61:

217-238, 2014.

J. C. Schlimmer and R. H. Granger. Beyond incremental processing: Track-

ing concept drift. In AAAI pages 502-507, 1986.

193



References

[236]

1237]

[238)]

[239)]

[240]

[241]

242

243

[244]

J. Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85-117, 2015.

T. S. Sethi and M. Kantardzic. On the reliable detection of concept drift
from streaming unlabeled data. Fxpert Systems with Applications, 82:77-99,
2017.

M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A.
Janovsky, and V. A. Kamaev. A survey of forecast error measures. World

Applied Sciences Journal, 24(24):171-176, 2013.

H. Shi, M. Xu, and R. Li. Deep learning for household load forecasting—a
novel pooling deep rnn. IEEE Transactions on Smart Grid, 9(5):5271-5280,

2018.

R. H. Shumway and D. S. Stoffer. Time series analysis and its applications:

with R examples. Springer, 2017.

V. J. Shute, M. Ventura, M. Bauer, and D. Zapata-Rivera. Melding the
power of serious games and embedded assessment to monitor and foster

learning. Seritous games: Mechanisms and effects, 2:295-321, 2009.

E. Siow, T. Tiropanis, and W. Hall. Analytics for the internet of things: A

survey. ACM Computing Surveys (CSUR), 51(4):74, 2018.

E. Spyromitros-Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vlahavas.
Dealing with concept drift and class imbalance in multi-label stream clas-
sification. In Twenty-Second International Joint Conference on Artificial

Intelligence, 2011.

K. O. Stanley. Learning concept drift with a committee of decision trees. In-
forme técnico: UT-AI-TR-03-302, Department of Computer Sciences, Uni-

versity of Texas at Austin, USA, 2003.

194



References

[245]

[246]

1247]

[248]

[249]

[250]

[251]

[252]

253]

W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-
scale classification. In Proceedings of the seventh ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 377-382.

ACM, 2001.

L. Su, H.-y. Liu, and Z.-H. Song. A new classification algorithm for data

stream. IJ Modern Education and Computer Science, 4:32—-39, 2011.

Y. Sun, Z. Wang, H. Liu, C. Du, and J. Yuan. Online ensemble using adap-
tive windowing for data streams with concept drift. International Journal

of Distributed Sensor Networks, 12(5):4218973, 2016.

[. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In Advances in meural information processing systems,

pages 3104-3112, 2014.

R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning,

volume 2. MIT press Cambridge, 1998.

C. J. Taylor, P. G. McKenna, P. C. Young, A. Chotai, and M. Mackinnon.
Macroscopic traffic low modelling and ramp metering control using mat-

lab/simulink. Environmental Modelling € Software, 19(10):975-988, 2004.

J. W. Taylor. Short-term electricity demand forecasting using double sea-

sonal exponential smoothing. Journal of the Operational Research Society,

54(8):799-805, 2003.

G. B. Team. Tensorflow: An end-to-end open source machine learning plat-
form, 9 November 2015. online; https://www.tensorflow.org; accessed 5

December 2018.

R. C. Team et al. R: A language and environment for statistical computing.

2013.

195



References

[254]

[255]

[256]

[257]

258

[259]

260

[261]

262]

S. Tisue and U. Wilensky. Netlogo: A simple environment for modeling
complexity. In International conference on complex systems, volume 21,

pages 16-21. Boston, MA, 2004.

R. Tonjes, P. Barnaghi, M. Ali, A. Mileo, M. Hauswirth, F. Ganz, S. Ganea,
B. Kjaergaard, D. Kuemper, S. Nechifor, et al. Real time iot stream pro-
cessing and large-scale data analytics for smart city applications. In poster

session, European Conference on Networks and Communications. sn, 2014.

E. Z. Tragos, V. Angelakis, A. Fragkiadakis, D. Gundlegard, C.-S. Nechifor,
G. Oikonomou, H. C. Pohls, and A. Gavras. Enabling reliable and secure
iot-based smart city applications. In 2014 IEEFE International Conference on
Pervasive Computing and Communication Workshops (PERCOM WORK-
SHOPS), pages 111-116. IEEE, 2014.

C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos. Big data analytics:

a survey. Journal of Big data, 2(1):21, 2015.

S. Tsang, Y. S. Koh, and G. Dobbie. Rp-tree: rare pattern tree mining. In
International Conference on Data Warehousing and Knowledge Discovery,

pages 277-288. Springer, 2011.

A. Tsymbal. The problem of concept drift: definitions and related work.

Computer Science Department, Trinity College Dublin, 106(2):58, 2004.
S. Urbanek. rjava: Low-level r to java interface, 2013.

M. Van Heeswijk, Y. Miche, T. Lindh-Knuutila, P. A. Hilbers, T. Honkela,
E. Oja, and A. Lendasse. Adaptive ensemble models of extreme learning
machines for time series prediction. In International Conference on Artificial

Neural Networks, pages 305-314. Springer, 2009.

J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. The online

196



References

[263]

[264]

[265]

[266]

[267]

268]

[269]

[270]

performance estimation framework: heterogeneous ensemble learning for

data streams. Machine Learning, 107(1):149-176, 2018.

A. Varga. Discrete event simulation system. In Proc. of the Furopean Sim-

ulation Multiconference (ESM’2001), pages 1-7, 2001.

R. Vilalta and S. Ma. Predicting rare events in temporal domains. In 2002
IEEE International Conference on Data Mining, 2002. Proceedings., pages
474-481. IEEE, 2002.

E. 1. Vlahogianni, K. Kepaptsoglou, V. Tsetsos, and M. G. Karlaftis. Ex-
ploiting new sensor technologies for real-time parking prediction in urban

areas. In Transportation Research Board 93rd Annual Meeting Compendium

of Papers, pages 14-1673, 2014.

P. Vorburger and A. Bernstein. Entropy-based concept shift detection. In
Sixth International Conference on Data Mining (ICDM’06), pages 1113~
1118. TEEE, 2006.

H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data
streams using ensemble classifiers. In Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data min-

ing, pages 226-235. AcM, 2003.

H.-z. Wang, G.-q. Li, G.-b. Wang, J.-c. Peng, H. Jiang, and Y .-t. Liu. Deep
learning based ensemble approach for probabilistic wind power forecasting.

Applied energy, 188:56-70, 2017.

S. Wang and X. Yao. Multiclass imbalance problems: Analysis and potential
solutions. IEFE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 42(4):1119-1130, 2012.

S. Wang and X. Yao. Using class imbalance learning for software defect

prediction. IEEE Transactions on Reliability, 62(2):434-443, 2013.

197



References

271]

272]

[273]

[274]

[275]

[276]

[277]

[278)]

279]

[280]

S. Wang, L. L. Minku, D. Ghezzi, D. Caltabiano, P. Tino, and X. Yao.
Concept drift detection for online class imbalance learning. In The 2013
International Joint Conference on Neural Networks (IJCNN), pages 1-10.
IEEE, 2013.

S. Wang, L. L. Minku, and M. Yao, Xin. A learning framework for on-
line class imbalance learning. In 2013 IEEE Symposium on Computational

Intelligence and Ensemble Learning (CIEL), pages 36-45. IEEE, 2013.

S. Wang, L. L. Minku, and X. Yao. Dealing with multiple classes in online

class imbalance learning. In IJCAI, pages 2118-2124, 2016.

