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ABSTRACT This paper focuses on the solutions to flexibly regulate robotic by vision. A new visual
servoing technique based on the Kalman filtering (KF) combined neural network (NN) is developed, which
need not have any calibration parameters of robotic system. The statistic knowledge of the system noise
and observation noise are first given by Gaussian white noise sequences, the nonlinear mapping between
robotic vision and motor spaces are then on-line identified using standard Kalman recursive equations.
In real robotic workshops, the perfect statistic knowledge of the noise is not easy to be derived, thus an
adaptive neuro-filtering approach based on KF is also studied for mapping on-line estimation in this paper.
The Kalman recursive equations are improved by a feedforward NN, in which the neural estimator dynamic
adjusts its weights to minimize estimation error of robotic vision-motor mapping, without the knowledge of
noise variances. Finally, the proposed visual servoing based on adaptive neuro-filtering has been successfully
implemented in robotic pose regulation, and the experimental results demonstrate its validity and practicality
for a six-degree-of-freedom (DOF) robotic system which the hand-eye without calibrated.

INDEX TERMS Robotics regulation, visual servo control, mapping estimation, adaptive filtering, neural
network.

I. INTRODUCTION
Robotic manipulators are increasingly deployed in unstruc-
tured environments to provide services to people in needs.
This new generation of robotic manipulators should reliably
interact with people and explore their environments instead of
traditionally following a predefined path in industry, which is
a very challenging task. Also they should adapt their motion
in real time to parameter changes and external disturbance.
Therefore, traditional robotic controllers that are based on
kinematics or dynamics of the robotic system cannot satisfy
the requirement of new challenges [1], [2].

Visual servoing is one promising solution to reg-
ulate robotic manipulators to physically interact with
their environments through vision features. The successful
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approving it for publication was Long Wang.

implementation of visual servoing has been shown in
several works [3]–[6]. Both position-based visual servoing
(PBVS) and image-based visual servoing (IBVS) methods
are popular, with one or two eye-in-hand or eye-to-hand
configurations [7], [8]. The PBVS is based on the compu-
tation of 3D Cartesian errors from an end-effector to the
object. This solution requires a perfect modeling of the object
and calibration of eye-in-hand robotic systems. Therefore,
the computation is conducted at each control cycle, and the
3D Cartesian errors may lead to a strong sensitivity with
respect to noise perturbations [9].

In IBVS, the feature points on the image plane are used
to regulate the robotic pose, and a mapping is conducted to
describe the differential relationship between visual features
and end-effector velocities in the Cartesian space [10]. IBVS
has no need for 3D target restructuring and its computation is
simpler than PBVS. Therefore, it has attracted much attention
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recently [11]–[14]. But the most pressing issue of IBVS is
how to accurately calculate a mapping matrix, i.e. a local
and linear approximation to the nonlinear and highly coupled
interaction between vision and motor spaces.

In order to provide real time adaptation to the parameters
change of robotic manipulator, the visual serving controller
should be endowed with a variable mapping estimator for
motion generation. Some existing works actually consider
the mapping estimation issue as a dynamic identification
problem, and the solution includes on-line techniques, such
as Broyden-based method [15], decoupling static Broyden
method [16], dynamic Broyden and exponential weighted
recursive least squares (RLS) [17], Gauss-Newton and recur-
sive RLS Jacobian estimation methods [18].

Hao and Sun proposed universal state-space approach to
uncalibrated visual servoing [19], in which Broyden-Gauss-
Newton and Broyden recursive RLS are unified into the state
space. Qian and Su conducted online estimation of image
Jacobian matrix by using KF for uncalibrated stereo vision
feedback [20]. KF has reliability and high estimation accu-
racy due to the optimality of its gain that depends on the
knowledge of noise statistics [21]. However, their method
is unsuitable to some stochastic environments where the
knowledge of noise statistics are unknown, especially for the
situation that has serious change of observation and state
models [22], [23]. In view of those problems, some works
proposed the adaptive KF approaches using learning technol-
ogy of neural network [24]–[27].

