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Abstract 

The influence of the transcription factors (TFs) as a result of their interaction with the genetic 

material made it subject to a lot of studies. From roles of TFs in shaping the DNA landscape, to 

their functionality and purpose in cell cycle and identity, these DNA binding molecules can 

upregulate or downregulate the rate at which transcription occurs. Their main mechanism of 

functioning is described by their ability to interact to DNA, namely, to find their target site and 

bind to it. In the search mechanism also known as facilitated diffusion, TFs can float freely 

(Brownian motion) in the nucleoplasm and can bind to non-specific sites performing one-

dimensional walks along the DNA strand. Once bound, TFs can slide, hop, or jump across. 

Recent technological advancements enabled modelling of facilitated diffusion while 

accounting for the 3D architectural structure of the DNA and parameterization with actual 

biological data using high-resolution (sub-kilobase) measurements of 3D contacts. In this 

research, the influence of such environment in the search mechanism performed by the DNA 

binding molecule is outlined and the model takes in consideration the probability of a TF to 

rebind on DNA fragment that might be hundreds of base pairs apart but comes in close 

proximity as a consequence of the DNA’s 3-dimensional structure. DNA fragments that come 

in contact with each other has been hypothesised to influence the search speed. While other 

effects like crowding (presence of other non-cognate species of DNA binding proteins) have 

been shown to influence the speed of the facilitated diffusion mechanisms by covering non-

specific binding sites, tests ran on the model with nucleosomes being bound to DNA showed 

that the intersegmental jumps, being performed by the TFs, are affected by the number of 

nucleosomes as well as a certain probability of the protein to stay in the microenvironment 

and to not completely dissociate in the nucleoplasm. 

Introduction 

A cell’s identity is modelled by processes protein interaction that happen inside. One of these 

shaping mechanisms that has been studied broadly is transcription. Activation or silencing are 

results of the interaction between transcription factors (TFs) and DNA (Woringer and Darzacq, 

2018). The interaction also known as facilitated diffusion, is the process of searching and 

binding to a specific site for a given TF. Building models that mimic the search process led to 
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the investigation of different factors that come into play and impact the facilitated diffusion 

mechanism, the environment in which the process occurs governing the TFs’ velocity and 

frequency with which it binds to a given site (Riggs et al., 1970; Berg et al., 1981; Elf et al., 2007; 

Hammar et al., 2012; Zabet and Adryan, 2012a; Zabet and Adryan 2012b; Woringer and 

Darzacq, 2018). The cellular landscape controls the process and the process in turn dictates 

the rate of gene expression, more specifically the rate of TFs binding to their specific site (Zabet 

and Adryan 2012a).   

The free diffusion (3D) process through which the DNA-binding molecules go, can be described 

as a free motion in the fluid (nucleoplasm or cytoplasm for prokaryotes). While the free 

diffusion is a well-established process through which the molecules go through to find the 

binding sites, the rate at which TFs find the sites in vivo is much greater that the rate of free 

diffusion alone (Riggs et al., 1970; Berg et al., 1981; Elf et al., 2007; Hammar et al., 2012; Zabet 

and Adryan, 2012a; Zabet and Adryan 2012b). Furthermore, another mechanism thorough 

which TFs perform the search process is described as a 1-dimensional (1D) random walk. The 

biophysical process of 1D diffusion shelters the diffusion of DNA, by attaching to the string of 

nucleotides and performing either a sliding event or a hopping event. The combination 

between the 1D random walk and the free diffusion facilitates the TFs to find their site in a 

shorter period amongst the numerus non-specific DNA regions and different protein species 

that occupy the neighbouring volume of space.  

The pioneering work (Riggs et al., 1970, Berg et al., 1981) that describes the combination of 1D 

diffusion and 3D diffusion shows how the reduced dimensionality from free diffusion to 1D 

random walk has increased the speed rate. The 1D random walk is a slower process that free 

diffusion, but the rate of finding the binding site is 10-100 times greater than free diffusion 

alone because of the reduced dimensionality of the search process (Woringer and Darzacq, 

2018).   

The facilitated diffusion model proposed by (Mirny et al., 2009) describes the TF molecule as 

having two states: the search state or S state and recognition state or R state. In the 1D random 

walk a DNA binding protein would adopt the S state when interacting with non-specific site 

through the electrostatic interactions with the DNA. Coming into close proximity with a target 

site, the protein would undergo a conformational change (Leven and Levy, 2019) to recognise 
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the target site and bind to it. The recognition mode is characterised as the process in which a 

TF adopts a conformation that resembles the DNA specific site’s conformation (Piatt et al., 

2019). In their work (Zabet & Adryan, 2012), model presented adopts only one mode due to 

the research being focused on combining 1D diffusion with 3D diffusion and other properties 

like crowding. 

Recent technological advancements enabled modelling of facilitated diffusion while 

accounting for the 3D architectural structure of the DNA and parameterization with actual 

biological data using high-resolution (sub-kilobase) measurements of 3D contacts (Rao et al., 

2014; Cubenas-Potts et al., 2017; Zabet and Adryan 2012c).  

While other effects like crowding (presence of other non-cognate species of DNA binding 

proteins) (Ghosh et al., 2018) have been shown to influence the speed of the facilitated 

diffusion mechanisms by covering non-specific binding sites, tests ran on the model with 

nucleosomes being bound to DNA resulted in a low number of intersegmental jumps being 

performed by the TFs. 
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Literature Review 

Broad picture 

 The activation of a gene requires transcription factors (TFs) to perform the search in the 

nucleoplasm (or cytoplasm in the case of prokaryotes) for the binding site on the DNA. This 

leads to the formation of an entire transcriptional apparatus. Other similar processes of protein 

interaction that are present shape the cellular landscape (Woringer and Darzacq, 2018). The 

rate of transcribed sequences in this environment is dictated by the rate of site-specific binding 

of transcription factors (Zabet and Adryan, 2012a). Thus, it can be stipulated that the 

environment governs the frequency and velocity of TF site binding (Woringer and Darzacq, 

2018). Mechanisms that regulate the transcription process have been closely studied and 

highly regarded by many disciplines including developmental biology, drug screening and 

cancer biology.   

General aspects of TF dynamics 

 Studies like (Riggs et al., 1970; Berg et al., 1981; Elf et al., 2007; Hammar et al., 2012; Zabet 

and Adryan, 2012a; Zabet and Adryan 2012b) present the process TFs go through to reach their 

target site only by free diffusion (thermal agitation of a fluid causing the motion of particles). 

It has also been discovered the occurrence of a facilitated diffusion mechanism, a combination 

of free diffusion and 1-dimensional diffusion. The facilitated diffusion is characterized as a 

biophysical process that covers the diffusion on DNA (surface of reduced dimensionality) and 

3D diffusion. The diffusion on DNA is slower than 3D diffusion, but the finding of the binding 

site is 10-100 times faster than the 3D free diffusion alone due to the reduction in 

dimensionality where the TF performs the search process (Woringer and Darzacq, 2018). 

Following a search event, the transcription factors bind to the DNA and perform the so called 

1-dimensional diffusion. This includes either of the possibilities to perform a random walk 

along the DNA strand (without detaching itself from the strand) or a hopping action (the 

transcription factor will unbind from the DNA loosely but not completely).  Another movement 

that can be performed by the small molecules can be a complete detachment from the DNA 

and disassociation into the cytoplasm referred to as 3-dimensional diffusion. The specified 

events combined give the facilitated diffusion mechanism. The published work of (Woringer 
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and Darzacq, 2018) also discuss the exploration properties of proteins that adhere on nuclear 

substructures as having two parameters, one for the random walk and one for the 

measurement of the available space of diffusion. They also suggest that due to the short-lived 

interactions between the TF and the DNA entity, the diffusion phenomenon could not be 

described by general biochemical techniques. Thus, there is a need for computational 

involvement into the TF mechanistic functionality (Woringer and Darzacq, 2018).  Even as the 

pioneers (Riggs et al., 1970, Berg et al., 1981) have brought the conclusion of the reduced 

dimensionality from a 3-dimension diffusion to 1-dimension diffusion as a catalyst for speeding 

the process substantially, this would apply to a DNA of linear value (considering it a string), 

rather than seeing the DNA as a 3-dimensional structure in space. The probability of the 

transcription factors to dissociate into cytoplasm (the mass of the TF playing a role in the speed 

of the diffusion) is influenced by factors like the affinity for the binding motifs present in the 

vicinity that have to be accounted for (Cortini and Filion, 2018). Each time the TF is unbound 

from the DNA, the proteins are in search for their target site. Factors like crowding (Ghosh et 

al., 2018), where other molecules are bound to a possible target site, influence the search 

process and the model presented in (Zabet and Adryan 2012c) considers this. The large-scale 

simulations model developed in (Zabet and Adryan 2012a; Zabet and Adryan 2012b; Zabet 

2012) is focusing of the one-dimensional walk of the transcription factor, as a bound TF, the 

protein will execute a random walk along the DNA strand. Other models focus on 3D aspects 

and assume random/uniform affinity profile for the TF, which is not true for real biological 

systems (Cortini and Filion, 2018; Brackley et al., 2012). When it unbinds completely, the TF 

disassociates wholly from the DNA and diffuse into cytoplasm. One assumption of the model 

presented by (Zabet and Adryan, 2012a) is that DNA is a linear string, but this is clearly not the 

case. Distal loci can come into 3D proximity and one possibility is that TF molecules performing 

hopping can be relocated on the 3D proximal DNA fragment instead of the vicinity of the 

dissociation sites. First, we look closer at what 1-dimensional diffusion refers to. 

Additional aspects that impact TF binding mechanism 

TFs have the capacity to communicate quantitative information regarding different signals 

presented by the environment. Transcription factors activation can present different 

dynamical patterns that are triggered by various stresses (Hao and O’Shea, 2011; Ezer et al., 

2014). The dynamical patterns that are communicated to the promoters are further 
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interpreted, which would in turn produce a variety of gene expression patterns (Hao and 

O'Shea, 2011). It is clear that specific stress signals trigger different responses, but the 

oscillations in gene expression can be influenced by the duration modulation or frequency of 

a transcription factor (Hao and O'Shea, 2011). The TF activation of a specific dynamical pattern 

would affect the expression as a response of a gene to a specific stress condition that might 

vary based on alterations in specific parts of the gene’s promoter (Hao and O'Shea, 2011). 

Alterations at the promoter are influenced by the TF binding sites number, their position and 

the presence of nucleosomes with respect to the binding site order (Ezer et al., 2014). Thus, 

the influence of a specific binding pattern on the gene expression can be seen as a 

consequence of a stress stimulus applied and its duration (Hao and O'Shea, 2011). The time in 

which a TF finds a target site sets in turn the response time of a gene. The search time of the 

TF for the specific target gene is dependent on the free diffusion (3D search) in cytoplasm and 

by the nonspecific search alongside the DNA strand (1D search) as observed in prokaryotes 

(Hettich 2018). In other similar work, the DNA residence times of TF were measured by single-

molecule imaging (Gebhardt et al., 2013). The findings presented in (Gebhardt et al., 2013) 

suggest three modes by which DNA can bind with TFs, that is, monomeric, dimeric and indirect 

DNA binding. They have used a time-lapse approach and tracked the residence times of TF 

binding to DNA with values between 50 ms to several seconds. Even with the advancements in 

monitoring TF dynamics by different biochemical methods (Cha and Zhou, 2014, Gebhardt et 

al., 2013), the photobleaching would cause the fluorescing dyes to become sparse, or the 

cellular movements to avert reliable observation of a long-term bound molecule (time-lapse 

illumination). The majority of studies have a high impact on the understanding of target-search 

mechanisms as respected tools for evaluating the movement of proteins on DNA. 

