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A B S T R A C T

At the heart of gene regulation are Transcription Factors (TFs), proteins which bind to

DNA in a sequence specific manner and drive the activation or repression of genes.

Statistical thermodynamics has shown to be a promising avenue to describe the bind-

ing mechanisms of TFs. Here, I present ChIPanalyser, an R/Bioconductor package

that models and predicts binding of TFs to DNA using a statistical thermodynamic

framework. First, I show that goodness of fit metrics are an important consideration

in TF binding predictions as well as demonstrate ChIPanalyser’s high performance

compared to other tools and frameworks. Then, I focused on investigating the binding

mechanisms of three TFs that are known architectural proteins CTCF, BEAF-32 and

su(Hw) in three Drosophila cell lines (BG3, Kc167 and S2). I demonstrate that archi-

tectural proteins show varying affinities towards DNA accessibility and that protein

abundance plays a lesser role in their binding. While BEAF-32 binds in open chromatin,

CTCF and su(Hw) showed increased binding is less accessible DNA. Furthermore,

the model was able to recover binding preferences of three Hox TFs with respect to

DNA accessibility. However, DNA accessibility showed some limitations to describe

the full scope of TF binding affinities. I developed a genetic algorithm to investigate

the binding affinity of the aforementioned TFs with respect to chromatin states. The

improved model recovered chromatin state affinities and showed a more nuanced

picture of TF binding. Finally, I examined the binding mechanisms of Su(H). The

model was able to recover known binding mechanisms with respect to both chromatin

state affinity and TF abundance. Overall, ChIPanalyser provides accurate TF binding

predictions as well as insights into the mechanisms of TF binding.
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Part I

F O U N D AT I O N S





1

T H E B I O L O G Y O F G E N E R E G U L AT I O N

Problems worthy of attack prove their worth by fighting back.

Paul Erdos

in the beginning , there were peas

Humanity has understood the concept of inheritance for thousands of years. Our

ancestors used their empirical knowledge to improve crops via selective breeding. One

of my favourite example is Teosinte. Teosinte is a tall grass native to Mexico. After

thousands of years of selective breeding, this tall tough grass became a staple in your

summer BBQs: maize. Despite the great insight our ancestors had, it was not until

the mid 1800’s that a formalisation of inheritance was proposed by Gregor Mendel.

Mendel was an Austrian (former Austrian Empire - now Czech Republic) friar born

in 1822. Between 1856 and 1863, Mendel studied trait inheritance in English peas.

After 7 years of research, Mendel gave us the concepts of dominant and recessive traits.

Unfortunately, Mendel’s work was forgotten for many years and only uncovered years

after his death when others claimed to have reached similar conclusions. At the time,

a "gene" was considered as the basic unit of inheritance. Interestingly, the origin of the

3



4 the biology of gene regulation

word gene and genetics are attributed to one of Mendel’s contemporaries. None other

than biology superstar Charles Darwin coined the term pangene from the greek pan

("all") and genesis ("birth") or genos ("origin"). Darwin’s definition described a general

character of inheritance. Later, Wilhelm Johannsen and William Bateson introduced

the term Gene and Genetics as the basic entities of inheritance. And thus, the field of

genetics was born.

from inheritance to dna

Over the years, the very definition of genes evolved (no pun intended). Starting from

the basic unit of inheritance, genes became a linearly organised entity. By studying

the segregation of mutations in Drosophila, Morgan and his students were able to

establish the mechanisms of genetic inheritance. Genetic linkage and physical location

on chromosomes was later established by Barbara McClintock in 1929. By the 1940s,

genes had become the blue print for a protein or "one gene, one enzyme" as described

by Beadle and Tantum in 1941. Interestingly, the next decade brought us the certainty

that somehow genes were a physical molecules and that mutations in this physical

molecules were responsible for trait variation. It is only in 1953 that DNA was discov-

ered by Watson and Crick (and Franklin). This newly discovered molecule explained

how genetic information was stored and transmitted to the next generations.

In the 1940s and 1950s, Barbara McClintock discovered the action of jumping genes

in Maize. She postulated that these genes were responsible for turning other genes

on and off. This was the first hint towards gene expression and genetic regulation.

Unfortunately, as it was often the case that the time, her work was received with scep-

ticisms. It was only a decade later that the concept of gene expression was accepted

after Jacobs and Monods work on the lac operon in Escherichia coli.



1.3 understanding gene expression 5

understanding gene expression

The precise regulation and expression of genes is key to most if not all cellular pro-

cesses. Basic cellular functionalities such as cell cycle or response to the environment

rely on on the correct expression of genes [Rowicka et al., 2007, Passegué et al., 2005,

Whitfield et al., 2002, Abe et al., 2005, Lee et al., 2014b]. Embryonic development in

Drosophila requires the precise expression of developmental genes ( HOX genes) in order

to elicit the correct longitudinal patterning[Alexander et al., 2009, Mallo and Alonso, 2013].

Correctly expressed, these genes will lead to limb formation. The Drosophila embryo

will grow from egg to fully formed organism, ready to live the exciting life of a fly.

Misregulation of developmental genes often leads to some unwanted consequences. In

certain case, this would lead to ectopic expression of certain tissues [Halder et al., 1995,

Schneuwly et al., 1987, Phelps and Brand, 1998, Akiyama-Oda et al., 1998] Disrupted

gene expression and regulation patterns is also often symptomatic of disease [Honrado et al., 2006,

Hernandez et al., 2000, Liang and Pardee, 2003, Sekar et al., 2015]. Understanding when,

why and how genes are expressed is potentially one of the most important questions

in modern molecular biology. But what exactly drives the expression of genes?

transcription factors are at the heart of gene expression

Transcription factors (TF) are proteins involved in the transcription of DNA to RNA.

These proteins both initiate and regulate the expression of genes [Latchman, 2001,

Lambert et al., 2018]. Generally speaking, TFs bind to DNA in a sequence specific

manner [Ptashne and Gann, 1997, Spitz and Furlong, 2012]. This is possible thanks to

their DNA binding domain. TFs can be categorised based on their specific molecular

function. General Transcription Factors (GTF) bind to DNA in promoter regions close
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to the transcriptional start site. GTFs are directly implicated in the recruitment of the

transcriptional pre-initiation complex (TPIC). This complex correctly places the RNA

polymerase on the transcription start site and prepares DNA for transcription. Other

TFs bind to regulatory sequences located either in enhancer regions or promoter re-

gions. Their binding can either activate or repress gene transcription. Some TFs , called

Pioneer Transcription Factors are responsible for "priming" transcription by binding

into closed chromatin [Aguilar-Arnal and Sassone-Corsi, 2015, Voss et al., 2011]. Pi-

oneer TFs can bind into closed chromatin and open chromatin either through the

recruitment of ATP- dependant chromatin remodellers or by direct competition with

nucleosomes [Soufi et al., 2015, Mayran et al., 2018, Donaghey et al., 2018]. However,

the term pioneer does not only refer to their ability to bind into closed chromatin

but also to their key role into priming transcriptional regulation. While chromatin

remodellers may be recruited by other TFs to increase DNA accessibility, pioneer TFs

are required for a specific transcriptional event to occur [Zaret and Carroll, 2011]. They

are actively required in the transcriptional regulation of a given pathway. In certain

instances, pioneer TFs would bind to DNA in order to prime a gene for later activa-

tion [Iwafuchi-Doi, 2019]. By reducing the number of steps prior to transcriptional

activation, pioneer TFs ensure a fast response time when the final regulators come into

play. This denotes the double role of pioneer TFs: priming DNA for transcription and

actively participating in regulatory pathways.

Finally, it is also important to consider other DNA binding proteins that do not

directly participate in transcription but rather influence and modulate DNA confir-

mation [Beagan et al., 2016, Hansen et al., 2019]. CCCTC-binding factor (CTCF) is a

highly conserved zinc finger protein that bind to DNA and can indirectly control gene

expression by enabling or inhibiting the communication between enhancers and their

target promoter. CTCF also plays a role at a larger scale by stabilising larger chromatin

structures [Kim et al., 2015].

Understanding when and where TFs bind to DNA is key to understanding gene
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expression. In vivo experiments such as ChIP-seq (chromatin immunoprecipitation

followed by sequencing) or ChIP-chip (chromatin immunoprecipitation on tilling ar-

rays) have become the gold standard or determining TF binding events at a genome

wide scale scale [Solomon et al., 1988, Park, 2009]. Simply put, ChIP-seq relies on

anti-body recognition of TF-DNA complexes. The resulting DNA is then subject

to Next Generation sequencing (NGS). In the past decade, there has been an ongo-

ing effort to map the binding of TFs to DNA in various organisms. The ENCODE

and modENCODE project provide ChIP-seq ( or ChIP-chip) experiments of numer-

ous TFs [ENCODE Project Consortium, 2012, modENCODE Consortium et al., 2010,

Landt et al., 2012a, Davis et al., 2018].

Despite our ability to determine TF binding events, we still lack a complete under-

standing of the mechanisms driving TF binding. The following sections will describe

the various factors thought to impact TF binding.

DNA sequence and shape

TFs read genomic information in two fundamental ways. The first aspect is the DNA

sequence itself [Ptashne and Gann, 1997, Spitz and Furlong, 2012, Slattery et al., 2014].

The amino acid sequence in the DNA binding domain will a create physical interaction

with the nucleotides present in DNA. The nature of the interactions consists of simple

hydrogen bonds, salt bridges or hydrophobic interactions. TF binding sites (TFBS) are

the result of minimising binding energy between TF’s and DNA sequence. The second

aspect is DNA shape [Abe et al., 2015, Inukai et al., 2017]. Structural features such as

DNA bending or groove width are also recognised by certain TFs.

Experimentally, specific binding motifs can be determined by using methods such as

protein binding microarrays (PBM),BunDLE-seq (binding to designed library, extract-

ing, and sequencing) or (SELEX-seq (systematic evolution of ligands by exponential
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enrichment followed by sequencing)(reviewed by [Lai et al., 2018]). Although high-

throughput methods, these methods are in vitro assays . In many cases, biological

context strongly impacts TFBSs. Furhtermore, these methods yield binding motifs

between 8 to 20 bp in length. Given the size of genomes, there is a high likelihood of

these sequences appearing at a higher rate than the TF binding events described by

ChIP experiments.

DNA and friends

In the context of the nucleus, DNA rarely comes alone as a naked strand of nucleotides.

DNA (in 147 bp sequences) wraps itself around protein complexes known as nucle-

osomes each forming of an octameric complex of histones. At a higher level, DNA

and nucleosomes can form tightly compacted DNA regions. Dense chromatin forms a

barrier for the Transcriptional machinery. Furthermore, most TFs are unable to bind

in tightly compacted DNA and prefer nucleosome depleted regions [Li et al., 2011,

Chereji et al., 2016, Lamparter et al., 2017, Zhu et al., 2018, Klemm et al., 2019]. Chro-

matin accessibility could be defined as to which degree can nuclear proteins or macro-

molecules bind to naked DNA.

Large-scale cis-element studies show that the majority of TF activity is found in

Nucleosome depleted regions. Interestingly, in Homo sapiens, nucleosomes tend

to cluster around regulatory elements [Tillo et al., 2010]. DNA accessibility plays

a key role in limiting the number of potential binding motifs available for TF bind-

ing. DNA accessibility can be assessed experimentally thanks to recent method

such as DNase-seq or ATAC-seq. DNase-seq relies on mapping DNase I hyper-

sensitvity sites. The DNase I enzyme selectively digests regions depleted from

nucleosomes. The digested fragments are then captured and subjected to NGS

[Song and Crawford, 2010]. ATAC-seq relies on the insertion of sequencing adapters

in regions of accessible DNA [Buenrostro et al., 2015]. Thanks to the low DNA quan-
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tity requirement, ATAC-seq has been adapted to single cell DNA accessibility as-

says. However, not all TFs bind to accessible DNA. Pioneer Transcription factors

have shown to bind in dense chromatin. This class of TF is thought to compete

with nucleosomes by various mechanisms such as recruiting chromatin re-modellers

or by altering the chemical states of histones[Soufi et al., 2015, Mayran et al., 2018,

Donaghey et al., 2018, Zaret and Carroll, 2011].

Modified DNA and friends

Both DNA and histones can undergo chemical modifications. The most common

DNA modification is characterised by the addition of Methyl group on the 5’ side of

cytosines. DNA methylation is thought to play a role in gene regulation and gene

expression, more specifically gene silencing. The role of DNA methylation is thought

to be two fold: (i) directly obstruct TF binding to DNA [Domcke et al., 2015] and (ii) re-

cruit methyl binding proteins to serve as repressive complexes[Miller and Grant, 2013].

The role of DNA methylation should be taken with caution when it comes to TF

binding. In Drosophila, methylation levels have been shown to be close to non-existent

[Rae and Steele, 1979, Urieli-Shoval et al., 1982]. On the other hand, despite being

present at low levels, methylated regions can still play a functional role in gene expres-

sion [Lyko et al., 2000]. This would suggest that if DNA methylation plays a role in TF

binding, this mechanism might not be conserved between species.

Histone modifications on the other hand seem to be highly conserved between species

[Hayes and Wolffe, 1992, Bannister and Kouzarides, 2011]. Histone modifications are

post translational modifications generally occurring along N-terminal histone tails but

can also occur in the histone globular domain. Modifications include methylation,

phosphorylation , acetylation, ubiquitination and sumoylation. Both the nature and the

location (along the polypeptide chain) are thought to determine the functional impact

of a histone modification. Acetylation of lysine neutralises the positive electrostatic
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charge and thus decreases the binding affinity between DNA and histones. In turn,

nucleosomes can be displaced leading to increased DNA accessibility and TF binding.

The addition of a single aceytl group on H4K16 is sufficient to disrupt the formation

of 30nm DNA fibres [Shogren-Knaak et al., 2006, Zhang and Presgraves, 2017]. The

role of methylation seems to be less clear as the addition of one or more methyl

group to histone tail lysine’s can be associated with active or repressive marks

[Bogliotti and Ross, 2012, Li, 2002, Liu et al., 2016]. H3K4me3 is associated with active

transcription. It is thought that H3K4me3 can be recognised by PHD fingers and pre-

vent the binding of nuRD, a repressive complex [Champagne and Kutateladze, 2009].

Conversely, H3K9me3 is considered as a repressive mark as it recruits Heterochromatin

proteins 1 (HP1). HP1 can directly reorganise the structure of chromatin and induce

chromatin compaction [Zeng et al., 2010].

The presence and/or absence of histone modifications are indicative of chromatin

states. Chromatin states could be defined as the set of DNA and/or histone modi-

fications in a given genomic region [Baker, 2011]. Repressive heterochromatin is for

example devoid of acetylation and show increased levels of H3K27me3 among others.

On the other side of the spectrum, regions of active transcription show increased levels

of acetylation and H3K36me3.

The role of chromatin states in undeniable in TF binding. Chromatin states would

indicate available regions for TF binding. If a binding motif is present within that

region, TF binding events are expected. However, recent work has suggested that the

relationship between histone modification and TF binding is specific to the TF family.

The specific histone modification associated with a given chromatin state would allow

TFs to discriminate between binding sites [Casey et al., 2018, Xin and Rohs, 2018].
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Concentration

Even if a binding motif is accessible for a TF to bind, this is not always sufficient

to explain gene expression. In certain cases, TFs require to be in a high enough

concentration in order to induce transcription. A notable example of TF concen-

tration playing a role in gene expression is embryonic development in Drosophila

[Moens and Selleri, 2006, Alexander et al., 2009, Petkova et al., 2019]. The longitudi-

nal patterning of the Drosophila embryo is regulated by the highly conserved set

of genes known as Hox genes. The product of these genes are TFs that bind to

developmental enhancers and induce cellular differentiation. Spatial and temporal

regulation of Hox TFs is required for correct developmental patterns to occur. It has

also been suggested that TF concentration plays a key role in the correct expression

of downstream developmental genes [Dubuis et al., 2013b, Dubuis et al., 2013a]. Al-

though many studies on the subject have focused on mRNA levels as a proxy for

TF concentration, recent work has confirmed the role of TF concentration by direct

measure of protein abundance[Papadopoulos et al., 2019]. Furthermore, fluctuations

in cell to cell signalling levels seem to be responsible for cellular differentiation in

mice [Ohnishi et al., 2014]. A higher cellular signal would induce the expression of a

different set of genes than if the signal occurred at a lower rate.

The role of TF concentration in TF binding has been considered for many years.

Simply put, a TF can be considered as a ligand and the preferred binding motif as a re-

ceptor. In these circumstances, ligand concentration plays an essential role in its ability

to bind to a specific target. Changes in concentration would not play significant roles in

TF binding unless lower affinity sites are considered. Fluctuations at high affinity sites

play a lesser role as demonstrated by stochastic simulation in E. coli [Zabet et al., 2013].

Furthermore, Lickwar proposed that TF binding turnover plays the role of a molecular

clutch for transcription factor function. A longer occupancy time leads to a higher
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transcriptional output than a short turnover time. Optimal binding motifs could be

context dependant and not only reliant on sequence [Lickwar et al., 2012]

Cooperativity and Competition

The story of TF binding is further complicated by the addition of co-factors. Eukaryotes

generally posses large genomes and TF binding sites alone is insufficient to explain

their specific regulatory mechanisms. Cooperative binding between TFs and their co-

factors serve the purpose of enhancer activation or repression [Moens and Selleri, 2006,

Mann et al., 2009, Osório, 2015, Osório, 2016, Chronis et al., 2017]. Without the coop-

erative action of both TFs, transcriptional regulation would not occur. Different

combination of TFs and co-factors induce varying transcriptional regulation mech-

anisms. Cooperative binding events are common and occur between different TF

families.

Cooperative binding can be described by various mechanisms [Kasahara et al., 2017].

The simplest case is TF dimerisation. TF can dimerise with itself or with co-factors.

Dimersation would increase the strength of the bond between TF dimer and DNA.

However, cooperative binding can be mediated through DNA on its own. DNA shape

features play a role in TF binding. While one TF expends energy to twist or bend DNA,

this leaves other TFs to bind freely without the expense of energy. Finally, DNA bind-

ing proteins may aid the binding of other TFs by modifying chromatin states. Assisted

loading has been suggested as a mechanisms of cooperative binding [Voss et al., 2011].

The binding of one TF will modify local chromatin and aid the binding of co-factors.

Furthermore, chromatin opening and nucleosome displacement is thought the be one

of the roles of pioneer transcription factors [Iwafuchi-Doi and Zaret, 2014].

On the other hand, TFs may also compete for target motifs. This mode of regulation

would make TFs compete for a limited pool of available sites. By binding to a target

site, one TF will inhibit the binding of another. This site inhibition leads to repression of



1.4 transcription factors are at the heart of gene expression 13

gene expression and/or fine tuning. Work on stem cells differentiation have described

a mechanism by which target site competition enables cells to distinguish between

differentiation signal and cellular noise [Sokolik et al., 2015].

Chromatin structure

Within each cell, DNA is tightly compacted and organised. The levels of organisation

range from chromosomal territories to enhancer-promoter folding [Gibcus and Dekker, 2013].

HiC has become the gold standard method of determining the three dimensional struc-

ture and organisation of the genome [Lieberman-Aiden et al., 2009]. This method

relies of the "capture" of DNA fragments that are in close proximity to each other.

The final product of HiC experiments is a contact matrix describing the adjusted

number of contacts between each genomic region in a population of cells. Contact

matrices exhibit pyramid like structures than can either be described as Topologi-

cally Associating Domains (TAD) or chromatin loops [Lieberman-Aiden et al., 2009,

Dekker et al., 2013, Dekker and Heard, 2015]. Similar structures are described with re-

spect to genome anchoring to the nuclear lamina [Guelen et al., 2008, Pope et al., 2014,

van Steensel and Belmont, 2017]. These structures are known as Lamina Associated

Domains (LAD). The size of these structures can vary from a few thousand base

(kbp) pairs to a few million base pairs (mbp). In both cases, these structures can

be defined as genomic regions showing preferential contact within itself rather than

other genomic regions. The main difference between these structure types is found

at the tip of the pyramid. While chromatin loops show an increased number of con-

tacts at the tip of the pyramid, TADs generally lack this high contact density cluster

[Schwarzer et al., 2017, Hansen et al., 2018]. At a larger scale, TADs and loops can

be contained within A and B compartments. A compartments are considered to be

active while B compartments are considered inactive in terms of gene expression

[Lieberman-Aiden et al., 2009, Zhan et al., 2017, Qi and Zhang, 2018].
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The structure of DNA within cells is believed to impact gene expression [Rao et al., 2014,

Lupiáñez et al., 2015, Sexton and Cavalli, 2015, Zhou et al., 2019]. Numerous exam-

ples show how altered DNA folding will induce ectopic expression of certain genes

(reviewed by [Stadhouders et al., 2019, Ghavi-Helm et al., 2019]). The simplest case

to consider is enhancer-promoter interactions. DNA will be folded in order to

bring an enhancer close to its designated promoter thus inducing transcription

[Andersson and Sandelin, 2019]. It remains unclear what drives the folding of DNA.

One hypothesis involves Transcription Factors. By binding to DNA, they would drive

the folding of DNA and bring two sections of the genome closer together. The other

side of the argument would be that DNA is already folded in a way that would assist

enhancer-promoter interaction [van Steensel and Furlong, 2019, El Khattabi et al., 2019]).

This mechanism would be aided by DNA binding proteins that may not directly be

involved in transcriptional regulation but rather promote gene expression via genome

structural maintenance. In Drosophila, there are examples of DNA binding proteins

that play the role of architectural maintainers as well as gene expression regulators

[Li et al., 2015, Cubeñas-Potts et al., 2017]. This helps to distinguish between permis-

sive chromatin contacts and instructive chromatin contacts. While permissive chro-

matin contacts are independent of cell type and may be unrelated to gene regulation,

instructive chromatin contacts refers to DNA-DNA contacts that are cell type or tissue

type specific and induce transcriptional activation [De Laat and Duboule, 2013]. A

subset of TAD boundaries were shown to be cell type specific suggesting a role in tran-

scriptional regulation and cell differentiation [Chathoth and Zabet, 2019]. This would

also suggest that only a subset of TADs are conserved between cell types. Conserved

TAD boundaries would induce permissive chromatin contacts and non-cell specific

gene expression while cell-types specific TAD would play a role in cell type specific

gene regulation.

The folding of the genome could also create pockets or hubs that increase local TF

concentration. DNA hubs would help TFs to bind to target genes [Boija et al., 2018].
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Work on phase separation has shown to be a promising avenue to describe the influ-

ence of genome architecture on TF binding [Hnisz et al., 2017, Boeynaems et al., 2018].

However, our understanding of genome architecture is still in its infancy. It is still

unclear how TFs find their way through the complex maze of chromatin in order to

find their target sites.





2

M O D E L S O F T F B I N D I N G

the dawn of tf binding modelling

With the increase of available data, there has been a need to find convenient and

elegant ways to both analyse and conceptualise biological data. In genome biology,

this is especially true as large genomes are impossible to analyse by hand. After being

sequenced, the human genome was printed into a set of books. The whole human

genome could scarcely fit in 130 volumes of double sided size 4 font print outs!