Some solutions to deal with the dynamic noises have
been proposed, including the dimension extension of
KF [28], [29], least mean square (LMS) based adaptive
filtering [30], wavelet-based adaptive Wiener filtering [31].
Lv and Huang investigated the application of KF in the state
space model with variable noise parameters [32]. An iter-
ative adaptive extended Kalman filtering (EKF) was pro-
posed by integrating mechanisms for noise adaptation and
iterative-measurement linearization in robotic pose estima-
tion tasks [33]. Wira and Urban adjusted the transition matrix
of the KF to address the problem of the unavailable system
model, and then its performance was evaluated in visual
servoing [34].

It is clear that the robot manipulators that work in a
stochastic noisy environment without calibration should be
endowed with the ability to adapt their motion in real time.
They also should have self-adaption capabilities to operate
robustly beyond a set of settled calibrated or modeling param-
eters. Therefore, this paper presents a new visual servoing
framework which is based on KF. It is a robust and adap-
tive neuro-filtering approach that allows a robotic manip-
ulator to safely operate in uncalibrated environments. Our
research conducted in this paper made the following three
contributions.
• The NN have been deployed for on-line minimization of
the error-estimation variance in order to obtain a robust
state estimation. As a result, the neural estimator has the
capability of improve the robustness of KF.

• An adaptive neuro-filtering approach is proposed, and
has been successfully applied in on-line identifica-
tion and mapping between robotic vision and motor
spaces, without the need for the knowledge of noise
statistics.

• We also have design a un-calibration visual servo-
ing framework by employing neuro-filtering. It does
not require hand-eye calibration and camera’s param-
eters. In our finding, the mapping matrix is dynam-
ically estimated, which is not affected by the errors
of hand-eye calibration. In additional, it differs
from the traditional IBVS and KF methods, with
the merits of robust stability under the dynamic
noises.

The rest of the paper is organized as follows. Section II
outlines the preliminaries of the robotic visual servoing with-
out parameters. Section III presents a neuro-filtering schema
based on KF technique for robotic mapping estimation. Then
a new visual servoing framework with neuro-filtering is pro-
posed in Section IV. The simulation and experimental results
are presented in Section V to show the feasibility and perfor-
mance of the proposed approach. Finally, a brief conclusion
is given in Section VI.

II. PRELIMINARIES
In this study, we design a robotic visual servoing framework
without parameters, which includes an adaptive estimator for
the real-time mapping, and a control law for robotic pose
regulation. The problem statement is presented as follows
and the main notations used in this paper are summarized
in Table 1.

A. ROBOTICS VISUAL SERVOING WITHOUT PARAMETERS
Visual servoing techniques consist of using the image data
provided by camera in order to regulate the pose of a
robotic system [7]. The camera can be mounted on the
robotic end-defector (eye-in-hand), or other alternatively
configuration, the goal of visual servoing is to drive the
robotic end-effector from the current pose to the desired
pose through the minimization of an error in the vision
space.

In this paper, it is assumed that an eye-in-hand robotic
system without any calibrated parameters, and an image error
function is defined by:

es(k) = S(k)− Sd (1)

where S (k) ∈ <n is current image feature, and Sd ∈ <n is
desired image feature, S(k) and Sd are obtained by camera
which fixed on the end-effector of robotic.

The camera projection model is illustrated in Fig. 1, where
C{Oc-X cY cZ c} is camera coordinate system, and I{OI -UV}
is imaging plane. The target’s position inC is P = (xc, yc, zc),
and the camera coordinate origin is Oc. The image plane I is
intersected at point S.
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TABLE 1. Main notation definitions.

FIGURE 1. The perspective projection of camera.

Considering the perspective projection and epipolar geom-
etry, the target imaging point S = (uv), given by: u

v
1

 = 1
zc
η


xc

yc

zc

1

 (2)

where η =
(
5 |3×3 0 |3×1

)
∈ <

3×4 is the projection matrix,
5 ∈ <3×3 is the camera’s intrinsic parameters, and zc is the
depth information of target.