Some TFs have the ability to bind to DNA during mitosis, such proteins are known as mitotic 

bookmarking TFs or simply BFs. These molecules are known to maintain the rapid functional 

regulatory complexes re-establishment in post-mitosis (Festuccia et al., 2019). The general rule 

when it comes to TFs is that during mitosis their concentration level is highly reduced. This is 

due the fact that the chromatin becomes highly condensed and a high percentage of DNA 

becomes inaccessible. Likewise, the decrease in TF concentration is linked to the 

phosphorylation of most of the regulators in mitosis thus the TF ability to bind to DNA is greatly 

reduced (Rizkallah et al., 2011).  The BFs are believed to attach to their binding sites during cell 
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division, through this mechanism these factors would deliver information regarding the gene 

regulation to the daughter cells, as these regulatory elements are left accessible (Caravaca et 

al., 2013).  

It can be summarised that the transcription factors influence cell fate and/or many other 

mechanisms that are located in this cell. The cell fate, in turn, depends of the DNA state, the 

DNA state would influence the actions of transcription factors. Ultimately, any factor that has 

direct or indirect effect on the diffusion will affect the reaction rate of the transcription factors. 

1D diffusion 

Supposing a TF molecule came in contact with the DNA, it could perform one of three possible 

actions that is chosen stochastically (Zabet and Adryan, 2012a; Mirny et al., 2009). The (Mirny 

et al., 2009) model assumes the two binding modes (search mode and recognition mode), 

while the (Zabet & Adryan, 2012) model does not distinguish between them. The facilitated 

diffusion model (Mirny et al., 2009) also describes the recognition and binding of the TF to the 

target site in a pool of non-specific sequences. The recognition performed by the DNA-binding 

protein is executed rapidly while being in an environment filled with different proteins (non-

cognate species). The facilitated diffusion model contains a two-state mode. This implies a 

search mode and a recognition mode in which the TF can be found while in 1D random walk. 

In the search mode or the S-state, the TF is bound to the DNA in a non-specific manner.  The 

TF-DNA bond is a result of the electrostatic interactions between the residues of the TF that 

are positively charged, and the DNA phosphate groups that are negatively charged (Viadiu and 

Aggarwal, 2000). Binding to the target site requires the TF molecule to recognise it, thus the 

protein enters its recognition mode or R state. In the R state, the TF forms a hydrogen bond 

between its residues and the DNA bases (von Hippel, 2007).  The two states approach sustain 

the idea that the DNA-binding protein is in a flexible state where it can switch between S-state 

and R-state. (Leven and Levy, 2019) show the relation between the states as being negatively 

correlated. In doing so, they have introduced the term of frustration. Frustration can be 

measured as the degree of overlap between the TF positively residues that bind in the S state 

and the residues that bind in the R state (as calculated from the protein’s X-ray structure). 

Coarse-grained simulations (Leven and Levy, 2019) showed how at high frustration (the 

similarity or overlap between the two states is negatively correlated: high frustration means 
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low similarity between the two states) the energy of sliding is high while the recognition of the 

target site probability is poor. Likewise, for low frustration where the similarity between the 

two states is high, the sliding energy is low and the probability for recognising the specific site 

is high (Leven and Levy, 2019). The (Mirny et al., 2009) model assumes that the TF molecule 

exists in two conformations, the search mode conformation with low sequence specificity and 

the recognition mode in which the molecule conformation resembles the target site’s 

conformation (Piatt et al., 2019).  (Zabet & Adryan, 2012) model assumes only one mode. This 

is mainly because in the research the focus is on other aspects such as crowding and combining 

1D diffusion with 3D diffusion. 

The action in which the attached TF performs a random walk on the DNA strand without 

detaching itself from the DNA is called sliding (Wunderlich and Mirny, 2008). The sliding would 

occur either right or left, but the TF would maintain its orientation on the DNA. This assumes 

an unbiased random walk, as the probability to slide left or right is equal (Zabet and Adryan, 

2012a). Whereas in a biased event, the probability to slide left or right is influenced by the 

energy landscape with respect to the efficiency, speed and direction, in other words it is 

sequence-dependent (funnel effect) (Weindl et al., 2009; Slutsky and Mirny, 2004). (Cencini 

and Pigolotti, 2018) showed that the biased random walk is connected to the AT gradients 

being present in the DNA region base structure in the vicinity of the binding sites. They further 

identified an enhancement in the probability of TFs to localise the target sites while sliding due 

to the funnel effect. The TF would be able to change direction when it would unbind partially 

(hopping action) and rebind or detach completely and rebind later on.  

The sliding event involves the TF molecule moving to a proximal non-cognate site without using 

ion recondensation against the DNA backbone therefore the rate of diffusion on the strand 

would be of little dependence to the salt concentration (Piatt et al., 2019). While the ion 

recondensation is of little reliance for sliding, the hopping mechanism means the partial de-

attachment from the DNA would enable the recondensation. This would mean that the ratio 

between sliding and hopping is given by their coefficients which are salt-dependent (Piatt et 

al., 2019).    

Single-molecule dynamics show a hopping action performed by transcription factors flanked 

by clustered binding sites in subnuclear regions that are restricted spatially (Gowers et al., 
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2005, Brackley et al., 2012), and points at the possibility of topological chromosome domains 

that are in the nucleus to implement a physical sequestering mechanism that would shape the 

local gene activities. This concept was extrapolated from Hi-C experiments (chromosome 

conformation capture coupled with high-throughput sequencing) with a need to be followed 

up and thus confirmed (Liu et al., 2017). Experimental data of individual trajectories of Sox2 

that were provided and analysed by (Liu et al., 2017) clearly states the hopping action and local 

interaction in the nucleus that is performed by the transcription factor. 

Non-specific binding of transcription factors can influence the speed of site-specific localisation 

and binding. Further, the influence of nucleosomes on the TF search time for 1- and 3- 

dimensional diffusion has been observed (Murugan, 2018). It was suggested that TF behave a 

certain way when the nucleosome roadblocks are formed on DNA that present target sites. 

Essentially, when the nucleosomes are present between TF and their cognate site, the 

nucleosomes would apply a maximum steric hindrance (Zabet and Adryan, 2015) amount that 

would coerce the TF present between nucleosomes or close to one to enforce a sub-diffusive 

dynamic, thus, enhancing the search dynamics of the TF (1D diffusion would increase in this 

sense) (Murugan, 2018). This suggests that the DNA region should be nucleosome free for the 

TF to find the targeted site. In their research (Murugan, 2018) have described the reduction in 

speed of a TF when coming in close proximity to a cognate site in order for it to form a close 

junction and a complex formation. This is not always the case, when it comes to pioneer TFs, 

these transcription factors have the ability to bind to inaccessible nucleosomal DNA 

Stadhouders et al., 2019). 

 (Raccaud et al., 2019) showed in their research how the DNA state influences the TF affinity 

for the DNA; they have focused on the properties of the transcription factors in interphase. It 

showed the impact of non-specific TF- DNA binding, and how it increases the speed of the 

search event for the specific sites, thus the effect on accessible chromatin. Looking at both 

ChIP-seq datasets and fluorescence microscopy as well as extensive literature search, they 

suggest that the TFs co-localization on mitotic chromosomes seen by the microscopy is caused 

by the non-specific DNA interactions. The specific binding observed in the mitotic ChIP-seq 

data is caused by a minority of TFs thus the observed interactions on the chromosomes by 

fluorescence microscopy can only be due to the non-specific binding of TFs with a few TF 

exceptions that displayed reduced mitotic chromosome association (Caravaca et al., 2013; 



12 
 

Raccaud et al., 2019). Their work also points out the possible existence of a TF property, more 

specifically, that the binding event would open regions of chromatin that are condensed, thus 

their hypothesis is that TFs can control gene reactivation at the pre-stage of mitosis, mediating 

cell fate (Raccaud et al., 2019). The researchers also highlight the need for further study into 

post-translational modifications and 3D structures of TF- DNA contact interface.  

Likewise, non-specific binding of TFs to DNA segments was found to impact the dynamics of 

transient DNA loop formation (Shin and Kolomeisky, 2019). The formation of these loops would 

take place when a protein would bind simultaneously at two DNA sites that are spatially distant. 

So far, the formation of such loops was shown to happen in a crowded environment (Stiehl et 

al., 2016).  

3D DNA architecture  

The genome conformation in different stages in which the cell can be found, has a direct impact 

on the transcriptional regulation- that is the architecture of the DNA would play a major role 

in the gene expression dynamics (Pal, Hoinka and Przytycka, 2019; Delaneau et al., 2019; 

Stadhouders et al., 2019; Brackley et al., 2016; Tao Hu, Grosberg A. Y. and Shklovskii B. I, 2006.). 

More specifically, fragments of DNA that come in close proximity sustained transgene 

activation in Drosophila cells that is required for promoter-enhancer interactions. As a result, 

the spatial organisation (e.g. Topological associated domains-TADs and loops) facilitates 

specific pairing between enhancers and promoters, leading to various gene expression 

outcomes. However, the topological organisation is in turn driven by TF-DNA interactions 

(Stadhouders et al., 2018). This interplay would directly influence the cell’s identity by 

modulating the gene activity, each cell having its specific expression. The conformation of the 

DNA would lead to silencing or activating the TF-DNA binding by respectively restricting or 

making available target sites (Stadhouders et al., 2019). 

The transcription process can be considered a stochastic one. (Zabet and Adryan, 2012a; 

Brackley et al., 2012; Ancona et al., 2019) describes this process as being a ‘bursty’ one, 

meaning that by observing a cell’s gene and its transcription events, there can be seen clusters 

of events in close proximity. Following this cascade of events in each other’s vicinity a 

refractory period is observed. These time intervals of dormancy vary from eukaryotic genome 
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(hours) to bacteria (minutes) (Ancona et al., 2019). This study also points out that the 

transcriptional bursts are formed/associated with the supercoiling of the DNA (over-twisting), 

as a result of the low rate of transcription overall.  

Furthermore, TFs are known to have complex binding patterns. (Cha and Zhou, 2014) have 

followed on this idea and investigated the combinatorial binding patterns and cis-regulatory 

modules (CRMs- A short DNA region that presents co-localized multiple TF binding sites 

clusters). They suggest the possibility of an ordering preference between binding sites of 

various TFs in a regulatory region.  In this regard, the researchers developed new statistical 

methods for the detection of combinatorial binding patterns using ChIP-seq data (Cha and 

Zhou, 2014). They have tested procedures using the Ripley’s K-function (function used widely 

for analysis of spatial data for detecting point patterns) in order to identify binding patterns 

associated with large clusters (between two given TFs) of binding sites assuming that the TFs 

follow an inhomogeneous Poisson point process. They have used ChIP-seq data from mouse 

embryonic stem cells, due to the uniqueness of these cells or being pluripotent and their ability 

to replicate indeterminately and their wide use in clinical research. 