S. Wang, L. L. Minku, and X. Yao. A systematic study of online class
imbalance learning with concept drift. IEEFE transactions on neural networks

and learning systems, (99):1-20, 2018.

Z. Wang, W. Yan, and T. Oates. Time series classification from scratch
with deep neural networks: A strong baseline. In 2017 international joint

conference on neural networks (IJCNN), pages 1578-1585. IEEE, 2017.
R. H. Weber and R. Weber. Internet of things, volume 12. Springer, 2010.

W. Wei, J. Li, L. Cao, Y. Ou, and J. Chen. Effective detection of sophis-
ticated online banking fraud on extremely imbalanced data. World Wide

Web, 16(4):449-475, 2013.

P. H. Westfall and S. S. Young. Resampling-based multiple testing: Examples

and methods for p-value adjustment, volume 279. John Wiley & Sons, 1993.

G. Widmer and M. Kubat. Effective learning in dynamic environments by
explicit context tracking. In European Conference on Machine Learning,

pages 227-243. Springer, 1993.

G. Widmer and M. Kubat. Learning in the presence of concept drift and
hidden contexts. Machine learning, 23(1):69-101, 1996.

198



References

[281]

[282]

[283]

[284]

[285]

[236]

[287]

[288)]

[289)]

[290]

E. Wilder-James. What is big data’an introduction to the big data land-
scape., 11 January 2012. online; https://www.oreilly.com/ideas/what-is-

big-data; accessed 20 April 2019.

U. Wilensky. Netlogo: a multi-agent programmable modeling environment,
1999. online; https://ccl.northwestern.edu/netlogo/; accessed 20 March

2016.

U. Wilensky and W. Rand. An introduction to agent-based modeling: mod-
eling natural, social, and engineered complex systems with NetLogo. MIT

Press, 2015.

P. R. Winters. Forecasting sales by exponentially weighted moving averages.

Management science, 6(3):324-342, 1960.

[. H. Witten and E. Frank. Data Mining: Practical machine learning tools

and techniques 2nd edition. Morgan Kaufmann, San Francisco, 2005.

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann, 2016.

F. Xia, L. T. Yang, L. Wang, and A. Vinel. Internet of things. International

Journal of Communication Systems, 25(9):1101-1102, 2012.

Y. Yang, X. Wu, and X. Zhu. Mining in anticipation for concept change:
Proactive-reactive prediction in data streams. Data mining and knowledge

discovery, 13(3):261-289, 2006.

S.-i. Yoshida, K. Hatano, E. Takimoto, and M. Takeda. Adaptive online pre-
diction using weighted windows. IEFICE TRANSACTIONS on Information
and Systems, 94(10):1917-1923, 2011.

W. Zhang and J. Wang. A hybrid learning framework for imbalanced stream
classification. In 2017 IEEE International Congress on Big Data (BigData
Congress), pages 480-487. IEEE, 2017.

199



References

291]

202]

[293]

204]

[295]

296]

Y. Zhao and K. Takano. An artificial neural network approach for broadband
seismic phase picking. Bulletin of the Seismological Society of America, 89

(3):670-680, 1999.

J. Zheng, C. Xu, Z. Zhang, and X. Li. Electric load forecasting in smart grids
using long-short-term-memory based recurrent neural network. In 2017 51st
Annual Conference on Information Sciences and Systems (CISS), pages 1-6.
IEEE, 2017.

Y. Zheng, S. Rajasegarar, C. Leckie, and M. Palaniswami. Smart car park-
ing: temporal clustering and anomaly detection in urban car parking. In
2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP), pages 1-6. IEEE, 2014.

Y. Zheng, S. Rajasegarar, and C. Leckie. Parking availability prediction
for sensor-enabled car parks in smart cities. In 2015 IEEE Tenth Interna-

tional Conference on Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP), pages 1-6. IEEE, 2015.

I. Zliobaite. Combining time and space similarity for small size learning
under concept drift. In International Symposium on Methodologies for In-

telligent Systems, pages 412-421. Springer, 2009.

I. Zliobaité, M. Pechenizkiy, and J. Gama. An overview of concept drift
applications. In Big data analysis: new algorithms for a new society, pages

91-114. Springer, 2016.

200



Appendix A

Snapshots of the usage report for
the Multi decked Car Park in the

summer term of 2016

This appendix provides snapshots, shown in Figure A.1 and Figure A.2, of the
report concerning the daily usage of the Multi-deck Car Park over three months

period in the summer term of 2016, from 08/03/2016 until 17/06/2016.
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Appendix A. Snapshots of the usage report for the Multi decked Car Park in

the summer term of 2016
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Appendix B

The full transcripts of the
Interviews with the traffic officers

at University of Essex

This appendix presents the full transcripts of the interviews with two of the traffic

officers at the University of Essex, Mr. Gary Gibbons and Mr. Joe Preston.
e Car park A is designed for student use

1. What is the peak hour /hours during term time?

Gary: it becomes full very quickly, about 9, and then the number of

cars declines after 12
Joe: most of students here not are living in campus. This car park is
usually busy between 10 to 4. And usually it is full between 10-2.
2. Is the peak hour the same for all weekdays?
Gary: maybe Tuesday is busier.
Joe: usually Monday morning and Friday afternoon are less crowded.

Wednesdays are busier than other days.

3. Does the use of the car park decline over the term? And what are the

differences?
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Appendix B. The full transcripts of the Interviews with the traffic officers at
University of Essex

Gary: usually in the beginning of term the car parks are busier, the
number of cars declines slightly over the term.

Joe: at the end of term the number of students is slightly decline.
Also there are differences between terms, fall and spring is much busier
than summer, but for example in May in summer term becomes busy

(exams)

4. In the summer, what is the peak hour? Does this parking lot reach its
full capacity?
Gary: the peak hour is around 11. No, A car park is very empty and
like these days there are works in this park lot.
Joe: it depends on summer schools, but it does not reaches full ca-
pacity. Like this summer most of spaces closed because there are some

works.

5. Are the drivers parking in Car Park A are permit holders or not? What
is the (approximate) percentage of non-registered cars that park there
per day?

Gary: most of drivers are permit holders, and the percentage of non-
registered cars is around 10%

Joe: most of them are permit holders they around 90% and most of
them are students. Also the non-registered drivers are from students
who live in campus.

6. What is the average time of parking (approximately) in this parking
lot in term time?

Gary: for staff, mostly all day “6 -7 hours” where for students the
average time of parking is around 4 hours.

Joe: about 4 hours.

7. What is the average time of parking (approximately) in this parking

lot in the summer?
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University of Essex

Gary: in the summer, less number of cars are parked there but they

stay for longer time.
Joe: yes, from June to September it is mostly empty.
8. Is there any noticeable difference between fall, spring and summer
term?
Gary: maybe we could say that the spring is the busiest one.
Joe: the fall is the busiest and the summer term is more quitter.
9. Does the use of the car park by students decline over the teaching
terms?
Gary: yes, the end of term is usually less crowded.

Joe: yes, they decline over the term.
e Valley Car Park is designed for student, staff and visitors.

1. What is the peak hour /hours during term time?

Gary: it becomes full quicker, especially staff lines in the bottom, so

the peak hour is around 8.
Joe: staff filled up earlier by 8:30 (around 40 spaces), where the car
park filled by 9:30 to 10 , usually student park for 3-4 hours.
2. Is the peak hour the same for all weekdays?
Gary: usually yes it is the same, but Tuesday is the busiest. Joe: yes
but Tuesday, Wednesday and Thursday are much busiest.
3. Does the use of the car park by the three group of users (staff/students/visitors)
decline over the term? And what are the differences?