In recent years, the increase in computational power has made the analysis of ge-

nomic data somewhat trivial (I insist on the "somewhat"). In coordination with next

generation sequencing, the field of bioinformatics has exploded and provided a new

understanding of TF binding. However, the mechanisms of TF binding still remain

a vibrant field of research. In particular, over the past decades, there has been an

ongoing effort to describe, model and predict TF binding to DNA. In the following

sections, I will give an overview of the various models developed to predict TF binding.

The sections are broken down into the various biological or physical features used to

model TF binding.

17
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sequence based models

The most fundamental aspect to consider when modelling TF binding is binding motif.

In 1987, Berg and Von Hippel proposed a statistical-mechanical model based on binding

energy contributions of each base pair [Berg and von Hippel, 1987a]. Simply put, the

model statistically described binding motifs (using experimentally determined binding

motifs) and the distribution of similar motifs in promoter regions. Motifs that shared

similar base pair composition to known motifs were highly predictive of gene activity

in other promoter regions (for the same TF). This model is however based on a few

assumptions. Firstly, binding motifs have been selected through evolution to conform

to protein binding specificity. Secondly, more than one sequence is capable of fulfilling

these binding requirements. It is also important to consider that these high affinity

binding motifs are equally likely to occur. By considering sequence statistics alone, the

model demonstrated reasonable agreement with experimental data available at the time.

However, due to the low number of binding sites used to develop this model, Berg and

Von Hippel conceded that this would result in small sample statistical bias. Similarly,

Robert Harr also proposed a pattern matching algorithm based on the assumption that

genetic information follows a statistically predictable pattern [Harr et al., 1983]. All

four base pairs have , theoretically at least , the same chance of occurring in the genome.

In 1982, Gary Stormo proposed a model incorporating information theory (originally

developed for ribosomal binding on RNA) [Stormo, 1982]. This model made use

of the perceptron algorithm to distinguish translation initiation sites in E. coli. The

accumulation of binding motifs for a certain protein offered the possibility of creating

a "Position Frequency Matrix"(PFM). By dividing base pair frequency by the total

amount of binding sequences, one will obtain a "Position Probability Matrix"(PPM).

The original model proposed by Stormo assigned a weighted probability to the matrix

under the following assumptions:
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• Each base pair in the binding motif independently contributes to the binding

specificity of a given sequence.

• The probability of occurrence needs to be weighted by considering nucleotide

frequency in the genome and that a nucleotide appearing at a higher frequency

must have a higher contribution to DNA binding specificity.

Nevertheless, it is possible for some base pairs to be absent from a binding motif

PFM. Zero probabilities are replaced by introducing Laplacian Operators or psuedo-

counts. Laplacian Operators will ensure that null probabilities will not interfere with

the probability weighting and sequence scoring. The information content (A measure

of the specificity of a sequence) is given by:

Iseq(i) = ∑
b

fb,ilog2
fb,i

Pb

with I the information content of the sequence seq, fb,i the observed frequency of

each base pair at that position and Pb the background frequency of each base pair.

The information content is also called relative entropy or Kullback-Liebler distance.

In order to estimate the statistical significance of a binding motif, I is a normalised

log-likelihood ratio statistic. The probability of a site Sα being bound is given by:

P(SαBound) =
−eH(b,i)·Sα

Z

with H(b, i) being a matrix containing the binding energy of each base pair (inde-

pendently contributing to binding), Sαa particular sequence and Z the sum of whole

genome binding affinities. In order to justify the use of the equations above, one

would need a collection of high affinity binding proteins and the complete genome

of a specific organism. It would also be necessary to assume that the genome is

random (considering background probability of any base pair). This assumption

can be made when considering short sequences such as the length a binding site. A
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Probability Weighted Matrix would then become the matrix that would maximise

the binding probability of the sequence Sα. The maximised probability matrix was

formulated by [Heumann et al., 1994]. However, this model shows its limitations due

to the high amount of false positive binding motifs. The high affinity binding sites

proposed by this method are much more frequent than what is found experimen-

tally. It has been suggested that a uniform correction of base pair occurrence may

be misleading. Other models based on the matrix framework were also proposed

by [Zhang and Marr, 1993]. Stromo revisited and improved his model over the years

[Stormo, 2000, Stormo and Zhao, 2010]. Although imperfect, this model is still used

today. Many modern models of protein binding to DNA still rely on PWM scores

[Tompa et al., 2005, Elemento and Tavazoie, 2005]. PWM motifs have also been used

to describe TF binding families, in particular motif families [Jolma et al., 2013]. TFs can

be classified with respect to their binding motif. The ability of multiple TFs binding

to the same motif strongly indicates other contributing factors to TF binding and the

subsequent gene regulation.

base pair contribution and dna shape

As described previously, PWM scores exhibit certain limitations and important as-

sumptions. More specifically, independent contribution of base pairs in a binding

motif has been debated [Zhou et al., 2015]. Zhou investigated base pair contribution

in binding motif specificity by considering base pairs as a series of k-mers. As base

pair composition affects DNA structure, DNA shape features were also included into

the model. These included Minor Groove Width, Propeller Twist , Roll, and Helix

Twist. By using support vector regression, they demonstrated that DNA shape features

strongly improve the quality of the model. Increasing k-mer length also displayed

an increased ability to predict and model TF binding. This suggests base pairs do

not act independently but rather as a cohesive unit. The k-mer length was limited to
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3-mer as increasing the number of k-mers also increases the feature space and thus the

computational power needed. Later, the same lab produced an improved model that

included 13 DNA shape features. They showed that DNA shape inclusion consistently

improved TF binding predictions [Li et al., 2017].

chromatin states

As described in the previous section, DNA accessibility and chromatin states seem to

play a central role in TF binding. It comes to no surprise that these factors have been

included in many TF binding prediction tools and models. In 2011, the CENTIPEDE

algorithm was developed by [Pique-Regi et al., 2011]. The model was developed using

Bayesian inferential statistics. The likelihood of a TF binding depended on both the

binding motifs (PWM) as well as the cell specific DNA accessibility pattern. However,

CENTIPEDE did not take into account DNase I fluctuations between binding sites

nor did it account for variability between DNase I replicates. These caveats were later

corrected with the release of msCENTIPEDE [Raj et al., 2015a].

The first major paper to use machine learning in TF binding prediction was released

in 2014. PIQ (Protein Interaction Quantitation) incorporates DNase data by consid-

ering both shape and magnitude of accessibility data [Sherwood et al., 2014]. Using

a method called expectation propagation, PIQ predicted TF binding sites using both

accessibility and PWM motif data. At the time, this new algorithm out-performed com-

peting tools. Interestingly, Hidden Markov Models had been used in 2011 to predict

TF binding using chromatin states [Won et al., 2010]. The software ( named Chromia)

included chromatin state information in order to infer TF binding sites. Machine

learning algorithms have seen a huge surge in popularity throughout many fields of bi-

ology and in particular TF binding prediction [Salekin et al., 2017, Salekin et al., 2018,

Alipanahi et al., 2015]. Their incredible predictive power promised a deeper under-

standing of biology. However, it should be noted that most machine learning al-



22 models of tf binding

gorithms suffer from their lack of explainability and should be used with caution

[Angermueller et al., 2016, Roscher et al., 2019]. Despite efforts to push towards ex-

plainable forms of machine learning [Tareen and Kinney, 2019], we still don’t under-

stand which factors drive predictions.

In collaboration with ENCODE, DREAM challenges released a TF binding predic-

tion competition. The aim of the competition was two-fold. First, they aimed to

identify the best performing TF binding predictions models. Second, they aimed

to set guidelines in order to asses the performance of such models. ENCODE and

DREAM challenges provided the competitors with ChIP-seq data for various TF in

various cell lines as well chromatin accessibility data. Unsurprisingly, many tools

presented were based on some form of machine learning algorithm. Some of the most

notable tools were Catchitt, FactorNet and Anchor, all three scoring in the top positions

[Quang and Xie, 2019, Keilwagen et al., 2019, Li et al., 2019].

The ability to predict TF binding from DNA accessibility data is undeniable. However,

pioneer TF such as FOXA2 were often poorly predicted confirming that other factors

are required. Furthermore, as described previously, despite strong predictions for TF

such as CTCF, the binding mechanisms of TF binding remained an open question.

binding kinetics of tf binding

For many years, the field of Enzymology has formalised the relationship between

ligands and receptors using binding kinetics. The binding of a ligand to a receptor

can also be described with respect to ligand competition and cooperativity. Grankek

and Clark proposed binding kinetics model of TF binding [Granek and Clarke, 2005].

Their model also included both competition and cooperativity. They demonstrated

the effect of distance on protein-protein interaction and how this would affect gene

expression. However, their model of cooperative binding failed to include indirect

cooperative binding mechanisms such as assisted loading [Voss et al., 2011].This mech-
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anism also named collaborative competition describes the competition between two

different transcription factors binding to the same motif. Instead of hindering the

binding of its co-factor, the binding of one will increase the probability of binding

of the other by increasing chromatin accessibility. Similarly, Wang proposed another

kinetic model based on explicit statement of association and dissociation constants

[Wang et al., 2009]. Constants were calculated by using tagged TFs. The fluorescence

emission rate would change between bound and unbound states.

However, none of these models consider site specific binding but rather describe

general binding kinetics between transcription factors and DNA. In 2007, a biophysical

model of TF binding and computational tool (TRAP - Transcription Affinity PRediction

) was proposed by Roider [Roider et al., 2007]. At its core, the model was based on site

specific binding equilibriums derived from binding kinetic equations. TRAP would

predict the probability of a TF binding to a given site without requiring any threshold

; The model would describe the probability of binding at any given site along the

genome. This would ensure that the whole spectrum of binding affinities was included

rather than only considering high affinity binding sites. Interestingly, this model

would also infer the number of bound molecules and a scaling factor by maximising

correlation between predicted profiles and ChIP-chip experimental profiles.

statistical thermodynamics

Statistical mechanics (also called statistical thermodynamics) has yielded promising

insights into TF binding mechanisms. Classical thermodynamics relies on the study

of a system as a whole. Any given system S can be described as set of parameters

such as pressure, temperature or volume (not restricted to this short list). However,

thermodynamic parameters are thought to be the consequences of particle conforma-
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tion within the system. In other words, a system can be described by the distribution

and intrinsic proprieties of each particle within that system. The observable behaviour

of a system is therefore a direct consequence of this particle distribution. Statistical

thermodynamics can considered as a combinatorial model of TF binding. There have

been numerous attempts to describe TF binding using combinatorial models. Ana-

lytical binding models were used to describe the competition between specific and

non-specific binding of TFs to DNA [Tsodikov et al., 2001]. Combinatorial models

were also used in an attempt to describe the strong but non-specific DNA binding of

electrically charged macromolecules [Rouzina and Bloomfield, 1997]. More recently,

Mirny described cooperative binding of non-interacting TF’s through competition with

nucleosomes [Mirny, 2010]. Djordjevic proposed a TF binding model using a statistical

mechanics framework [Djordjevic et al., 2003]. The proposed method was based on

classification of potential binding sites using sequences specific TF binding energy.

Contrarily to many other methods, their model tried to brake away from information

theory methods such as the PWM. This showed a significant reduction in false positive

binding sites. Following the same path, He proposed a model that would consider

cooperativity, competition and short range repression under a statistical mechanic

framework [He et al., 2010]. However, this study was based on the assumption that

proteins would only bind to high affinity sites. There was no consideration for low

affinity binding. Recent developments have shown that clustering of low affinity

binding sites are capable of inducing gene expression by being preferentially bound by

TFs [Farley et al., 2015].

the zabet and adryan model

In 2015, Zabet and Adryan introduced an approximation of the statistical mechanics

framework [Zabet and Adryan, 2015]. This lead to a reduction of computational com-

plexity without loosing predictive capabilities. Furthermore, the explicit description of
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factors involved in TF binding may shed light on TF binding mechanisms. The model

describes the probability of a transcription factor being bound to a site j by:

P(N, a, λ, ω)j =
N · aj · e(

1
λ ·ωj)

N · aj · e(
1
λ ·ωj) + L · n · [ai · e(

1
λ ·ωj)]i

with:

• N , the average number of bound molecules to DNA ( considering the entire

genome of an organism compacted within the nucleus)

• a , the accessibility of site j

• ω , the binding energy required for a TF to bind to site j - in the form of a PWM

score.

• λ , a scaling factor for the PWM score.

• L , the length of the genome of interest

• n , the ploidy level of the organism

It should be noted that Position Weight Matrices can be used to score the genome

or a sequence. The score represents how strong of a binding site is a motif given the

PWM for a specific TF. As described by Zabet and Adryan, both N and λ are unknown

and would need to be inferred by maximising Pearson correlation and minimising

Mean Squared Error between TF binding predictions and ChIP-seq data. Their analysis

was carried out on a set of five Drosophila TFs ( Bicoid, Caudal,Giant,Hunchback and

Kruppel). The correlation between the model and experimental data was sensitive

to changes in λ. Conversely, varying the number of bound molecules (N) prompted

stronger fluctuations in Mean Squared Error (MSE). In order to accurately infer both

N and λ, they suggested the use of metric overlap. The best performing parameters
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using Pearson correlation were overlayed with best performing parameters obtained

when using MSE. The resulting overlap would indicate the optimal set of parameters.

One of the key innovations of their model was the inclusion of DNA accessibility.

DNA accessibility would modulate the probability of TF binding in combination with

binding energy (PWM), the scaling factor (λ) and the number of bound molecules. To

model the probability of a site being accessible, they followed the approach proposed

by Kaplan.

aj =
1

1 + exp(−β · DDj + α)

DDj DNase I read density, α and β are scaling parameters [Kaplan et al., 2011b].

Interestingly, Zabet and Adryan demonstrated that considering DNA as either open

(accessibility value of 1) or closed ( accessibility value of 0) was sufficient to accurately

predict TF binding.

The model described above is derived from combinatorial mathematics and in the

context of TF binding, describes the different ways TFs can be arranged along a

sequence of DNA. The model above was built upon a few assumptions. First, only

one TF can bind any given site at any given time and many sites will be unbound by

TFs. Second, only sites above a certain threshold are considered as potential binding

sites. Third, the role of DNA accessibility is to "mask" potential binding sites under

the assumption that TF binding only occurs in open chromatin. Fourth, the number

of binding sites available along the genome is assumed to be much higher than the

number of available TF molecules.

The model also comes with a few limitations. First, the model only describes the

mechanisms by which one TF binds to DNA. The model does not include the full scope

of mechanisms known to drive transcription such as cooperative binding. Second,

using a threshold to select binding motifs will potentially filter out low affinity binding

sites that may induce transcriptional activity [Farley et al., 2015]. Finally, considering
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DNA accessibility as either open or closed might not capture that full scope of TF

binding events.

Interestingly, the Zabet and Adryan model is very similar to the model described

by Roider [Roider et al., 2007]. Both models require the use of PWMs in order to

determine binding energies along DNA sequences. Both models also infer the number

of bound molecules and a PWM scaling factor by maximising correlations between

predicted profiles and ChIP profiles. Initially, they both considered the full spectrum

of binding energies between unbound sites and highly specific binding sites. However,

the analysis carried out by Zabet and Adryan only considers strong binding sites

when producing predictions. Their model also differs by including DNA accessibility

as a contributing factor to TF binding. The Zabet and Adryan model could also

be loosely compared to the model proposed by Berg and Von Hippel (see above -

[Berg and von Hippel, 1987a]) as both model are statistical-mechanical models by na-

ture. However, the model proposed by Berg and Von Hippel considered motif sequence

distribution between promoters of specific TFs and how related these sequences were

to explain genetic activity in different promoters.

The following thesis directly builds upon the results obtained by Zabet and Adryan.
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A I M S

general aims

The main aim of this thesis can be summarised by the following:

Dissecting the binding mechanisms of Transcription Factors to DNA using a statistical

thermodynamic framework.

In particular, this thesis aims to dissect the contributions of various factors in TF

binding, namely chromatin states, binding energy (described by PWMs), a PWM scaling

factor, and number of TF molecules bound to DNA. This biophysical model aims to

recover known binding mechanisms but also uncover unknown factors contributing

to well studied TFs. In order to accomplish this task, I have aimed to achieve the

following goals:

1. Designing a user friendly tool implementing the model described by Zabet

and Adryan [Zabet and Adryan, 2015]. The creation and thorough testing of

this tool will indicate how strongly this statistical thermodynamic model holds

against other frameworks. Furthermore, testing will demonstrate strengths and

29
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weaknesses within the model that will need to be taken into account for further

work. This includes the incorporation of new goodness of fit metrics to evaluate

model performance.

2. Dissecting the role of DNA accessibility, binding energy and specificity, and DNA

binding protein abundance. This will be accomplished by a thorough inspection

of a set of TFs in Drosophila.

3. Improve the model by including chromatin states as an influencing factor towards

TF binding and implementing a genetic algorithm for parameter optimisation.

4. Tie all results together in a comprehensive analysis of a case study.

thesis break down

The following thesis will be broken down into the following chapters:

• Chapter 1 will describe the development and testing of ChIPanalyser, an R pack-

age I have now made available on Bioconductor [Martin, 2017]. More specifically,

I will describe the inner working of the package as well as demonstrate data

preparation required for the use of the package. Furthermore, I will demonstrate

the performance of ChIPanalyser by testing and validating its performance in a

cross-validation set-up as well as comparing its performance to other TF binding

predictive tools.

• Chapter 2 will describe the insight gained in the binding of three architectural

proteins in three Drosophila cell lines (Kc167, BG3 and S2). These architectural

proteins are CTCF, BEAF-32, and su(Hw). I will illustrate that DNA accessibility

plays a nuanced role in the binding of these TFs. Moreover, TF abundance plays

a lesser a role in their binding, indicating a robust mechanism against protein
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concentration fluctuations. I will also illustrate ChIPanalyser’s ability to recover

known preferences towards chromatin accessibility for three Hox TFs (Ubx, Dfd,

Abd-b) in Drosophila Kc167 cells. Ubx preferentially binds to open chromatin

whereas both Dfd and Abd-b can also bind in denser chromatin.

• Chapter 3 describes the development of the model by including chromatin

states as a driver towards TF binding. In order to uncover chromatin state

preferences, I developed a genetic algorithm using the core functionalities offered

by ChIPanalyser for parameter optimisation. I demonstrate that architectural

proteins show distinct preferences towards chromatin states. The same was

applied to Hox TFs to demonstrate that binding preferences could also be

recovered.

• Chapter 4 ties all the previous results and insight together by exploring the

performance of the model on the well-known Notch activator Su(H). In this

chapter, I examine the performance of the model on Su(H) binding predictions

with respect to Accessibility, chromatin states, induction of the signalling pathway

and finally, protein abundance in partial knock-downs. I demonstrate that Su(H)

shows distinct preferences towards chromatin states and that as opposed to

architectural proteins is sensitive towards changes in proteins abundance.

• Chapter 5 will summarise the results of this thesis and critically discuss the

findings with respect to both the model and the underlying biology.

• Conclusion will offer some concluding remarks with respect to the results

described in this thesis as well as their context in biology.

• Looking Forward will describe avenues that could be explored to further improve

the model and the package.
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B U I L D I N G C H I PA N A LY S E R

chapter summary

The following chapter will describe the development of ChIPanalyser, an R package

published and available on Bioconductor. First, I will describe the input data required

by ChIPanalyser. Second, I will describe how the model was implemented and the

ChIPanalyser work flow. Finally, I will describe the performance of ChIPanalyser with

respect to parameter selection, a cross validation set up and a comparison to other

available frameworks.

introduction

The formal description of the natural world has been a key aspect of science for

centuries if not millennia. Probably one of the most well-known formalisation of

the natural world was proposed on the 5th of July 1687. Newton proposed a for-

mal description of the laws of motions that still hold to this day. Biology has

not been exempt from this trend and in particular Transcription factor (TF) bind-

ing. As described in the introduction, TFs tend to bind in a sequence specific

35
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manner[Ptashne and Gann, 1997, Spitz and Furlong, 2012]. Most TFs (albeit not all)

show a preferred binding motif along the genome. In many cases, the binding

motif be adequately described by a Position Weight Matrix (PWM). The idea was

developed by Stormo back in 1982 to describe the binding of ribosomes to RNA

[Berg and von Hippel, 1987b, Benos et al., 2002, Stormo and Zhao, 2010]. The princi-

ple behind PWMs was that the binding preference of a given DNA binding pro-

tein can be described by a weighted matrix. Every position in the binding motif

is weighted based on the frequency of occurrence of this base pair at that posi-

tion in the motif but also the likely-hood of that base pair occurring within the

genome[Berg and von Hippel, 1987b, Roider et al., 2007].

However, considering the binding motif alone yields a higher rate of binding sites

than observed experimentally. Many of the binding sites do not seem to be bound

by TFs[Zhang et al., 2005, Li et al., 2008, Farnham, 2009, Skalska et al., 2015]. This is

where the crux of the TF binding prediction problem lies: How to distinguish bound

binding sites from unbound ones?

There have been many approaches to describe TF binding and predict binding location

of TFs along the genome. Recently, it was suggested that using a statistical thermo-

dynamic model could help filter out bound from unbound binding sites. Statistical

thermodynamics also known as statistical mechanics describes the many configuration

that a system S may have with respect with to each particle contained within S. In

the context of TF binding, the system is equated to a strand of DNA and the particle

conformation to the TF repartition within the system. Both the location of the TF and

the number of TFs bound to DNA both play an important role in how we can describe

the system. In 2015, Zabet and Adryan derived a model of TF binding from statis-

tical thermodynamics [Zabet and Adryan, 2015]. The model was formalised as follows:

P(N, a, λ, ω)j =
N · aj · e(

1
λ ·ωj)

N · aj · e(
1
λ ·ωj) + L · n · [ai · e(

1
λ ·ωj)]i

(1)

describing the probability of a site j being bound by a TF with:
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• N , the average number of bound molecules

• a , the accessibility of site j

• ω , the binding energy required for a TF to bind to site j - in the form of a

Position Weight Matrix

• λ , a scaling factor for the Position Weight Matrix.

• L , the length of the genome of interest

• n , the ploidy level of the organism

The model describes the different possible conformation of TF binding along the

genome by considering four main factors.

• ω, the binding energy of a given transcription factor. In this instance, the score

associated to a PWM is equivalent to binding energy of that site.

• λ represents a scaling factor applied to the binding energy. The scaling factor

describes how well a TF discriminates between low and high affinity sites. If two

sites a and b are similar but not equal, how much more does a given TF prefer

site a over site b. In the context of this equation, the lower the value assigned to

lambda, the higher the affinity of a TF to high affinity sites, the higher its ability

to discriminate between low affinity and high affinity sites.

• N details the average number of molecules bound to the genome. The number

of bound molecules could be seen as a proxy for TF concentration.