GRiP computational tool performs simulations of facilitated diffusion 

Based on the research that was presented so far on transcription factor DNA binding alongside 

the factors that influence the mechanism in a specific or unspecific manner, researchers (Zabet 

and Adryan, 2012c) developed a comprehensive computational model with estimated 

parameters. The GRiP model allows simulation of the search process in a versatile and efficient 

way that is highly customizable. The program would show representations of TFs, the 

facilitated diffusion mechanism, as well as a cooperative behaviour that points at interactions 

between TFs (Zabet and Adryan, 2012c). These simulations of the mechanism are achieved by 

recording information of the spatial coordinates of the molecules, collision hotspots, 

occupancy-bias and affinity landscape (steady-state results). The program would implement a 

stochastic simulation (Erban and Chapman, 2007; Gillespie, 1976) to overcome the issues that 

arise from dynamic crowding on DNA and consider real DNA sequences. By using these types 

of simulations to look at the TF search process one could observe weather there exists a 

preference between the two possible actions (sliding and hopping) in 1D random walk and 

weather this would be of significance if the TF process of finding the target site. Other models 
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(Das and Kolomeisky 2010) that were insufficient in providing a detailed and fast enough 

simulation focused on 3D diffusion alone without taking into consideration the 1D diffusion.   

The model developed by (Zabet and Adryan, 2012c) showed that by mainly focusing on the 

rate of TFs binding non-specifically on the DNA would be sufficient as long as the molecule 

bound would lose contact and rebind in the vicinity of the detachment site. Thus, the program 

adds the probability of fast rebinding in the unbinding rate of the TFs dynamics. The events of 

TFs are simulated using stochastic algorithms (Gillespie, 1977). The model assumes the 

cytoplasm as being a perfectly mixed reservoir. The TF molecule size on the DNA is calculated 

as the number of base pairs of the binding motif and a number of base pairs that are obstructed 

by the presence of the TF on the DNA, left and right. At the end of the simulation, the model 

would show the computed affinity landscapes of the TF species (the program sustains multiple 

species of TFs), information regarding the occupancy bias that was measured for the TFs; 

sliding distances captured for each TF species, statistical representation of the collisions and 

the position of TF on the DNA strand (Zabet and Adryan, 2012c). The program calculates the 

affinity of the TFs for the DNA and the probability of binding a given site or entering an event 

of 1D diffusion is attributed equally to each TF molecule. The time spent at the biding site by 

the TF is dictated by the energy of binding between TF and the DNA site. After each movement 

of a TF on the DNA, the available unbound regions are updated for the other TFs to be able to 

have an entire view of the possible moves. Once attached to a site on the DNA, the TF has two 

possible actions: to rebind fast in the vicinity or to release in the cytoplasm (Zabet and Adryan, 

2012a). A cooperative behaviour has been implemented between TFs, where the binding of 

one TF to a site would influence the waiting time of another TF to bind on a proximal region.  

Other important aspect that is considered is the molecular crowding. The main effect that this 

factor would add, is the presence of other molecules on the DNA that would 

completely/partially cover a possible target site and considering the steric hindrance the 

number of bound TFs could be reduced and the search time decreases (Zabet and Adryan 

2012b, Woringer and Darzacq, 2018). The coverage of DNA segments would exhaust the search 

space and the TF would find a target site in a shorter search time, but the crowding would 

shorten the search time only if there are a large enough number of TFs. Biomolecules like TFs 

are known to perform in their 3D search the facilitated dissociation (slip bond) performed 

under stress (applied force). This phenomenon happens as a result of concentration-
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dependence, meaning other proteins from the microenvironment being present would 

‘encourage’ the dissociation (Dahlke et al., 2019). In their research (Dahlke et al., 2019) present 

a model that show how TFs in the dissociation process actually enter in a molecular bond. They 

refer to this specific type of bond as ‘catch bond’. In this interaction the protein’s dissociation 

is suppressed by applied forces. This bonding model would differ from others by its 

dependency on the micro-environmental protein concentration, alongside the dependency on 

the molecular sensitivity to binding geometry and force (Dahlke et al., 2019). By comparison 

the molecular complexes in a slip bond would disassociate under an applied force more rapidly 

than the molecules that form catch bonds. This difference is considered to be related to their 

internal structure (Dahlke et al., 2019).  

Theoretical approaches lacked in considering the obstacles as moving objects and the 

computational approaches lacked in taking in consideration the whole DNA. An improved 

model of the simulation was presented in (Zabet, 2012). As the simulation time on a large-scale 

model would be quite increased, it would become less efficient, and for this reason they have 

considered adopting a sub-system approach. Molecular crowding can be caused by obstacles 

that are static on the DNA (such as nucleosomes) or mobile (such as other TFs) and their 

presence can influence the binding affinity of TFs. Thus, the occupancy of a target site may be 

enriched by increased crowding. However, if the crowding (Krepel et al., 2016) is produced by 

the static obstacles the search time is decreased, but in the presence of mobile obstacles the 

search time can be increased as they could form a barrier on a possible target site (Zabet and 

Adryan, 2013, Zabet et al., 2013). 

There are still missing pieces to the research presented so far and further study to be taken. 

One aspect that is gaining more support for having an impact on gene regulation is 3D 

architecture of the DNA in the TF dynamic search mechanisms (Cortini, and Filion, 2018; Avcu 

and Molina, 2016; Fosado et al. 2016; Brackley et al. 2016). By comparison the real DNA 

sequence presents sequence heterogeneity as opposed to the theoretical models so far 

presented. Moreover, the sequence would have the free energy, on which the protein 

executes the random walk, nonuniform (Brackley et al., 2012). Here, I plan to improve GRiP 

tool by adding the 3D structure of DNA as a component for the simulation and test the 

presumed model with actual biological data. 
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Methods 

Simulation: The implementation of the 3D structure of DNA was done using Java 

programming language. The GRiP program has a user interface (Figure 1), this part was not 

edited, it is specified as additional information about the program that is being edited. The 

project is structured by connecting several classes. This classes allow the user to input and 

change parameters of the facilitated diffusion (e.g. TFs copy number, size etc.) (Figure 1). 

The program can be ran from command line using the parameters file and number of steps. 

The minimum system requirements for running the program are as follows: Intel Core i3 

Processor; 8 GB of RAM; and 64-bit operating system. Additionally, for the minimum 

Figure 1. GUI (graphical user interface) of GRiP contains the parameters that can be changed for simulation, output, TFs, 
DNA sequence, TF random walk parameters, for data analysis of TFs rates of facilitated diffusion.  
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requirements, the Hi-C interactions file should not have the sequence higher than 131000 bp 

and 108 seconds of simulation. The Eclipse version used was Eclipse Java 2018-12.  

To simulate the 3D structure of the DNA we implemented the Contact Matrix class to read the 

Hi-C data file provided in the parameters file. One other value that is used from this file is the 

size of the bins to be created. The Cell class initialises the Contact Matrix by creating a Contact 

Matrix object. The Contact Matrix class reads the Hi-C data file, extracts the size of the bins it 

has to create and adds the value from the Hi-C data to its specific bin. The data is normalized 

to the highest value. In order to create a dynamic environment we used an exponentially 

distributed random variable for a given mean (also taken from the parameters file). The time 

at which the Contact Matrix would simulate the matrix again is as follows: St=Ct+rv   ; Where St   

Figure 2. Flow diagram of the steps of the 3D implementation; the implementation of 3D-DNA architecture and the 
periodically simulated interactions. (random no. – a random number chosen by the program between 0 and 1; PK rate- 
the probability of the protein to be kept in the microenvironment) 
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is the next simulation time, Ct  is the cell time and rv is the random variable. This implementation 

gave the dynamic interaction between the DNA segments (Figure 2). 

A 3D-hop (intersegmental jumps) is performed using the jump action of the TF molecule (Mirny 

et al., 2009). The program checks whether the action is a jump, in which case, it further checks 

any bins that might be interacting with the current bin on which the molecule is found choosing 

randomly one of them (each interacting bin has the same probability to be chosen), then if a 

random number generated. If this random number is lower than the probability of the protein 

to stay in the microenvironment (PKrate)(Figure 2) then the molecule is set to perform the 3D 

hop.  

Description of the model:  The framework for the new proposed program improvement 

has been outlined in (Figure 2) and shows a representation of the interaction between classes 

and the main objective of this research.  

The system is composed of the TFs, DNA and nucleosomes. The parameters used for SuH 

molecules and the code for generating the affinity profiles for nucleosomes were taken from 

(Clark, S., 2017) and adjusted accordingly. First, we consider TFs that can bind to DNA at specific 

positions that are accessible with an association rate defined as the rate with which the 

molecules bind to DNA (Zabet, N. R., and Adryan, B. 2012; Zabet, N. R., and Adryan, B. 2015) 

to be 20s-1  in computing this value Clark, S., 2017 used  the residence time (tR) equal to 1 s 

which is the time the protein stays bound to DNA. In addition, the used specific waiting time 

for the molecule was 1.5 s. This would be the amount of time the TF interacts with the DNA 

when it is located at the strongest sites. Each action that the TF can perform has an associated 

probability to it. For the sliding action regardless of it being either right or left the probability 

is equal for sliding left or sliding right which is 0.4992 (Zabet and Adryan 2012a).  As the 

probabilities to slide left or right are equal, the model assumes an unbiased random walk 

(Blainey et al., 2006). Next, after the protein performed a binding event to the DNA, the TF can 

relocate or change directionality by first unbinding from the local site. The associated 

probability for this action is Punbind=1.47e-3 (Zabet and Adryan 2012a) and is inputted in the TF 

file alongside the other parameters. But the unbinding probability here would refer to or better 

said would offer the protein the possibility to rebind fast. This probability thus controls the 

micro-dissociations from the DNA in relation to the complete unbinding. To completely 



19 
 

unbind/jump the probability estimated by Wunderlich and Mirny (2008) and used here is 

Pjump=0.1675. With regards to the nucleosomes, and the main parameters associated with 

them, the residence time of the nucleosomes was left at 3600s making them highly stable (Deal 

and Henikoff, 2010) and they were set as immobile roadblocks. However, the amount of 

nucleosomes used varied when performing the simulations. 

Running the simulation: We used initially 3570 sets of different parameters to test the 

impact of the PKrate and the impact of  the number of nucleosomes. We tested 10 different 

simulation times, 21 PKrates and 17 different numbers of nucleosomes. Following results from 

the 357 tested we adjusted the set of the number of nucleosomes and used 18 different values. 