Gary: for the staff it is the same, where for student it declines over
the term. Regarding the visitors they usually more at the beginning
and end of term.

Joe : it is constant for the staff, but for students it slightly declines.

And there is no marked differences for visitors.
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4. In the summer, what is the peak hour? Does this parking lot reach its
full capacity?
Gary: it is little bit later, around 9-10. No it doesn’t reach its full
capacity.
Joe: it is between 10-11 , and it doesn’t reach its full capacity.

5. What is the percentage of visitors’ cars that park there per day (in case
of term day, summer day)?
Gary: 10% in the term time. There are more visitors in the summer.

Joe : there are a row for visitors’ spaces and the percentages are
usually low, it is around 30% of visitors’ spaces, depending on what
happen at university (short courses, visitors for bank or library or for

consultation)
6. What is the average time of parking (approximately) in this parking
lot in term time?

Gary: it is similar to other parking lots, for students from 3-4 hour,

for staff all day around 6-7 hours and for visitors around 2 hours.
Joe: it is around 4 hours and for staff it is longer.

7. What is the average time of parking (approximately) in this parking
lot in the summer?

Gary: in the summer less number of students parking there and little
bit more visitors, but they there is no change in the average time of
parking.

Joe: it is less than term time.
e Constable Building Car Park is designed for staff and WH /Edge use.

1. Is any student allowed to park there? Or the parking lot is only allo-
cated to WH/Edge students?

Gary: No, it is allocated to WH/Edge only.
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University of Essex

Joe: the whole spaces are allocated for WH/Edge use.
2. Is any permit holder driver (staff or student) allowed to park there in
the morning?
Gary: No.
Joe: No
3. What is the peak hour /hours during term time?
Gary: The peak hour is earlier around 8, it is small and reach full
capacity quickly.
Joe: it depends how busy is the hotel but usually 9-10.
4. Is the peak hour the same for all weekdays?
Gary: yes it is the same for all weekdays.
Joe: maybe it less on Monday since it becomes much busier at weekend.
5. Does the use of the car park by the two group of users decline over the
term? And what are the differences?
Gary: no they are mostly staff members.
Joe: they are just staff , so there is no much differences.
6. In the summer, what is the peak hour? Does this parking lot reach its
full capacity?
Gary: no difference, and it reaches its full capacity.
Joe: Between 9-10. And it almost full.
7. What is the average time of parking (approximately) in this parking
lot in term time?
Gary: it is around 6 hours.
Joe : it depends.

8. What is the average time of parking (approximately) in this parking

lot in the summer?
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e Car

Gary: the same.

Joe : it depends.

Park B is designed for a mix of students and staff.

. What is the peak hour /hours during term time?

Gary: the peak hour is early around 8, because it is near the sport

center.

Joe Perston: it is around 10 .

Does the use of the car park by the two group of users (staff/students)
decline over the term? And what are the differences?

Gary: there are less students at the end of term, but there is no

differences regarding staff members.

Joe: the staff is constant but for students they declines by half.

Is the peak hour the same for all weekdays?
Gary: yes, it is the same.

Joe: it is the same but Monday morning and Friday afternoon is quit-

ter.

. In the summer, what is the peak hour? Does this parking lot reach its

full capacity?

Gary: no differences and it is pretty full of staff members, visitors and

club members.

Joe: around 10. It almost full but it doesn’t its full capacity.

Are the drivers parking in Car Park a permit holders or not? What is
the percentage of non-registered cars that park there per day?

Gary: they are both, the percentage of non-registered cars is around

25%, and the percentage of staff who parking there is around 70%.

Joe: the majority of them are permit holders around 80%
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6. What is the average time of parking (approximately) in this parking

lot in term time?
Gary: it is around 3-4 hours and for staff it is longer around 6-7 hours.
Joe: it is around 3-4 hours.

7. What is the average time of parking (approximately) in this parking
lot in the summer?

Gary: for the staff it is the same around 6-7 hours, for the sport center
members, it is around 2 hours where for student it becomes less in the

suminer.

Joe: it is also 3-4 hours , and in the summer it is busier than car park

A.
e North Car Park is designed for mix student and staff.

1. How many spaces are allocated to the Nursery drop off? (The Nursery
has 3 intervals 8-12, 12-2, 2-6 and know it becomes 2 intervals 8-1,
1-6)7
Gary: I do not know exactly.

Joe: around 15

2. How many cars on average use the Nursery park spaces?
Gary: I do not know exactly.
Joe: maybe 20-30

3. What is the peak hour /hours during term time?
Gary: they are mostly staff members, the peak hour is 8.
Joe: around 9 , mostly staff.

4. Is the peak hour the same for all weekdays?
Gary: yes it is usually the same.

Joe: yes but Friday is quitter.
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5. Does the use of the car park by the two group of users (staff/students)

decline over the term? And what are the differences?

Gary: 80% of cars there are staff members, so there is no differences

over the term but there are less students at the end of term.
Joe: it slightly declines at the end of summer term time.

6. In the summer, what is the peak hour? Does this parking lot reach its
full capacity?

Gary: no it is same as term time, and it reaches full capacity.
Joe: around 9, and it nearly reaches its full capacity.

7. Are the drivers parking in the North Car Park a permit holders or not?
What is the percentage of non-registered cars that park here per day?
Gary: yes, the percentage on non-registered is around 20%

Joe: the majority of drivers are permit holders.

8. What is the average time of parking (approximately) in this parking

lot in term time?

Gary: they are mostly staff and the average time of parking is 5-6

hours.
Joe: between 6-7 hours ‘part time staff’
9. What is the average time of parking (approximately) in this parking
lot in the summer?
Gary: again it is the same to term time.

Joe: it is the same maybe slightly less.

e For Special Days at university such as visit days or graduations

days,

1. What are the changes in parking lots administration? How can these

limited parking lots be sufficient for visitors?
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Gary: there is limited spaces so for the special days we open new

spaces.
Joe: encourage staff to use the multi-storey park lot, and usually A or
valley car park are allocated for visitors.

2. Are students or staff not allowed to use specific parking lots on these
days?
Gary: Yes but it depends, we usually use barrier and car park A and
Valley car park for visitors.
Joe: they advised to avoid car park A and Valley car park.

3. How many special days on average are there during the academic year?
(term time and summer time)

Gary: the major disruption is graduation days and they are 4 days.

The total is varies but usually couple of weeks around 14-15 days.

Joe: between 15-20 days most of them in summer like summer schools

or graduation days.

212



Appendix C

The details of the simulation
model of the University of Essex

parking lots

This appendix provides the full details of the simulation model of the movements
of traffic within the University of Essex parking lots. To simulate the data set,
Netlogo 5.3.1 was used. The first step was to download the map of University of
Essex from Google Maps API Styled Wizard then convert it using GIMP 2 and a
small python code to text format to represent it in NetLogo.

Before discussing the details of the simulation, the simulation graphic user
interface (GUI) will be illustrated first. As can be seen in Figure C.1, there are
two main buttons, Start Up, which initiates the simulation, initializes parameters
and draws the university’s map, whereas the second button, Run Simulation,
turns on the simulation, reflects cars movements in the parking lots. In addition,
there are a number of sliders and choices which allow us to control the simulation,

the Figure C.1 shows these following buttons:

1. Total number of cars This slider defines the average number of cars arriving
on campus per day between 7:00 in the morning and 16:00 in the afternoon.