• a represent the accessibility of a given site. This model makes the assumption that

TF binding occurs in accessible DNA. If a stretch of DNA is tightly compacted

(considered inaccessible for TF binding), we would not expect any binding

despite potentially containing a binding site. Accessibility serve the purpose of

reducing the number of possible binding sites.
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ChIPanalyser is an implementation of the model described above available on Bion-

conductor [Gentleman et al., 2004, Martin, 2017] .The four main factors believed to

influence TF binding are not always given by experimental methods. Namely, the

number of bound molecules N and the scaling factor λ are not given experimentally. To

extract the values of these parameters, both N and λ are inferred within ChIPanalyser

by finding the combination of parameters that maximises (or minimises) a goodness of

fit metric. I recognise that recent advance in experimental techniques such as FRAP,

single-molecule tracking or in-gel quantitative fluorescence have given insights into the

number of molecules of a given protein within a nucleus. Interestingly, if the number

of molecules are known by experimental means, the estimated value of number of

molecules can be used as is and the model would not required any parameter opti-

misation step. However, this type of data is not widely available. Furthermore, for

the purpose of describing the inner working of ChIPanlayser and the strengths of the

model, I will consider that both N and λ are unknown.

ChIPanalyser as a tool serves multiple purposes. The package can infer the number

of bound molecules and a scaling factor from ChIP-data within biologically acceptable

ranges. The final product of the package is a ChIP-like profile describing the binding

of a TF to DNA. In order to both infer the optimal set of parameters (N and λ) and

produce ChIP-like profiles, ChIPanalyser requires input data. In the following section, I

will describe the data required by the package and the pre-processing pipeline applied

to said data.
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data input

DNA Sequence

In order to locate binding motifs along the genome of an organism, the package

requires a reference genome. Thankfully, many reference genomes are available within

the BSgenome R packages [Pages, 2018]. For the purpose of the work carried out in

this thesis, I used the latest available version of the genome. For Drosophila melanogaster,

the dm6 version of the genome was used. All data sets that required alignment were

aligned to this version of the genome as well. When datasets where downloaded

pre-aligned to a prior version of the genome, they were lifted over to dm6 using UCSC

liftover chains. The same principle was applied when the analysis was carried out in

different organisms. When required (i.e comparing frameworks), the hg38 version of

the human genome was used.

Binding Motifs

Binding motifs for TFs used through out this thesis were either downloaded from

the JASPAR [Mathelier et al., 2014] database or extracted from the MotifDb R package

[Shannon and Richards, 2018] which collects and compiles PFMs and Position Proba-

bility Matrices (PPM) from various online repositories. Each Position Frequency Matrix

was also selected based on the organism used for the analysis. For the purpose of

method comparison (msCENTIPEDE - binding motif requirements), TF binding sites

were also extracted using FIMO from the MEME-suit tool kit [Grant et al., 2011]. PFM

and PPM are converted to PWMs by ChIPanalyser using the method described by

Stormo[Stormo and Zhao, 2010] . Figure 1 describes the binding motifs (also known
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as Motif Logo) used through out most of the work carried in Chapter 1, 2 , and 3.

More specifically, three Drosophila architectural DNA binding proteins were selected

(CTCF, BEAF-32, and su(Hw) ) as well as three Hox TF (Dfd, Abd-b, and Ubx). When

required, CTCF motif for Homo sapiens was also selected.
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Figure 1: Motif Logos. Motif Logos of Architectural Proteins and Hox TFs

Genome binding profiles

Genome binding profiles and peaks were downloaded from modEncode in three

Drosophila cell lines: Kc167, S2, BG3 [ENCODE Project Consortium, 2012, Davis et al., 2018,

modENCODE Consortium et al., 2010]. As ChIPanalyser mostly requires ChIP score

pile-up, I considered both ChIP-seq and ChIP-chip to be similar enough for the purpose

of this thesis. As all modEncode data sets were aligned to the dm3 version of the

Drosophila genome, all data sets were lifted over to the dm6 version of the genome using

UCSC liftover chains. When required, supplementary data sets were downloaded from

Gene Expression Omnibus (GEO) database. GEO datasets were aligned to the dm6
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genome using bowtie-2 (–non deterministic) [Langmead and Salzberg, 2012]. SAM

files were converted to BAM files using samtools [Li et al., 2009]. Peaks and pile-up

signal were called using macs2 with a 0.01 FDR [Zhang et al., 2008]. A summary table

of published data sets used in this thesis can be found in Appendix A. Human data

was downloaded from GEO and did not require further processing. It should be

noted that genome binding profiles are required for model validation and inferring

the optimal set of parameters by optimising a goodness of fit metric between the

predicted ChIP-like profile and experimental ChIP profiles. As described above, if

these parameters are known by other means, ChIP profiles are not required for the

package to produce a prediction.

Chromatin Accessibility

DNA accessibility serves the purpose of limiting the number of binding motifs avail-

able. DNA accessibility data is produced by two main techniques: DNase I hyper-

sensitivity followed by sequencing and ATAC-seq. DNase I hypersensitivity data

was generated by modEncode for three Drosophila cell lines: Kc167, BG3 and S2

[Kharchenko et al., 2010]. I aligned fastq files to the dm6 genome using bowtie-2 (–

non-deterministic) [Langmead and Salzberg, 2012]. SAM files were converted to BAM

files using samtools [Li et al., 2009]. Peaks and read pile-up were called using macs2

(-broad-call -cutoff 0.05 -q 0.05) [Zhang et al., 2008]. When required, ATAC-seq data

for Kc167 cells was downloaded from GEO. ATAC-seq processing was described by

[Porcelli et al., 2019]. For the following chapter, I used only DNase hypersensitivity

sites (DHS). The comparison between DHS and continuous DNA accessibility scores

will be described in Chapter 2 (ChIPanalyser: Insights into Biology). DNA accessibility

data is not required for ChIPanalyser to produce ChIP-like profiles. DNA accessibility

may improve the quality of the predicted ChIP-like profiles.
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chipanalyser work flow

In the following section, I will describe the general work flow of ChIPanalyser. The

general work flow is described in Figure-3 and requires data as described above. A

complete description of the ChIPanalyser work flow including working examples can

be found in the ChIPanalyser Bioconductor vignette[Martin, 2017].
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Data Input

DNA 
Sequence

 

Position 
Weight Matrix ChIP Data

DNA 
Accessibility 

BSGenome/DNAStringSet PMF Database/MotifDb

ChIP signal
.bed/.wig or data.frame

ChIP peaks
.bed/.gff or GRanges  
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Processing ChIP data

Extracting ChIP-seq signal at loci containing both 
peaks and accessible DNA

processingChIPSeq()

Inferring optimal Parameters

Computing optimal values for N and λ
ComputeOptimal() / plotOptimalHeatMaps()

Predicting ChIP profiles and plotting 
Computing Genome Wide PWM Scores

computeGenomeWidePWMScore()

Computing PWM Score at sites above threshold
computePWMScore()

Computing Occupancy at sites above threshold
computeOccupancy()

Compute ChIP-seq like Profiles
computeChipProfile()

Estimate model Accuracy 
profileAccuracyEstimate()

Plot ChIP-seq like profiles 
plotOccupancyProfile()

Figure 2: ChIPanalyser workflow. ChIPanalyser follows the following work flow. Data Input:

Data may come in various formats (e.g. bed, wig, gff etc.). Processing ChIP-seq

data: If ChIP data is used to infer the optimal set of parameters (and/or validate

model goodness of fit), ChIP data will be normalised and only regions of interest will

be extracted for further analysis. Inferring optimal parameters Inferring optimal

parameters will be achieved by maximising a goodness of fit metric. Predicting ChIP

profiles and plotting: Armed with values for number of bound molecules and the

PWM scaling factor, ChIPanalyser will produce ChIP like profiles. Both optimal

parameter heat-maps and ChIP profiles can be plotted using the packages plotting

functions.
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ChIPanalyser will automatically convert PFMs to PWMs. It is also possible to

directly provide a PWM if one is already available. If using genome binding profiles

for parameter inference or model validation, the first step of the analysis is processing

and extracting ChIP data. The processingChIP function will load ChIP data and extract

a normalised ChIP score at a base pair level for the loci of interest. The loci of interest

can be provided by the user. If no loci are provided by the user, the processingChIP

function will extract loci based on the following criteria (and by extension arguments

to the function):

• Loci Width: If no loci are provided, ChIP data will be converted into normalised

ChIP scores at a base pair level and binned into regions of 20kbp (default split

value). Produced bins will serve as loci of interest for further analysis.

• Peaks: If a set of ChIP peaks are provided, the function will select the loci of

interest that contain at least one peak.

• Chromatin State: If DNA accessibility data is provided, the function will select

the loci of interest that contain at least 100bp of accessible DNA.

• Reduce: The reduce argument will sort the loci of interest based on highest ChIP

score contained in any given bin. The processingChIP function returns a ordered

set of loci and scores. This argument also allows the extraction of top regions

based on ChIP enrichment values. As an example, if the reduce argument is set

to 50, only the top 50 regions with respect to enrichment will be returned.

Peaks and DNA accessibility data may be used in combination in order to ensure

that the selected loci contain at least one ChIP peak and accessible DNA. However, for

this analysis, regions were selected before hand. The reference genome was split into

bins of 20kbp and all bins containing at least one peak of any TF from any data set as

well as at least 100 bp of accessible DNA were used as input loci. Furthermore, black

listed regions as described by USCS were also removed. This resulted in 3293 bins of

20kbp. When referring to top regions, I will be referring to the top regions selected
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from this set. During this step of the pipeline, ChIPanalyser provides four methods of

reducing ChIP background noise: zero, mean, median and sigmoid. The current model

does not consider ChIP depletion scores therefore negative ChIP scores are removed

by assigning a score of zero to those positions (zero filtering). Mean and median assign

a score of zero for any score below the mean or median score respectively. Mean and

Median scores are computed after removing ChIP depletion scores. Finally, Sigmoid

applies logistic weighting to every score. The logistic mid point is set at the 95th

quantile of ChIP scores. The lower bound is set to zero and the upper bound is set to 2.

Consequently, each score will be multiplied by a weight: if the score is above the 95th

quantile the score will be weighted by values between 1 and 2. If the score is below

the 95th quantile, score will be weighted by a factor ranging from 0 to 1. The logistic

function (generalised sigmoid) can be described as the following:

f (x) =
L

1 + e−k(x−x0)
(2)

with L, the curves maximum values; k, the steepness of the curve; x0 , the sigmoid

midpoint.

Once the loci of interest have been selected, the next step infers the optimal set of

parameters (N and λ) by maximising (or minimising in the case of Mean Squared

Error) a goodness of fit metric. The goodness of fit metrics available in the package are

described in Table-1.
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Metric Description Type

MSE Mean Squared Error Dissimilarity

K-S distance Kolmogorov-Smirnov Goodness-of-Fit Test Dissimilarity

Geometric ratio
∫ b

a | f (x)−g(x)|dx∫ b
a min( f (x),g(x))dx

Dissimilarity

Recall TP
TP+FN

Dissimilarity

Pearson
Pearson correlation coefficient between predicted and ChIP

profiles
Similarity

Spearman
Spearman correlation coefficient between predicted and ChIP

profiles
Similarity

Kendall
Kendall correlation coefficient between predicted and ChIP

profiles

Similarity

Precision TP
TP+FP

Similarity

F-score 2TP
2TP+FP+FN

Similarity

Accuracy TP+TN
TP+TN+FP+FN

Similarity

MCC TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Similarity

AUC Area Under the ROC (Receiver Operator Characteristic ) Curve Similarity

Table 1: Goodness of Fit metrics. ChIPanalyser offers 12 goodness of fit metrics grouped into

two classes Dissimilarity and Similarity. Symbolically each metric is either a measure of

how different two datasets are (Dissimilarity) or a measure of how similar two datasets

are (Similarity). TP - true positives, TN - true negatives, FP - false positives and FN -

false negatives. MCC represents Matthews Correlation Coefficient.

The computeOptimal function will infer the optimal combination of parameters by

following the algorithm described in Figure-3.
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Figure 3: ChIPanalyser Internal work flow. In order to infer the optimal set of parameters,

the package passes through the following steps. From top to bottom: (i) Score the

entire genome to extract minimum and maximum PWM scores, (ii) Select scores that

are above an arbitrary threshold, (iii) convert PWM scores to Occupancy probabilities

using the statistical thermodynamic model and a combination of values for N and

λ, (iv) smooth Occupancy sites using a gamma distribution in order to produce a

ChIP-like profile, (v) compute goodness of fit score for a combination of parameters

by comparing the predicted profile and ChIP data in 100bp bins. Steps (iii),(iv), and

(v) are repeated for each parameter combination.

The internal algorithm can be broken down into five distinct steps.

1. Compute Genome Wide scores: Genome wide scores are computed in order

to extract minimum, maximum and average exponential scores required for

the next steps. Genome wide scores are extracted from the reference genome.

If DNA accessibility data is provided, Genome wide scores will be limited to

only accessible DNA. It should be noted that the average exponential score is

dependant on the λ value. Minimum and maximum scores are required in order
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to select only most likely binding sites. The average exponential score is required

when computing the occupancy probability (see step 2 and 3).

2. Compute Scores Above a threshold: In order to select the most likely binding

motifs, only PWM scores that are above an arbitrary threshold will be selected.

The default value for the PWM threshold is set at 0.7 . This means that only the

top 30% of PWM scores will be considered as potential binding sites.

3. Compute Occupancy Probabilities: PWM scores above threshold are converted

into an Occupancy Probability by using the model described in equation 1.

Different values of N and λ will yield different occupancy probabilities.

4. Generating ChIP like profiles: Occupancy sites are converted to ChIP-like

profiles by smoothing the scores using a gamma distribution. This ensures that

the prediction transitions from punctual binding site location to a continuous

ChIP-like score at a base pair level. This also ensures that the predicted profile

will also mimic experimental local enrichment.

5. Computing goodness of fit: The final step of the algorithm compares the pre-

dicted ChIP-like profile to experimental ChIP data. The comparison is done by

comparing scores within bins of 100bp (user customisable - the resolution can be

as high as 1 base pair). As scores are computed at base pair resolution, average

occupancy score was used at lower resolutions ( i.e. average occupancy over 100

bp bins). When confusion matrices are required for scoring ( AUC, recall, F1,

MCC, Accuracy,precision ), ChIPanalyser selects 20 occupancy thresholds for

every regions. These thresholds represent squared occupancy scores between the

minimum occupancy score and the maximum occupancy score. As occupancy

scores range between 0 and 1, squaring the threshold will ensure a bottom heavy

distribution. The minimum score describes the smallest occupancy score between

predicted profiles and experimental profiles. The maximum score describes the

largest occupancy signal between predicted profiles and experimental profiles.
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Confusion matrices were constructed at each threshold. This approach ensures

that ChIPanalyser would consider signal enrichment when assessing goodness

of fit.

The algorithm repeats step 3 to 5 for each combination of N and λ. Values for N

and λ are predetermined but may also be customised by user (as long as there are at

least two values for each parameter). Once all combinations have been computed, the

combination of parameters that yield the best goodness of fit score will be selected and

returned by the coumputeOptimal function. The steps described above may also be run

individually if the parameters have already been selected (either by ChIPanalyser or

approximated by other means). The result of parameter inference can be visualised

using the plotOptimalHeatMaps function.

The final step of the analysis pipeline will produce occupancy profiles. Occupancy

profiles show the predicted profile produced by ChIPanalyser. The plots may be

enriched by the addition of ChIP data and accessibility data to serve as a point of

comparison. Example plots are shown in Figure-4.
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Figure 4: Metric Unreliability. The original model called for the maximisation of Pearson

correlation coefficient and the minimisation of Mean Squared Error. When extending

the analysis from the five original TF, I noticed that there were certain oddities arising

from the use of Pearson correlation coefficient. As seen in (A) and (B) Pearson

correlation coefficient does not seem to accurately measure the goodness of fit of

the model. I observed an overestimation or underestimation of the models ability

to predict TF binding. The second difficulty arising from using Pearson correlation

coefficient was that it showed very little difference in correlation for some data sets.

Previously, Zabet and Adryan described the optimal set of parameters by using the

overlap of correlation and MSE as shown in (C). In many cases, MSE was the driving

force behind the optimal parameters. Correlation played little to no role. For these

reasons, I decided to investigate other goodness of fit methods. In (A) and (B), yellow

shaded areas are regions of inaccessible DNA. Dark grey is experimental ChIP signal

and finally the red line represents predicted profile. Profiles in (A) originate from

BEAF-32 in BG3 cells. Profiles in (B) originate from CTCF in BG3 cells. All heat maps

represent Abd-B in Kc167 cells.
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The initial version of ChIPanalyser only used two goodness of fit metrics: Pearson

Correlation and Mean Squared Error (MSE)[Zabet and Adryan, 2015]. Optimal set of

parameters were selected by not only maximising correlation but by also minimising

MSE. The goal was to find the sweet spot that would include both a high correlation

and low MSE. Unfortunately, there were some limitations with this approach.

The first limitation came from the use of Pearson correlation as a goodness of fit metric.

Figure-4 A and B show predicted profiles (red lines) with respect to DNA accessibility

(yellow boxes) and compared to ChIP data (dark grey area) for BEAF-32 and CTCF in

BG3 cells. Pearson correlation seemed to either overestimate or underestimate how

well the model actually performed. The Pearson correlation associated to each profile

is included on the top right hand corner of each profile. Intuitively, the two bottom

profiles show an overestimation of the performance of the model.

The second limitation arose from using using the overlap of Pearson correlation and

MSE as a way of selecting the optimal parameters. Figure-4 C shows the heat maps

produced by ChIPanalyser for Dfd in Kc167 cells. From left to right: mean correlation

over all regions for each parameters combination; mean MSE over all regions for

each parameter combination; the overlap of Pearson Correlation and MSE for each

parameters combination. In this example, Pearson correlation plays little to no role in

selecting the optimal set of parameters and the selection is driven by MSE.

Based on these preliminary results, the initial version of ChIPanalyser needed to be

improved. The two hypothesised culprits for this behaviour were ChIP background

noise and the goodness of fit metrics used. The latest version of the package includes

noise filtering methods and different goodness of fit metrics to choose from. But

how well do these additions perform? Do they actually improve the package and the

performance of the model?
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filtering noise

As described above, ChIPanalyser provides four noise filtering methods: zero, mean,

median and sigmoid. In order to test the performance of these noise filters on ChIP data,

I selected three CTCF data sets: a noisy data set (modEncode 3674), a clean data set

(modEncode 2639) and finally a combination of all CTCF data sets in Drosophila S2

cells by adding enrichment score together at base pair level. Data sets were normalised

prior to combination in order to ensure equal contribution of each data set. Noise

filters are applied to ChIP data during the extraction and normalisation of ChIP signal

(processingChIP). For the purpose of this analysis, only the top 10 regions of each

dataset were selected. The optimal parameters were then inferred based on filtered

ChIP profiles.
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Figure 5: Noise Filtering methods have little effect on experimental ChIP signal. In order

to improve our predictions, I sought to test four noise filtering methods: Zero, Mean,

Median and Sigmoid. I tested these methods on three CTCF datasets: (A-B) a ChIP-seq

dataset with high background noise (modEncode 3674), (C-D) a ChIP-chip dataset

with very little background noise (modEncode 2639), and (E-F) a combination of all

ChIP-seq datasets in S2 cells (by adding enrichment signals together at a base pair

level) In (A),(C), and (E), I noticed that noise filtering methods have a limited effect

on reducing noise. The subsequent effect on predictions was limited but showed a

slight improvement when using the sigmoid method as described in (B), (D), and (F).

Figure-5 A,C, and E shows the effect of each noise filtering method on ChIP profiles.

Figure-5 B,D, and F describes the effect of each noise filter method on the performance

of predicted ChIP-like profiles. Generally, the four noise filtering methods used in

ChIPanalyser have little effect on ChIP data and only sigmoid filtering slightly improves

the predictions (Figure-5 A/B). This is especially the case when validation ChIP data
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sets are noisy. Unsurprisingly , there is little to no effect on the performance of the

model in clean data sets as seen in Figure-5 C/D.

inferring parameters : trials and tribulations

The next step was to asses how different goodness of fit metrics would affect the

selection of optimal parameters and the performance of the model. In particular, I

compared correlations (Pearson, Spearman and Kendall), MSE, Kolmogorov-Smirnov

Distance, precision, recall, accuracy, F-score, Matthews correlation coefficient (MCC)

and AUC ROC (see Table-1). In addition, I also developed a novel method that

describes the ratio of geometric shared area between curves and difference in area

between curves. The same three CTCF datasets as described above were used (clean,

noisy and combined). The resulting heat maps saw the emergence of two classes

within these metrics: (i) similarity metrics that describe how similar the two curves

are (correlation coefficients, precision, MCC, Accuracy, F-score and AUC ROC) and (ii)

dissimilarity metrics that measure of how different two curves are (MSE, geometric

ratio, recall and Kolmogorov-Smirnov distance). The results showed that depending

on the metric used, the optimal set of parameters would vary significantly, but each of

the two classes (similarity and dissimilarity metrics) displayed similar yet not identical

values for the optimal parameters (see Figure-6 A-F).

Goodness of fit metrics influence the way the model selects the optimal parameters,

but how does this translate to the individual predicted ChIP profile level? I further

investigated this behaviour at the individual loci using the same three CTCF datasets

(clean, noisy and combined). All associated scores were computed based on the

comparison between the predictions and ChIP data in 100 bp windows. Figure-6 G-I

shows that similarity metrics (dark blue shades) tend to be less prone to false positive
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peaks but miss the actual ChIP signal enrichment within the peak (the height of the

peak). On the other hand, dissimilarity metrics (light blue shades) generate far more

false positives but accurately recover the height of the peaks.

Overall, the best performing metrics were AUC ROC, MSE and geometric ratio. AUC

ROC occasionally missed peak height completely but seemed to recover peak location

fairly accurately, while geometric ratio and MSE rarely missed peak height but also

tended to predict a higher number of false positive peaks. For much of the following

analysis, I used AUC ROC and MSE, since they are more widely used estimators

and performed best. More specifically, MSE was used as the training metric to select

optimal set of parameters and AUC for validation.
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Figure 6: Goodness of fit Methods are context dependant. (A-F) Heatmaps show the overlap

of best performing (top 10 %) combination of parameters for similarity and dissimi-

larity method as well as an overlay of all methods. I produced these heatmaps using

the noisy (D-F) and clean (A-C) data sets. (G) ChIPanalyser correctly predicts CTCF

peaks in a clean ChIP dataset (modEncode 2639) for the majority of metrics used.

(H) For a noisier dataset (modEncode 3674) , dissimilarity metrics capture the height

of the peak but also tend to show a high rate of False Positive peaks. In contrast,

similarity metrics accurately predicted the location of the peak, but tend to fall short

in terms on peak height. (I) Combining several ChIP replicates (all ChIP-seq datasets

in S2 cells) does not reduce the rate of False Positive peaks for similarity metrics.
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assessing performance of the model

To evaluate the performance of the model, a chromosome withholding set-up was

used. The principle behind this set up is to ensure that there are no biases between

chromosomes and the model is not over-fitted to the data set used for training. The

model was trained on the top ten region of chromosome 3R in a BEAF-32 data

set (modEncode 922) and the optimal parameters were selected. The parameter

combination was then directly plugged into the model and validated on the top ten

regions of chromosome 3R (excluding regions used for training) as well as the top

regions of chromosome 2R.
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Figure 7: Chromosome withholding setup for model validation. I analysed BEAF-32 ChIP

in S2 cells (modEncode 922) and I trained ChIPanlayser on the top 10 regions on

chromosome 3R. I then validated the model on the top 20 regions on chromosome

2R and, for comparison, on top 10 regions on chromosome 3R that did not contain

the training set. (A) shows example profiles obtained during training. (B) shows

validation profiles obtained on chromosome 3R. (C) are profiles obtained during

validation on chromosome 2R. Finally, (D-G) are the associated metrics for training

and validation: AUC, Spearman correlation, recall and MSE respectively.