Assume U(k) ∈ <m is the control variable of the robotic,
and 1S(k) = S(k) − S(k − 1) is the time variation of image
feature, the relationship between robotic control variable
U(k) and the time variation of image feature 1S(k) can be
described, as follows [35]:

1S(k) = Js(k)U(k) (3)

where Js(k) ∈ <n×m is a nonlinear mapping matrix, which
is depended on the robotic system calibration parameters
and the depth information of target [7]. Hence, the mapping
matrix is unknown as the robotic work in an un-calibrated
environment.

B. SYSTEM STATE AND MEASUREMENT EQUATIONS
One of essential issue of un-calibrated visual servoing is
precisely calculating the mapping matrix Js(k), in this paper,
we formulate it as a state estimation problem, and consider
the non-explicit mapping below:

Js (k) =
∂S(k)
∂U(k)

=

 j11(k) j12(k) . . . j1m(k)
...

... . . .
...

jn1(k) jn2(k) · · · jnm(k)

 ∈ <n×m (4)

Let variable c(k) be formed by concatenations of the row
and the column elements of Js(k), i.e.

c(k) =
(
j11(k) j12(k) · · · jnm(k)

)
∈ <

nm×1 (5)

Considering the following system dynamic equation:

c(k + 1) = c(k)+1t ċ(k)+
1
2
(1t)2 ξ (k) (6)

where ċ(k) = c(k + 1)− c(k), ξ (k) is system noise and1t is
sampling interval.

The system state equation can be established by choosing
the state variables x1(k) ∈ <nm×1, x2(k) ∈ <nm×1 as follows:{

x1(k) = c(k)
x2(k) = ċ(k)

(7)

Let the state vector be:

X(k) =
(
x1(k)
x2(k)

)
∈ <

2nm×1 (8)

According to Eq. (6), the system state equation can be
described as:

X(k + 1) =
(
1 1t
0 1

)(
x1(k)
x2(k)

)
+

( 1
2
(1t)2

1t

)
ξ (k)

= ϕX(k)+ 0ξ (k) (9)

where ϕ and 0 are state transformation matrix and noise
drive matrix, respectively. Let ξ (k) be Gaussian white noise
sequences with zero mean, and the variance is Q.

In this paper, the observation vector Z(k) ∈ <n×1 is given
by:

Z(k) = 1S(k)
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= S(k)− S(k − 1)

= Js(k)U(k) (10)

And let the linear system observation equation is:

Z(k) = H(k)X(k)+ υ(k) (11)

where υ(k) is observation white noise sequences with zero
mean, and the variance is R, H(k) is dynamic observation
matrix, as follows:

H(k) =

U(k) · · · 0
...

...
...

0 · · · U(k)

 ∈ <n×2nm (12)

The system state Eq. (9) and the observation Eq. (11) are
suited to the standard KF. So the Kalman recursive equations
can be derived for mapping on-line estimation, the algorithm
flow is as follows [21]:

Algorithm 1 KF for Mapping Estimation

Initial: Q ∈ <2nm×2nm, R ∈ <n×n, P (0) ∈ <2nm×2nm

X (0) ∈ <2nm×1

for k = 1: q
X(k − 1)← Js(k − 1)
X̂(k/k − 1) = ϕX̂(k−1/k − 1)
P(k/k − 1) = ϕP(k − 1)ϕ(k/k − 1)T + Q
K(k) = P(k/k − 1)H(k)T

(
H(k)P(k/k − 1)H(k)T + R

)−1
X̂(k/k) = X̂(k/k − 1)+K(k)

(
Z(k)−H(k)X̂(k/k − 1)

)
P(k) = (E−K(k)H(k))P(k/k − 1) (E−K(k)H(k))T

+K(k)RK(k)T

Js(k)← X̂(k/k)
End for
End

In a real environment, the system dynamic noise ξ (k) and
the sensor observation noise υ(k) are generally difficult to be
derived, i.e. their statistic parameters Q and R are unknown.
Thus in the next section, a neural estimator based on the
KF is chosen as an alternative, where we give an adap-
tive neuro-filtering schema in the light of unknown statistic
knowledge of the noises.