Data analysis: The region used for the simulations was 25951000-26082000 on chromosome 

3R in D. melanogaster. The maximum number of nucleosomes for this region was calculated 

according to Sian Clark’s work (Clark, S., 2017) and R script that created a nucleosome affinity 

vector. The affinity profile was generated using the DNA hypersensitivity sites of BG3 cells 

(Kharchenko et al., 2011).  According to her work and (Zabet, 2012) the number of accessible 

regions from the given loci (here 25951000-26082000) were subtracted from the length of the 

region and divided by the size of the molecule (147bp) such that for the 131000 bp region, we 

used 828 of maximum no of nucleosomes.  The accessible regions were used to generate the 

nucleosome affinity file using FDR1 DNaseI from modencode dataset (Boley et al., 2014). The 

pre-processing and the import function were written by Patrick Martin (PhD student in the 

lab). In the last step we used the simulation time that would require the matrix to be simulated 

the least and the entire sets of nucleosome numbers and PKrates to generate the AUC, and 

correlation between the occupancy file for the given parameters and the ChIP profile for the 

chromosome 3R: 25951000-26082000 in D. melanogaster (Martin and Zabet, 2019). The ChIP-

seq profile used for BG3 and Kc167 were taken from (Martin and Zabet, 2019) in the dm6 

genome version.   

To understand the role the number of nucleosomes in the simulation of the intersegmental 

jumps, simulations were performed for 0 to 828 (with an increment of 50) no of nucleosomes 

and a probability of the protein to stay in the microenvironment (PKrate) between 0 and 1.  

The values for the observed sliding length and residence time  of the TF were analysed to see 

how they are influenced by different number of nucleosomes and PKrates. To understand the 
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influence of the intersegmental jumps on the transcription the simulation occupancy was 

normalised and converted to ChIP signal. The ChIP like profile was compared with the ChIP 

profiles of SuH in BG3 cells (Skalska et al., 2015).  

The performance of the simulations was analysed using the Pearson correlation (Figure 10), 

the AUC (Figure 11) and MSE (Figure 12) scores. I have used the AUC of the ROC curve, the 

values for this were calculated using the method from ChIPanalyser package (Martin and Zabet, 

2019). The metrics were calculated between the silico ChIP generated profile based on the 

occupancy profile of the simulation for the given parameters and the ChIP-seq signal for the 

region. 

Results 

Simulation: The current work extended the model presented in (Zabet, N. R., and Adryan, B. 

2012c). The strategy of the model was to simulate stochastically the facilitated diffusion 

performed by TFs. The model considers 

the DNA as a string of nucleotides. We 

added a new feature to include 3D 

chromatin organisation from Hi-C data 

and the program has been adapted for 

the molecules to interact in such an 

environment by performing 

intersegmental jumps here 3Dhops. 

This does not however include the 

intersegmental jump across 

chromosomes.  

The facilitated diffusion assumes that 

the DNA-binding proteins can perform 

three actions while bound to DNA, 

namely: sliding-moving across the DNA 

for a short BP distance; hopping- 

partially detach from the DNA for a 
Figure 4. The actions that a TF molecule can perform while bound to 
DNA. Yellow dot represents the molecule and the two black lines two 
strings of DNA that come in close proximity. 

Figure 3. The actions that a TF molecule can perform while bound 
to DNA. Figure presented in (Zabet and Adryan 2012b). Green dot 
represents the molecule while the black line the string of DNA. 
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short distance and reattach back; jump- completely detach from DNA into the 

microenvironment; The actions have been graphically represented in Figure 3.   The main scope 

of introducing the 3-dimensional structure of DNA brings on a new type of interaction that the 

molecules could perform while bound to the genetic material. The new action that can now be 

performed in the presence of two or more spatially proximal segments was introduced in the 

model as ‘3D-hop’ or ‘3-dimensional hop’ (Figure 4). Furthermore, the mechanisms behind 

each concept are outlined as follows: 

 1. Simulating the 3D space from Hi-C dataset (testing was done using the Hi-C dataset from 

BG3 cell line); 2. Dynamic simulation implementation; 3. Implementation of 3D-hop. Detailed 

content of the methods created in each step and described here accordingly can be found in 

appendix Table 1 as well as additional methods used.  

1 Simulating the 3D space from Hi-C dataset (testing was done using the Hi-C dataset from BG3 

cell line (Chathoth, KT. and Zabet, NR., 2019)): The class constructed in Java created a 2D matrix 

that stored the interaction scores between bins (default 500 bp length bins) using the Hi-C data 

from BG3 cell lines. A method was created for reading the file, extracting the data and adding 

the score to a local contact matrix. The DNA region of interest to be simulated can be specified 

if not the whole length of the DNA region would be simulated. Furthermore, the class contains 

a method that normalizes the contact matrix score values with a range between 0 and 1;  the 

normalized values would be then simulated, meaning, a method would draw a random number 

between 0 and 1, if the normalized value between two bins is higher that the random number 

the interaction between two bins would be true and the data would be stored in the simulation 

matrix (1). Where X is the generated random number and Y is the normalised Hi-C value 

between two bins.                        

(1) 𝐹𝑜𝑟	𝑋, 𝑌𝜖[0,1]	𝑖𝑓	𝑋 > 𝑌	 → 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑇𝑅𝑈𝐸	. 

 The method that creates the simulation matrix is public meaning that the matrix can be 

simulated from other classes (further reading: 2. Dynamic simulation implementation). Other 

methods that are used to access data in this class are as follows:  

a) Random bin position generator: generates a position in a specified bin (this method is used 

in creating a new position on the specified region for the TF molecule to hop to-used for 3D 

hop only); 
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b) Cumulative result: returns the cumulative simulation time between two bins (The 

cumulative time two bins were in interaction); 

c) interacting bins: for a given bin, the method would return an array of bins that are found be 

interacting the given bin (when 3D hopping, a molecule would choose one of the interacting 

bins to jump to); 

d) get current bin index: returns the index of the current bin in which the molecule is found. 

The method checks in which bin of the array of bins the given position of the TF is; 

2. Dynamic simulation implementation: A more realistic approach when it comes to the 

simulation of the 3D structure of the DNA would be to have a dynamic simulation. A dynamic 

simulation implies that two segments that are now interacting might move away from each 

other. In this regard, a simulation event class was constructed to keep information regarding 

the time at which the matrix will be simulated again (calling the method in the Contact Matrix 

class as explained above).  The cell stores each event (e.g. jump, hop, simulation of the Hi-C 

matrix) in the form of a queue of events. The queue of events mainly contains actions that will 

Figure 5. The actions that a TF molecule can perform while bound to DNA. Yellow dots represent the molecule and the 
black lines represent strings of DNA that come in close proximity. Each probability is assigned to the possible action the 
protein can perform. 
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be performed next by the protein and the dynamic simulation has been added as an event in 

this queue. The first matrix simulation will generate a value for the next time the matrix should 

be simulated again using the exponential distribution (2)	𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙	𝑠𝑎𝑚𝑝𝑙𝑒 =

	− !
"
log 𝑒 (1 − 𝑋) where λ is the average time simulation and X is a random number between 

0 and 1 generated by the program. This value plus to current time of the cell will give the time 

for the next time the 3D map will be updated and stored in an array. When the cell time will 

be equal to the next appointed time of simulation, the matrix is simulated again giving a 

dynamic environment in which the proteins act. The approach is based on the Monte Carlo 

simulation for cellular processes by using the general method, the Gillespie algorithm 

(Gillespie, 1977). 

3. Implementation of 3D-hop: Each molecule has the ability to act, meaning it would  choose 

stochastically an action from sliding to hopping to jumping; Additional to this we have 

introduced a new action: When the next action for the TF molecule to perform is chosen, if the 

action is a jump action (as jumps can include intersegmental transfer of TFs from one DNA 

segment to another), again a random number between 0 and 1 is chosen. If the random 

number is lower than the value of the protein’s probability to be kept in microenvironment 

(PKrate), the program generates the new position on which the TF will jump to on one of the 

bins that interacts with the current bin. The new position is added, and the action performed 

is the 3D hop (Figure 4).  The probability to keep in the microenvironment is used to determine 

whether the action performed will be a 3D hop or a jump. In other words, if the protein situates 

in the value of the probability it will stay in the microenvironment by attaching to a close 

fragment. In the long-range excursion each DNA site that comes in close proximity with the 

fragment of DNA on which the protein is located has an equal likeliness to have the re-

association point (Figure 5). The number of 3D-hops is outputted in the file containing the 

number of all the other actions and the time that each two segments stay in interactions is 

added in a cumulative matrix and outputted in a cumulative matrix file. 

 

Data analysis: 

Evaluation of the simulation of 3D contacts from Hi-C dataset: The first step in the 

analysis was to see how well the simulated matrix represents the actual Hi-C data (Chathoth, 

KT. and Zabet, NR., 2019). The dynamic state of the 3D map is performed by the program by 
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updating the matrix periodically during the simulation.  One parameter that needs to be set to 

draft such an environment for the molecule, is the average interval when the 3D map needs to 

be updated. We used 10 different averages: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10; drawing 

a sample from the exponential distribution of the average, the next time the map is updated is 

set as the current time of the cell plus the sample value. We analysed each simulation time by 

producing histograms of log base 2 of the times at which the matrix was simulated against the 

Hi-C dataset. One example can be seen in Figure 6. The model was designed, more specifically 

the addition of the 3D space in a dynamic state is controlled for each bin. Let’s say we have the 

Hi-C score between two interacting bins and the score is normalised so that it will not be higher 

than 1; if the program draws a number between 0 and 1 the chances of it being lower than the 

Hi-C score depends on the score, the higher the score the higher the probability that those 

bins will be interacting each time the map is updated. Following this, we took the cumulative 

matrix file which stores for each bin the amount of time it was interacting with other bins and 

put it against the Hi-C score for the specific interaction. In Figure 6 the most frequent values 

for the log base 2 of the difference between the simulated interaction time and HiC scores 

were 0 or very close to it (right-BG3 cell histogram). We took KC167 Hi-C dataset and plotted 

Figure 6. histograms of BG3 cell (right) and KC176 cell (left) logarithmic values of the difference between the time segments 
are interacting and HiC score for that interaction. The logarithm value measured the time points of the matrix simulation 
against Hi-C data collected for the BG3 cells (right) and for time points of the matrix simulation against Hi-C data collected 
for the Hi-C data from KC167 cell line (left). 
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the times of interaction between bins (from the simulation performed for BG3 cell line) against 

the Hi-C from KC167. Here the frequency values of the log base 2 spread across the x axis. 

The score of the simulated matrix was similar for all the different values of the average 

simulation time. While the higher the parameter’s value, the higher the number of times the 

3D map is updated, it also showed increased time of the computational simulation. As a result, 

we used the average simulation time that required the matrix to be simulated at the lowest 

rate. Using the lowest value that simulated the matrix less frequently, Figure 6. shows the high 

similarity between the simulated matrix and the real Hi-C score recorded for this locus (right). 