1.8 comparing to other methods 59

The model accurately recovers peaks in the training set as well in both validation sets

(see Figure-7). As described previously, red lines represents the predicted ChIP-like

profile, the dark blue shaded area represents experimental ChIP data and finally the

yellow boxes are regions of inaccessible DNA. Figure-7 A-C are predicted profiles on

the training set, same chromosome validation and different chromosome validation

respectively.

When comparing different metrics between training and validation, the goodness of

fit metrics remained similar between each set as seen in Figure-7 D-G. AUC, Spearman

Correlation, recall and MSE were used as a point of comparison between metrics.

comparing to other methods

In recent years, numerous tools for TF binding prediction have been developed.

In 2016, a TF binding prediction competition was initiated by DREAM-challenges.

Since, numerous tools have been developed and published. Some of the most popu-

lar tools include FactorNet, Anchor and Catchitt[Quang and Xie, 2019, Li et al., 2019,

Keilwagen et al., 2019]. Previously, other tools have provided ways of predicting TF

binding sites such as PIQ and msCENTIPEDE [Sherwood et al., 2014, Raj et al., 2015b].

These tools all have in common the use of DNA accessibility as a way of improving the

predictions of TF binding sites. It should be noted that PIQ and msCENTIPEDE do not

require genomic occupancy data but only requires a PWM and DNA accessibility data.

In order to asses the quality of the model, ChIPanalyser was compared to other

tools and frameworks. For this aspect of the analysis, both FactorNet and Anchor

were excluded. FactorNet was written using python2.7. Both python and FactorNet

will be depreciated in the near future and numerous dependencies have moved away

from python2.7 modules making FactorNet unstable and difficult to use. Furthermore,
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FactorNet as well as Anchor,Catchitt and msCENTIPEDE, would only recognise data

from Homo sapiens. Anchor also suffered from challenging coding styles making

the use of this tool extremely complicated. Both msCENTIPEDE and PIQ do not

require genome occupancy data. Instead, binding sites are determined by using PWMs

and DNA accessibility in the form of BAM files. These tools do not offer a training

and validation set-up but rather a way of extracting TF binding sites based on DNA

accessibility data. Catchitt offers a training and validation set-up where a data set can

be trained on one chromosome and validated on another. I provided a break-down of

each tool in Table-2.

To overcome these limitations, I selected a data set from the DREAM challenge series.

Genome occupancy data for CTCF and DNA accessibility data from human astrocyte

cells were selected. Chromosome 11 was used as the training chromosome and

chromosome 18 was used as the validation chromosome. ChIPanalyser was trained on

top ten regions of chromosome 11 and validated on the top ten regions of chromosome

18. Unfortunately, truncating data lead to computational issues or was simply infeasible

with other tools. msCENTIPEDE and PIQ used the entire genome before outputting

predicted TF binding sites. Catchitt on the other hand was trained on the entire

chromosome (chromosome 11) and validated on chromosome 18. To demonstrate

the packages ability to predict TF binding using low data input, I compared the

performance of each tool by extracting prediction at the validation regions selected by

ChIPanalyser.
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ChIPanalyser Catchitt FactorNet Anchor PIQ msCENTIPEDE TRAP

Language R java python 2.7
python3.6/perl

5.1
R python 3.6 C and web app

Organisms All* All Human Human All* Human All

Training &

Validation
Yes Yes Yes Yes No No No

Plotting Yes No No No No Limited Yes

Skill Level Low Intermediate High High Low Intermediate Low

Availability Bioconductor GitHub GitHub GitHub bitbucket GitHub
Dedicated Web

page

Table 2: Tool and framework comparison. I provide a breakdown of a few notable tools and

frameworks for TF binding prediction. * Provided that these genomes are available

through the Bsgenome package
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Figure 8: Performance Comparison between TF binding predictions tools ChIPanalyser per-

forms well compared to other TF binding prediction tools using low input data

for training. (A) shows AUC scores between Catchitt, msCENTIPEDE, PIQ ,and

ChIPanalyser over the selected validation regions in chr18 on Homo sapiens.(B and

C) are respectively recall and MSE over validation regions for each tool. Finally, (D)

breaks down total run time for training and validation for each tool.

Figure-8 A-C show the overall performance of each tool over validation regions for

AUC, recall and MSE. Figure-8 D compares total run time between each tool using.

ChIPanalyser out-performed every tool in terms of predictive ability. It should be

noted that ChIPanalyser uses an extremely stringent method to asses goodness of fit.

Predicted profiles are compared to genome occupancy data by comparing predicted
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profiles to experimental profiles at a base pair level.

Tools developed through DREAM Challenges were scored only based on overlaps

between predicted sites and ChIP peaks in bins of 200 bp. This approach negates

the effect of background noise when scoring each model and disregards the local

enrichment of the predicted peak. For this purpose, each tool were compared to each

other using the approach developed in ChIPanalyser. When necessary, binding site

probabilities were smoothed in order to produce a ChIP-like profile (100bp rolling

mean window).

discussion

Background noise and experimental artefacts remain a challenge in TF binding predictions

I found that many ChIP datasets suffer from significant background noise that

would reduce our ability to accurately assess the goodness of fit of the model.

Despite my approaches to reduce background noise, it seems that ChIP data will

always suffer from unspecific DNA pull-down [Teytelman et al., 2013]. Another

possibility is that the noise in ChIP signal could be the result of unspecific bind-

ing of TFs to DNA followed by one-dimensional random walk along the genome

[Zabet and Adryan, 2012, Hammar et al., 2012]. Nevertheless, the washing steps in

the ChIP protocol would remove this non-specific binding from the final ChIP signal

[Landt et al., 2012b]. Sequencing depth also plays a role in limiting background noise

and false positive peaks [Sims et al., 2014]. In the context of ChIPanalyser, ChIP data

sets with high sequencing depth would increase the goodness of fit of the model as

it would be less affected by background signal. Furthermore, ChIP-seq protocols are

affected by DNA accessibility as there is an over representation of DNA fragments

within open chromatin [Auerbach et al., 2009]. This bias would affect the ability to pre-



64 building chipanalyser

dict the binding of TFs that preferentially bind to more restrictive or closed chromatin.

While most data sets originate from modEncode and follow similar analysis pipelines,

it should be noted that different mapping strategies will affect the downstream results

and should be chosen with a specific biological question in mind [Fonseca, 2012].

These limitations may also apply to DNA accessibility data. DNase-seq relies on diges-

tion of DNA fragments in nucleosome depleted regions [Song and Crawford, 2010].

DNA fragments are then digested again, attached to linker beads and finally sequenced.

Similarly to ChIP, sequencing depth would also affect the quality of the data produced

and potentially lead to mismatches between ChIP data and DNA accessibility data.

The ChIPanalyser workflow and the subsequent interpretation of results could be

affected by such mismatches.

I showed that choosing a goodness of fit method is context dependent. Interestingly,

similarity methods (such as correlation, F-score or AUC) had the tendency to correctly

call peak location but greatly underestimated the enrichment of the peak (see Figure-6).

This behaviour results from the fact that these methods are highly penalised by false

positive hits. The scaling factor can be described as how well a TF discriminates

between a strong binding site over a weaker one. High values for the scaling factor

translate to poorer ability for the TFs to discriminate between high and low affinity

sites, which leads both to a higher number of false positive peaks and the model

picking up smaller peaks. The number of bound molecules on the other hand, tend

to affect the height of the peak (relative local enrichment). Similarity methods would

avoid high values for N and λ as this would penalise their goodness of fit score

more severely as opposed to dissimilarity methods (see Figure 1). Choosing the right

method will depend on the question at hand and similarity methods could be used

to determine peak location, while dissimilarity metrics would be more appropriate to

investigate the TF local enrichment.
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Model limitations and Core assumptions

ChIPanalyser relies upon the statistical thermodynamic model presented by Zabet and

Adryan [Zabet and Adryan, 2015]. Previously, it was demonstrated that using PWM

threshold in order to select binding sites improved the performance of the model.

While the performance of the model is improved, PWM thresholds might not display

the complexity of the biology at hand. In the case of ChIPanalyser, only the top 30% of

binding sites (based on their respective PWM scores and the default threshold value)

are considered occupied by TFs. It has been suggested that lower affinity binding sites

play a significant role in TF binding and in transcription itself [Farley et al., 2015]. The

initiation of transcription could be the result of dose dependant binding of TFs to lower

affinity binding sites [Spivakov, 2014]. Using ChIPanalyser’s default PWM threshold

value would fail to consider lower affinity binding sites. However, the entire spectrum

of binding sites can be considered by setting the PWM threshold to 0. ChIPanalyser

further increases this bias towards high affinity sites by using a PWM score scaling

factor λ. The scaling factor describes how well a TF discriminates between low and

high affinity sites. This scaling factor is only applied to sites above threshold, further

increasing the "strength" of high affinity binding sites compared to lower affinity sites.

While it would be interesting to test ChIPanalyser without a PWM threshold, it should

be noted that the resulting profiles are likely to be of poorer quality. The model heavily

penalises overestimation or underestimation of ChIP enrichment. Including all possible

binding motifs will likely results in one of these scenarios.

Previous results also suggested that considering DNA as either open or closed

was sufficient to explain TF binding. The same approach was used through out this

chapter. However, a more in depth analysis of DNA accessibility is described in the

next chapter.
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Assessing ChIPanalyser as a tool

ChIPanalyser was shown to be a powerful tool to predict TF binding. The performance

of the model and the package out-performs other TF binding frameworks. However,

it should be noted that the high performance of ChIPanalyser compared to other

tools is a direct consequence of the way goodness of fit scores were computed. As

described above, ChIPanalyser computes goodness of fit scores by comparing predicted

profiles to experimental profiles in 100bp windows. This approach also accounts for

signal enrichment. If ChIPanalyser predicts a peak at a given location but fails to

recover signal enrichment or conversely overestimates signal enrichment, ChIPanalyser

goodness of fit scores will be heavily penalised. This approach penalises other TF

binding frameworks as they were not designed with signal enrichment prediction

in mind. Catchitt for example was designed using DREAM challenge guide lines

suggesting that a peak was correctly predicted if the predicted binding site was within

200 bp of that peak. Furthermore, ChIPanalyser performs at its best when only the

strongest binding sites are considered. Validating the model on the top ten regions

of chromosome 18 ensures that ChIPanalyser would perform with high accuracy and

reduce the amount of background noise considered. However, this approach reduces

the performance of other frameworks in favour of ChIPanalyser.

ChIPanalyser was designed to not only predict TF binding but also hopefully shed

light on the mechanisms driving the binding of TFs to DNA. While I recognise that by

using a different scoring method and validation set up, the performance of the other

frameworks would be greatly improved, I selected this approach as it is better suited

to assess the quality of the model underlying ChIPanalyser.
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chapter conclusion

In this chapter, I demonstrate that ChIPanalyser can accurately predict TF binding in

both Drosophila melanogaster and Homo sapiens. Compared to other tools, ChIPanalyser

performs well against other competing frameworks in both accuracy and run-time. This

is possible thanks to the extremely low data input requirements in order to train the

model. I show that goodness of fit metrics are context dependant and in the context of

ChIPanalyser the question at hand should determine the choice of metric. Furthermore,

experimental noise generated by genome occupancy profiling remains a recurring

problem in TF binding prediction and suggests caution with the interpretation of TF

binding predictions.
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chapter summary

In this chapter, I will show how ChIPanalyser can provide insight into the mechanisms

driving TF binding. I will focus on two main aspects: DNA accessibility and TF

abundance. I show that DNA accessibility is the main driver of differential binding

of three architectural proteins ( CTCF, BEAF-32, and su(Hw) )in the three Drosophila

cell lines. Using relative RNA levels, I show that for these proteins local concentration

plays a lesser role in their respective binding. I also investigate the binding of three

Hox TF (Dfd, Abd-b, and Ubx) and demonstrate that ChIPanalyser can recover known

binding preferences of these Hox TFs with respect to chromatin accessibility.

introduction

The most fundamental aspect to consider concerning TF binding specificity is the DNA

sequence itself. Most TFs exhibit a preferred binding motif. The most common way to

describe this motif is in the form of a Position Weight Matrix (PWM); a measure of

binding energy between TFs and DNA weighted by the genomic base pair frequency

69
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[Ptashne and Gann, 1997, Spitz and Furlong, 2012, Berg and von Hippel, 1987b, Stormo and Zhao, 2010].

Nevertheless, TFs can have tens of thousands of putative binding sites within the

genome, yet they only bind to a few hundred or thousand of them . Previous studies

have shown that some TF binding events are concentration dependent [Chu et al., 2009,

Kaplan et al., 2011b, Simicevic et al., 2013, Zabet and Adryan, 2015], where varying

the concentration of the TF will drive the expression of different sets of genes. How-

ever, there are many more sites than binding sites where TF’s could bind. This still

begs the question: how do TFs distinguish between bound and unbound sites? One

way to reduce the number of available sites is to consider DNA accessibility. Are

these sites even available for binding in the first place? This assumes that TFs would

bind only to sites that are accessible and cannot locate sites within dense chromatin

[Klemm et al., 2019, Lamparter et al., 2017]. Nevertheless, there is a certain class of TFs

known as pioneer TFs that would ignore accessibility restrictions [Soufi et al., 2015].

More specifically, pioneer TFs can bind sites in closed dense chromatin and subse-

quently open the chromatin. It was previously shown that statistical thermodynamics

can be used to model TF binding to DNA with high accuracy. Considering only

binding energy between TFs and DNA (estimated by the PWM and a scaling factor

modulating the binding energy), the number of bound molecules to the DNA and

DNA accessibility, Zabet and Adryan modelled binding of five TFs in Drosophila

embryo [Zabet and Adryan, 2015]. Their results confirmed that, for some TFs, this

model is sufficient to explain the majority of observed binding events in ChIP data and

they were able to backwards infer number of bound molecules and specificity for five

TFs in Drosophila embryo (bcd, cad, gt, hb and Kr). I used this model to describe the

behaviour of several Drosophila TFs: CTCF, BEAF-32, su(Hw), Ubx, Abd-B and Dfd.

The results provide a mechanistic interpretation of TF binding behaviour and propose

a new classification of these TFs based on fine details of their binding mechanism. In

particular, I found that DNA accessibility is the main driver that explains binding of

CTCF, BEAF-32 and su(Hw) in three Drosophila cell lines (BG3, Kc167 and S2) and

that relatively medium changes in the concentrations of these TFs lead to only negligi-
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ble changes in their binding profiles. I also show that TF binding specificity can be

achieved by their capacity to bind to regions with different levels of DNA accessibility.

In particular, I show that Ubx, Abd-B and Dfd binding to DNA could be explained

by their different capacity to bind dense chromatin, with Ubx binding only in highly

accessible chromatin and Dfd and Abd-B binding in denser chromatin.

data set up

As described in the previous chapter, ChIPanalyser requires a PWM and a reference

DNA sequence as a minimal input. In order to validated the predicted profiles, a set of

Genome wide assays are also required. I selected ChIP data sets for three architectural

DNA binding proteins: CTCF, BEAF-32, and su(Hw). I also used ChIP data for three

Hox TFs in Drosophila. A summary of the ChIP data used in this thesis can be found in

Appendix A. In this chapter, I show the impact of DNA accessibility. DNA accessibility

data was taken from DNase I hypersensitivity (DHS) data in three Drosophila cell lines

(Kc167, BG3, and S2) [Kharchenko et al., 2010]. For Hox TFs, I used ATAC-seq data in

Kc167 cells. Both ChIP-seq and ATAC-seq data sets were produced by the same lab

[Porcelli et al., 2019]. The total amount of accessible DNA is similar in the three cell

lines and Drosophila embryos (see Figure 9). In order to rescale TF abundance between

cell lines, I used RNA-seq data from [Lee et al., 2014a]. RNA-seq relative abundance

was used to rescale the estimated number of bound molecules from one cell line to

another.
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Figure 9: Total accessibility between cell lines. Accessibility for three cell lines was estimated

from DNase Hypersensitivity Sites (DHS) by extracting DHS broad peaks . Kc167 cells

displayed a slightly higher proportion of accessible DNA compared to S2 and BG3

cells. The proportions of accessible DNA remains similar to the proportion of accessi-

ble DNA in Drosophila embryos using the method proposed by [Kaplan et al., 2011a].

In order to ensure region consistency between each data set, I selected a total of

3293 20kbp regions that contained at least one peak of any architectural protein in any

data set. Each region should also contain at least 100bp of accessible DNA and not

contain any black listed regions as described by UCSC. This set of loci was used for all
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data sets and all architectural proteins. The same process was applied to Hox TFs and

resulted in a total of 3838 regions.

For architectural proteins, ChIPanalyser was trained on the top ten regions for each

data set as described in the previous chapter. In order to demonstrate the role of DNA

accessibility, the top ten regions were trained with no accessibility data, continuous

DNA accessibility and DHS only. Continuous accessibility was produced by using

min/max normalised read pile-up scores.

the nuanced role of dna accessibility in transcription factor bind-

ing

DNA accessibility influences the binding of Architectural Proteins

Steric hindrance can influence the binding of some TFs to DNA, meaning that a TF

molecule would only bind stretches of DNA if they are accessible. Any given genomic

region can be considered either accessible or inaccessible and that is sufficient to

explain the binding profiles of most TFs [Zabet and Adryan, 2015]. Here, I selected

accessible DNA based on DNase Hypersensitivity Sites (DHS) in three Drosophila

cell lines (Kc167, S2 and BG3) [Kharchenko et al., 2010]. In these circumstances, DNA

was either considered accessible (score of 1) or inaccessible (score of 0). As a point of

comparison, I also considered all DNA to be accessible (No Access - all regions are

assigned a score of 1) and also used a min-max normalised DNase score as continuous

DNA accessibility levels (a continuous value between 0 and 1). I focused my analysis

on three TFs: CTCF, BEAF-32 and su(Hw). I trained the model on the top 10 regions

for each data set. Then, I validated the results using the optimal parameters selected

during training. Validation was carried out on the top 100 regions for each dataset

(excluding the ones used for training). Figure-10 shows that for BEAF-32, the binding
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predictions were improved when considering DNA accessibility. Nevertheless, su(Hw)

and CTCF displayed a different behaviour, as the mean AUC decreased when DNA

accessibility was considered for most ChIP-seq datasets (Figure-10 A-B). This difference

is especially striking in the case of su(Hw). The performance of the model drastically

improves when all DNA was considered accessible or when I used continuous values

for DNA accessibility. CTCF showed a similar trend although improvement was not

as striking as in the case of su(Hw). This would indicate that only a small number

of CTCF peaks are located in closed chromatin regions that display intermediary

levels of accessibility. While DNA accessibility seems to play a role in the quality

of our predictions, I also observed that the number of bound molecules (N) and

scaling factor (λ) show a reduced influence when DNA accessibility is considered for

CTCF (Figure-10). In particular, I observed less variation in MSE for different sets

of parameters, when DNA accessibility was included, i.e., larger circles indicate that

number of bound molecules and λ have a more important role in TF binding, while

smaller circles indicate that they have a less important role. This opposite trend is

seen in the case of su(Hw) where N and λ show an increased influence when DNA

accessibility is considered. BEAF-32 on the other hand is negligibly influenced by N

and λ independently of whether or not I consider DNA accessibility.
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Figure 10: DNA accessibility, number of molecules and binding energy have different roles

in TF binding. I selected optimal parameters by minimising MSE over the training

set and then computed the median AUC scores over the top 100 regions in the

validation set. I considered different ChIP replicates in S2, Kc167 and BG3 cells for:

(A) CTCF, (B) su(Hw) and (C) BEAF-32. Darker colours indicate higher AUC scores,

while lighter colours lower AUC scores. I also investigated the influence of number

of bound molecules and scaling factor on TF binding by computing the standard

deviation of MSE scores for all combination of parameters over the training set.

Smaller circles indicate less variability in MSE when different parameters are used

and larger circles more variability.

To factor in for potential differences in the capacity of the model to predict binding

in regions with strong or weak ChIP signal, I trained ChIPanalyser on the top 10

regions for each data set and then selected the top 20, 50, 100, 150, 200, 500, 1000 and
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3283 regions for validation (excluding regions used for training). I looked at how the

median AUC scores (over all data sets) changes when regions with weaker binding are

included in the analysis or when DNA accessibility is considered. For each number

of regions selected for validation and for each data set, I subtracted the mean AUC

score when no accessibility was considered from the AUC score with DHS accessibility

(Delta mean AUC in Figure-11). First, I observed that CTCF exhibited a slightly lower

AUC score when DNA accessibility was considered. The decrease in AUC scores

observed upon considering more regions (see Figure-12 A,Figure13 A and Figure-14 A

) implies that CTCF binds preferentially to genome hotspots. CTCF binding is better

explained at strong binding sites when all DNA is considered accessible. The effect

of DNA accessibility decreases as the number of regions for validation increases. In

contrast to CTCF, BEAF-32 displayed higher AUC scores when DNA accessibility was

included, supporting the previous findings (see Figure-11 B/E) . BEAF-32 AUC scores

were not affected by the increase in the number of regions (see Figure-12 B,Figure13 B

and Figure-14 B), which means that BEAF-32 binding is not influenced by the number

of regions selected. In other words, BEAF-32 would bind anywhere along the genome

as long as it has an accessible site. Contrarily to CTCF, the binding of BEAF-32 is not

susceptible to binding "strength" and there does not seem to be biological differences

between strong binding sites and weaker binding sites. In this context, I propose BEAF-

32 as a global binder and CTCF a hotspot TF. Furthermore, Figure-11 C and F shows

that there is a strong and statistically significant ( p < 0.05 ) reduction in AUC score for

su(Hw) when DNA accessibility is included, which indicates that su(Hw) would bind

in less accessible DNA ( (see Figure-12 C,Figure13 C and Figure-14 C)). While, su(Hw)

did not generally perform well when DNA accessibility is considered, the performance

of the model increase when all DNA was considered accessible. Furthermore, an

increase in number of regions selected for validation displayed a slight increase in

Delta mean AUC score. These results suggest that the majority of su(Hw) binding sites

are found in inaccessible DNA and that this tendency decreases with binding strength.

It should be noted that the strong increase in Delta Mean AUC score when all regions
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are considered could be the results of many regions not containing any su(Hw) sites.

In this case, DNA accessibility does not influence the performance of the model as

there are no binding events to predict.