III. ADAPTIVE NEURO-FILTERING FOR MAPPING
ON-LINE ESTIMATION
Considering the perturbation on both observation and sys-
tem state models, the linear time invariant system intrinsic
contains the nonlinear approximation errors. On the other
hand, the filtering gain of the KF equations is the function of
noises statistics. However, it is difficult to obtain the statistic
knowledge of noises in an actual environment. Hence, on-line
minimization of the error-estimation variance should be con-
ducted to obtain a robust Kalman state estimation.

Fig. 2 shows the schema of adaptive neuro-filtering, where
the Kalman gain is improved by a feedforward network. The
NN is used to minimize the estimation error e(k) ∈ <n×1

FIGURE 2. The schema of adaptive neuro-filtering.

between observation Z(t) ∈ <n×1 and estimation Ẑ(t) ∈
<
n×1. In real environment, the NN’s output vector of desired

values is not known. Thus, the on-line learningwill be applied
in this paper, the goal of learning algorithm is to minimize the
cost function in each iteration step, and no need obtaining the
convergence of the NN weights. The cost function becomes:

µ(k) =
1
2
eT (k)e(k) (13)

where the estimation error is:

e(k) = Z(k)− Ẑ(k) (14)

The learning law of the network is given by:

W(l)
ij (k + 1) =W(l)

ij (k)+ γ e
T (k)

∂Ẑ(k)

∂W(l)
ij

(15)

where k is the time instant, l represents the layer number of
the NN, i.e. l = 1 is the hidden layer and l = 2 is the output
layer. i = 1,. . . ,nl , j = 1,. . . ,nl are the number of the nodes
in the l-th layer. wlij is the weight connection between the i-th
node in the l-th layer and the j-th node in the (l-1)-th layer. γ
is the learning rate.

Consider the variation of the system output with respect to
∂Ẑ(k)
∂W(l)

ij

, we have:

Ẑ(k) = H(k)X̂(k/k − 1) (16)

and

X̂(k/k − 1) = ϕk−1X̂(0)+
∑k−1

m=1
ϕm−1O(k − m) (17)

whereO(k-m) is the output of theNN in the (k-m)-th iteration.
Hence, we have:

∂Ẑ(k)

∂W(l)
ij

= H(k)
∑k−1

m=1
ϕm−1

∂O(k − m)

∂W(l)
ij

(18)

Then, Eq. (15) becomes:

W(l)
ij (k + 1)=W(k)

ij +γ e
T (k)H(k)

∑k−1

m=1
ϕm−1

∂O(k−m)

∂W(l)
ij

(19)
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TheNNhas 150 neurons in the hidden layer and 96 neurons
in the output layer. The output of each hidden neuron with
S-function, as follows:

O′(k) =
1

1+ e−h(k)
(20)

where

h(k) =W1
ije(k) (21)

and the output of the NN is:

O(k) =W2
ijO
′(k) (22)

The next section presents a visual servoing framework based
on this adaptive neuro-filtering for an eye-in-hand robotics
system.

IV. DEVELOP A VISUAL SERVOING CONTROL
FRAMEWORK WITHOUT PARAMETERS
As the robotic desired pose is appointed, and the desired
image features are constant, the derivation of error function
Eq. (1) becomes:

ė(k) =
d
dk

(
S(k)− Sd

)
= Ṡ(k)

= Js(k)U(k) (23)

There is a nonzero constant to establish:

ės(k) = −λes(k) (24)

Then substituting Eq. (24) into Eq. (23), we have:

−λes(k) = Js(k)U(k) (25)

Generally, the dimension of image features n should opted
greater than the controlling variable m. Thus the Eq. (25) can
be transformed to:

U(k) = −λJ+s (k)es(k) (26)

Eq. (26) is the robotic servo control law, λ is control rate,
and the inverse mapping matrix J+s (k) is:

J+s (k) = Js(k)T
(
Js(k)Js(k)T

)−1
(27)

To insure the control system stability, we give the
Lyapunov-candidate-function based on the image error
Eq. (1):

L(k) =
1
2
‖es(k)‖2 =

1
2
(es(k))T es(k) (28)

whose derivation is:

L̇(k) =
d
dk

(
1
2
(es(k))T es(k)

)
= (es(k))T ės(k) (29)

Substituting Eq. (23) and Eq. (26) into Eq. (29), we have:

L̇(k) = (es(k))T Js(k)U(k)

= −λ (es(k))T Js(k)J+s (k)es(k) (30)

FIGURE 3. The block diagram for the overall visual servoing system.