 

Presence of nucleosomes affects the number of observed 3D hops:  

Figure 7. Data analysis of the number of 3D hops recorded when 750, 300 and 0 nucleosomes were present and (PKrate) 
probability to keep in microenvironment varying between 0 and 1. When the PKrate is increased and the number of 
nucleosomes is low, the number of intersegmental jumps increases; The fitted lines for 0, 300 and 700 nucleosomes present 
show an upward trend where the number of 3D hops increases with increasing the PKrate and decreasing the number of 
nucleosomes. The confidence interval is narrow for all fitted lines showing little variation from the trend in the number of 
3Dhops performed. The sampling size for each trend line is equal to 20 samples (20 varying PKrates) each sample is an 
average of a simulation with a 1000 Ensemble size. The ensemble size of 1000 was used to simulate a wider cell population.      
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The enhanced GRiP model, now including the 3D spatial structure of the genetic material, was 

tested with all possible combinations of the following parameters: average time interval at 

which the simulation of the matrix to take place: 0.01, 0.02, 0.05, 1, 2, 5, 10; the probability of 

the molecule to be kept in microenvironment if jumping: from 0 to 1 with an increment of 0.05; 

the number of nucleosomes introduced: from 0 to 828 with an increment of 50. The data 

collected from simulations at 10 different matrix simulation times and 21 different PKrates 

(probability of the protein to be kept in the microenvironment) were processed and they show 

the impact of the 3D DNA architecture on the number of intersegmental jumps (3D hops) that 

a protein is performing in various conditions (Figure 7). The number of nucleosomes and the 

PKrate influence the number of 3D hops performed. The number of nucleosomes shows a high 

Figure 8. Data analysis of the residence time per binding for the BG3 molecule species recorded when 750, 300, and 0 
nucleosomes were present and (PKrate) probability to keep in microenvironment varying between 0 and 1. At 0 
nucleosomes present (red) the residence time has the highest decreasing value in residence time; while increasing the 
number of nucleosomes results in higher residence time. The fitted line for 0 nucleosomes present shows a downward trend 
where the residence time per binding decreases when increasing the PKrate. The fitted lines for 300 and 750 nucleosomes 
being present (red and green) show a horizontal trend. The residence time per binding stays the same for all PKrates. The 
confidence interval is wider for 0 nucleosomes fitted line showing increased variability in the residence time when there 
are no nucleosomes present. The sampling size for each trend line is equal to 20 samples (20 varying PKrates) each sample 
is an average of a simulation with a 1000 Ensemble size. The ensemble size of 1000 was used to simulate a wider cell 
population.    
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influence on the number of 3D hops and if one decreases the PKrate, it would also result in 

decreased number of intersegmental jumps. Meaning, the more nucleosomes present, the less 

unoccupied DNA, thus lower chances for the protein to find available site on the adjacent 

segments for the protein to jump to, while lowering the number of nucleosomes would result 

in more available DNA space to diffuse on. In the case of the PKrate, increasing it would mean 

that the molecule would have greater chances to stay in the microenvironment by binding to 

a spatially proximal DNA segment. This means that during a detachment from the genetic 

material, the protein has a higher chance to bind to a neighbouring site.     

Molecules spend a certain amount of time bound to the DNA and have a wide range of 

parameters influencing this (see methods). In the file output, the time the protein stays bound 

is recorded for each simulation under a ‘residence time per binding’ column. In Figure 8 the 

Figure 9. Data analysis of the observed sliding length for the BG3 molecule species recorded when 750, 300 and 0 
nucleosomes were present and (PKrate) probability to keep in microenvironment varying between 0 and 1. Increasing the 
number of nucleosomes and PKrate resulted in increased sliding length as a consequence of resampling of the same site.  
The fitted line for 0 nucleosomes present shows a horizontal trend where the observed sliding length stays the same when 
there are 0 nucleosomes present. The fitted lines for 300 and 750 nucleosomes being present (red and green) show an 
upward trend where the observed sliding length increases with increasing the PKrate. The confidence interval is wider for 
750 nucleosomes fitted line showing increased variability in the observed sliding length. The sampling size for each trend 
line is equal to 20 samples (20 varying PKrates) each sample is an average of a simulation with a 1000 Ensemble size. The 
ensemble size of 1000 was used to simulate a wider cell population.    
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residence time per binding is plotted against the PKrate and for 3 sets of nucleosomes; At the 

750 nucleosomes present the residence time is higher than when 300 or 0 nucleosomes are 

present, this would be the case for a high PKrate. This suggests that the molecules are 

detaching less from the DNA when more nucleosomes are present. When the PKrate is 

decreased however, the residence time increases when there are no nucleosomes present and 

Figure 8 shows lower a lower amount of time is spent at the site when there are more 

nucleosomes for a low PKrate.  A plausible explanation for a high residence time when using a 

high PKrate would be that the molecule has less space to perform actions that would make the 

protein semi-/completely detach from the DNA and binding in a different region as the chances 

of finding a free space to bind would decrease. In the absence of other possible moves, the TF 

would stay attached and perform more actions that would require it to stay bound to DNA such 

as sliding.  

 Data analysis of the observed sliding length (Figure 9) shows that the sliding length of the TF 

reaches higher values the more nucleosomes are added. As stated above, increasing the 

number of nucleosomes would indicate that the protein cannot perform actions that require 

moving a longer distance such as 3Dhops (or the number of those movements decreases e.g. 

Figure 7;) as the 3D view/space is obstructed by the roadblocks, in this case the nucleosomes. 

In Figure 9 we plotted the observed sliding lengths against The PKrate. The trend of the slope 

would increase for PKrate and the nucleosomes addition would in its turn increase the sliding 

length. For a protein that is performing its actions in the presence of 750 nucleosomes at a 

PKrate of 1, the amount of possible actions decreases. In the absence of jumping, hopping and 

3D hopping as well as massive roadblocks that the protein would have to pass, figure 9 suggests 

that the protein in this situation would resample the same site multiple times.  

 

 Metrics: The performance of the simulations was analysed using the Pearson correlation 

(Figure 10), the AUC(Figure 11) and MSE(Figure 12) scores. The correlation score was higher 

for the simulation profile where higher number of nucleosomes and higher pk rate was used. 

Similar for the AUC (Figure 11) the score was higher between profiles the more nucleosomes 

the simulation used and when the protein had a higher PK rate. 

The MSE (Figure 11) showed increased values for simulations where fewer nucleosomes were 

present and where the PK rate was low. Indicating that the similarity between the real ChIP 
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profile and the simulated profile is increasing when the no. of nucleosomes and PKrate value 

is increased.  

 

In figures 13 and 14 can be seen the occupancy profiles of the simulations and ChIP-seq data 

in the presence (Figure 13) and in the absence (Figure 14) of nucleosomes. The occupancy 

profile of the nucleosomes was used in figure 14 to generate the grey lines. The profile was 

generated as an output file of the simulation. In the absence of nucleosomes (figure 13), the 

occupancy profile did not show peaks at the known target sites. In this case, the ChIP seq and 

of the occupancy the profiles do not show any similarity. In figure 14 however, when we added 

the nucleosomes the peaks of the occupancy profile are more ‘organised’, and the occupancy 

Figure 10. Heat map of the Pearson correlation measured for the predicted occupancy profile by the simulation for BG3 
molecule species and actual ChIP-Seq profile. The simulations were run with 17 different no.of nucleosomes and (PKrate) 
probability to keep in microenvironment varying between 0 and 1. Increasing the number of nucleosomes and PKrate 
resulted in increased correlation between the profiles. 
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profile seems to follow the pattern of the ChIP-seq profile in BG3 cell line. The peaks in Figure 

14 are present where there are no nucleosomes occupying the sites. The program simulated 

the positions at which the nucleosomes would bind upon adding them using the affinity profile 

of the nucleosomes (see methods: Data Analysis) and the number of nucleosomes to be 

present.  

 

 

 

 

Figure 11. Heat map of the AUC measured for the predicted occupancy profile by the simulation for BG3 molecule species 
and actual ChIP-Seq profile. The simulations were run with 17 different no.of nucleosomes and (PKrate) probability to keep 
in microenvironment varying between 0 and 1. Increasing the number of nucleosomes and PKrate resulted in increased 
AUC values. 
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Figure 12. Heat map of the MSE measured for the predicted occupancy profile by the simulation for BG3 molecule species 
and actual ChIP-Seq profile. The simulations were run with 17 different no.of nucleosomes and (PKrate) probability to keep 
in microenvironment varying between 0 and 1. Increasing the number of nucleosomes and reducing the PKrate resulted in 
reduced mean squared error between the profiles. 
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Figure 13. Occupancy of SuH cell line on chromosome 3R D. Melanogaster. The Blue line is the experimental ChIP-seq 
profile, and the red line is the simulated occupancy profile. The region for the Chromosome positions is reduced from the 
original 25951000-26082000 to 26000000-26030000 of chr3R to make it easier to compare the difference at the peak 
regions between the ChIP occupancy and the simulated occupancy for the given parameters. Here there were no 
nucleosomes added to highlight the variance across the simulated occupancy when compared to the the ChIP profile. 
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Figure 14. Occupancy of SuH cell line on chromosome 3R D. Melanogaster. The vertical grey lines represent the 
nucleosomes attached at the specific position from nucleosome affinity profile that was taken from the output file 
generated by the simulation together with the occupancy profile of SuH. The Blue line is the experimental ChIP-seq 
profile, and the red line is the simulated occupancy profile. 
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Discussion  

The previous model presented in (Zabet, N. R., and Adryan, B. 2012c) was subject to changes 

in this work introducing a new approach on the facilitated diffusion using an implementation 

of the 3D architectural structure of the DNA with Hi-C data. When two DNA fragments come 

in contact, the TF molecules can perform an intersegmental jump from the segment they are 

found on, to the one the current segment is interacting with. This action can be performed 

even if the site is hundreds of base pairs apart due to the two segments being spatially close. 

 In theory, not performing intersegmental hops would slow the search time of the molecules. 

Thus, the number of bound nucleosomes would influence the rate at which the TFs find the 

target sites. For instance, when there is no space on the adjacent segments, the molecule will 

not perform a 3D hop. There are number of scenarios in which the protein can be when 

attempting to perform a 3D hop. First, it would try to distinguish between a jump and 3D hop, 

if the protein has a high probability to stay into the micro space, it will be more likely that the 

TF will 3D hop rather than dissociate into the cytoplasm. In the next step the TF will look for all 

the segments/bins that are interacting with the region it is found on, if there aren’t any 

available, it will simply detach from the site of the DNA and perform 3D search. If, however, 

there are segments, the molecule will randomly choose one of them with equal likeliness. 

When it selects the interacting 3D bin, the TF will choose a position to attach to and it will 

check the availability of that site. In the case of the position is not accessible, the TF will stop 

performing a 3D hop and will dissociate. The 3D hop action thus has the protein choose 

whether to jump or 3Dhop, search for the interacting bins and the selected position 

accessibility (looking at the accessibility before selecting a bin and position could be an idea for 

further study and to see whether the protein would check the accessibility or if this could 

introduce bias). Upon successfully passing all the steps the protein will finally attach to the 

selected site by performing the intersegmental jump. 