78 chipanalyser : insights into biology

●

●

●

●

●

●

●

20 50 10
0

20
0

50
0

10
00

32
83

−0.4

−0.2

0.0

0.2

Number of Regions Selected

D
el

ta
 m

ea
n 

A
U

C
 S

co
re

 (
D

H
S

 −
 N

U
LL

)

CTCFA

20 50 10
0

20
0

50
0

10
00

32
83

−0.4

−0.2

0.0

0.2

Number of Regions Selected

D
el

ta
 m

ea
n 

A
U

C
 S

co
re

 (
D

H
S

 −
 N

U
LL

)

BEAF−32B

●

●

●

●

●

●

●

●

●

●

●

●

●

20 50 10
0

20
0

50
0

10
00

32
83

−0.4

−0.2

0.0

0.2

Number of Regions Selected

D
el

ta
 m

ea
n 

A
U

C
 S

co
re

 (
D

H
S

 −
 N

U
LL

)

su(Hw)C

20 50 100 200 500 1000 3283

20

50

100

200

500

1000

3283

D Differences between # regions − (p<0.05) 

20 50 100 200 500 1000 3283

20

50

100

200

500

1000

3283

E Differences between # regions − (p<0.05) 

20 50 100 200 500 1000 3283

20

50

100

200

500

1000

3283

F Differences between # regions − (p<0.05) 

Figure 11: Number of selected regions sheds light on TF behaviour. (A-C) Boxplot represent-

ing the difference in AUC (over validation sets) between the model with and without

DNA accessibility for several biological replicates and different number of selected

bins. (D-F) T-test to assess whether the differences are statistically significant (blue

indicates statistically significant differences, while light grey represent non signifi-

cant combinations). (A and D). Predictions of CTCF binding shows CTCF’s ability to

bind to less accessible DNA. The effect of DNA accessibility decreases as the number

of regions used for selection increases. Predictions of BEAF-32 binding are improved

by DNA accessibility and are not affected by number of regions selected.(B and E).

su(Hw) performs better when all DNA is considered accessible (C and D)



2.4 the nuanced role of dna accessibility in transcription factor binding 79

A

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 282 CTCF 

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3280 CTCF 

● ●

●
●

●

●

●

●
●

● ●

●

●

●

●

● ●
●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3671 CTCF 

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3672 CTCF 

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3673 CTCF 

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3674 CTCF 

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

Kc167 GSM762842 CTCF 

● ● ● ●

●

●

●

● ● ● ●

●

●

●

●

● ●
●

● ●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

Kc167 908 CTCF 

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

● No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 2638 CTCF 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 2639 CTCF 

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 283 CTCF 

● ●
●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 3281 CTCF 

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 3749 CTCF 

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 913 CTCF 

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

No Access
Cont. Access
DHS Access

B

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3714 su(Hw) 

● ●
● ●

●

●

●

● ●
● ●

●

●

●●

● ● ●

● ● ●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3715 su(Hw) 

●
●

● ●
●

●

●

●
●

● ●
●

●

●●
● ● ● ● ●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3716 su(Hw) 

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

● ● ●
●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3717 su(Hw) 

●
●

●
●

●

●

●

● ●
●

●
●

●

●

● ●

●

●
● ● ●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3718 su(Hw) 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 951 su(Hw) 

●
● ●

●
●

●

●

●
● ●

●
●

●

●

● ●
● ●

● ● ●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

Kc167 3801 su(Hw) 

● ●
●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

● ● ● ●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

Kc167 su(Hw) 

● ● ● ● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●
●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 330 su(Hw) 

●
●

●
●

●

●

●

●
●

●
●

●

●

●●
● ● ●

●
● ●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 331 su(Hw) 

● ●
●

●
●

●

●

● ●
●

●
●

●

●

●
●

● ●
● ● ●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 3719 su(Hw) 

●
●

● ●
●

●

●

●
●

● ●
●

●

●

●
●

●
● ● ●

●

No Access
Cont. Access
DHS Access

C

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3663 BEAF−32 

●
●

●
● ●

●

●

●
●

●
● ●

●

●

● ● ● ●

●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3664 BEAF−32 

●

● ● ● ●
●

●

●

● ● ● ●
●

●

●
● ● ● ●

●

● No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 3665 BEAF−32 

●
●

●

● ●
●

●

●
●

●

● ●
●

●

●
● ●

● ●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

BG3 921 BEAF−32 

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

Kc167 GSM1535963 BEAF32 

● ●
● ●

●

●

●

● ●
● ●

●

●

●

● ● ● ● ●
●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

Kc167 GSM762845 BEAF32 

●

● ● ●
●

●

●

●

● ● ●
●

●

●

● ● ● ●
●

●

●

No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 3745 BEAF−32 

●
● ●

●
●

●

●

●
● ●

●
●

●

●

● ● ●
●

●
●

● No Access
Cont. Access
DHS Access

20 50 100 200 500 1000 3283
0.3

0.48

0.65

0.82

1

# of Loci

m
ax

 A
U

C
 s

co
re

S2 922 BEAF−32 

● ● ●
●

●

●

●

● ● ●
●

●

●

●

● ● ●
●

●

●

● No Access
Cont. Access
DHS Access

Figure 12: Increasing the number of regions used during validation sheds light of TF be-

haviour and binding preferences. (A), (B) and (C) describe the maximum AUC for

each data set and each TF as the number of regions used for validation increase.

CTCF decreases in predictability as the number of regions increase while BEAF-32

remain consistent. su(Hw) show a slight decrease in performance only when all

DNA is considered accessible.
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Figure 13: Increasing the number of regions used during validation sheds light of TF be-

haviour and binding preferences. (A), (B) and (C) describe the minimum MSE for

each data set and each TF as the number of regions used for validation increase.

CTCF decreases in predictability as the number of regions increase while BEAF-32

remain consistent. su(Hw) show a slight decrease in performance only when all

DNA is considered accessible.
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Figure 14: Increasing the number of regions used during validation sheds light of TF be-

haviour and binding preferences. (A), (B) and (C) describe the maximum Recall

for each data set and each TF as the number of regions used for validation increase.

CTCF decreases in predictability as the number of regions increase while BEAF-32

remain consistent. su(Hw) show a slight decrease in performance only when all

DNA is considered accessible.
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DNA accessibility driving HOX Transcription factor binding

Hox proteins are key players during development. Recently it has been suggested that

Hox proteins show different binding preferences with respect to DNA accessibility

[Porcelli et al., 2019] . Most notably, Ubx and Abd-A would bind predominately in

open chromatin, while other Hox TF (Lab, Pg, Dfd, Scr and Abd-B) would prefer

closed chromatin. I selected three Hox TFs (Ubx, Dfd and Abd-B) and ran the model

using different levels of DNA accessibility. DNA accessibility levels were selected

based on quantile distribution of ATAC-seq scores (QDA - Quantized Distribution

Accessibility). This means that higher QDA scores lead to fewer regions being marked

as accessible. I trained the model on the top ten regions selected from the 3838 selected

loci for the Hox analysis for each QDA. The results show that Ubx exhibits a preference

towards open chromatin. In Figure-15, the maximum AUC score for Ubx increases

with the increase of the QDA score. Dfd and Abd-B on the other hand were not

strongly influenced by QDA. This means that these TFs can bind in inaccessible DNA.

According to the model, Ubx performed best with 0.99 QDA (top 1% ATAC-seq scores

- AUC 0.928), while Abd-B and Dfd with 0.95 QDA (top 5% ATAC-seq scores) and 0.8

QDA (top 20% ATAC-seq scores) respectively (see Figure-15 B). It should be noted

that these scores are extracted from the training set as the goal was to understand

how QDA would effect the training of the model. I then validated our model on

the top 100 regions (excluding the ones used for training) using the optimal set of

parameters inferred during training and plotted the predicted profiles for Hox TF (see

Figure-15 C,D, and E).The model recovers the position of peaks accurately especially

for Ubx (see Figure-15 C). While for Dfd and Abd-B most of the peaks are detected,

their height is not always an accurate representation of the strength of the ChIP-seq

signal (see Figure-15 D/E). Hox TFs are known to display cooperative interactions and

there are reports that both Dfd and Abd-B have a higher number of sites in the bound

peaks, suggesting they bind cooperatively to open the chromatin. Furthermore, Table-3
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show the optimal parameters selected for each TF with its optimal QDA. Generally,

the model overestimates the number of bound molecules. This would suggest that

the model is overcompensating for the lack of co-factors by increasing the number of

estimated bound molecules. The model does not include cooperative interactions and

this could explain the reduced performance for Dfd and Abd-B.
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Figure 15: Hox genes show binding preferences towards DNA accessibility. I tested the

model using different DNA accessibility stringencies. (A) Maximum AUC score as

a function of stringency of DNA accessibility (the higher the QDA value the less

DNA is called accessible) for three Hox TFs: Ubx, Dfd and Abd-B. (B) The best

performing QDA accessibility in terms of AUC. (C, D and E) Binding profiles and

prediction of the ChIP data at individual loci taken from the validation set for the

three TFs
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TF N lambda MSE N lambda AUC N lambda recall

Ubx QDA 0.99 2.00e+05 3.75 0.007 1.00e+06 3.75 0.928 1.00e+06 3.75 0.795

Dfd QDA 0.8 1e+04 0.5 0.006 1e+05 0.5 0.859 1e+05 0.5 0.808

Abd-b QDA 0.95 2e+05 3 0.008 2e+04 0.75 0.826 1e+06 2 0.748

Table 3: Optimal set of Parameters for Hox TFs. The following table shows the optimal

parameters for best performing QDA for each Hox TF. MSE, AUC and recall are

included.

the role of number of bound molecules in transcription factor bind-

ing

Number of bound molecules and TF specificity plays a limited role in the binding of architectural

proteins

To investigate the robustness of the estimated parameters, I computed the optimal

parameters for different biological replicates. Despite strong variations between exper-

imental data, I show that the predicted optimal set of parameters when using MSE

remained similar between biological replicates (see Figure-16). This suggests that

despite biological and technical variation between replicates performed by different

labs using different protocols, the model robustly infers a similar number of bound

molecules and scaling factor for a given TF. The optimal parameters estimated over

the training set can be found in Table-4, Table-5, Table-6 and Table-7 for MSE, AUC,

recall and Spearman correlation coefficient.



86 chipanalyser : insights into biology

 

 

A
CTCF BG3

S
ca

lin
g 

Fa
ct

or

Number of Bound Molecules

1 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

50
00

0

1e
+0

5

2e
+0

5

5e
+0

5

1e
+0

6

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

0

0.25

0.5

0.75

1

 

 

B
CTCF Kc167

S
ca

lin
g 

Fa
ct

or

Number of Bound Molecules

1 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

50
00

0

1e
+0

5

2e
+0

5

5e
+0

5

1e
+0

6

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

0

0.25

0.5

0.75

1

 

 

C
CTCF S2

S
ca

lin
g 

Fa
ct

or

Number of Bound Molecules

1 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

50
00

0

1e
+0

5

2e
+0

5

5e
+0

5

1e
+0

6

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

0

0.25

0.5

0.75

1

 

 

D
BEAF BG3

S
ca

lin
g 

Fa
ct

or

Number of Bound Molecules

1 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

50
00

0

1e
+0

5

2e
+0

5

5e
+0

5

1e
+0

6

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

0

0.25

0.5

0.75

1

 

 

E
BEAF Kc167

S
ca

lin
g 

Fa
ct

or

Number of Bound Molecules

1 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

50
00

0

1e
+0

5

2e
+0

5

5e
+0

5

1e
+0

6

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

0

0.25

0.5

0.75

1

 

 

F
BEAF S2

S
ca

lin
g 

Fa
ct

or

Number of Bound Molecules

1 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

50
00

0

1e
+0

5

2e
+0

5

5e
+0

5

1e
+0

6

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

0

0.25

0.5

0.75

1

 

 

G
su(Hw) BG3

S
ca

lin
g 

Fa
ct

or

Number of Bound Molecules

1 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

50
00

0

1e
+0

5

2e
+0

5

5e
+0

5

1e
+0

6

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

0

0.25

0.5

0.75

1

 

 

H
su(Hw) Kc167

S
ca

lin
g 

Fa
ct

or

Number of Bound Molecules

1 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

50
00

0

1e
+0

5

2e
+0

5

5e
+0

5

1e
+0

6

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

0

0.25

0.5

0.75

1

 

 

I
su(Hw) S2

S
ca

lin
g 

Fa
ct

or

Number of Bound Molecules

1 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

50
00

0

1e
+0

5

2e
+0

5

5e
+0

5

1e
+0

6

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

0

0.25

0.5

0.75

1

Figure 16: Optimal parameters consistency among biological replicates for MSE using DHS

accessibility. Heat maps show an overlay of the top 10 % combinations of parameters

when minimising MSE for: (A-C) CTCF, (D-F) BEAF-32 and (G-I) su(Hw). I plotted

the following cell lines: (A, D and G) BG3, (B, E and H) Kc167 and (C, F and I) BG3.

To investigate the influence of these parameters, I assumed that a high variation of

goodness of fit score for each combination of parameters would suggest a strong influ-
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ence of these parameters on TF binding. If a goodness of fit scores varied little between

parameter combinations, I can then conclude that they do not strongly influence our

predicted profiles. This means that DNA accessibility would be the strongest driver

towards predicting TF binding of these architectural proteins. Restricting the amount

of available binding motifs would be more influential than TF copy number and the

ability of a TF to discriminate between high and low affinity sites. Interestingly, this is

still true in the case of su(Hw); I show that su(Hw) binding sites are most likely found

in less accessible DNA. These results suggest that relative TF abundance only plays a

role on binding sites found in accessible DNA (see Figure-10).
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TF # Bound Lambda MSE # Bound Lambda MSE # Bound Lambda MSE

BG3 modEncode 282 CTCF 1e+06 0.75 0.009 1e+06 0.5 0.009 5e+05 0.75 0.009

BG3 modEncode 3280 CTCF 5e+05 0.75 0.013 5e+05 0.5 0.013 20000 1.5 0.018

BG3 modEncode 3671 CTCF 1e+06 0.75 0.008 1e+06 0.5 0.008 5e+05 0.75 0.007

BG3 modEncode 3672 CTCF 1e+06 0.5 0.006 50000 0.5 0.006 1e+05 1 0.007

BG3 modEncode 3673 CTCF 5e+05 0.75 0.01 20000 0.75 0.01 5e+05 0.75 0.008

BG3 modEncode 3674 CTCF 1e+06 0.75 0.01 1e+06 0.5 0.01 5e+05 0.75 0.011

Kc167 GSM762842 CTCF 50000 1 0.007 500 1 0.007 10000 1.5 0.006

Kc167 modEncode 908 CTCF 5e+05 0.75 0.011 50000 0.5 0.01 5e+05 0.75 0.009

S2 modEncode 2638 CTCF 50000 1.25 0.002 500 1.25 0.002 5000 1.5 0.002

S2 modEncode 2639 CTCF 20000 1.25 0.002 200 1.25 0.002 5000 2 0.002

S2 modENCODE 283 CTCF 5e+05 0.75 0.014 20000 0.5 0.013 1e+06 0.75 0.013

S2 modEncode 3281 CTCF 5e+05 0.75 0.017 20000 0.5 0.017 50000 2 0.019

S2 modEncode 3749 CTCF 1e+05 1 0.009 1000 1 0.009 20000 1.25 0.01

S2 modEncode 913 CTCF 2e+05 0.75 0.01 1e+06 0.25 0.01 5e+05 0.5 0.014

BG3 modEncode 3714 Su(Hw) 1e+05 2 0.023 5000 2 0.023 5000 2 0.045

BG3 modEncode 3715 Su(Hw) 1e+05 2 0.024 5000 2 0.024 10000 2.75 0.046

BG3 modEncode 3716 Su(Hw) 2e+05 1.5 0.016 5000 1.25 0.016 10000 2 0.031

BG3 modEncode 3717 Su(Hw) 1e+05 2 0.016 2000 1.75 0.016 10000 2.25 0.032

BG3 modEncode 3718 Su(Hw) 50000 1.75 0.012 1000 1.75 0.012 5e+05 1 0.019

BG3 modEncode 951 Su(Hw) 1e+05 1.75 0.017 2000 1.5 0.017 2e+05 0.75 0.041

Kc167 modEncode 3801 Su(Hw) 1e+05 2.25 0.017 5000 2.25 0.017 2e+05 1.25 0.03

Kc167 Su(Hw) 50000 1.25 0.004 200 1.25 0.004 10000 1.25 0.005

S2 modEncode 330 Su(Hw) 2e+05 1.75 0.022 5000 1.75 0.022 5e+05 0.75 0.05

S2 modEncode 331 Su(Hw) 1e+06 1.25 0.017 5000 1.25 0.017 5e+05 0.75 0.037

S2 modEncode 3719 Su(Hw) 2e+05 2.25 0.033 10000 2.25 0.032 2e+05 0.75 0.066

BG3 modEncode 3663 BEAF-32 1e+05 2.75 0.026 10000 2.5 0.026 50000 3 0.023

BG3 modEncode 3664 BEAF-32 1e+05 2.5 0.027 10000 2.5 0.027 1e+05 4 0.019

BG3 modEncode 3665 BEAF-32 2e+05 3 0.039 20000 2.75 0.04 2e+05 2.5 0.034

BG3 modEncode 921 BEAF-32 20000 1.25 0.012 2000 1.75 0.012 20000 2.5 0.008

Kc167 GSM1535963 BEAF32 50000 0.75 0.012 1000 1 0.012 50000 0.75 0.008

Kc167 GSM762845 BEAF32 20000 1 0.006 1000 1.25 0.006 10000 1.25 0.005

S2 modEncode 3745 BEAF-32 50000 1.25 0.017 1000 1 0.017 50000 3.25 0.014

S2 modEncode 922 BEAF-32 50000 1.5 0.014 2000 1.5 0.014 50000 3 0.009

Table 4: Optimal set of parameters after training on top ten regions and minimising MSE.

White columns show optimal parameters when No Accessibility was considered.

Light grey columns show optimal parameters for continuous accessibility. Dark grey

columns show optimal parameters for DHS accessibility.
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TF # Bound Lambda AUC # Bound Lambda AUC # Bound Lambda AUC

BG3 modEncode 282 CTCF 5e+05 0.25 0.944 20000 0.25 0.943 1 0.25 0.885

BG3 modEncode 3280 CTCF 20000 0.25 0.895 2000 0.25 0.895 5e+05 0.25 0.812

BG3 modEncode 3671 CTCF 2e+05 0.5 0.936 5e+05 0.25 0.937 10000 1 0.946

BG3 modEncode 3672 CTCF 10 1 0.922 1 1 0.922 2000 1.25 0.832

BG3 modEncode 3673 CTCF 20000 0.5 0.903 1000 0.5 0.903 20 1.25 0.853

BG3 modEncode 3674 CTCF 1e+06 0.25 0.929 5e+05 0.25 0.929 500 0.75 0.847

Kc167 GSM762842 CTCF 1e+06 0.5 0.954 10000 0.5 0.955 1e+06 0.5 0.887

Kc167 modEncode 908 CTCF 1e+05 0.25 0.952 50 0.25 0.952 1 1.25 0.963

S2 modEncode 2638 CTCF 50000 0.5 0.99 100 0.5 0.99 5000 0.5 0.963

S2 modEncode 2639 CTCF 100 2 0.915 1 2 0.916 2e+05 0.25 0.857

S2 modENCODE 283 CTCF 1e+06 0.25 0.926 200 0.25 0.926 10 1.25 0.886

S2 modEncode 3281 CTCF 1e+06 0.25 0.882 10000 0.25 0.882 50 1 0.864

S2 modEncode 3749 CTCF 50000 0.25 0.857 10 0.25 0.857 1e+06 0.25 0.848

S2 modEncode 913 CTCF 2000 0.75 0.938 1 0.75 0.938 2000 0.5 0.872

BG3 modEncode 3714 Su(Hw) 20000 0.75 0.928 100 0.75 0.928 1 0.25 0.458

BG3 modEncode 3715 Su(Hw) 50 0.75 0.927 1 0.75 0.927 1 0.25 0.606

BG3 modEncode 3716 Su(Hw) 10000 0.75 0.929 50 0.75 0.93 1 0.25 0.677

BG3 modEncode 3717 Su(Hw) 5000 0.75 0.927 20 0.75 0.927 10000 1.25 0.662

BG3 modEncode 3718 Su(Hw) 1 0.75 0.93 10 0.75 0.93 20 1.5 0.766

BG3 modEncode 951 Su(Hw) 2000 0.75 0.931 10 0.75 0.931 200 0.25 0.583

Kc167 modEncode 3801 Su(Hw) 50000 0.75 0.925 20 0.75 0.925 20000 0.75 0.548

Kc167 Su(Hw) 1e+06 0.75 0.962 500 0.75 0.962 20000 1.25 0.915

S2 modEncode 330 Su(Hw) 50000 0.5 0.931 50 0.5 0.931 1 0.25 0.565

S2 modEncode 331 Su(Hw) 1e+05 0.5 0.937 100 0.75 0.937 5000 0.25 0.643

S2 modEncode 3719 Su(Hw) 10000 1 0.917 50 1 0.916 1 0.25 0.43

BG3 modEncode 3663 BEAF-32 20000 0.25 0.66 1000 0.25 0.661 1 2.25 0.81

BG3 modEncode 3664 BEAF-32 5000 4 0.789 1000 4 0.789 100 3.5 0.859

BG3 modEncode 3665 BEAF-32 500 1.5 0.726 1 1.5 0.726 10000 0.75 0.816

BG3 modEncode 921 BEAF-32 5000 4.25 0.831 1000 4 0.831 1e+05 3 0.897

Kc167 GSM1535963 BEAF32 2e+05 0.25 0.847 5000 0.25 0.847 1000 3.75 0.963

Kc167 GSM762845 BEAF32 10000 4 0.937 1000 4 0.937 50 4.25 0.986

S2 modEncode 3745 BEAF-32 2e+05 0.25 0.857 1000 0.25 0.857 200 3.75 0.869

S2 modEncode 922 BEAF-32 10000 4 0.825 2000 4.25 0.826 1 3 0.928

Table 5: Optimal set of parameters after training on top ten regions and maximising AUC.

White columns show optimal parameters when No Accessibility was considered.