Algorithm 2 Visual Servoing Control Algorithm
Step 1: system initialization, given the desired image fea-
ture Sd , control rate λ, and Js(0).
Step 2: at k time, the current image features S(k) are
captured by camera, as shown in Fig. 3, then compare S(k)
and Sd by Eq. (1). If the image error es(k) converges to
zero, the iteration loop ends, otherwise go to the next step.
Step 3: as shown in Fig. 3, calculate the robot con-
trol variable U(k) using control law Eq. (26), and drive
the end-effector from the current pose to the next pose,
the observation matrix H(k) is obtained from U(k) by
Eq. (12).
Step 4: the state vector X(k) in Eq. (8) is constructed, then
the state transition from time k to time k+1 can be realized
using system state Eq. (9).
Step 5: as shown in Fig. 3, the state vector X(k) and
observation matrix H(k) are used as inputs of the obser-
vation model, then the state observation value Z(k) can be
calculated using observation Eq. (11).
Step 6: the state estimation X̂(k+1) for k + 1 time can
be obtained using the neuro-filtering schema which shown
in Fig. 2, and the best identification of the robotic mapping
matrix can be obtained by JS (k + 1)← X̂(k + 1)
Step 7: time update k ← k + 1, go to step 2).

As n > m, Js(k)J+s (k) is positive semidefinite, and
(es(k))T Js(k)J+s (k)es(k) ≥ 0. When the control rate λ >

0, we have L̇(k) ≤ 0. According to Lyapunov-candidate-
function, the control system is stable.

Fig. 3 shows our overall visual servo system, the algorithm
flow is described as follows:

V. RESULTS AND DISCUSSIONS
In this section, the proposed neuro-filtering based visual
servoing framework is tested in simulated and real eye-in-
hand six-DOF robotic manipulator. The task is to control the
manipulator from arbitrary initial pose to the desired pose
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FIGURE 4. Simulation results obtained by the proposed visual servoing
without calibrated parameters for task 1. (a) image feature trajectories.
(b) robot moving trajectory.

by using the close feedback of image features. The image
features are consist of four-image-points for robotic manip-
ulation tests. The desired features Sd does not change over
time, and the current image feature S(k) is not constant due
to the camera with the end-defector movement. The current
image features is obtained through:

S(k) =
(
s1(k) s2(k) s3(k) s4(k)

)
∈ <

8×1 (31)

where

si =
(
ui vi

)
, i = 1, 2, 3, 4 (32)

Let the robotic control variable:

U(k) =
(
V (k) W (K )

)T
∈ <

6×1 (33)

where

V (k) =
(
vx(k) vy(k) vz(k)

)
(34)

W (k) =
(
wx(k) wy(k) wz(k)

)
(35)

Eq. (34) and (35) are the end-effector’s linear and angular
velocity in workspace respectively. Thus, the size of mapping
matrix in Eq. (4) is 8 × 6, and the size of the system state in
Eq. (8) is 96 × 1. The control rate λ is selected 0.25. The
intrinsic camera parameters for traditional IBVS are chosen
as, image center u0 = v0 = 256, and focal length f = 1000.

FIGURE 5. Simulation results obtained by IBVS for task 1. (a) image
feature trajectories. (b) robot moving trajectory.

A. SIMULATION
The simulation is conducted using robotic simulation system
in MATLAB, in which two different tests are conducted.
The robotic manipulator conducts linear and combination
rotational movements to evaluate the performances of our
visual serving method.