We assumed that cars will arrive following a Normal Distribution, where the
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Figure C.1: Parmeters setting in the simulation model GUI

peak hours are between 8:00 and 10:00 in the morning. Following Normal

Distribution, the percentage of cars in the interval between 7:00 in the morn-

ing and 16:00 in the afternoon is 0.65, coupled with the number of registered

users which equals 2942, this results in 1912 cars per day. We add a 10 %

of total parking spaces to represent visitors and non-registered users which

is around 160 cars. Also we add between thirty to forty cars to represent

cars that park for a while in the nursery drop off park, these numbers are

based on the interview with parking officers. Given these points, we define

2100 as the default value of number of arriving cars per day (a normal term

day). At the same time, we can increase or decrease this number through

the slider to control the different situations in the simulation.

2. Time, Week number and Day There is a variation in the parking occupancy

rates influenced by the day of year (term/the summer, beginning of term/end

of term etc.). We define Time parameter, which allows us to control time in

the simulation, choosing between:
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Autumn term

Spring term

Summer term

The summer period

Random time (which represents holidays such Christmas holiday)

The Day parameter determines the day of week (in our model, Tuesdays
and Wednesdays are busier). Moreover, the week slider represents the week
in the University’s calendar. It starts with a default value one, which is the

first week in the Autumn term.

3. Entry time and Entry time in minutes We define the car’s entry time to
campus in both hour and minutes level, to represent the difference in cars’

arrival rates over the same day.

4. Duration of the simulation In this model, we consider three levels of running

the simulation:

e Day level simulation, here we can specify the day of week and the
week number in University’s calendar or just choose the time and the
simulation will be for the first week of the chosen time interval (the

default time is Autumn term).

e The term level simulation, just choose any term from the drop down
menu box to get the simulation of the interval from 7:00 in the morning

until 16:00 in the afternoon of weekdays.

e The longest simulation, for one year, it will show the simulation from
the first week of Autumn term until the end of the summer period for

the same interval.

On the whole, inside the simulation we define a number of procedures that

first load the parking lots map, initiate the variables and set up the simulation
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parameters. In addition, we define the agents — which are cars in our model—
and agents’ attributes. Particularly, we define the global variables that we have
used in the model code, and define the patches (map) and agents (cars) attributes

as illustrated in the following Figure C.2.

Figure C.2: Snapshots of defining variables, patches and agents codes

Then we define four procedures to load the university map and match it with

the patches as in the below Figure C.3.
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Figure C.3: Snapshot of loading map procedures

In the Start Up procedure, we initialize the model variables, set shapes of
agents as cars, defining parking lots location and the entrances on the map and
set up four MC-EXCEL files where we will export simulation to. Also set up the

term and weeks and match them to each other according to university calendar.
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At this point we set up a file for cars entrance information and where they are
park, Also there is a couple of files of cam sensors data and payment machine
data (which both derived from the simulation data).

Furthermore, as we have pointed already, we define the average number of
arriving cars which we can change, but at the same time it should be kept un-
changed until the end of the simulation, for example in the week or term level
simulation. Hence we define a number of procedures that reflect the variances in
the arriving cars during the simulation run , taking into account factors such as
the time of day, the day itself and time of term - beginning or the end of term-
which influences the number of arrival cars of students especially. (The number
of students’ cars drops over term time, also Tuesday, Wednesday on average are
more crowded than other weekdays to some extent). For simplicity we consider
intervals of one hour and define the arrival cars rate per minute at each interval.
Inside the simulation too, we implement a number of procedures that reflect the
parking patterns and driver behaviors at parking lots. As we calculate the ar-
rival cars per hour and distribute cars per minute, we add some if statements to
control the distribution of cars over parking lots. In detail, we define four main
procedures to control the number of arrival cars, based on the analysis of parking

patterns:

e Car arrival which takes the number of arriving cars that we select in the
model, initializes the arrivals counters and distributes arriving cars over the

entrances.

e Set arrival cars that calculates the cars arrival rate at different intervals
-one interval lasts one hour-, based on the total number of arrival cars -
which are defined as parameter already- coupled with the day of week and
time of year. It also considers the hour of day as the arriving cars rate varies

throughout the day and among week days.

o Check students’ crowd which retrieves a variable that measures the
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crowd of students’ cars in the parking lots based on the time of year. The

number of students’ cars decrease over term and drops sharply in the sum-

mer. For instance, we set the crowd variable to zero in the normal term day

(beginning and mid of term). Whereas at the end of term, the number of

students decreases especially in (A and Valley park), so we set the crowd

variable to one. Furthermore, in the holiday time, the number of students

drops sharply (as park A become empty), so we set the crowd variable to

two .

e Locate cars which takes the variable retrieved from the previous procedure

-that indicates the variation of number of students’ cars- to calculate the

cars arrival rate at different intervals of the day.

Moreover based on the analysis of drivers’ behavior patterns at the University

parking lots, we define a number of procedures that distribute cars over parking

lots to represent these patterns as close to a reality as possible. In particular, we

implement three main procedures which contain many functions as follows:

1. Distribute searching cars We use the calculated probabilities together

with the number of arriving cars which we have calculated it the procedures

in the previous paragraph in order to calculate the number of cars that

arrive/search at each park lot per minute.

2. Do search This procedure assigns cars to parking lots, based on the above

procedures and parking lots capacity and occupancy. At this point we allow

cars that search in specific parking lots to search in the nearest permitted

parking lot. For example, cars which are assigned to search in Park A could

search in Valley Park if Park A is full , but these cars are not allowed to

search in Park C -which is allocated for WH Edge and WH employees-. In

case a car does not find a space, we keep the target parking lot for the car

and allow the car to keep searching for a parking space, while new cars also

arrive, for 15 minutes before they leave the car park.
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3. Check which car will leave Not only the cars arrive at parking lots,
but also cars leave the parking lots. We calculate the exit time for each
car parked, based on the driver type (staff member, student, visitor, gym

member or just use Day nursery park spaces).

For the most important part of the model, we import data to MS-Excel files
to create streams in our model. The first file includes all information about cars
that park and leave parking lots (type of drivers, car park, entry time and minute,
expected leaving time, waiting time to find park). Also there are a couple of files
for camera sensors data, and payment information from smart machines. 40% of
users pay annually or termly and do not use payment machines, so we assume
their payment data comes from the mobile application. The Figure C.4 below

shows parts of the generated streams files.
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Figure C.4: Snapshots of the generated streams (MS-Excel files)
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Appendix D

The occupancy of the University
of Essex parking lots over the

Autumn term 2015

This appendix provides diagrams that represent the occupancy patterns of the
University of Essex parking lots from the simulated datasets (the first dataset

was provided in Chapter 6 and here the remaining 9 datasets).
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Appendix E

The performance evaluation of

the proposed forecasting models

This appendix provides the details about the individual performance mse values
from forecasting models presented in Chapter 6. Furthermore, the results of the

pairwise comparison between these GRUs model are presented here.

e Details of the individual MSE values across the different outputs (parking
lots) for the GRU models, these measures are reported previously as an

aggregated values in Figure 6.11
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Appendix E. The performance evaluation of the proposed forecasting models

APark BPark CPark MPark MPark VPark | MSE (mean)