Light grey columns show optimal parameters for continuous accessibility. Dark grey

columns show optimal parameters for DHS accessibility.
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TF # Bound Lambda Recall # Bound Lambda Recall # Bound Lambda Recall

BG3 modEncode 282 CTCF 20000 0.75 0.887 1000 0.75 0.887 1 1.5 0.778

BG3 modEncode 3280 CTCF 10000 0.75 0.816 500 0.75 0.818 1 1.25 0.676

BG3 modEncode 3671 CTCF 10000 0.75 0.884 500 0.75 0.884 1000 1.5 0.859

BG3 modEncode 3672 CTCF 1 1.25 0.883 1 1.25 0.883 5000 1.5 0.693

BG3 modEncode 3673 CTCF 20000 0.75 0.855 500 0.75 0.854 100 1.5 0.758

BG3 modEncode 3674 CTCF 10000 0.75 0.865 2000 0.75 0.865 100 1.5 0.735

Kc167 GSM762842 CTCF 5e+05 0.75 0.932 5000 0.75 0.932 10000 1.75 0.807

Kc167 modEncode 908 CTCF 10000 0.75 0.88 50 0.75 0.88 1 1.25 0.831

S2 modEncode 2638 CTCF 10000 1 0.962 100 1 0.962 2000 1.5 0.859

S2 modEncode 2639 CTCF 100 2 0.891 1 2.25 0.892 2000 1.75 0.727

S2 modENCODE 283 CTCF 10000 0.75 0.86 50 0.75 0.86 1 1.5 0.744

S2 modEncode 3281 CTCF 20000 0.75 0.805 50 0.75 0.805 500 1.25 0.71

S2 modEncode 3749 CTCF 20000 1 0.816 20 1 0.814 2000 1.25 0.682

S2 modEncode 913 CTCF 2000 1 0.875 20 1 0.875 1 1.75 0.711

BG3 modEncode 3714 Su(Hw) 500 1.25 0.85 20 1.25 0.85 10000 1.25 0.208

BG3 modEncode 3715 Su(Hw) 1000 1.25 0.848 10 1.25 0.848 10 2.25 0.397

BG3 modEncode 3716 Su(Hw) 20000 1.25 0.86 50 1.25 0.86 10000 1.5 0.443

BG3 modEncode 3717 Su(Hw) 2000 1.25 0.855 20 1.25 0.855 10000 1.25 0.419

BG3 modEncode 3718 Su(Hw) 5000 1.25 0.869 50 1.25 0.868 1 2 0.547

BG3 modEncode 951 Su(Hw) 5000 1.25 0.846 50 1.25 0.846 1 4.25 0.346

Kc167 modEncode 3801 Su(Hw) 10 1.25 0.851 1 1.25 0.851 20 1.5 0.225

Kc167 Su(Hw) 50000 1 0.936 50 1 0.935 20000 1.25 0.833

S2 modEncode 330 Su(Hw) 5000 1.25 0.841 20 1.25 0.841 5000 1.5 0.286

S2 modEncode 331 Su(Hw) 5000 1.25 0.863 20 1.25 0.862 10000 1.25 0.406

S2 modEncode 3719 Su(Hw) 5000 1.25 0.813 10 1.25 0.812 1e+05 1 0.132

BG3 modEncode 3663 BEAF-32 10 1 0.627 20 1 0.627 1 2.75 0.69

BG3 modEncode 3664 BEAF-32 5000 4 0.762 1000 4 0.761 5000 4 0.732

BG3 modEncode 3665 BEAF-32 2000 2 0.687 200 2 0.687 2e+05 1.75 0.663

BG3 modEncode 921 BEAF-32 5000 4.25 0.807 1000 4.25 0.806 1e+05 3 0.829

Kc167 GSM1535963 BEAF32 1 1.5 0.823 1 1.5 0.823 1000 3.75 0.902

Kc167 GSM762845 BEAF32 10000 4 0.918 1000 4 0.918 50 4.25 0.95

S2 modEncode 3745 BEAF-32 1000 0.75 0.806 20 0.75 0.806 1 3.25 0.745

S2 modEncode 922 BEAF-32 10000 4 0.799 2000 4.25 0.801 2000 3.25 0.856

Table 6: Optimal set of parameters after training on top ten regions and maximising recall.

White columns show optimal parameters when No Accessibility was considered.

Light grey columns show optimal parameters for continuous accessibility. Dark grey

columns show optimal parameters for DHS accessibility.
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TF # Bound Lambda spearman # Bound Lambda spearman # Bound Lambda spearman

BG3 modEncode 282 CTCF 1e+06 0.25 0.584 2e+05 0.25 0.584 5e+05 0.25 0.523

BG3 modEncode 3280 CTCF 1e+06 0.25 0.512 2e+05 0.25 0.513 5e+05 0.25 0.461

BG3 modEncode 3671 CTCF 1e+06 0.25 0.582 1e+06 0.25 0.583 1 0.25 0.581

BG3 modEncode 3672 CTCF 1e+05 0.5 0.502 5000 0.5 0.503 1 0.25 0.404

BG3 modEncode 3673 CTCF 1e+06 0.25 0.463 1e+06 0.25 0.464 1 0.25 0.462

BG3 modEncode 3674 CTCF 1e+06 0.25 0.483 50000 0.25 0.483 2000 0.5 0.471

Kc167 GSM762842 CTCF 1 0.25 0.299 5e+05 0.25 0.312 20 3.25 0.367

Kc167 modEncode 908 CTCF 5e+05 0.25 0.551 100 0.25 0.551 10 1.25 0.638

S2 modEncode 2638 CTCF 1e+06 0.25 0.608 10000 0.25 0.608 5e+05 0.25 0.544

S2 modEncode 2639 CTCF 1 0.25 0.438 10000 0.25 0.438 1 0.25 0.323

S2 modENCODE 283 CTCF 1 0.25 0.596 20000 0.25 0.597 1 0.25 0.517

S2 modEncode 3281 CTCF 1e+06 0.25 0.496 500 0.25 0.496 5e+05 0.25 0.448

S2 modEncode 3749 CTCF 1e+06 0.25 0.446 10000 0.25 0.448 5e+05 0.25 0.467

S2 modEncode 913 CTCF 5e+05 0.25 0.613 10000 0.25 0.614 200 1.25 0.556

BG3 modEncode 3714 Su(Hw) 5e+05 0.5 0.689 1000 0.5 0.689 1 0.25 -0.109

BG3 modEncode 3715 Su(Hw) 50 0.75 0.704 1 0.75 0.704 1 0.25 0.1

BG3 modEncode 3716 Su(Hw) 1000 0.75 0.705 1 0.75 0.705 1 0.25 0.22

BG3 modEncode 3717 Su(Hw) 2000 0.75 0.682 1 0.75 0.682 5e+05 1 0.238

BG3 modEncode 3718 Su(Hw) 1 0.5 0.647 50 0.5 0.645 1 0.75 0.462

BG3 modEncode 951 Su(Hw) 5e+05 0.5 0.718 20000 0.5 0.721 1 0.25 0.056

Kc167 modEncode 3801 Su(Hw) 1e+06 0.5 0.674 200 0.5 0.674 1e+05 0.75 0.062

Kc167 Su(Hw) 50000 0.75 0.421 20 0.75 0.428 200 1.5 0.361

S2 modEncode 330 Su(Hw) 1e+06 0.5 0.748 1e+06 0.25 0.757 1 0.25 0.037

S2 modEncode 331 Su(Hw) 5e+05 0.5 0.675 1e+06 0.25 0.691 1 0.25 0.194

S2 modEncode 3719 Su(Hw) 50000 0.75 0.743 100 0.75 0.746 1 0.25 -0.266

BG3 modEncode 3663 BEAF-32 100 0.5 0.16 1 0.5 0.16 500 0.5 0.503

BG3 modEncode 3664 BEAF-32 500 0.25 0.317 20 0.25 0.317 1000 1.75 0.507

BG3 modEncode 3665 BEAF-32 50000 0.25 0.341 1 0.75 0.34 50000 0.75 0.512

BG3 modEncode 921 BEAF-32 1e+06 0.25 0.252 1e+05 0.25 0.253 1000 0.5 0.31

Kc167 GSM1535963 BEAF32 2e+05 0.25 0.385 2000 0.25 0.385 1000 3 0.575

Kc167 GSM762845 BEAF32 1e+06 0.25 0.297 10000 0.25 0.296 200 4 0.552

S2 modEncode 3745 BEAF-32 50000 0.25 0.385 200 0.25 0.385 50 2.25 0.517

S2 modEncode 922 BEAF-32 5e+05 0.25 0.238 5000 0.25 0.237 5000 1.75 0.448

Table 7: Optimal set of parameters after training on top ten regions and maximising Spear-

man correlation. White columns show optimal parameters when No Accessibility was

considered. Light grey columns show optimal parameters for continuous accessibility.

Dark grey columns show optimal parameters for DHS accessibility.
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ChIPanalyser predicts TF binding in different cell lines by considering relative mRNA abun-

dance

I wanted to further investigate the predictive capabilities of the model and also

demonstrate its mechanistic soundness for CTCF, BEAF-32 and su(Hw) in the three

selected cell lines. For that, I estimated the optimal set of parameters in one cell line

and aimed to predict TF binding in a different cell line taking into account changes in

DNA accessibility (DHS) and changes in number of bound molecules using relative

changes in RNA abundance. For example, I estimated the optimal set of parameters

for CTCF in Kc167 cells that would minimise MSE as λ = 1.5 and N = 104 over the top

10 regions. By rescaling N based on relative RNA-seq levels of CTCF in the two cell

lines, I could approximate the number of CTCF molecules bound to DNA in BG3 cells

(N ≈ 1.6× 104 ). This together with BG3-specific DNA accessibility data is capable

of predicting with high accuracy the ChIP-seq profile in BG3 cells (see Figure-17).

RNA rescaling seems to recover both the number of peaks and their location with

high accuracy. Moreover, the rescaling of number of bound molecules did not lead to

any difference in terms of MSE variation between estimated and rescaled (Figure17

G). The same analysis was performed for BEAF-32 (Figure-17 C, D and H), where I

estimated parameters in BG3 cells (λ = 2.5 and N = 2× 104 ) and rescaled the number

of molecules in S2 cells (N ≈ 1.2× 104 ). Once again, the model correctly predicts ChIP

profiles in both location and relative enrichment. Finally, for su(Hw) (Figure-17 E, F

and I) I estimated parameters in Kc167 cells (λ = 1.25 and N = 104 ) and rescaled the

number of molecules in S2 cells (N ≈ 6× 103 ). Again, the predictions of the model

are accurate. The results show that changes between cell lines in DNA accessibility

and number of bound molecules seem sufficient to explain the changes in TF binding

profiles. Nevertheless, I still do not know which of the two is the more important

factor or whether both have similar contributions.

To address this, I also assumed that there is (i) no change, (ii) a 10 fold reduction
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and (iii) one 100 fold reduction in the number of bound molecules and repeated the

analysis. Figure-17 shows that using the same TF abundance as in the original cell line

did not change the prediction’s quality at all. In fact, I observed a significant reduction

in the predicted local enrichment only when reducing the number of bound molecules

by 100 (for CTCF and su(Hw)) or 10-fold (for BEAF-32). These results show that cell

differences in binding profiles of TFs, at their strong binding regions, would mainly

come from differences in DNA accessibility and not relatively small changes in TF

abundance. The only way that TF abundance could impact the binding profile (and,

consequently, lead to changes in gene regulation) is when the expression of these TFs

are strongly down-regulated.
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Figure 17: TF abundance remains stable between different cell lines when considering rel-

ative mRNA abundance. A-F show predicted ChIP-seq profiles with the TF abun-

dance estimated based on RNA-seq. The yellow area represents inaccessible DNA,

the dark area represents experimental ChIP signal and the red lines are the predicted

profiles. I estimated the number of bound molecules in one cell line (A, C and E)

and rescaled our estimate using relative mRNA abundance in an other cell line

(B, D and F). (B, D and F) The dashed red line represents the rescaled value of

number of bound molecules based on relative RNA-seq abundance, the light blue

the original value estimated in (A, C and E).The purple line and the green line

represent the original estimated value reduced 10 and 100 times respectively. (G , H

and I) Boxplots with MSE for all cases in the estimated and predicted profiles at top

10 regions for both training and validation.
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discussion

TFs use different binding mechanisms

In this analysis, I focused my attention on three DNA binding proteins: CTCF,

BEAF-32 and su(Hw). All three TFs are known architectural proteins in Drosophila

but also play roles in transcription regulation and insulation [Van Bortle et al., 2014,

Chathoth and Zabet, 2019]. Moreover, it was shown that these three TFs have distinct

binding behaviours and were classified into three subclasses with respect to chromatin

architecture[Bushey et al., 2009, Vogelmann et al., 2014] . In this analysis, I show that

they all exhibit different behaviours with respect to DNA binding.

CTCF has been shown to play a role in loop formation and participating in Topolog-

ically Associated Domains (TADs) boundary maintenance [Chathoth and Zabet, 2019].

However, only a subset of CTCF sites are involved in these structures and that many

CTCF sites do not conform to this rule [Guo et al., 2015, Tang et al., 2015]. In my anal-

ysis, CTCF displayed strong sensitivity to DNA accessibility but reduced sensitivity

to the number of bound molecules and scaling factor when DNA accessibility was

considered (see Figures 10 and 11). My findings suggest that CTCF binds to hotspots

along the genome and this could be explained by the observation that the strongest

peaks are in fact highly conserved binding sites [VietriÂăRudan et al., 2015]. As the

number of sites increase, the conservation of binding sites decreases, as does the

goodness fit. Thus, CTCF binding to highly conserved sites can be explained by the

model, but something else is is responsible for the reduced binding at less conserved

sites (i.e. cell specific CTCF binding).

BEAF-32 is a Drosophila specific genetic insulator [Schoborg and Labrador, 2010]

that shows preferential binding towards TAD boundaries, but also is involved in

transcription itself. More specifically, BEAF-32 was identified as a cis-regulatory
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element separating close head-to-head genes with different transcription regulation

modes [Jiang et al., 2009]. In Drosophila, there is a high density of these genes through

out the genome and BEAF-32 tends to bind closely to the TSS [Rennie et al., 2018].

This is further confirmed by studies showing that BEAF-32 has uniform binding along

the entire genome [Bushey et al., 2009]. TSSs are generally considered open chromatin

and, if BEAF-32 binds in close proximity of the TSSs, it comes to no surprise that

BEAF-32 would show a high sensitivity towards DNA accessibility. My results confirm

that BEAF-32 shows a strong preference towards DNA accessibility and, to a lesser

extent to local abundance (see Figures 10 and 11).

Furthermore, I show that su(Hw) binds in both open and closed chromatin and also

displays a high sensitivity towards number of bound molecules and scaling factor

when DNA accessibility is considered. There is a significant body of work showing the

role su(Hw) plays in chromatin insulation and remodelling [Kurshakova et al., 2007,

Kuhn-Parnell et al., 2008, Soshnev et al., 2013, Vorobyeva et al., 2013]. It had been sug-

gested that the role of insulator is only possible when paired with other DNA binding

proteins such as CP190 and mdg4. su(Hw) is also a primary actor in the interaction

between the genome and nuclear lamina (also know as Lamina Associated Domains)

[van Bemmel et al., 2010, van Steensel and Belmont, 2017]. Both chromatin insulation

and LADs would induce closed chromatin in order to maintain chromosomal structure

and this would explain why su(Hw) can bind in both open and closed chromatin. In

this context, ChIP-seq peaks might not overlap well with DNase hyper sensitivity data

(see Figures 10 and 11).

It has been shown that su(Hw) binding sites tend to cluster together (with varying

number of sites) and that these sites are constitutively bound by su(Hw) [Parnell et al., 2006,

Adryan et al., 2007]. Interestingly, it seems that only isolated high affinity sites had

a role in transcriptional regulation and the clustered sites were more involved in

chromatin architecture.
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DNA accessibility is the main driver of binding to DNA for some TFs

These results show that DNA accessibility and number of bound molecules control the

binding profiles of TFs (see Figure-10 and Figure-17). When I estimated the binding

parameters (λ and N ) in one cell line and then predicted TF binding profiles in a

different cell line based on changes in DNA accessibility and number of TF molecules

(using changes in mRNA), I found a good agreement between the predictions and

the actual ChIP-seq dataset (see Figure-17). Nevertheless, the changes in number

of TF molecules between the two cell lines did not seem to make any difference to

the predicted profiles at strong binding sites (compare blue and dashed red line in

Figure-17 B, D and F). This means that biologically relevant fluctuations in TF numbers

between different cell lines would have little effect on the differences in binding profiles

of TFs, which would be mainly driven by changes in DNA accessibility. Furthermore,

only very strong knock-downs would decrease or deplete ChIP peaks. It should be

noted that CTCF, BEAF-32 and su(Hw) are highly expressed architectural and insulator

proteins and, thus, they would be expected to saturate their binding sites. Why would

changes in concentration of the TF have such a limited effect on their binding? One

potential explanation is that these TFs control the expression of essential genes that

should be tightly regulated to buffer fluctuations in number of molecules that affect

the cell [Schoech and Zabet, 2014, Nicolas et al., 2017]. Finally, I also investigate the

capacity of our model to differentiate between TFs that can bind only in open chro-

matin or also partially opened chromatin. The results showed that while Ubx displays

a strong sensitivity to open chromatin and binds in the top 1% accessible sites, the

binding of Abd-B and Dfd is less influenced by DNA accessibility (with Abd-B and

Dfd binding in top 5% and 20% respectively accessible regions); see Figure-15. Hox

TFs are known for having a similar motif, but displaying differences in their bind-

ing profiles [Chauvet et al., 2000a, Gehring et al., 1994, Pellerin et al., 1994]. It was

hypothesised that binding cooperativity could explain the difference in binding pro-



98 chipanalyser : insights into biology

files coupled with protein sequence changes [Hayashi and Scott, 1990, Joshi et al., 2010,

Rezsohazy et al., 2015]. Here, I showed that DNA accessibility could also be respon-

sible for the difference in binding profiles of Hox TFs (see Figure-15). Interestingly,

our results support a model where Hox TFs would be able to bind to regions of DNA

showing different level of accessibility and the DNA accessibility would be sufficient

to explain these differences in the binding profiles of Hox TFs. Nevertheless, we also

observed a poorer quality in modelling the binding profiles of TFs that can bind in

dense chromatin (e.g., Abd-B or Dfd), which suggests that cooperative binding would

be required to explain their binding. Due to the fact that our model does not include

cooperativity, the predictions for these TFs would not be as accurate as in the case of

TFs that preferentially bind to open chromatin.

Modelling DNA accessibility

In this chapter, I described the role of DNA accessibility in TF binding. I compared

the performance of ChIPanalyser without DNA accessibility data (No Access - all

DNA is considered accessible), with continuous DNA accessibility data and with DHS

DNA accessibility ( DNA is either accessible or inaccessible). As described above,

the role of DNA accessibility is nuanced as certain TFs such as su(Hw) and CTCF

are capable of binding to seemingly inaccessible DNA. This could indicate that their

binding sites are located within less permissive chromatin. DNA would find itself in

an intermediate state between closed chromatin and open chromatin. Under these

circumstance, one would assume that continuous DNA accessibility values would be

better suited to explain TF binding. However, the results described in Figure-10 seem

to show that DHS DNA accessibility improves the performance of ChIPanalyser rather

than continuous DNA accessibility.

One explanation for these unintuitive results could be the way continuous DNA accessi-
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bility was modelled. Continuous DNA accessibility scores were computed by min/max

normalising DNase I hypersensitivity signal. This approach ensures that scores are

bound between 0 and 1. However, this approach comes with limitations. Firstly, most

DNase I hypersensitivity scores are non-zero and often slightly over the minimum

score. In the context of ChIPanalyser, this will produce occupancy scores in regions of

closed chromatin. The resulting predicted profiles would be much more closely related

to the profiles produced with all DNA considered accessible than profiles produced

with DHS accessibility. Furthermore, using a min/max normalisation approach to

modelling DNA accessibility also compresses the "distance" between DNase I hyper-

sensitivity scores. This increases the weight of low DNase I hypersensitivity scores

compared to high DNase I hypersensitivity scores. The importance of open chromatin

(or at least permissive chromatin ) would be minimised in favour closed chromatin.

One approach to overcome this issue would be to model accessibility using an exponen-

tial. This would induce an inflation of scores associated with more accessible DNA and

potentially correct the bias described above. A similar approach was described by Teif

[Teif et al., 2014] for nucleosome occupancy based on the works by [Goh et al., 2010].

conclusion

I show that ChIPanalyser can shed light on the mechanisms driving TF binding.

For architectural proteins, DNA accessibility is the main drivers towards differential

binding between cell lines. Furthermore, all three architectural binding proteins show

different binding mechanisms with respect to DNA accessibility. CTCF binds to

genome hotspots as well as binding sites located in lesser accessible DNA. BEAF-

32 bind anywhere along the genome as long as its binding sites is found in open

chromatin while su(Hw) binds preferentially in closed chromatin. Finally, I describe

how the model can recover the binding preferences of three Hox TF with respect to
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DNA accessibility. While Ubx binds to open chromatin, Dfd and Abd-b are more

permissive in terms of DNA accessibility.



3

T H E R O L E O F C H R O M AT I N S TAT E S O N T F B I N D I N G

chapter summary

The following chapter will describe the role of chromatin states on TF binding. First,

I describe the development of a genetic algorithm to assess chromatin state affinity

scores and the overall performance of such an algorithm. Second, I demonstrate that

binding of both architectural proteins and Hox TFs are better explained with the

inclusion of chromatin states. Finally, as describe previously, architectural proteins

show a low sensitivity towards changes in protein abundance. Differential binding

between cell lines is driven by changes in chromatin states rather than changes in

abundance. Overall, chromatin states improves the performance of the model but most

importantly increase the understanding of TF binding mechanisms.

introduction

There are many factors that influence the binding of TFs to DNA. Some of the most

notable factors are binding motifs, TF abundance and DNA accessibility. As described

previously, TF binding motifs are overly abundant across the genome. Most of the bind-

101
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ing sites (characterised by PWMs) do not correlate well with genome wide occupancy

assay peaks such as ChIP-seq or ChIP-on-chip. A common approach to decrease the

number of false positive binding motif is to consider DNA accessibility. In this circum-

stance, one needs to assume that TFs will only bind to accessible DNA. Binding motifs

located in closed chromatin will be "masked" by compacted DNA and thus unavailable

for TF binding. In the previous chapters, I described ChIPanalyser, a Bioconductor

package that predicts and models TF binding by using a statistical thermodynamic

framework [Martin, 2017]. Using the package, I detailed the significant role of DNA

accessibility in the binding of three Drosophila architectural proteins (CTCF, BEAF-32,

and su(Hw)). For example, the binding of BEAF-32 is strongly driven by DNA accessi-

bility and to a lesser extent protein abundance. By including DNA accessibility into

the model, the package accurately recovers the binding of BEAF-32 on a genome wide

scale. I demonstrated the lesser role of protein abundance by training the model in one

cell line and rescaling the estimated number of bound molecules in another cell line

using relative RNA levels. The model accurately recovered BEAF-32 peaks between

cell lines. Rescaling the number of bound molecules had little effect on the binding

predictions. These results suggest that BEAF-32 only bind in open chromatin and that

changes in DNA accessibility are the main drivers behind differential binding between

cell lines.

In the case of su(Hw), including DNA accessibility told a very different story. The

model performed better when all DNA was considered accessible. This implies that

many su(Hw) peaks are located in regions of closed chromatin. Interestingly, despite

DNA accessibility playing a different role in the binding of su(Hw), protein abundance

also played a lesser role in differential binding of su(Hw) between cell lines.

Including DNA accessibility into the model might not improve the predictions but

still delivers valuable insight into the mechanisms of TF binding. In the case of

su(Hw), binding is driven by something else than simply open or closed chromatin.

In Drosophila, most cell lines have approximately 10% of open chromatin. This leaves

close to 90% of "uncharted" DNA landscape. This increases up to 98 % in Homo sapiens.
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Although extremely useful, DNA accessibility on its own shows some limitations.