In the first test, the camera simply conducts translation
movements. We set S(0) = (89.33, 38.05, 89, 166.3, 217.5,
166.3, 217.5,38.05)T and Sd = (273.9, 202.4, 273.9, 381.7,
452.4, 381, 452.4, 202.4)T, respectively. Fig. 4 shows the
results of the proposed method. More specifically, the feature
trajectories in the image plane are shown in Fig. 4(a), in which
the trajectory ends at the position as the 4 sign. The image
features moving in almost straight lines from initial to desired
position with our method. Fig. 4(b) shows the 3-D trajectory
of the robotic end-effector in the Cartesian space, which is a
straight line from the initial pose to the desired pose.

For the same test, the results performed by IBVS are
shown in Fig. 5, the feature trajectories in Fig. 5(a) and
the robotic end-effector trajectory in Fig. 5(b) are similar to
results obtained by our proposed method. Note that the IBVS
method needs the camera calibration parameters to calculate
the mapping matrix, while our method is on-line identified
techniques without any calibrated parameters, on the other
hand, for the same translationmovements visual servoing task
the performance of the two methods are very similar, thus
the robotic mappingmatrix on-line estimated by the proposed
neuro-filtering approach is accurate.
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FIGURE 6. Simulation results obtained by IBVS for task 2. (a) image
feature trajectories. (b) robot moving trajectory.

In the second test, the camera implements a combination
of translational with rotational movements so that a long
distance visual servoing task is performed. The initial and the
desired features are located in far away each other, i.e. S(0)=
(360.9, 177.5, 234.1, 283.8, 313.5, 342.5, 393.7,225.3)T and
Sd = (40.2, 106.8, 73.5, 438.5, 405.1, 405.2, 371.9, 73.5)T.
For the same visual servoing task, Fig. 6 shows the results
obtained by IBVS and Fig. 7 shows the results obtained by
our visual servoing method, respectively.

By comparing Fig. 6(a) with Fig. 7(a), we can see that the
performances of image features are same constrained on the
camera field-of-view (FOV). Fig. 6(b) shows that the trajec-
tory of the robotic end-effector has large retreat movements
that are beyond the 3-D workspace. However, the trajectory
obtained by ourmethod has no retreat, i.e. almost straight line
from the initial pose to the desired pose, as shown in Fig. 7(b).

As the same long distance visual servoing task, the robotic
performance of the two methods are different, it is clear that
the drawbacks of the IBVS is hard to keep the end-effector
inside the workspace due to the robotic retreat. While our
visual servoing method could provide better results for the
same task because of the estimator with adaptive ability for
accurate predict the mapping between robotic vision and
motor spaces.

FIGURE 7. Simulation results obtained by the proposed visual servoing
without calibrated parameters for task 2. (a) image feature trajectories.
(b) robot moving trajectory.

B. REAL EXPERIMENT
The real experiments have been carried out using a robotic
manipulator with an eye-in-hand configuration. As shown
in Fig. 8, our visual servoing system consists of a DENSOR
C7M-VSG6BA controller, a computer with an Intel Core
i5 2.67-GHz CPU, 4GBs of RAM for image processing.
The robotic controller and image processing computer can
communicate through RS-232 serial interface, and a DENSO
six-DOF robotic manipulator with aMicrosoft Kinect camera
mounted at its end-effector. The object is an A4 paper with
four black-colored small circular disks on it. The resolution
of object images is 640 × 480, and the center points of the
small circular disks are used as image features.

Experimemt 1, the experiment aims to examine the
performances of visual servoing framework based on
neuro-filtering and traditional KF methods in a real
un-calibrated environment. As the traditional KF method
needs the statistic knowledge of environment noise in
advance, we chose the uniformly distributed random noise
with zero mean and the system noise variance isQ = 0.001×
E ′, in which E ′ ∈ <96×96 is unit matrix of size 96 × 96,
and the observation noise variance is R = 0.001 × E ′′,
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FIGURE 8. The real platform with eye-in-hand robotic system.

E ′′ ∈ <8×8 is unit matrix of size 8×8. In contrast, our method
is self-adaptive to the dynamic noise and does not require the
statistic parameters of environment noise.