Datasetl |0.008691 | 0.005568 | 0.020077 | 0.013452 | 0.007102 | 0.005601 | 0.010081653
Dataset? |0.008365|0.007412 | 0.01704 |0.014057 | 0.008886 | 0.006107 | 0.010311114
Dataset3 |0.007619 | 0.004721 | 0.016118 | 0.01368%9 | 0.007632 | 0.0057 | 0.009246581

E Datasetd | 0.009025 | 0.004484 | 0016384 | 0.01246 | 0.007511 | D.004955 | 0.009136561
E Dataset5 |0.010154 | 0.011564 | 0.022547 | 0.018655 | 0.01291%9 | 0.0068%7 | 0.013785498
- Dataseth |0.007141 | 0.005064 | 0.015314 | 0.012163 | 0.006167 | 0.006165 | 0.009335604
f; Dataset?7 |0.010612 | 0.007413 | 0.022597 | 0.01404% | 0.009762 | 0.005399 | 0.011638661
Datasetd |0.010235 | 0.005452 | 0.023808 | 0.01B69 | 0.007765 | 0.004577 | 0.011754568
Datasetd |0.007616 | 0.006409 | 0023172 | 0.013192 | 0.008915 | 0.005299 | 0.010767385
Datasetl0 |0.006597 | 0.00742 |0.021325|0.011761 | 0.008627 | 0.005798 | 0.010254233

APark BPark CPark MPark MPark VPark | MSE (mean)

Datasetl |0.007068 | 0.005194 | 0.01524%9 [ 0.011947 | 0.007129 | 0.005326 | 0.008652286
Dataset? |0.008534 | 0.006976 | 0011727 | 0.014452 | 0.00765 | 0.006725 | 0.009340648
Dataset3 |0.007302 | 0.003374 | 0.014676 | 0.011711 | 0.005743 | 0.004833 | 0.007939675

% Datasetd |0.007961 | 0.003629 | 0.014971 | 0.012975 | 0.006088 | 0.003941 | 0.00B260673
= Datasets |0.005005 | 0.004583 | 0018939 | 0.011831 | 0.005875 | 0.003954 | 0.008331094
E Datasetb |0.006038 | 0.006012 | 0.01598 | 0.01481% | 0.008464 | 0.004059 | 0.00923522
f; Dataset? |0.018303 | 0.009207 | 0.021425 | 0017857 [ 0.011143 | D.007663 | 0.01426636
Datasetd |0.006212 | 0.004621 | 0.01676%9 | 0.01452 | 0.007153 | 0.005318 | 0.009098724
Datasetd | 0.00716 | 0.005558 | 0.018502 | 0.012985 | 0.007594 | 0.006735 | 0.009722398
Datasetl0 |0.006753 | 0.005421 | 0.023026 | 0.010071 | 0.00658 | 0.004976 | 0.009537698

APark BPark CPark MPark NPark VPark |MSE (mean)

Dataserl |0.008323 [ 0.007309 | 0.015883 | 0.013762 | 0.007409 | 0.006156 | 0.00980709
Dataset? |0.010082 | 0.007238 [ 0.018017 | 0.017533 | 0.009511 | 0.006235 | 0.01143589
Dataserd | 0.01011 | 0.00744 [0.016785 | 0.015%05 | 0.010578 | 0.008073 | 0.01148128

; Dataserd |0.00B523 | 0.006007 (0.018648| 00114 | 0.006739 | 0.005833 | 0.00952455
-5 Dataset5 |0.00BB71 | 0.005854 [ 0.019763 | 0.017977 | 0.00923 | 0.004372 | 0.01101114
E Datasert | 0.009548 [ 0.004585 | 0.020181 | 0.0144532 | 0.006684 | 0.004574 | 0.010067
f_: Dataser? |0.009648 [ 0.004424 [ 0.021857 | 0.015277 | 0.0065961 | 0.004789 | 0.010458552
Dataset8 | 0.007556 | 0.005305 [ 0.022958 | 0.013171 | 0.006685 | 0.005074 | 0.01012487
Datasetd |0.011834 [ 0.005218 | 0.025399 | 0.012892 | 0.008156 | 0.008886 | 0.01207068
Dataserld | 0.013226 | 0.008665 | 0.02512%9 | 0.015115 | 0.009601 | 0.00914 | 0.01347526
APark BPark CPark MPark MNPark VPark |MSE (mean)

Dataserl |0.007165 [ 0.004785 | 0.014003 | 0.012437 | 0.00579 | 0.005227 | 0.00825535
Dataser? |0.006945 [ 0.005414 (0.014241 | 0.012806 | 0.007737 | 0.005779 | 0.00BEB2033
Dataset3 |0.010728 | 0.007552 | 0.018208 | 0.012716| 0.0097 | 0.00B05 | 0.01112565

% Dataserd |0.009174 [ 0.004825 [ 0.015393 | 0.013353 | 0.007677 | 0.006144 | 0.00942819
k-4 DatasetS |0.010917 | 0.006096 | 0.019954 | 0.016706 | 0.005265 | 0.004943 | 0.01131353
E Dataserté | 0.008022 | 000509 |0.016251 | 0.015735 | 0.006889 | 0.005053 | 0.00950678
S Dataset? |0.007475 | 0.004682 [ 0.017466 | 0.013791 | 0.006116 | 0.005031 | 0.00909358
Datasetd | 0.009405 [ 0.004218 [ 0.01%262 | 0.01326 | 0.00545 | 0.004423 | 0.00934315
Dataser? | 0.008964 | 0.005098 | 0.02211 | 0.010185 | 0.005687 | 0.005068 | 0.00951855
Dataserld | 0.0133%94 | 0.00486 | 0.023435 | 0.012502 | 0.007836 | 0.006474 | 0.01141669

Figure E.1: the individual MSE values across the different parking lots in GRU
models
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Appendix E. The performance evaluation of the proposed forecasting models

APark BPark CPark MPark MPark VPark | MSE (mean)

Datasetl | 0.009405 | 0.006213 | 0.019811 | 0.016275 | 0.00898 | 0.007027 | 0.011285176
Dataset?2 | 0.008334 | 0.016016 | 0.01208 | 0.024033 | 0.01653 | 0.011972 | 0.015827499
Dataset3 | 0.007704 | 0.007522 | 0.015383 | 0.020432 | 0.011265 | 0.007834 | 0.011690239

E Datasetd | 0.00220 | 0.008609 | 0.015721 | 0.019685 | 0.011657 | 0.007741 | 0.01185222
E Datasets | 0.007427 | 0.005916 | 0.01946 | 0.020802 | 0.007739 | 0.00494 | 0.011047347
= Dataset6 | 0.007462 | 0.007537 | 0.016445 | 0.020658 | 0.010998 | 0.009803 | 0.012150609
S Dataset? | 0.008658 | 0.008638 | 0.017084 | 0.022039 | 0.011432 | 0.008679 | 0.012754744
Datasetd | 0.007865 | 0.00981 | 0.016783 | 0.024891 | 0.013288 | 0.008309 | 0.013492644
Datasetd | 0.009211 | 0.00741 | 0.023565 | 0.015971 | 0.009341 | 0.006461 | 0.011933006
Dataset1d | 0.006295 | 0.014343 | 0.022863 | 0.026433 | 0.017472 | 0.010379 | 0.016297535

APark BPark CPark MPark MPark VPark | MSE (mean)