One approach to overcome these limitations is to consider chromatin states in-

stead of considering chromatin as either open or closed. DNA is wrapped around

octameric complexes of histones called nuclosomes. Histones can undergo post

translational modifications such as methlyation or acetylation. The addition or re-

moval of chemical groups modifies the functional properties of a stretch of DNA

[Bannister and Kouzarides, 2011]. These changes can occur either by directly modify-

ing the physical bond between DNA and histone or by enabling the recruitment of

chromatin re-modeller proteins. Chromatin states are defined by a specific combination

of histone modifications associated with a genomic function. As an example, enhancers

are generally associated with increased levels of H3K4me1, H3K27ac and H3K56ac

[Andersson and Sandelin, 2019] . Interestingly, histone acetlylation is associated with

more open chromatin as acytly groups neutralise the positive charge on lysine residues

[Zhang and Presgraves, 2017, Shogren-Knaak et al., 2006]. This decreases the strength

of the bond between DNA and nucleosomes. Genome wide chromatin state maps

are generated by using histone ChIP-seq data and computational methods such as

hidden markov models. Recently, chromatin maps for Drosophila were produced

by using 24 histone modifications and by including DNAse I hypersensitvity data

[Skalska et al., 2015]. This resulted in 11 chromatin states across the Drosophila genome.

Chromatin states provide a more accurate representation of chromatin. Open chro-

matin can be described by multiple states with varying levels of accessibility while

closed chromatin can be described by various heterochromatic states.

In this chapter, I demonstrate how chromatin states can be integrated to the statistical

thermodynamic framework. More specifically, I developed a genetic algorithm that

optimise chromatin state preferences of TFs by using ChIPanalyser at its core. Using

this updated approach, I further investigate the binding of three architectural proteins
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(CTCF, BEAF-32 and su(Hw)) and three Hox TFs (Ubx, DfD and Abd-b) in two

Drosophila cell lines (Kc167 and BG3). I show that architectural proteins show clear

preferences towards certain chromatin states. Unsurprisingly, BEAF-32 preferentially

bind in states related to open chromatin. CTCF showed preferences towards open

chromatin states but also intermediate states. On the other hand, predicting binding

profiles of su(Hw) were drastically increased when including chromatin states. su(Hw)

did not show a clear preference towards closed chromatin states but rather varying

affinities for numerous chromatin states. Furthermore, I demonstrate that differential

binding of architectural proteins between cell line is driven by chromatin states and

that proteins abundance plays a lesser role. These results further support the idea that

DNA accessibility plays a nuanced role in TF binding. Finally, Hox TFs preferences

towards varying levels of accessibility can accurately be described by varying affinities

towards chromatin states.

data sets

To carry out this analysis, data was downloaded from various sources. DNA sequences,

PFMs and TF ChIP-seq data are described in the previous chapters (see chapter-1 and

Appendix A). Chromatin state maps for Kc167 and BG3 cells were previously pub-

lished by [Skalska et al., 2015]. As chromatin state maps were only available for BG3

and Kc167, the following analysis will focus on these two cell lines. The distribution of

chromatin states shows slight difference between cell lines (see Figure-18). BG3 cells

displayed an increase in heterochromatin state while Kc167 cells showed an increase

in the "Basal" state. However the distribution of binding sites ( as described by PWM

scores) does not indicate any bias towards a specific chromatin state. This suggests

that binding motifs are evenly distributed along the genome.
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To insure that all selected regions (see chapter 1 and chapter 2) contained chromatin

states, I overlapped the selected regions with chromatin state maps. This resulted in

a slightly reduced number of regions (3171). The process by which top regions were

selected remained the same as the one previously described. The model was trained

on the top 100 regions and validated on the remaining regions (3071). The number

of regions used for training was increased to 100 in order to include every chromatin

state at least once.
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Figure 18: Chromatin state maps show slight difference between cell lines. While the Basal

state is strongly increased in Kc167 cells compared to BG3 cells, BG3 cells display a

higher proportion of heterochromatin in euchromatin. I investigated the distribution

of binding sites between each chromatin state in both cell lines. Unsurprisingly,

there does not seem to be any bias towards a specific chromatin state. Binding sites

( as described by a PWM) are evenly distributed across the genome.

wielding natural selection

Genetic Algorithms

To investigate chromatin states and their potential role in TF binding, the first step

was to adapt the model. Previously, the model assumed that the four main factors
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driving the binding of TFs were: binding energy (as a PWM score), the number of

bound molecules, a PWM scaling factor and finally DNA accessibility. Incorporating

chromatin states only required to consider DNA affinity in the master equation. Simi-

larly to varying an affinity towards accessible DNA, the new model considers varying

affinities towards chromatin states.

P(N, a, λ, ω)j =
N · aj · e(

1
λ ·ωj)

N · aj · e(
1
λ ·ωj) + L · n · [ai · e(

1
λ ·ωj)]i

(3)

with:

• N , the average number of bound molecules

• aj , chromatin state affinity at site j

• ω , the binding energy required for a TF to bind to site j - in the form of a

Position Weight Matrix Score

• λ , a scaling factor for the Position Weight Matrix score

• L , the length of the genome of interest

• n , the ploidy level of the organism

Chromatin state affinity is defined as the following:

aj = ∑
k

αk · ck
j (4)

with α the chromatin state affinity score and c the chromatin state at site j. Concep-

tually, α represents the inferred chromatin state affinity for a given TF. This remains

constant over the entire genome. c represents the chromatin state at site j. Both α and c

are of length k, the number of different chromatin states. While α is characterised by a

vector of length k with inferred affinity scores for each chromatin state, c is a vector of

length k describing the presence or absence of a chromatin state at site j (0 for absent

and 1 for present). One and only one chromatin state can be present at site j.
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To uncover potential TF affinities for chromatin states, I developed a genetic algo-

rithm with at its heart the core functionalities offered by ChIPanalyser. The main aim

was to infer chromatin state affinities as well as number of bound molecules and λ

using the model described in equation (3). A genetic algorithm can be described as

a machine learning algorithm that mimics natural selection. A population evolves

over time and only the fittest individuals make it to the next generation carrying

over their distinct traits. The starting population will fluctuate by undergoing both

cross-over events and mutations for every trait. In this case, the starting population

is characterized by a set of 14 traits: Number of bound molecules, a scaling factor, a

PWM threshold ( as described in Chapter 1), and a starting affinity towards each of the

11 states. Traits are contained in a so called "chromosome". Chromosomes contain the

values assigned to each trait. For the purpose of this analysis, all traits would select a

random value within a predefined set of values. The pre-defined values for each trait

are described as following:

• N : 1,10,20,50,100,200,500,1000,2000,5000,10000,20000,50000,100000,200000,500000,1000000

• λ: 0 to 5 by 0.25 increments

• PWM Threshold: 0 to 1 by 0.1 increments

• Chromatin States: 0 to 1 by 0.2 increments

The starting population contained 100 individuals. Only 10 of these individuals are

carried over to the next generation. Between each generation there is a 0.2 probabil-

ity of mutation. To stay true to sexual reproduction, cross-over events occurred for

every individual with a randomised extent of "chromosome" cross-over. The genetic

algorithm ran for a total of 50 generations. Fitness of each individual was computed

based maximising or minimising goodness of fit metrics. While ChIPanalyser offers

12 different metrics to asses goodness of fit, I elected to only use MSE, AUC and

recall. These three metrics have shown to be either the most reliable at describing

the goodness of fit of the model or are commonly used metrics in machine learning
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approaches.

It should be noted that a more straight forward approach could have been considered

by overlapping ChIP experimental peaks and chromatin states. If a given TF would

have an increased affinity for a set of chromatin states, there would be a higher number

of ChIP peaks within that chromatin state. One could calculate an affinity score based

on the proportion of peaks within each chromatin state taking into account the extent of

each chromatin state. This approach could be taken a step further by also considering

peak local enrichment. A TF’s affinity score would not only consider the proportion

of peaks within each chromatin state but also the "strength" of peaks within each

range. It is conceivable that the strength of TF binding events would differ between

chromatin states. Interestingly, computing affinity scores using the aforementioned

method would provided a good starting point for the model. The affinity scores could

be directly used within equation (1). The results presented in this chapter assume no

prior knowledge of chromatin state affinities are provided.

How fit can you get?

After running the genetic algorithm on each data set for 50 generations, the best

performing "individual" of each generation was extracted and plotted. Most data sets

converged to an optimal solution after 20 generations. Figure-20 shows AUC, MSE,

and recall scores over 50 generations for each data set in Kc167 cells. Figure-19 shows

AUC, MSE, and recall scores over 50 generations for each data set in BG3 cells. Finally,

Figure-21 shows AUC, MSE, and recall scores over 50 generations for Hox data sets

in Kc167 cells. Unsurprisingly, the performance of BEAF-32 remains similar to the

score obtained when using only DNA accessibility (see Table-8). If BEAF-32 only

binds to accessible DNA, it would be expected for BEAF-32 to show a higher affinity
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towards states of open chromatin and low affinity towards other states. CTCF showed

a slight improvement compared to only using DNA accessibility (see Table-8). CTCF

would bind in chromatin states defined as open chromatin or closely related states.

Finally, su(Hw) showed the highest score improvement compared to only using DNA

accessibility (see Table-8). In this case, it is expected for su(Hw) to show a higher

affinity towards chromatin states associated with heterochromatin.
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Data set N lambda MSE N lambda AUC N lambda recall

BG3 modEncode 282 CTCF 5e+05 0.75 0.008 500 0.25 0.901 20 0.25 0.86

BG3 modEncode 3280 CTCF 50000 1 0.01 500 0.25 0.86 500 0.25 0.808

BG3 modEncode 3671 CTCF 2e+05 0.75 0.009 500 0.5 0.892 2000 0.5 0.847

BG3 modEncode 3672 CTCF 10000 1.75 0.003 200 0.25 0.8 10000 1.25 0.762

BG3 modEncode 3673 CTCF 1e+05 1 0.008 500 0.25 0.892 500 0.25 0.846

BG3 modEncode 3674 CTCF 50000 1.25 0.01 500 0.25 0.889 500 0.25 0.843

BG3 modEncode 3663 BEAF-32 2e+05 3 0.011 5000 3.5 0.908 1e+06 3.5 0.85

BG3 modEncode 3664 BEAF-32 2e+05 2.5 0.012 50 4.5 0.949 10 4.5 0.894

BG3 modEncode 3665 BEAF-32 5e+05 3 0.014 1 3.5 0.938 1 3.5 0.867

BG3 modEncode 921 BEAF-32 50000 2 0.006 200 4.5 0.902 200 4.5 0.867

BG3 modEncode 3714 Su(Hw) 1e+05 2.5 0.02 5000 0.75 0.918 5000 0.75 0.831

BG3 modEncode 3715 Su(Hw) 1e+05 2.5 0.019 1000 0.5 0.93 5000 0.75 0.837

BG3 modEncode 3716 Su(Hw) 1e+05 2 0.015 1000 0.75 0.928 1000 0.75 0.846

BG3 modEncode 3717 Su(Hw) 1e+05 2 0.017 1000 0.75 0.926 1000 0.75 0.841

BG3 modEncode 3718 Su(Hw) 20000 2 0.007 100 0.75 0.905 200 0.75 0.838

BG3 modEncode 951 Su(Hw) 1e+05 2 0.017 5000 0.75 0.921 5000 1 0.839

Kc167 GSM762842 CTCF 20000 1.25 0.006 200 2.5 0.939 5000 2 0.921

Kc167 modEncode 908 CTCF 1e+05 1 0.011 100 0.75 0.891 1000 0.75 0.841

Kc167 GSM1535963 BEAF32 2e+05 2 0.009 1 5 0.972 10 5 0.942

Kc167 GSM762845 BEAF32 50000 1.75 0.005 1000 5 0.957 1000 5 0.934

Kc167 modEncode 3801 Su(Hw) 1e+05 3 0.012 200 0.75 0.903 1000 0.75 0.829

Kc167 Su(Hw) 1e+05 1.75 0.005 2e+05 2.5 0.952 2e+05 2.5 0.928

Kc167 Ubx 1e+06 1.5 0.004 20000 0.5 0.83 5e+05 0.5 0.773

Kc167 Dfd 2e+05 0.75 0.003 5e+05 0.5 0.854 5e+05 0.5 0.806

Kc167 Abdb 1e+06 1.5 0.003 10 1 0.832 5e+05 0.75 0.767

Table 8: Optimal Parameters obtained with a genetic algorithms after 50 generations.White

columns are N and λ minimising MSE. Light grey are N and λ maximising AUC and

dark grey columns are N and λ maximising recall. Architectural proteins as well as

Hox TFs are included.
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Figure 19: Genetic Algorithm performance over 50 generations in BG3 cells. After running

the genetic algorithm for 50 generations, the best performing "individual" at each

generation was extracted based on three goodness of fit metrics in BG3c cells. Most

datasets converge to an optimal set of parameters after 20 generations. A-C shows

AUC, MSE and recall scores for CTCF over 50 generations. D-F shows AUC, MSE

and recall scores for BEAF-32 over 50 generations. G-I shows AUC, MSE and recall

scores for su(Hw) over 50 generations.
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Figure 20: Genetic Algorithm performance over 50 generations in Kc167 cells. After running

the genetic algorithm for 50 generations, the best performing "individual" at each

generation was extracted based on three goodness of fit metric in Kc167 cells. Most

datasets converge to an optimal set of parameters after 20 generations.A-C shows

AUC, MSE and recall scores for CTCF over 50 generations. D-F shows AUC, MSE

and recall scores for BEAF-32 over 50 generations. G-I shows AUC, MSE and recall

scores for su(Hw) over 50 generations.
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Figure 21: Genetic Algorithm performance over 50 generations in Kc167 cells for Hox TFs

. After running the genetic algorithm for 50 generations, the best performing

"individual" at each generation was extracted based on three goodness of fit metrics

in Kc167 cells for Hox TFs. Datasets converge to an optimal set of parameters after

20 generations.A-C shows AUC, MSE and recall scores for Ubx over 50 generations.

D-F shows AUC, MSE and recall scores for Dfd over 50 generations. G-I shows

AUC, MSE and recall scores for Abd-b over 50 generations.

chromatin state affinity

Architectural DNA binding proteins point in the direction of having varying affinities

towards different chromatin states. In order to verify if I could recover the expected

chromatin state affinities, I extracted the best performing "individuals" of the last

generation by maximising or minimising a goodness of fit metric (MSE, AUC and

recall). Chromatin states affinities for the selected individuals in each data set were

combined and averaged. Variance in chromatin state affinities was also extracted and
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computed from selected individuals. It should be noted that a single data set can

produce numerous individuals with the same fitness score while displaying varying

affinity scores. Variance of affinity scores show the fluctuations in affinity scores over

replicates as well as within a single data sets. Even when only one replicate is available,

variance scores can still be extracted based on top performing individuals.

Architectural Proteins show preferences towards different chromatin states

For each TF, chromatin state affinity and variance is summarised in Figure-22. BEAF-32

preferentially binds to active transcription start sites (aTSS) and to a lesser extent to

enhancer regions. This holds true between both cell lines and between goodness of

fit metrics (see Figure-22 B/E). In BG3 cells, Figure-22 E shows an increased affinity

for heterochromatin. However, the variance between affinity scores is also increased.

Increased variance decreases confidence in chromatin state affinity scores. Furthermore,

High variance in affinity scores suggests that these chromatin states could play a lesser

role in TF binding events.

CTCF binds to both aTSS and enhancers. Figure-22 A and D show a high affinity for

both of these states in both cell lines. Interestingly, CTCF also displays a intermediate

affinity towards the competent state. The Competent state is considered as an enhancer

regions in the process of being fully activated or conversely enhancers being repressed.

Despite slight variation, all three metrics indicate intermediate to high affinity towards

the competent state.

Finally, su(Hw) tells a more complex and nuanced story. su(Hw) binds with an inter-

mediate to low affinity towards Elongation states and active introns. Unsurprisingly,

su(Hw) exhibited an increased affinity (intermediate to high) towards heterochromatin,

heterochromatin in euchromatin and basal. However, the higher variance observed for

these states suggest that something else is afoot.
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Figure 22: Chromatin state affinity scores for Architectural proteins. In order to determine

chromatin state affinity for architectural proteins, I extracted and averaged the best

performing "individuals" for each data set and averaged their respective affinity

scores. To ensure, the robustness of affinity scores, the variance in affinity scores

between top "individuals" was also computed. CTCF displays a high affinity towards

enhancer and active TSS regions but also intermediate affinity towards the competent

state (A-D). BEAF-32 is illustrated by a clear affinity towards active TSS and to a

lesser extent enhancer regions (B-E). Finally, su(Hw) displays complex and nuanced

patterns towards many chromatin states (C-F). Nevertheless, su(hw) shows an

increased affinity towards hetreochromatin and closed chromatin states.

After 50 generations, the optimal set of parameters and affinities were then applied

to the validation set. The validation set contained all other regions that were not

contained in the training set. Figure-23 shows predicted profiles in the validation set

for the three architectural proteins in BG3 cells. The red lines represents the predicted

profiles. The dark blue area shows genome occupancy. Underneath each profile,

the multi-coloured rectangles are the different chromatin states and their respective

ranges. The colour code can be found on the right hand side of the plot. Predicted
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profiles accurately recover experimental data both in location and in local enrichment

for CTCF (Figure-23 A), BEAF-32 (Figure-23 B) and su(Hw) (Figure-23 C). Figure-24

shows predicted and experimental data in Kc167 cells. In both cell lines, the prediction

over the validation set remains similar. These results demonstrate ChIPanalyser’s

ability to accurately predict binding using chromatin states.
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Figure 23: Predicted Profiles for architectural proteins in BG3 cells. After training the model

and the genetic algorithm on the top 100 regions, the optimal set of parameters

were then applied to a validation set in BG3 cells. The resulting predicted profiles

for CTCF are described in (A). (B) shows predicted profiles for BEAF-32 and (C)

displays the predicted profiles for su(Hw). The red line represents the prediction

while the dark blue area describes ChIP data. Coloured rectangles described the

chromatin state and their extent.
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Figure 24: Predicted Profiles for architectural proteins in Kc167 cells. After training the

model and the genetic algorithm on the top 100 regions, the optimal set of parameters

were then applied to a validation set in Kc167 cells. The resulting predicted profiles

for CTCF are described in (A). (B) shows predicted profiles for BEAF-32 and (C)

displays the predicted profiles for su(Hw). The red line represents the prediction

while the dark blue area describes ChIP data. Coloured rectangles described the

chromatin state and their extent.

Hox TFs show preference towards different chromatin states

In the previous chapter, Hox TFs were shown to have differential preferences towards

DNA accessibility. Ubx binds in open chromatin whereas Dfd and Abd-b would

bind in less accessible DNA. By including chromatin states into the model, would the

same binding preferences arise? I ran the genetic algorithm over 50 generations and

extracted the best performing "individuals" as described above. The chromatin state

affinity scores for top performing "individuals" were combined and averaged. Score
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variance was also extracted following the same protocol as for architectural proteins.

Figure-25 shows the affinity scores for each TF. Ubx clearly displays a strong preference

towards Enhancer marks. Interestingly, when using MSE as goodness of fit metric,

active TSS was also picked up as preferred chromatin state. These results recover

Ubx’s preferences towards open chromatin as described in the previous chapter.

Both Dfd and Abd-b reveal a preference towards a wider range of chromatin states.

Unsurprisingly, both have a high affinity towards enhancer marks. Hox TFs are

involved in development and thus play an active role in gene expression. Both TFs

show a high affinity towards active TSS as well an intermediate affinity towards introns

(active and weak),and competent states. Dfd distinguishes itself by also showing

an intermediate to high affinity towards heterochromatin for at least two of the

metrics while Abd-b displayed intermediate to low affinity towards polycomb states.

Many of these states show varying levels of DNA accessibility or gene activity. This

demonstrates that the binding of Dfd and Abd-b in varying levels of DNA accessibility

can in fact be explained by their affinity towards certain chromatin states. In all case

the low variance suggests that these states are stable between high ranking individuals.

As described above, single replicates may yield multiple individuals with the same

fitness score while displaying varying affinity scores. However, the lack of biological

replicates could also imply that these affinity scores are the results of over fitting.

Affinity score should then be considered with caution.
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Figure 25: Chromatin state affinity scores for Hox TFs . In order to determine chromatin

state affinity for architectural proteins, I extracted and averaged the best performing

"individuals" for each data set and average their respective affinity scores. To

ensure the robustness of affinity scores, the variance in affinity scores between top

"individuals" was also computed. Ubx demonstrated a clear preference towards

enhancer states (A) while Dfd and Abd-b displayed high affinity towards enhancer

states as well as states related to repressive DNA (B-C).
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Figure 26: Predicted Profiles for Hox TFs in Kc167 cells. After training the model and the

genetic algorithm on the top 100 regions, the optimal set of parameters were then

applied to a validation set in Kc167 cells for Hox TFs. The resulting predicted

profiles for Ubx are described in (A). (B) shows predicted profiles for Dfd and (C)

show display the predicted profiles for Abd-b. The red line represents the prediction

while the dark blue area describes ChIP data. Coloured rectangles described the

chromatin state and their extent.

Once the optimal parameters and chromatin state preferences were computed and

extracted, the model was applied to the validation set. Figure-26 describes the predicted

profiles compared to ChIP-seq data. Interestingly, the profiles are the opposite of what

was found when using varying levels of DNA accessibility. All profiles are fairly flat

and seem to underestimate the height of the peaks. Previously, the profiles strongly

over estimated the height of peaks. However, Hox TF data sets showed low peak

enrichment. Only a few peaks were associated with a strong signal and this lower

signal could affect the models ability to correctly assess parameters. Flatter predicted

profiles could also be a clear indication of cooperative binding. Despite increasing the
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information content of genomic DNA, there are other factors ( or co-factors should I

say) that drive the binding of Hox TFs.

Binding of Architectural proteins is not disrupted by low changes in protein abundance

The genetic algorithm also optimised for number of bound molecules and λ. The

selected optimal values were stable across top individuals for each data set. Both

parameters were extracted from the best performing individuals and averaged. The

optimal parameters for each cell line are shown in Table-8. The estimated number of

bound molecules remains for the most part within biologically acceptable boundaries.

Optimal parameters remains fairly consistent between data sets and cell lines further

demonstrating that the models abundance estimates are robust. The estimated number

of bound molecules for Hox TF is shown in Table-8. In this case, the model over

estimated the number of bound molecules for all Hox TFs.