The task is for the end-effector of the robot conducts trans-
lational and rotational movements from the initial pose to the
desired pose.We set the initial features S(0)= (303, 179, 234,
284, 311, 344, 396, 226)T, and desired features given Sd =
(255, 123, 255, 417, 549, 417, 549, 123)T, this task requires
the robot to conduct a complicated motion in 3-D Cartesian
space. Fig. 9 shows experimental results obtained by the
proposed visual servoingwithKF.More specifically, Fig. 9(a)
shows the image feature trajectories that were obtained by
the traditional KF method and influenced by noises. Fig. 9(b)
shows that the end-effector moved towards the desired pose
and reduced the image errors. Fig. 9(c) shows that the end-
effector has unnecessary retreat and serious vibration.

Fig. 10 shows experimental results obtained by the pro-
posed visual servoing with neuro-filtering. More specifically,
Fig. 10(a) shows that the image features smoothly converged
to the desired position, and Fig. 10(b) shows the image errors

FIGURE 9. Experimental results obtained by the proposed visual servoing
with KF. (a) image feature trajectories. (b) image errors between current
features and desired. (c) robot moving trajectory.

converging in image plant. Fig. 10(c) shows that the robot
end-effector had the stabile motion without retreat and vibra-
tion. It is clear that the proposed neuro-filtering method out-
performed the traditional KF method, i.e. the smooth motion
in the Cartesian space and the stable feature trajectories on
the image plane.

Experiment 2, the experiment aims to test the robustness
of visual servoing framework based on traditional KF and
neuro-filtering. The KF optimal filtering gain depends on the
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FIGURE 10. Experimental results obtained by the proposed visual
servoing with neuro-filtering. (a) image feature trajectories. (b) image
errors between current features and desired. (c) robot moving trajectory.

noise statistics, thus, the change of the variances of system
noise or observation noise would made the KF method easy
out of convergence. In this test we chose the system noise
variance isQ = 0.02×E ′, and the observation noise variance
is R = 0.15×E ′′. Fig. 11 and Fig. 12 shows a comparison of
the robot moving trajectory and image feature trajectories in
a real environment.

FIGURE 11. Result obtained by the proposed visual servoing with KF.
(a) robot moving trajectory. (b) image feature trajectories

More specifically, Fig. 11 shows the result obtained by
the visual servoing with KF. The camera has almost ran-
dom motion in the Cartesian space, and the image features
in image plan are scattered near the camera FOV limit,
those results are illustrated in Fig. 11(a) and Fig. 11(b),
respectively. In contrast, Fig. 12 shows the result obtained
by the visual servoing with proposed neuro-filtering. The
robot end-effector has a smooth moving trajectory and a good
stability, and the image trajectories could also converged to
the desired position, one can find in Fig. 12(a) and Fig. 12(b).

This means that the KF method has risk leads the robot
to large retreat motion in the Cartesian space, and is easily
reaching the limitation of workspace, also it made the image
features move near to the camera FOV limit. In the contrast,
our proposed neuro-filtering approach is adaptive to dynamic
noises made the robot always converge to the desired pose
with smooth trajectories and robust stability performances in
servoing tasks.

The simulation and experimental results show that the
robot moving in the 3DCartesian space and the feature trajec-
tories on the 2D image plane both are very smooth and stable.
The image errors are reduced by the servoing controller.
The proposed visual servoing based neuro-filtering method is
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FIGURE 12. Result obtained by the proposed visual servoing with
neuro-filtering. (a) robot moving trajectory. (b) image feature trajectories.

efficient for robot manipulation in un-calibrated environment
with unknown noise.

VI. CONCLUSIONS
In this work, we have proposed a novel visual servoing frame-
work for regulation of a robotic manipulator operated in an
un-calibrated environment, which is based on neuro-filtering.
The NN based KF approach has been proposed to identify
the mapping of robotic vision space and motor space. One
of advantages of neuro-filtering is its state estimating ability
without the statistics knowledge of environment noise. Apart
from simulation, we have applied this neuro-filtering schema
in a real robotic manipulator to avoid the complex calibration
process of its eye-in-hand system. Several experiments have
been conducted to compare the performance of our proposed
system with IBVS and KF methods. Results show that the
proposed visual servoing approach has better performance
than these existing methods.
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