Datasetl |0.005127 | 0.00825 | 0.011532 | 0.015588 | 0.009878 | 0.006657 | 0.009505187
Dataset?2 | 0.004721 | 0.006372 | 0.012204 | 0.01605 | 0.009914 | 0.007063 | 0.009387378
Dataset3 | 0.007121 | 0.004079 | 0.01303 | 0.010481 | 0.005678 | 0.004503 | 0.007481997

% Datasetd | 0.013011 | 0.006832 | 0.015224 | 0.018547 | 0.01008 | 0.007446 | 0.012523427
E Dataset5 | 0.006516 | 0.003817 | 0.015675 | 0.020133 | 0.011181 | 0.005344 | 0.010445878
= Datasets | 0.004675 | 0.009342 | 0.014255 | 0.016596 | 0.008869 | 0.005773 | 0.010084864
;‘; Dataset? | 0.008962 | 0.004243 | 0.021289 | 0.01601 | 0.006812 | 0.004863 | 0.010363092
Datasetd | 0.006212 | 0.004621 | 0.016769 | 0.01452 | 0.007153 | 0.005318 | 0.009088724
Datasetd | 0.007586 | 0.005989 | 0.022505 | 0.012312 | 0.007799 | 0.0056 | 0.010298518
Dataset1d | 0.008501 | 0.005297 | 0.019374 | 0.012919 | 0.007155 | 0.005595 | 0.009806918

APark BPark CPark MMPark MPark VPark |MSE (mean)

Datasetl | 0.00919 | 0.006415 [ 0.018443 | 0.015539 | 0.010036 | 0.005413 | 0.01083849
Dataset? |0.011071 | 0.008775 [ 0.016731 | 0.019%8 | 0.011649 | 0.00B079 | 0.01271423
Datasetd | 0.010494 | 0.008504 [ 0.017793 | 0.019176 | 0.011269 | 0.008273 | D.01258485

E Datasetd | 0.013011 | 0.006832 [ 0.019224 | 0.018547 | 0.01008 | 0.007446 ) 0.01252343
= Datasets | 0.009534 | 0.010755 [ 0.019623 | 0.027005 | 0.012931 | 0.006561 | 0.01446797
E Dataseth | 0.005356 | 0.011966 | 0.022492 | 0.019543 | 0.011306 | 0.005885 | 0012758
;‘_: Dataset7 | 0.008658 | 0.00863E8 [ 0.017084 | 0.022039 | 0.011432 | 0.00B679 | 0.01275474
DatasetB | 0.009015 | 0.010105 [ 0.019286 | 0.021722 | 0.013625 | 0.007704 | 0.01357627
Datasetd | 0.009939 | 0.006297 | 0.023847 | 0.0149495 | 0.009159 | 0.005412 | 0.01160817
Dataset10 |0.010174 [ 0.006700 | 0.022042 | 0.016322 | 0.008117 | 0.005814 | D.01167965

APark BPark CPark MMPark MPark VPark |MSE (mean)

Dataserl | 0.00%018 | 0.006531 [ 0.016841 | 0.016742 | 0.010014 | 0.005644 | 0.01079826
Dataset? | 0.006385 | 0.006659 | 0.012783 | 0.014975 | 0.009343 | 0.007068 | 0.00953566
Dataset3 | 0.008222 | 0.004532 [ 0.015651 | 0.016206 | 0.007066 | 0.004529 | 0.0093675

E Datasetd | 0.01122 | 0004004 [ 0.017717 | 0.013485 | 0.006422 | 0.005177 | 0.00968768
= Dataset5 |0.007097 | 0.009904 [ 0.017525 | 0.022777 | 0.01206 |0.007771 | 0.012B5567
E Datasetdé | 0.006258 | 0.00686 |0.015345| 0.01800 |0.009646 | 0.005763 | 0.010327
;‘_: Dataset7 | 0.009968 | 0.008083 [ 0.014798 | 0.021586 | 0.008874 | 0.007299 | 0.01176811
DatasetB | 0.006472 | 0.005612 | 0.015651 | 0.016697 | D.008117 | 0.004242 | 0.00946628
Dataset9 | 0.01386 | 0.007978 [ 0.025085 | 0.018672 | 0.01013 | 0.006676 | D.01373361
Datasetl0d | 0.0142 |0.010431 | 0.026389 | 0.019854 [ 0.011539 | 0.008432 | 0.01514742

Figure E.1: the individual MSE values across the different parking lots in GRU
models (cont)
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APark BPark CPark MPark MPark VPark | MSE ({mean)

Datasetl |0.007415|0.006882 | 0.017297 | 0.017358 | 0.009166 | 0.006BG9 | 0.010831118
Dataset? |0.007758 | 0.007357 | 0.015809 | 0.018171 | 0.00983 | 0.006732 | 0.01094283
Dataset3 |0.006731 | 0.006028 | 0.016457 | 0.017268 | 0.008559 | 0.00543 | 0.010078769

E Datasetd |0.005347 | 0.00551% | 0.017451 | 0.021335 | 0.011132 | 0.007173 | 0.0115992704
= Datasets |0.006288|0.007574| 00186 |0.018612 | 0.008142 | 0.005386 | 0.010767105
E Dataseté | 0.00532 | 0.0059262 | 0.019544 | 0.021005 | 0.01025% | 0.005769 | 0.011855869
S Dataset? |0.008367 | 0.006134 | 0.020011 | 0.018143 | 0.007558 | 0.006175 | 0.011132075
Datasetd | 000503 |0.00B428 | 0.01965 | 0.022486 | 0.010215 | 0.005521 | 0.012054869
Datasetd |0.007158 | 0.005557 | 0.021353 | 0.021741 ) 0.0115321 | 0.00771 | 0.013143279
Datasetld | 0.007059 | 0.00867 |0.021278|0.019668 | 0.010601 | 0.007562 | 0.012475011

APark BPark CPark MPark MPark VPark | MSE ({mean)

Datasetl |0.004B8EE|0.005901 | 0.015347 | 0.016175 | 0.008467 | 0.004578 | 0.00945596
Dataset2 |0.015674|0.011555|0.027351 | 0.022424 | 0.011283 | 0.006197 | 0.01575413
Datasetd |0.007478|0.004342 | 0.015744 | 0.015143 | 0.005985 | 0.004277 | 0.00BB2B324

% Datasetd |0.006202 | 0.004014 | 0.014685 | 0.012742 | 0.006207 | 0.005841 | 0.008281852
= Datasets |0.006112 | 0.004957 | 0.017734 | 0.01839 | 0.007009 | 0.004578 | 0.009796524
E Datasetd | 0.00527 | 0.006055 | 0.015556 | 0.015799 | 0.007795 | 0.005716 | 0.009365271
S Dataset? |0.004819 |0.015277|0.021207 | 0.028158 | 0.01883 | 0.00ES72 | 0.016210597
Datasetd |0.012978]0.012229|0.029409 | 0.02427 | 0.0121 |0.008316 | 0.016550425
Datasetd | 0006565 | 0.006512 | 0.02242 | 0.015853 | 0.008241 | 0.004547 | 0.010756509
Datasetld | 0.005504 | 0.005128 [ 0.022004 | 0.014931 | 0.006832 | 0.004251 | 0.009775118

APark BPark CPark MPark MPark VPark |MSE (mean)