When the TF performs a 3D hop, the molecule has to detach completely from the position it is 

on the DNA fragment. With this is mind, the model has the protein detach by performing a 

jump. The jump would further start a cascade of events that will have the protein search for 

nearby segments and find a place to attach on one of them.  
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A number of factors (here discussed and analysed) can affect the number of 3D hops the 

protein performs. Among them would be the probability that the protein will stay in its 

microsystem and the number of nucleosomes present that could, if in great numbers, obstruct 

sections of possible DNA sites that the protein could jump to. Increasing or decreasing the rate 

at which two segments come in contact (the dynamic environment) does not however affect 

the performance of 3D hops. When we look at how the latter two factors that affect the rate 

of 3D hopping, decreasing the number of nucleosomes and increasing the PKrate resulted in 

increased intersegmental jumps. The lack of hops across DNA segments could be due to 

nucleosomes covering possible binding sites for the TFs. Increasing the no. of nucleosomes 

would decrease the available DNA space and increasing the PKrate would give a higher 

probability to the protein to rebind in the close proximity (aka perform the 3D hop). Thus, in 

figure 7, the highest number of recorded intersegmental jumps was in the absence 

(nucleosomes no.=0) of nucleosomes (as any selected position on the interacting region was 

empty) and at the highest probability that the protein stays in the microenvironment 

(PKrate=1).  

We also attempted to look at how the 3D hops are influencing other characteristics of the 

facilitated diffusion such as the time the protein spends attached to DNA and how it affects 

the observed sliding length across the simulation.  The protein would spend more time bound 

to DNA when the number of nucleosomes is 750 and the PK rate is closer to 1, this may be the 

result of the protein being unable to perform hops and 3D hops as the regions are covered by 

roadblocks. The time spent on the DNA is also high when there are 0 nucleosomes and a PK 

rate closer to 0 due to the protein being unable to perform 3D hops and being forced to 

perform only sliding across the DNA.   

The analysed performance of the simulations against the ChIP seq profile of the sequence was 

higher when the number of nucleosomes and the PK rate was increased which can be seen in 

figure 10 and 11 for the correlation and AUC and the MSE in figure 12 was higher for lower 

number of nucleosomes and pk rate. This indicates that the program simulates the profile 

better when there are more nucleosomes and when the protein has a higher probability to 

stay in the microenvironment. The occupancy profiles for the simulations where 0 

nucleosomes and 828 nucleosomes were used are added in the Appendix. 

Furthermore, the simulation of the matrix was tested against its real data collected from BG3 

Hi-C to evaluate the implementation of the simulation and how similar the two cell lines are, 
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the closer the log value was to 0 the higher the similarity and suggests that the program 

simulates the matrix for BG3 well (Figure 6). In order to check if the simulation is true to this 

specific cell, we tested the simulation matrix against real data from KC167 Hi-C. To evaluate if 

the simulated data is specific to the Hi-C dataset we used as input, we also evaluated how 

different it is against the simulated matrix to Hi-C dataset in a different Drosophila cell line 

(Kc167) (Chathoth, KT. and Zabet, NR., 2019) Kc167 cells have been shown to have a different 

3D organisation to BG3 cells and our simulation reflects that. The results showed increased 

variability across the x-scale, showing that the matrix is specifically simulated for the provided 

data and varies when compared to other cell lines HiC data. 

 

Further study: Here the simulation was a time average performed with a stop time at 108 

simulation time for one cell. As the ChIP-seq profile of the sequence used is an ensemble 

average time for hundreds of cells (Robertson, G; et al., 2007), the correlation between the 

two profiles (predicted and the actual) can be affected.  One other factor that could be further 

explored would be the presence of other TF species. Other molecules could be performing 

their facilitated diffusion either by random walk or 3D diffusion in the 3D space where the 

target sites (here the ESPL locus for SuH) of the studied TF species are found (Zabet & Adryan, 

2012; Zabet et al., 2013). The presence of other species could affect search of the TF by 

reducing the search at redundant, non-specific sites.   
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Appendix 
Table 1. Methods created and used with the purpose of integrating the 3D structure of the DNA. Each method used has the 
name specified alongside the input parameters and the action/result of using the specific method. 

 

 

Method and Description 

addScoreToMatrix(DNAregion regionOfInterest, 
java.lang.String ContactMatrixLocation) 
reads the file of interest and adds the values from it to a local file the local file is read and the 
values for local arraylists for bins and score are added 

addValueToCumulativeSimulatedMatrix(double newTime) 
Iterates through the simulated matrix and if the bins are interacting the cumulative matrix 
will give the amount of time the bins were interacting 

createMatrix(DNAregion regionOfInterest, int binWidth) 
creates the empty matrix using the DNA region of interest 

CumulativeResult(int t, int b) 
method that returns the cumulative simulation time between two bins 

find(int BinX, int BinY) 
prints out details regarding 2 bins and the score between them as well as the bins ID 

getBin(int index) 
gets the bin's details based on its index 

getBinSize() 
gives the size of the bins list 

getBinsList() 
Accessor method for the arraylist 'bins'; 

getCurrentBinIndex(int position, java.lang.String chromosome) 
Method that searches the bin in which a certain position is in 

getInteractingBins(int bin) 
takes the input parameter and searches against the existing arraylist of bins to get the 
interacting bins 

radomBinPosition(Random generator, int randomBinID) 
method that generates a random number between the values of the start and end of a bin 

simulateMatrix(Random generator, double time) 
Simulates the Interaction Matrix Can be accessed and simulated from other classes to have a 
dynamic simulation matrix 
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add(SimulationEvent pe) 

replaces the current Simulation event with a new one 

clear() 

deletes current protein binding event 

generateExponentialDistribution(double mean, Cell n)  

isEmpty() 

returns true if the Simulation event is null 

peek() 

returns the next Simulation event 

pop() 

returns the next Simulation event and removes it from the list 
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Table 2.  Molecule parameters 

name SuH nucleosome 
COPYNUMBER 
 

1 
 

0-828 (with an increment of 
50) 

SIZELEFT 1 
 

0 
 

SIZERIGHT 
 

1 
 

0 

ASSOCRATE 
 

20 
 

4.06 
 

UNBINDINGPROBABILITY 
 

0.001474 
 

1 
 

SLIDELEFTPROBABILITY 
 

0.499263 
 

0 

SLIDERIGHTPROBABILITY 
 

0.499263 
 

0 

JUMPINGPROBABILITY 
 

0.1675 
 

1 

HOPSTDDISPLACEMENT 
 

1 1 

SPECIFICWAITINGTIME 
 

1.5 
 

3600 
 

UNCORRELATEDDISPLACEMENTSIZE 
 

5 5 

STALLSIFBLOCKED 
 

true true 

COLLISIONUNBINDPROBABILITY 
 

0 0 

AFFINITYLANDSCAPEROUGHNESS 
 

0 0 

PREBOUNDPROPORTION 
 

0 1 

PREBOUNDTOHIGHESTAFFINITY 
 

true true 

TFISIMMOBILE 
 

false true 

ISBIASEDRANDOMWALK 
 

false false 

ISTWOSTATERANDOMWALK 
 

false false 

PKMICROENV 
 

0-1 (with an increment of 
0.05) 

0.75 
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Table 3. Default parameters 

#SIMULATION PARAMATERS 
#The length of the simulation (in seconds). If lower or equal to zero and there are target sites to 
be reached by TFs then the simulation will stop when all target sites are reached. 
STOP_TIME = 10000.0; 
#The number of independent replicate simulations to be performed. 
ENSAMBLE_SIZE = 1000; 
#The seed of the random number generator. Use 0 to get a different behaviour each time or 
different number to get the same behaviour. 
RANDOM_SEED = 0; 
#The number of decimals when computing the TF affinity. 
COMPUTED_AFFINITY_PRECISION = 2; 
#The size of the DNA sector. Breaking the DNA into sectors increases the speed at which empty 
spots on the DNA are located. Put 0 for autoselect. 
DNA_SECTOR_SIZE = 0; 
#The event list is broken into sub-lists of the specified size.  This is highly recommended for Direct 
Method and should not be used for First reaction Method. Put 0 for autoselect. 
EVENT_LIST_SUBGROUP_SIZE = -1; 
#This is true if the 1D event list is implemented using the First Reaction method or false if the 
Dirtect Method is used (Gillespie 1977). 
EVENT_LIST_USES_FR = true; 
#The folder where the result files will be saved. 
OUTPUT_FOLDER = "results/trial"; 
#The filename where the output results will be saved. Extension will be automatically added at 
the end. If this is blank then a random unique name will be generated 
OUTPUT_FILENAME = "results500_0.01simulation_time_10rate_828nucleosomes"; 
#The time interval in seconds after which intermediary results will be printed. If zero is used then 
no intermediary results will be produced. 
PRINT_INTERMEDIARY_RESULTS_AFTER = "0.0"; 
#This is true if the occupancy at the end of the simulation is printed and false otherwise. 
PRINT_FINAL_OCCUPANCY = "false"; 
#This is true if the simulation is in debug mode (prints all actions to the status file) and false 
otherwise 
DEBUG_MODE = false; 
#TF species of which dynamic behaviour is followed 
OUTPUT_TF = ""; 
#The number of intermediary points at which the TF species dynamic behaviour is recorded. 
OUTPUT_TF_POINTS = 1; 
#This is true if the simulator will output the dynamic behaviour of the target site occupancy. 
FOLLOW_TS = true; 
#If this is true the simulator will output the affinity landscape at the end of the simulation 
OUTPUT_AFFINITY_LANDSCAPE = true; 
#If this is true the simulator will output the DNA binding energy instead of affinity at the end of 
the simulation 
OUTPUT_BINDING_ENERGY = true; 
#If this is true the simulator will output the DNA occupancy at the end of the simulation 
OUTPUT_DNA_OCCUPANCY = true; 
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#If this is true a bound molecule will affect the DNA occupancy of the entire cover area of the 
DNA, while when is false only the first binding position of the molecule is considered when 
computing the DNA occupancy   
DNA_OCCUPANCY_FULL_MOLECULE_SIZE = false; 
#If this is true, the simulator will print all recorded sliding lengths. 
OUTPUT_SLIDING_LENGTHS = false; 
#The value of the step in a fixed step wig file, used for the occupancy output. 
WIG_STEP = 1; 
#This represents the threshold (as procentage of the highest peak) for discarding peaks in wig 
files. Use -1 for auto-select and 0 for no threshold.  
WIG_THRESHOLD = 0.0; 
 