Dataserl |0.008057 | 0.006768 | 0.016651 | 0.018872 | 0.009743 | 0.005507 | 0.01093307
Dataset2 |0.008313 ( 0.00461 |0.017004 ( 0.016378 | 0.007329 | 0.004821 | 0.00974246

- Dataser3 |0.009796 | 0.005984 [ 0.016579 | 0.019712 | 0.008628 | 0.005808 | 0.01108471
- Datasertd |0.009675 | 0.00533 |0.019906 | 0.017007 | 0.007385 | 0.00516 | 0.00BB2832
ﬁ DatasetS |0.007607 | 0.008172 | 0.023526 | 0.02232 | 0.009779 | 0.004315 | 0.01261544
E Dataseté | 0.006B8 |0.0052659 (0018287 | 0.01873 | 0.00701 |0.004899 | 0.01017904
f_',; Dataset7 |0.007565( 0.00731 |0.016357 | 0.0178B2 | 0.008195 | 0.006689 | 0.01066616
Dataset8 |0.011605 [ 0.007245 [ 0.020625 | 0.021342 | 0.008227 | 0006665 | 0012784591
Dataser9 |0.008211 [ 0.007513 [ 00022941 | 0.019259 | 0.010019 | 0.007227 | 0.01252818
Datasetld | 0.007529 | 0.006438 | 0.02082 | 0.016787 | 000826 | 0.007141 | 0.01116272

APark BPark CPark MPark MPark VPark |MSE (mean])

Dataserl | 0.00523 |0.005785 | 0.0136%94 | 0.014168 | 0.00762 |0.003864 | 0.0083936
Dataser? |0.007215( 000579 | 0.01635 |0.016966 | 0.00765 |0.004978 | 0.D09B82551

. Dataset3 |0.007184 | 0.004485 [ 0.016877 | 0.016268 | 0.006699 | 0.004522 | 0.00930766
- Dataserd |0.006433 [ 0.006011 [ 0.013631 | 0.01876 | 0.008845 [ 0.005548 | 0.00993798
ﬁ Dataset5 |0.007556 (0004285 (0.018101 | 0.018047 | 0.006514 | 0.003648 | 000969163
E Datasetb | 0.005563 | 0.005458 | 0.017027 | 0.017512 | 0.007864 | 0.003752 | 0.00952934
,: Dataser7 |0.006225 [ 0.005955 [ 0.016615 | 0.016302 | 0.00B289 | 0.00473 | 000968561
Dataset8 |0.005529 | 0.00%061 | 0.016256 | 0.021453 | 0.011647 | 0.006691 | 0.01177278
Dataser? |0.006719 | 0.005591 | 0.019755 | 0.017029 | 0.007408 | 0.005199 | 0.01028324
Dataserld |0.006281 | 0.00507 | 0021784 | 001623 | 0.006694 | 0.005157 | 0.01020271

Figure E.1: the individual MSE values across the different parking lots in GRU
models (cont)
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APark BPark CPark MPark MPark VPark | MSE (mean)

Datasetl |0.005447 |0.002892 | 0.013134 | 0.007581 | 0.005166 | 0.003779 | 0.005955972
Dataset2 |0.004507 | 0.002781 | 0.015963 | 0.00909% | 0.005454 | 0.004496 | 0006723382

m Datasetd |0.005671|0.002545 | 0.0130094 | 0.008241 | 0.002548 | 0.004337 | 0.006140126
E Datasetd |0.005255| 0.00304 | 0.013773 | 0.00713%9 | 0.005745 | 0.003835 | 0.006137945
= Dataset5 |0.005013 |0.002922 | 0.016914 | 0.009105 | 0.002957 | 0.003823 | 0.0067B5713
E Datasets | 0.004931 | 0.002677 | 0.020415 | 0.009614 | 0.002953 | 0.002772 | 0.007226556
f; Dataset7 |0.005239 | 0.00265 | 0.017336 | 0.00809% [ 0.005711 | 0.004274 | 0.006884922
Datasetd | 0.005366 | 0.0057359 | 0.020957 | 0.020475 | 0.007224 | 0.00BB96 | 0.011442745
Datasetd | 0.005759 | 0.003125 | 0.020845 | 0.007098 | 0.002852 | 0.004204 | 0.00698055
Datasetl0 |0.005457 [ 0.002627 | 0.022402 | 0.008786 | 0.002509 | 0.003506 | 0.007547613

APark BPark CPark MPark MPark VPark | MSE {mean)

Datasetl |0.006791 | 0.00346 | 0.016554 | 0.010573 | 0.004136 | 0.005026 | 0.007756631
Dataset? |0.006274 | 0.002286 | 0.014577 | 0.009866 | 0.005038 | 0.00465 | 0006782044

- Datasetd |0.005273 | 0.002536 | 0.016011 | 0.011576 | 0.003118 | 0.004171 | 0.007114119
E Datasetd |0.005981 | 0.003205| 0.01621 | 0.011263 | 0.005383 | 0.005479 | 0.0075B6865
B Datasets |0.005056 | 0.002482 | 0.017789 | 0.008522 | 0.002591 | 0.00400% | 0.006741345
E Datasets | 0.008524 | 0.002767 | 0.017544 | 0.010118 | 0.00335% | 0.004114 | 0.007744448
g Dataset7 | 0.00759 |0.002294 | 0.020408 | 0.00917 |0.002755 | 0.00518 | 0.007566076
Datasetd | 0.00805 |0.001941 | 0.020899 | 0.011962 | 0.002624 | 0.004024 | 0.00B250141
Datasetd | 0.004457 | 0.002935 | 0.020948 | 0.008733 | 0.002372 | 0.004043 | 0.007254733
Datasetl0 |0.007678 (0.003757|0.022117 | 0.012009 | 0.004982 | 0.005121 | 0.008277533

APark BPark CPark MPark MNPark VPark |MSE (mean)

Dataserl |0.003888 | 0.00271 | 0.00879% | 0.003341 | 0.002575 | 0.00329 | 0.00410049
Dataser? |0.0033%99|0.003233 | 0.005711 | 0.005426 | 0.002582 | 0.003519 | 0.00471164

" Dataser3 |0.004291 | 0.003278 | 0.010192 | 0.005745 | 0.002933 | 0.003639 | 0.00501309
E Dataserd |0.004144 | 0003017 | 0.011447 | 000427 | 00003935 | 0.006699 | 0.00558589
= Dataset5 |0.005572 | 0.002856 | 0.013877 | 0.007006 | 0.003273 | 0.004606 | 0.00615824
E Dataseth 0.0045 | 0.00266 | 0.012B75 | 0.005558 | 0.003582 | 0.002501 | 0.00524551
f_: Dataser7 |0.004658 | 0.003265 | 0.012578 | 0.00547 | 0.003208 | 0.003515| 0.0054487
DatasetB | 0.005628 | 0.002886 | 0.015736 | 0.006578 | 0.003065 | 0.003655 | 0.00592451
Dataser9 |0.005521 | 0.003699 | 0.01235 |0.005956 | 0.003365 | 0.004506 | 0.005B6681
Dataserld | 0.004406 | 0.003408 | 0.013442 | 0.005788 | 0.003033 | 0.004453 | 000576156

APark BPark CPark MPark MNPark VPark |MSE (mean)

Datasetl 0.004879| 0.003683| 0.00991( 0.004533| 0.002832| 0.004905| 0.00509053
Dataset2 0.004943| 0.002777| 0.010722| 0.005122( 0.003388| 0.003969| 0.00515354