#TF PARAMATERS 
#The csv file which stores the TF data. 
TF_FILE = "biodata/2019biodata/trial/TF_parameters_10rate_828nucleosomes.csv"; 
#The csv file which stores the TF cooperativity table data. 
TF_COOPERATIVITY_FILE = ""; 
#A file containing the target sites. 
TS_FILE = "biodata/2019biodata/ESPL/TF_SuH_peak1_ts.csv"; 
#TF_RANDOM PARAMATERS 
#The minimum length of the DNA Binding Domain of TFs (bp).  
TF_DBD_LENGTH_MIN = 6; 
#The maximum length of the DNA Binding Domain of TFs (bp).  
TF_DBD_LENGTH_MAX = 18; 
#The number of TF species. 
TF_SPECIES_COUNT = 2; 
#The minimum TF copy number. 
TF_COPY_NUMBER_MIN = 1000; 
#The maximum TF copy number. 
TF_COPY_NUMBER_MAX = 1000; 
#The energy penalty for a nucleotide mismatch. 
TF_ES = 2.0; 
#The  number of base pairs covered to the left of the DBD by a TF molecule bound to the DNA. 
TF_SIZE_LEFT = 0; 
#The  number of base pairs covered to the right of the DBD by a TF molecule bound to the DNA. 
TF_SIZE_RIGHT = 0; 
#The association rate between TF molecules and DNA. 
TF_ASSOC_RATE = 20.0; 
#This is true if TFs read in both directions and false otherwise. 
TF_READ_IN_BOTH_DIRECTIONS = false; 
#The proportion of TF molecules that are already bound when the simulation starts. 
TF_PREBOUND_PROPORTION = 0.9; 
#This is true if the TF is already bound to the highest affinity sites when the simulation starts. 
TF_PREBOUND_TO_HIGHEST_AFFINITY = true; 
#This is true if  sliding and hopping affects the association rate between TF molecules and DNA. 
SLIDING_AND_HOPPING_AFFECTS_TF_ASSOC_RATE = false; 
 
#DNA PARAMETERS 
#The fasta file which stores the DNA sequence. 
DNA_SEQUENCE_FILE = "biodata/2019biodata/dm6_3R_ESPL.fasta"; 
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#DNA_RANDOM PARAMATERS 
#The length of the DNA (bp). 
DNA_LENGTH = 131000; 
#The proportion of adenine (A) in the randomly generated DNA. 
DNA_PROPORTION_OF_A = 0.246; 
#The proportion of thymine (T) in the randomly generated DNA. 
DNA_PROPORTION_OF_T = 0.246; 
#The proportion of (cytosine) C in the randomly generated DNA. 
DNA_PROPORTION_OF_C = 0.254; 
#The proportion of (guanine) G in the randomly generated DNA. 
DNA_PROPORTION_OF_G = 0.254; 
#boundary condition of the DNA (absorbing/reflexive/periodic). 
DNA_BOUNDARY_CONDITION = reflexive; 
#This is true if the TF is immobile on DNA. 
TF_IS_IMMOBILE = false; 
 
#TF_RANDOM_WALK PARAMATERS 
#The probability that a TF unbinds. 0.0001 
TF_UNBINDING_PROBABILITY = 0.001474111; 
#The probability that a TF slides left.0.49995 
TF_SLIDE_LEFT_PROBABILITY = 0.4992629; 
#The probability that a TF slides right.0.49995 
TF_SLIDE_RIGHT_PROBABILITY = 0.4992629; 
#The probability that a TF performs a jump when unbound instead of returning to the DNA. 
(0.1675 Wunderlich and Mirny 2008) 
TF_JUMPING_PROBABILITY = 0.1675; 
#The standard displacement of a TF that unbinds and attempts to rebind correlated. The 
displacement distribution is Gaussian. 
TF_HOP_STD_DISPLACEMENT = 1.0; 
#Waiting time of a TF to a specific site (s). 
TF_SPECIFIC_WAITING_TIME = 1.5; 
#The size of the step to the left when the TF performs a left slide. 
TF_STEP_LEFT_SIZE = 1; 
#The size of the step to the right when the TF performs a left slide. 
TF_STEP_RIGHT_SIZE = 1; 
#The size of the uncorrelated displacement (bp). 
TF_UNCORRELATED_DISPLACEMENT_SIZE = 5; 
#This parameter is true if the TF stays at current position if cannot relocate and false if it unbinds. 
TF_STALLS_IF_BLOCKED = true; 
#This probability that if a TF collides with another molecule on the DNA it will unbind. 
TF_COLLISION_UNBIND_PROBABILITY = 0.0; 
#The roughness of the affinity landscape. This is usually specified for non-cognate species. 
TF_AFFINITY_LANDSCAPE_ROUGHNESS = 1.0; 
#This is true if the simulator will check the DNA occupancy before binding and false otherwise 
CHECK_OCCUPANCY_ON_BINDING = true; 
#This is true if the simulator will check the DNA occupancy before sliding and false otherwise 
CHECK_OCCUPANCY_ON_SLIDING = true; 
#This is true if the simulator will check the DNA occupancy before re-binding and false otherwise 
CHECK_OCCUPANCY_ON_REBINDING = true; 
#This is true if the biased and false if the random walk is unbiased 
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IS_BIASED_RANDOM_WALK = false; 
#This is true if the random walk is performed in a two-state model (search/recognition) and false 
otherwise 
IS_TWO_STATE_RANDOM_WALK = false; 
#The tsv file that contains the HiC data 
HIC_CONTACT_MATRIX_FILE = 
"biodata/2019biodata/ESPL/BG3_Keerthi_merged_hic_matrix_500bp_corrected_3R_25951000_2
6082000.GInteractions.tsv"; 
#The width of the bins that create the HiC matrix 
BIN_WIDTH= 500; 
#The probability of the molecule to stay in the microenvironment  
PK_MICROENV = 0.15; 
#The time interval at which the matrix is simulated again.  
IM_SIMULATION_TIME = 0.01; (used values: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10) 
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SimulationEvent Class 
 
package event; 
 
/** 
 *class that describes a simulation event. it is an instantiation of Event 
 * @author adumita@essex.ac.uk 
 * 
 */ 
public class SimulationEvent extends Event { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public boolean isSimulationEvent; 
  
 public SimulationEvent(double time, int nextAction, boolean 
isSimulationEvent) { 
  super(time,nextAction); 
  this.isSimulationEvent = isSimulationEvent; 
 } 
  
  
 /** 
  * generates the description string of current event 
  */ 
 public String toString(){ 
  String stateStr=""+time+": "; 
  stateStr+=" through an event of type "+nextAction; 
  return stateStr; 
 } 
 /** 
  * compares whether this event equals the one supplied as an argument 
  * @param pe 
  * @return 
  */ 
 public boolean isEqualTo(SimulationEvent pe){ 
  return this.time == pe.time; 
 } 
} 
 
 
 
SimulationEventQueue Class 
 
package event; 
 
import java.io.Serializable; 
 
import environment.Cell; 
 
/** 
 * class that holds all the simulation events 
 * @author adumita@essex.ac.uk 
 * 
 */ 
public class SimulationEventQueue implements Serializable { 
 /** 
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  *  
  */ 
 private static final long serialVersionUID = 1L; 
 
 protected double simulationPropensity;// the propensity that the matrix 
will be simulated again; 
  
 private SimulationEvent simulationEvent; 
  
 public SimulationEventQueue(Cell n){ 
   
 this.simulationPropensity=n.ip.IM_SIMULATION_TIME.value; 
    this.simulationEvent = null; 
    //simulationEvent.time= 
generateExponentialDistribution(simulationPropensity,n); 
 } 
   
 public double generateExponentialDistribution(double mean,Cell n) { 
  return Math.log(1-n.randomGenerator.nextDouble())/(-mean); 
 } 
  
 /** 
  * returns the next Simulation event 
  * @return 
  */ 
 public SimulationEvent peek(){ 
  return simulationEvent; 
 } 
  
 /** 
  * returns the next Simulation event and removes it from the list 
  * @return 
  */ 
 public SimulationEvent pop(){ 
  SimulationEvent pe=simulationEvent; 
  simulationEvent = null; 
  return pe; 
 } 
  
 /** 
  * replaces the current Simulation event with a new one 
  * @param re the new event 
  */ 
 public void add(SimulationEvent pe){ 
  simulationEvent=pe; 
  //System.out.println(re); 
 } 
  
  
 /** 
  * returns true if the Simulation event is null 
  * @return 
  */ 
 public boolean isEmpty(){ 
  return simulationEvent==null; 
 } 
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 /** 
  * deletes current protein binding event 
  */ 
 public void clear(){ 
  this.simulationEvent = null; 
 } 
 
} 
 
 
 
InteractionMatrix Class 
 
 
package objects; 
 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.Serializable; 
import java.util.ArrayList; 
import java.util.Random; 
import java.util.Scanner; 
import utils.Utils; 
 
/** 
 * class that constructs the 3D contact matrix based on the file inputted  
 * @author adumita@essex.ac.uk 
 * 
 */ 
public class InteractionMatrix implements Serializable{ 
  
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 private boolean[][] SimulatedMatrix; 
 private double[][] CumulativeSimulatedMatrix; 
 private double[][] ContactMatrix; 
    private ArrayList<DNAregion> bins; 
    private double[][] NormalisedMatrix; 
    private double LastTimeSimulated; 
 
 /** 
  * class constructor 
  * 
  * @param ContactMatrixLocation the path to the file containing the HiC 
interactions 
  * @param regionOfInterest object of type DNAregion that contains the start 
and end of the sequence based on which the bins are created 
  * @param binWidth the size of the bins to be created 
  * @param generator 
  * @throws Exception 
  */ 
 public InteractionMatrix(String ContactMatrixLocation,DNAregion 
regionOfInterest, int binWidth,Random generator) throws Exception { 
    
   LastTimeSimulated=0; 
   bins = new ArrayList<DNAregion>(); 
   createMatrix(regionOfInterest,binWidth); 
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      addScoreToMatrix(regionOfInterest, ContactMatrixLocation);  
      normaliseMatrix(); 
      simulateMatrix(generator,0); 
 } 
  
 /** 
  * class constructor 
  *  
  * @param regionOfInterest object of type DNAregion that contains the start 
and end of the sequence based on which the bins are created 
  * @param binWidth the size of the bins to be created 
  * @param generator 
  */ 
 public InteractionMatrix(DNAregion regionOfInterest,int binWidth,Random 
generator) { 
   bins = new ArrayList<DNAregion>(); 
   createMatrix(regionOfInterest,binWidth); 
   normaliseMatrix(); 
   simulateMatrix(generator,0); 
 } 
  
  /** 
   * creates the empty matrix using the DNA region of interest  
   * @param regionOfInterest the subsequence of dna of interest 
   * @param binWidth the width of the bins to be created 
   */ 
  public void createMatrix(DNAregion regionOfInterest,int binWidth) { 
  
    //reads the start value of the sequence and end value 
of it 
    long start=regionOfInterest.start; 
    long end=regionOfInterest.end; 
    //calculates the number of bins for the sequence 
    int nrOfBins=(int) (end-start)/binWidth; 
    //creates the bins and adding them to an array of type 
bin 
    for(int i= (int)start;i<end; i=i+binWidth) { 
      DNAregion bin= new 
DNAregion(regionOfInterest.chromosome,i,i+binWidth); 
      bins.add(bin); 
    } 
   
    // creates the empty matrix with the values of 1 on 
diagonal 
    int n=nrOfBins; 
    CumulativeSimulatedMatrix = new double[n][n]; 
    ContactMatrix = new double[n][n]; 
    SimulatedMatrix= new boolean[n][n]; 
    NormalisedMatrix= new double[n][n]; 
    for(int i=0;i<nrOfBins;i++) {  
      ContactMatrix[i][i]=1; 
      SimulatedMatrix[i][i]=true; 
      NormalisedMatrix[i][i]=0; 
      CumulativeSimulatedMatrix[i][i]=0; 
    } 
     