- |Datasetd 0.004994| 0.00452| 0.013585( 0.006612| 0.004008| 0.004272| 0.00629845
E Datasetd 0.00503( 0.005348| 0.009152 | 0.005924| 0.004744| 0.005354( 0.00593223
® |Datasets 0.005925| 0.003804| 0.011726| 000485( 0.004756( 0.006921| 0.00633028
E Dataseth 0.004924| 0.002943| 0.016295| 0.006528( 0.003715| 0.004428| 0.00647208
f_',; Dataset? 0.008815| 0.002976| 0.014825( 0.004825| 0.003936| 0.005626| 0.0065011
Datasetl 0.007565| 0.002424| 0.013525| 0.007578| 0.002882| 0.005558| 0.00658557
Dataset9 0.005855| 0.003449| 0.01621%9| 0.006444( 0003891 | 0.0053381| 0.0065464
Datasetld 0.00477( 0.00364| 0.014363| 0.005296| 0.003496| 0.004579( 0.00602418

Figure E.1: the individual MSE values across the different parking lots in GRU
models (cont)
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e Details of the individual MSE values across the different outputs (parking
lots) for the MLP models, these measures are reported previously as an

aggregated values in Figure 6.18

APark BPark CPark MPark |MPark VPark MSE {mean)
Datasetl 0.00628| 0.00293| 0.00567( 0.00514| 0.00186( 0.00626) 0.00469145
Datasetl 0.00372| 0.00267| 0.00297( 0.00528| 0.00162( 0.00545| 0.00361751
- Dataset3 0.00044( 0.00159| 0.00067( 0.00405| 0.00107| 0.00337 0.001866
< |Datasetd 0.00217( 0.00261| 0.00278 | 0.00615| 0.0017| 0.00546| 0.005347816
E |Datasets 0.00343( 0.00313| 0.003B6( 0.00624| 0.00127( 0.00462| 0.00375923
E Dataseth 0.00359( 0.00332| 0.00398( 0.00591| 0.00143| 0.00525) 0.0039133
E Dataset? 0.00144( 0.00272| 0.0025( 0.00557| 0.00121| 0.00552| 0.00282665
Datasetl 0.002| 0.00283| 0.0028| 0.00562( 0.00124| 0.00362( 0.00301876
Datasetd 000421 0.0033| 00061 0.00516| 0.00174( 0.00573) 0.0043755
Datasetl0d | 0.00098| 0.00264| 0.00211| 0.0037| 0.00132| 0.00406| 0.00247788
APark BPark CPark MPark |MPark VPark MSE {mean)
Datasetl 0.01292| 0.00511| 0.01148( 0.00579| 0.00193| 0.00965) 0.0078141
Datasetl 0.01531| 0.00761| 0.015B1| 0.00761| 0.00296( 0.01231| 0.01026905
~ Dataset3 0.00411( 0.00298| 0.00343( 0.00545| 0.0017E| 0.00544| 0.00586652
= |Datasetd 0.0086| 0.00363| 0.00607 | 0.006641( 0.00205| 0.00741| 0.00573344
E |Datasets 0.00399( 0.00328| 0.0049( 0.00581| 0.00126| 0.00484| 0.00401266
E Dataseth 0.01483| 0.00677| 0.01617( 0.00795| 0.00172| 0.00963| 0.00952243
E Dataset? 0.01455( 0.00572| 0.01508( 0.00922| 0.0024| 0.00972| 0.00944694
DatasetB 0.01796(0.007964] 0.01202( 0.01157| 0.0034| 0.01192| 0.01180566
Datasetd 0.00812( 0.00417| 0.01298( 0.00464| 0.00241| 0.00855| 0.00680977
Datasetl0d | 0.01245| 0.00623( 0.01602| 0.00693| 0.00274| 0.01253| 0.0094825
APark BPark CPark MPark MPark VPark MSE(mean)
Datasetl 0.01444( 0.00714| 0.01997( 0.00682| 0.00336| 0.0121| 0.01063716
Dataset 0.01406| 0.0066| 0.0184%( 0.00821| 0.00284( 0.01206) 0.01037621
. Dataset3d 0.0124] 0.0074| 0.0200% 0.007 0.003| 0.01284 0.010458
< |Datasetd 0.01757| 0.0078%| 0.01786 | D.00822| 0.00312( 0.015344) 0.01131773
2 |Datasets 0.01202( 0.00693| 0.01795( 0.00795| 0.00237| 0.01202| 0.00987419
E Dataseth 0.00287| 0.00279| 0.0045%9( 0.00432| 0.00141 0.005] 0.00351277
E Dataset? 0.00481( 0.005386| 0.00921( 0.0049| 0.00176| 0.00655| 0.00518034
Datasetd 0.0111] 0.00632( 0.01487| 0.00673| 0.00243| 0.01085| 0.00871851
Datasetd 0.01084( 0.0068%| 0.01623| 0.00662| 0.0026%9| 0.01049| 0.00896142
Datasetl0 | 0.02563| 0.0111] 0.02588| 0.0094%| 0.00525( 0.02008| 0.01623896

Figure E.2: the individual MSE values across the different parking lots in MLP
models
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Appendix E. The performance evaluation of the proposed forecasting models

e The results of the pairwise comparison between GRUs models proposed in

Chapter 6 are presented in Figure E.3
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Appendix E. The performance evaluation of the proposed forecasting models
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Appendix F

Snapshots of the predictions
charts for the University of Essex

parking lots

This appendix provides snapshots of the prediction charts from forecasting models
presented in Chapter 6. The charts show the difference between the prediction
and the real occupancy for the University of Essex parking lots — the prediction

from GRUs, MLP, and TBATS models.

¢ GRUs Model: The prediction of the last week of Autumn term 2015-16

,Model 1 in Chapter 6, are shown in Figure F.1.

e Mlp Model: The prediction of the Autumn term 2015-16 ,from the first

experiment in Chapter 6, are shown in Figure F.2.

e TBATS Model: The decomposition of each time series are presented in di-
agrams shown in Figure F.3, and snapshots of the prediction of the Autumn

term 2015-16 are shown in Figure F.4.
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Appendix F. Snapshots of the predictions charts for the University of Essex
parking lots
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Figure F.1: The difference between the real occupancy of parking lots and the
prediction using GRUs model 1
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Appendix F. Snapshots of the predictions charts for the University of Essex
parking lots
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Figure F.1: The difference between the real occupancy of parking lots and the
prediction using GRUs model 1 (cont)
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Appendix F. Snapshots of the predictions charts for the University of Essex
parking lots
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Figure F.2: The difference between the real occupancy of parking lots and the
prediction using MLP model 1
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Appendix F. Snapshots of the predictions charts for the University of Essex
parking lots
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Figure F.2: The difference between the real occupancy of parking lots and the
prediction using MLP model 1 (cont)
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Appendix F. Snapshots of the predictions charts for the University of Essex
parking lots
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Figure F.3: The decomposition of tig}ﬁlseries before applying TBATS models



Appendix F. Snapshots of the predictions charts for the University of Essex
parking lots
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Figure F.3: The decomposition of tiRkbseries before applying TBATS models
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Appendix F. Snapshots of the predictions charts for the University of Essex
parking lots

Forecasts from TBATS(1, {0,0}, 0.947, {<108,10>, «540,4>})
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Figure F.4: The difference between the real occupancy of parking lots and the
prediction using TBATS model for A Park
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