   } 
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  /** 
   * Iterates through the simulated matrix and if the bins are 
interacting  
   * the cumulative matrix will give the amount of time the bins were 
interacting 
   * @param newTime the time at which the simulation happened 
   */ 
  public void addValueToCumulativeSimulatedMatrix(double newTime) { 
   double addTime= newTime-LastTimeSimulated; 
   for(int i=0;i<bins.size();i++) { 
    for(int j=0;j<bins.size();j++) { 
     if(SimulatedMatrix[i][j]) { 
      CumulativeSimulatedMatrix[i][j]+=addTime; 
     } 
    } 
   } 
  } 
   
  /** 
   * reads the file of interest and adds the values from it to a local 
file 
   * the local file is read and the values for local arraylists for 
bins and score are added 
   * @param ContactMatrixLocation the path to the file containing the 
HiC interactions 
   * @throws Exception  
  */ 
  public void addScoreToMatrix(DNAregion regionOfInterest, String 
ContactMatrixLocation) { 
     //initialises every list 
     ArrayList<String> localFile= new ArrayList<String>(); 
     ArrayList<DNAregion> binsX= new ArrayList<DNAregion>(); 
     ArrayList<DNAregion> binsY= new ArrayList<DNAregion>();
       
     ArrayList<Double> score = new ArrayList<Double>(); 
      
     //reads the interaction matrix file  
     String fileName= ContactMatrixLocation;  
     File file = new File(fileName); 
 
     try { 
      Scanner inputStream= new Scanner(file);  
     
      while (inputStream.hasNextLine()) { 
       String data = inputStream.nextLine(); 
       String[] values = data.split("\t"); 
       for(String val:values) { 
          localFile.add(val); 
          
       }  
         } 
      inputStream.close();    
     }   
     catch(FileNotFoundException e) { 
     e.printStackTrace(); 
     } 
     //adds the values of the score from the local file to 
the arraylist score 
     for(int i=6; i<localFile.size(); i=i+7) { 
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         double value = 
Double.parseDouble(localFile.get(i)); 
      score.add(value); 
     } 
     //local bins X and Y from file 
     for(int i=1; i<localFile.size(); i=i+7) { 
      DNAregion bin= new 
DNAregion(localFile.get(0),Integer.parseInt(localFile.get(i)), 
Integer.parseInt(localFile.get(i+1))); 
     binsX.add(bin); 
     } 
     for(int i=4; i<localFile.size(); i=i+7) { 
       DNAregion  bin = new 
DNAregion(localFile.get(3),Integer.parseInt(localFile.get(i)), 
Integer.parseInt(localFile.get(i+1))); 
     binsY.add(bin); 
     } 
     boolean anyValue = false; 
    
     //adds the values from the score for the specified 
region of interest into the matrix 
     for(int g=0;g<score.size();g++) { 
       int indexBinX=getBinIndex(bins,binsX.get(g));  
       int indexBinY=getBinIndex(bins,binsY.get(g)); 
       if(indexBinX>=0 && indexBinY>=0) {  
         ContactMatrix[indexBinX][indexBinY]=score.get(g);
  
         anyValue = true; 
          
       } 
     } 
     //throws an error if there is a chromosome mismatch 
between the interaction matrix and the dna region 
     if(!anyValue) { 
     throw new IllegalArgumentException("Chromosome in 
the InteractionMatrix does not match the chromosome in the DNA sequence."); 
     }        
   } 
    
         /** 
          * the method looks into the array and compares each object in the array 
with the object to be found 
          * returns the index in the array at which the bin has the same value 
          * @param bins array of type Bin   
          * @param subject object of class Bin 
          * @return the bin position in the list based on its details 
          */ 
   private int getBinIndex(ArrayList<DNAregion> bins,DNAregion 
subject) { 
     for(int i=0; i<bins.size(); i++) { 
         if(bins.get(i).equals(subject)) { 
         return i; 
      } 
     } 
     return -1; 
   } 
    
   /** 
    * Method that searches the bin in which a certain position is in 
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    * @param position the position of the object of interest 
    * @param chromosome the input param has to match the chromosome of 
the bins from the list 
    * @return the index of the current bin 
    */ 
   public int getCurrentBinIndex(int position, String chromosome) { 
    int local=-1; 
    for(int i = 0; i<bins.size(); i++) { 
     if(chromosome.equals(bins.get(i).chromosome) && 
position>=bins.get(i).start && position<=bins.get(i).end) { 
      local= i; 
 
     } 
    } 
    return local;   
   } 
    
   /** 
    * gets the bin's details based on its index 
    * @param index the index of the bin 
    * @return the details of the bin 
    */ 
   public DNAregion getBin(int index) { 
     return bins.get(index); 
   } 
   
   /** 
    * takes the input parameter and searches against the existing 
arraylist of bins to get the interacting bins 
    * @param bin the no of the bin of interest 
    * @return a list of indexes of bins 
    */ 
   public ArrayList<Integer> getInteractingBins(int bin){ 
     
     ArrayList<Integer> local = new ArrayList<Integer>(); 
     for(int i =0; i<bins.size(); i++) { 
      if(SimulatedMatrix[bin][i]) { 
      local.add(i); 
      } 
     } 
     return local; 
   } 
    
   /** 
    * gives the size of the bins list 
    * @return integer = the size of bins list 
    */ 
   public int getBinSize() { 
     return bins.size(); 
   } 
       
   /** 
    * prints out details regarding 2 bins and the score between them 
as well as the bins ID 
    */ 
   public void find(int BinX,int BinY) { 
     System.out.println("BinX: "+BinX+ "BinY: "+BinY 
+"Score: " +ContactMatrix[BinX][BinY] +"Bins ID: " +bins.get(BinX) +" "+ 
bins.get(BinY) ); 
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   } 
    
   /** 
    * Accessor method for the arraylist 'bins'; 
    * @return a list of type ArrayList<DNAregion> 
    */ 
   public ArrayList<DNAregion> getBinsList() { 
     return bins; 
   } 
    
   /** 
    * Method that takes the highest score from the score list 
    * and divides every value from the interaction matrix by the 
highest score to get the normalised values between 0 and 1 
    */ 
   private void normaliseMatrix() { 
     double highestScore = 0; 
     //get the highest score 
     for(int i=0;i<bins.size();i++) { 
     for(int j=0;j<bins.size();j++) { 
      if(ContactMatrix[i][j]>highestScore) { 
       highestScore=ContactMatrix[i][j]; 
      } 
     }   
     } 
     //generate normalised matrix 
     for(int i=0;i<bins.size();i++) { 
     for(int j=0;j<bins.size();j++) { 
      
NormalisedMatrix[i][j]=ContactMatrix[i][j]/highestScore; 
     } 
     } 
   } 
    
   /** 
    * Simulates the Interaction Matrix 
    * Can be accessed and simulated from other classes to have a 
dynamic simulation matrix 
    * @param generator 
    */ 
   public void simulateMatrix(Random generator, double time) { 
  
    LastTimeSimulated=time; 
    for(int i=0;i<bins.size();i++) { 
     for(int j=0; j<bins.size();j++) { 
      double 
probability=Utils.generateNextDouble(generator, 0, 1); 
     
 SimulatedMatrix[i][j]=(NormalisedMatrix[i][j]>probability); 
     } 
    } 
   } 
    
   /** 
    * method that returns the cumulative simulation time between two 
bins 
    * @param t bin X 
    * @param b bin Y 
    * @return  
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    */ 
   public double CumulativeResult(int t, int b) { 
    return CumulativeSimulatedMatrix[t][b]; 
   } 
    
   /** 
    * method that generates a random number between the values of the 
start and end of a bin 
    */ 
   public int radomBinPosition(Random generator,int randomBinID) { 
    int newPosition = 
(generator.nextInt((int)(bins.get(randomBinID).end-
bins.get(randomBinID).start)+1)+(int)bins.get(randomBinID).start)-
(int)bins.get(0).start; 
   return newPosition; 
   } 
    
   /** 
    *  
    * @return 
    */ 
   public String headerToString() { 
    String str = "\"BIN_X\", \"BIN_Y\", \"HIC_SCORE\", 
\"CUMULATIVE_SIMULATION\""; 
    return str; 
   } 
    
   /** 
    * a string with the details about the bins interacting, their 
interaction score and the cumulative time they are interacting 
    * @param x bin X 
    * @param y bin Y 
    * @return 
    */ 
   public String toString(int x, int y){ 
    //"\"BIN_X\", \"BIN_Y\", 
    String str="\""+ bins.get(x); 
    //\"BIN_Y\", \"HIC_SCORE\", \"CUMULATIVE_SIMULATION\" 
    str+="\","+bins.get(y)+", "+ContactMatrix[x][y]+", 
"+CumulativeSimulatedMatrix[x][y]; 
    return str; 
   } 
} 
 

 

Methods in Cell Class  
 
 /** 
  * prints details regarding the bins the interacting score between them and 
the cumulative simulation time 
  * @param filename The name of output file 
  */ 
 private void saveCumulativeMatrix(String filename) { 
  // checks if there is a HIC interacting matrix file 
  if(!this.ip.HIC_CONTACT_MATRIX_FILE.value.isEmpty()){ 
   BufferedWriter bufferFile =  null; 
   try { 
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            //Construct the BufferedWriter object 
          if(this.outputPath.isEmpty()){ 
           bufferFile = new BufferedWriter(new 
FileWriter(filename)); 
          } else{ 
           bufferFile = new BufferedWriter(new FileWriter(new 
File(this.outputPath,filename))); 
          }    
          bufferFile.write(this.HIC_CONTACT_MATRIX.headerToString()); 
          bufferFile.newLine(); 
          for(int i=0; i<this.HIC_CONTACT_MATRIX.getBinSize();i++) { 
           for(int j=0; 
j<this.HIC_CONTACT_MATRIX.getBinSize();j++) { 
            
 bufferFile.write(this.HIC_CONTACT_MATRIX.toString(i, j)); 
            bufferFile.newLine(); 
           } 
          }   
          bufferFile.flush(); 
          bufferFile.close(); 
    } catch (FileNotFoundException ex) { 
              ex.printStackTrace(); 
          } catch (IOException ex) { 
              ex.printStackTrace(); 
          } 
  } 
    
 } 

 

 
 /** 
  * either load the Contact matrix from a file or generate an empty one 
  * @throws Exception  
  */ 
 private void createInteractionMatrix() throws Exception{ 
  if(ip.HIC_CONTACT_MATRIX_FILE.value!=null) {  
   this.HIC_CONTACT_MATRIX = new 
InteractionMatrix(ip.HIC_CONTACT_MATRIX_FILE.value,new 
DNAregion(dna.subsequence.chromosome,dna.subsequence.start,dna.subsequence.end),bi
nWidth,randomGenerator); 
   
  } 
  else { 
   this.HIC_CONTACT_MATRIX= new 
InteractionMatrix(dna.subsequence,binWidth,randomGenerator); 
  } 
 } 

In addition to this, other changes to existing methods and classes were done to implement the code 
from above. 
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