Previously, I demonstrated that protein abundance plays a lesser role in the binding

of architectural proteins. Differential binding between cell lines is driven by changes

in DNA accessibility between cell lines and to a much lesser extent by changes in

proteins abundance. Here, I demonstrated that chromatin states significantly improves

the predictions of the model and can explain the nuanced role of chromatin states in

TF binding. Based on these results, changes in chromatin states would be sufficient

to explain deferential binding between cell lines. In order to test this hypothesis, the

model was trained on the top 100 region in Kc167 cells. Then, the optimal parameters

and affinity scores were applied to BG3 cells. The number of bound molecules was

rescaled based on relative RNA levels as well as divided by a factor of ten and one

hundred. Figure-27 A-C provides predicted profiles for CTCF, BEAF-32 and su(Hw)

in Kc167 cells. Figure-27 D-F shows the predicted profiles in BG3 cells after carrying
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over the number of bound molecules and rescaling. All three architectural proteins

still remain unaffected by small to medium changes in protein abundance. Predicted

profiles only displayed a decrease in enrichment after a strong reduction in number of

bound molecules (10 Fold or 100 Fold decrease). The effect on model performance was

fairly low and is most likely due to changes in dataset quality as seen in Figure-27 G-I.

These results further confirm that differential binding between cell lines is driven by

changes in chromatin states rather than changes in abundance.
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Figure 27: Differential binding between cell lines is mainly driven by changes in chromatin

states. In order to investigate the role of protein abundance, the model and the

genetic algorithm was trained on the top 100 regions in Kc167 cells. The resulting

parameters where then applied to BG3 cells. The number of bound molecules was

rescaled using relative mRNA levels as well as divided by a factor of 10 and 100.

Predicted profiles in Kc167 cells are shown in A,B and C for CTCF, BEAF-32 and

su(Hw) respectively. Estimated profiles in BG3 cells are illustrated in D,E and F

for CTCF, BEAF-32 and su(Hw) respectively. Architectural proteins are robust to

small to medium changes in proteins abundance between cell lines. Only strong

changes in protein abundance leads to changes in predicted profiles. Furthermore,

the performance of the model remains similar between cell lines after RNA rescaling

(G-I). Changes in MSE are likely due to differences in dataset quality.
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Chromatin states enable low affinity binding site recognition

Architectural binding proteins demonstrated different behaviours with respect to the

number of regions selected for validation. CTCF was less well predicted when the

number of validation regions increased. This suggested that CTCF preferentially binds

to genome hotspots or highly conserved binding motifs. BEAF-32 on the other hand

displayed little variation with the increased number of regions. BEAF-32 would bind

anywhere along the genome as long as it is accessible. Finally, su(Hw) showed bias

towards increase number of regions only when all DNA was considered accessible.

The effect of DNA accessibility was the strongest driver towards su(hw) binding. Based

on these results, I wanted to investigate if the same behaviour would be observed with

the addition of chromatin states. I extracted MSE, AUC and recall after increasing

the number of regions included in the validation set. Then, I averaged the score over

selected regions. Figure-28 and Figure-29 show the change in goodness of fit score for

all data sets combined in Kc167 and BG3 cells respectively.
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Figure 28: Increased number of validation regions tells tales of binding preferences in

Kc167 cells. The performance of CTCF dropped after 500 regions were included

in the validation set (A,D and G. BEAF-32 remained unaffected by the increased

number of regions (B,E and H) The slight drop around 2000 regions is likely due to

the lack of BEAF-32 peaks. Finally, su(Hw) was less well predicted after 500 regions

were included in the validation set (C,F and I).
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Figure 29: Increased number of validation regions tells tales of binding preferences in BG3

cells. The performance of CTCF dropped after 500 regions were included in the

validation set (A,D and G. BEAF-32 showed a slight decrease in performance when

including more regions for validation.(B,E and H) The slight drop around 1500

regions is likely due to the lack of BEAF-32 peaks. Finally, su(Hw) was less well

predicted after 500 regions were included in the validation set (C,F and I).

The inclusion of chromatin states shows a slightly different tale. In both cell lines, the

ability to predict CTCF binding drops after 500 regions are included in the validation

set. Interestingly, this drop occurs much later than when only DNA accessibility

was included. CTCF still bind to hotspots (or stronger binding sites) but cell specific

binding events are driven by changes in chromatin states rather than accessibility on its

own. These results go hand in hand with CTCF’s predicted affinity towards chromatin

states. CTCF showed the ability to bind in states that would not always be considered
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accessible (i.e competent state ). In both cell lines, increasing the number of regions

slightly reduced the overall ability of the model to predict BEAF-32 binding. However,

performance decay occurs at a much slower rate. BEAF-32 still binds the entire genome

in regions of open chromatin ( as described by BEAF-32’s chromatin state affinity

scores - see Figure-23 and Figure-24). The performance drop could be the direct

consequence of the absence of BEAF-32 peaks in those regions. Finally, the model’s

ability to predict su(Hw) binding decreased as the number of regions increased. These

results are similar to the ones found when all DNA was considered accessible. su(Hw)

would preferentially bind to high affinity sites but in closed chromatin. Conversely

to CTCF, differential binding between cell lines might not only be driven by changes

in chromatin states. The difficulty to clearly pinpoint su(Hw)’s binding mechanisms

could imply that su(Hw) requires cofactors in order to specifically bind to its target

sites.

discussion

The addition of chromatin states to the model introduces a more precise perspective

on the binding of architectural proteins and developmental TFs. Moreover, the overall

performance of the model is improved by introducing chromatin states.

The results presented in this chapter suggest that the binding of architectural pro-

teins is strongly driven by chromatin states. As expected, BEAF-32 displayed a high

affinity towards active TSS and to a lesser extent towards enhancers further confirming

its preferences towards open chromatin. As the introduction of chromatin states do

not change the mechanistic interpretation of BEAF-32 binding, BEAF-32 will not be

further discussed in this chapter. CTCF was preferentially bound to enhancers, active

TSS but also competent states. This demonstrates CTCF’s ability to bind into both

open chromatin and into intermediate states. Finally, su(Hw) showed varying affinities
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towards many different states but most noticeably towards heterochromatin. Despite

displaying an increased affinity towards repressive chromatin states, the binding affini-

ties of su(Hw) are challenging to assess.

Chromatin affinity scores and affinity variance

As described above, I extracted the variance associated with each affinity score. Multi-

ple affinity scores can be associated with the same goodness of fit score. The variance

in affinity score describes the "spread" of these scores over the top performing "individ-

uals". All top performing "individuals" are described by the same goodness of fit score

but not necessarily the same values associated to each parameter. For example, let a TF

A have an AUC score of 0.9 and mean affinity score associated with heterochromatin of

0.7 but with a 0.35 variance ( values described are just examples and do not represent

real data). One could describe TF A as having an intermediate to high affinity towards

heterochromatin based on the mean affinity score. However, TF A is also characterised

by a high variance for heterochromatin. This suggests that regardless of the affinity

score associated with heterochromatin, it would not impact the model’s performance.

In this case, the binding of TF A is driven by something else other than heterochromatin

on its own. Multiple and drastically different affinity scores can be associated with

heterochromatin while still maintaining the same model performance. In the case of

low variance for a given affinity score, it would demonstrate that changing the value of

this affinity score would affect model performance quite significantly. In the example

given above, if TF A now displayed a low variance towards heterochromatin while

maintaining the same affinity score, one could conclude that heterochromatin could

drive the binding of TF A and that TF A is capable of binding to heterochromatin.

Changes in affinity scores demonstrate how certain TFs show preferential binding

in certain chromatin states other others. The purpose of the genetic algorithm is to
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optimise these values and uncover which chromatin state is the main driver of binding

for a given TF. Theoretically, it would be possible to assign near equal chromatin state

affinities across all states. However, this would yield similar results as considering all

DNA to be accessible as described in the previous chapter. Affinity scores modulate

the probability of a TF binding to a given site. If all affinities are given then same

value, then chromatin states are not technically considered within the model. Affinity

scores would become a factor multiplying the probability of binding uniformly over

the entire genome. This approach does not conform with the heterogeneous nature of

chromatin in vivo.

The role of chromatin states in CTCF binding

CTCF is known to play the role of a chromatin insulator. It can block the interaction

between enhancers and target genes [Kim et al., 2015, Nichols and Corces, 2015]. It has

also been shown to act as a barrier against hetereochromatin spreading [Guelen et al., 2008,

Van Bortle et al., 2014]. Finally, there is evidence suggesting that CTCF plays a direct

role in transcriptional regulation [Tang et al., 2015, Smith et al., 2009]. Taken together,

recovered CTCF chromatin affinity supports the chromatin state model. High affinity

towards active TSS and enhancer demonstrates CTCF involvement in direct tran-

scriptional regulation. The increased affinity towards the competent state could be

an indication of the model picking up on CTCFs role as a chromatin insulator. De-

spite the models ability to correctly recover CTCF binding mechanisms, there are

still some unanswered questions. The model’s ability to predict CTCF drops when

increasing the number of regions used for validation. These results suggest that CTCF

binds to genome hotspots, generally correlated with highly conserved binding sites

[Nakahashi et al., 2013] or that CTCF is better explained at stronger binding sites.

However, the drop in performance could also imply that there is an increased number

of false positive peaks appearing in these regions. As described above, regions selected
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for analysis should contain at least one peaks of any of the three architectural proteins

from any dataset. Many of these regions will not contain any CTCF peaks but the

model will still sometimes predict CTCF binding. This increase in false positives will

irremediably lead to decrease in goodness of fit. Interestingly, the drop in model

performance occurred much later when chromatin states were included into the model

suggesting that chromatin states do play a strong role in low affinity CTCF binding.

Changes in chromatin states would be responsible for cell specific CTCF binding.

However, there are many binding motifs that could theoretically be bound but are not.

Many of these sites could be inaccessible for CTCF binding from a structural perspec-

tive. The complex folding of DNA within cells could create pockets of DNA that are

not accessible ( or less accessible ) for TF binding despite being in an advantageous

chromatin state. Furthermore, it would seem that chromatin structure would play a

role in guiding CTCF to its target sites [Hansen et al., 2019]. Finally, lower affinity sites

could be bound by other DNA binding proteins inhibiting the binding of CTCF.

The role of chromatin states in su(Hw) binding

The binding of su(Hw) is just as complex to unravel. The results presented in this

chapter describe su(Hw) as being able to bind to many chromatin states with vary-

ing affinities. As expected, su(hw) binds with high affinity in heterochromatin (and

heterochromatin in euchromatin) but also intermediate to high affinity towards Poly-

comb. Both of these states are associated with repressive chromatin. Affinity to-

wards these states can easily be explained by su(Hw)’s role as chromatin insula-

tor and association with lamina associated domains (LAD) [Kurshakova et al., 2007,

Kuhn-Parnell et al., 2008, van Bemmel et al., 2010]. Curiously, su(Hw) also displayed

intermediate affinity towards active marks such enhancer or active TSS suggesting

a direct role in transcription. However, recent studies have shown that su(Hw) is

directly involved in transcriptional repression by blocking enhancer to gene interac-
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tions [Adryan et al., 2007, Melnikova et al., 2019]. Increased affinity towards enhancer

marks could be reflective of such a role. It should be noted that many chromatin

state scores were also accompanied with affinity score variance. High affinity score

variance is indicative that changes in affinity scores do not affect fitness scores sig-

nificantly. Resulting affinity scores should be taken with caution with respect to

biological significance. The mechanism of su(Hw) binding remain difficult to explain.

There have been some studies suggesting that su(Hw) binding involves co-factors

[Baxley et al., 2017, Glenn and Geyer, 2019].

The role of chromatin states in Hox TF binding

I had previously shown that Hox TFs display different binding preferences with respect

to DNA. In this chapter, I investigated if this preference could be explained by changes

in chromatin state affinities. The results presented here suggest that Hox TFs show

different affinities towards chromatin states. Ubx exhibited a clear preference towards

enhancers, a chromatin state associated with open chromatin. On the other hand, both

Dfd and Abd-b were illustrated by high affinity towards enhancers and active TSS

but also intermediate affinity towards competent state and active introns. Dfd was

also characterised by a intermediate affinity for hetrochromatin while Abd-b displayed

a intermediate affinity towards weak intron and Polycomb states. Generally, these

states are associated with repressive chromatin or at least less permissive chromatin.

Unfortunately, the predicted binding profiles showed a low agreement with Hox ChIP

data. Predicted profiles greatly underestimated the binding of Hox TFs while still

estimating a high number of bound molecules.

Hox TF rely on their homeodomain in order to bind to DNA [Kuziora and McGinnis, 1989].

It has been suggested that homeodomains form a loose bond with DNA and the bind-

ing of Hox TF requires multiple binding sites in close proximity [Pellerin et al., 1994,

Chauvet et al., 2000b, Rezsohazy et al., 2015]. Most of the peaks observe in the pre-
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dicted binding profiles are wide despite lacking height. This suggests that the model

picks up on the multiple sites but fails to asses the importance of site clustering in Hox

binding. Furthermore, Hox TFs bind to DNA cooperatively [Moens and Selleri, 2006,

Mann et al., 2009, Joshi et al., 2010]. In order to recover peak enrichment, the model

overestimated the number of bound molecules (see Table-8).The binding of Hox TFs

would require Hox TFs and associated co-factors to be present in the right abundance

in order to trigger gene expression [Petkova et al., 2019]. Mechanistically, the model

predicts a higher number of bound TFs to compensate for the fact that co-factors are

not included. The current model does not include cooperative binding and thus can

explain why it does not pick up on Hox TF enrichment in predicted profiles. While the

model description of chromatin state is plausible, the contribution of all parameters

should be taken into consideration in order to understand the binding of Hox TFs.

Binding of Architectural proteins between cell lines is by driven chromatin states

Previously, I demonstrated that the binding of CTCF, BEAF-32 and su(Hw) was

driven by changes in DNA accessibility rather than changes in protein abundance.

Along those lines, I hypothesised that the same results would hold true with the

addition of chromatin states into the model. The results presented in this chapter

demonstrate that cell specific binding of architectural proteins is not driven by changes

in proteins abundance. Changes in predicted profiles were only observed after a 10

fold decrease in estimated number of bound molecules. Architectural proteins are

involved both in genome architecture maintenance but also regulation of essential

genes [Van Bortle et al., 2014]. The maintenance of these structure and regulatory

mechanisms are crucial to cellular homoeostasis hence the robustness in the face of

concentration fluctuations.
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Genetic algorithms as interpretable machine learning

The prediction of TF binding has been a hot topic for many years and many machine

learning algorithms have done an amazing job a predicting TF binding. However,

in many case, what machine learning has in predictive power, it sometimes lack in

explainability. The creation of explainable machine learning models has become a

crucial aspect of modern genomics. Genetic algorithms are one of the many proposed

solutions for interpretable machine learning. The strength of genetic algorithms resides

in the fact that all parameters are known in advance. A user will know exactly

which values go into the algorithm and which values are selected by the algorithm

as main driver towards accurate predictions. This is especially important in the case

of ChIPanalyser. The model underlying ChIPanalyser describes TF binding using a

set of predetermined parameters such as chromatin state affinity or number of bound

molecules. This makes genetic algorithms particularly suited for being used in concert

with ChIPanalyser. While other method and tools have successfully predicted and

explained TF binding [Tareen and Kinney, 2019, Avsec et al., 2019, Salekin et al., 2017],

genetic algorithms are the best suited for the work presented in this thesis. However,

despite the success , there are a few limitations that should be mentioned. First, the

problem related to choice of goodness of fit metric as discussed in chapter 1 still

remains an issue. Each metric will tend to penalise different aspects. While MSE

will recover peak enrichment but produces an increased amount of false positive hits,

metrics such as AUC and recall will accurately predict peak location but generally

miss peak height. Second, the case of su(Hw) is reflective of issues arising with an

increased feature space. There are close to 200 million possible parameter combinations

in the current model. The genetic algorithm displayed a complex binding behaviour

for su(Hw) with respect to chromatin statse. This could be the result of hitting a local

minima or maxima. However given the increase in goodness of fit scores and that the

model converges consistently after 20 generations, this scenario remains unlikely.
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conclusion

In this chapter, I described the addition of chromatin states to the existing ChIPanalyser

model. In order to ascertain chromatin state affinities for architectural proteins and

Hox TFs, I developed a genetic algorithm using the core functionalities offered by

ChIPanalyser. Chromatin states are a strong driver towards the differential binding of

TFs. Binding preferences towards chromatin states and accessibility can accurately be

recovered by the model. Furthermore, the addition of chromatin states confirms that

the cell specific binding of architectural proteins is driven by changes in chromatin

states rather than changes in TF abundance. Overall, ChIPanalyser recovers known

binding mechanisms. This further demonstrates the packages ability to gain insight

into the mechanisms of TF binding.
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I N V E S T I G AT I N G S U ( H )

chapter summary

The following chapter describes the binding mechanisms of Su(H). Thanks to the

wealth of data available, Su(H) is an ideal case study to further investigate TF binding

mechanisms with ChIPanalyser. I demonstrate that Su(H) preferentially binds to open

chromatin and that DNA accessibility is sufficient to explain its binding. I show that

Notch activation increases Su(H) binding to DNA using Notch induced and Non

induced ChIP data sets. Finally, I show that Su(H) binding is affected by changes in

protein abundance.

introduction

The Notch signalling pathway is one of the most conserved signalling pathways in

the animal kingdom. On top of its high conservation, Notch signalling operates

in numerous cell types and varying stages of development [Weinmaster et al., 1992,

Bray, 2016]. Simply put, NOTCH signalling is triggered by the activation of NOTCH

receptors at the cytoplasmic membrane by NOTCH ligands. Activated receptors initiate

135
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the proteolytic cleavage of receptors and the release of the Notch Intracellular domain

(NICD). The NICD enters the nucleus to interact with CBF1/Su(H)/LAG1 family of

TFs. The interaction between the NICD and nuclear factors will trigger the expression

of target genes [Wang et al., 2014, Yashiro-Ohtani et al., 2014, Wang et al., 2015].

Su(H) (fondly known as suppressor of hairless) is part of the Drosophila DNA

binding proteins in the Notch pathway. Interestingly, Su(H) is constitutively present

within the nucleus and it still binds to its targets at a lower rate [Bray, 2016]. The

induction of the Notch signalling pathway translocates the NICD to the nucleus and

the interaction of Su(H) and the NICD increases Su(H) binding [Krejčí and Bray, 2007,

Gomez-Lamarca et al., 2018]. However, increased binding is thought to be reflective

of increased binding at Su(H) target sites rather than an increase in Su(H) abundance.

The role of Su(H) abundance is not to be neglected. Changes in Su(H) abundance

affects its ability to trigger gene regulation at target genes [Wang et al., 2015]

Su(H) preferentially binds in open chromatin [Lake et al., 2014]. Recent work has

suggested that Su(H) not only binds in accessible DNA but directly affects chromatin

accessibility by increasing H3K56ac around binding sites. Chromatin opening would

be the result of both chromatin state recognition and co-factors recruitment such

as Lz/Runx [Skalska et al., 2015]. Notch activation would induce a higher binding

rate of Su(H) consequently increasing H3K56ac spreading. Interestingly, while the

majority of binding motifs were found in the Basal state, Su(H) peaks were shown

to be mainly located in enhancer states and active TSS. These results suggests that

chromatin environment plays a significant role in Su(H) binding specificity.

Given the wealth of data available, Su(H) is the ideal candidate to thoroughly test the

ability of ChIPanalyser to describe TF binding mechanisms. The binding mechanisms

of Su(H) have been thoroughly studied experimentally but the questions remains: Can

the model recover those mechanisms in silico? First, I will show that the binding of

Su(H) is indeed better described when DNA accessibility is considered. Second, I will
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demonstrate that Notch induction does not seem to be accompanied by in increase

in Su(H) abundance but rather an increase in DNA occupancy. Third, the model

accurately recovers chromatin state preferences towards open chromatin. Finally, I will

demonstrate Su(H)’s sensitivity towards TF abundance by training the model in Wild

Type ChIP-seq and comparing rescaled predictions in partial RNAi knock-downs.

materials and methods

DNA Sequence

For Drosophila melanogaster, the dm6 version of the genome was used. References

genomes are available in R within the BSgenome suit of packages [Pages, 2018]. When

required, data was aligned to the dm6 version of the genome.

Binding Motifs

The binding motif for Su(H) was downloaded from the JASPAR database [Mathelier et al., 2014].

PFM and PPM are converted to PWM by ChIPanalyser using the method described by

Stormo [Stormo and Zhao, 2010].

Genome binding profiling

ChIP-seq data sets for Su(H) were produced by Zabet, Skalska and Bray (Unpub-

lished). This includes constitutive Su(H), Notch-Induced Su(H) as well as Su(H)

RNAi partial knock-downs. Notch-Induced data sets represent data sets where
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the NOTCH pathway was chemically induced by cleaving NOTCH receptors and

subsequent translocation of the NICD. The experimental method is described by

[Skalska et al., 2015]. Datasets were aligned to the (dm6) genome using bowtie-2 (–non

deterministic) [Langmead and Salzberg, 2012]. SAM files were converted to BAM files

using smatools [Li et al., 2009]. Peaks and pile-up signal were called using macs2 with

a 0.01 FDR [Zhang et al., 2008].

DNA Accessibility and chromatin states

DNase I hypersensitivity data was generated by modEncode for Drosophila cell line,

BG3. Fastq files were aligned to the dm6 genome using bowtie-2 (–non-deterministic)

[Langmead and Salzberg, 2012]. SAM files were converted to BAM files using samtools

[Li et al., 2009]. Peaks and read pile-up were called using macs2 (-broad-call -cutoff

0.05 -q 0.05) [Zhang et al., 2008]. The role of DNA accessibility on Su(H) binding was

assessed three ways: (i) All DNA considered accessible (No Access), (ii) only DHS

sites are considered accessible (DHS), (iii) varying a DNA accessibility threshold based

on quantized pile-up scores (QDA). DNase I hypersensitivity pile up scores were

split using varying threshold. Only regions with scores above a given threshold were

considered accessible. Chromatin state maps were produced by [Skalska et al., 2015].

Chromatin state maps were produced for both pre and post Notch activation.

Analysis workflow

For the purpose of this analysis, I analysed the behaviour of Su(H) at 10 known

functional loci, namely drm, Mtk, trio, Rgl, W, CG32425, Irc, E(spl), kirre, and N.

Selecting these regions for analysis ensured that only the strongest Su(H) peaks are
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considered. Contrarily to architectural proteins that display close to 30 000 peaks

across the genome, Su(H) displays less than 200. Previously, I demonstrated that

ChIPanalyser performs well using only the top ten regions. The same principle is

applied for this analysis.

When investigating the role of DNA accessibility on Su(H) binding, ChIPanalyser

was used on its own. Chromatin state affinity was investigate using the same genetic

algorithm as described in the previous chapter.

results

Su(H) preferentially binds to open chromatin

Work of the binding of Su(H) has shown that Su(H) preferentially binds in open

chromatin [Lake et al., 2014]. Based on these results, it would be safe to assume that

ChIPanalyser would better predict the binding of Su(H) when DNA accessibility is

included. To test this hypothesis, the model was trained on the selected loci with and

without DNA accessibility data. In this case, only DHS peaks were considered.
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Figure 30: SuH preferentially binds in open chromatin. The optimal set of parameters were

computed with and without accessibility Data by minimising MSE. (A) shows

optimal parameters when all DNA is considered accessible. (B) shows optimal

parameters when DHS accessibility is considered. MSE drops with the inclusion

of DNA accessibility. Furthermore, the estimated bound molecules also seem to

decrease (from 5000 to 3000)

The optimal set of parameters were computed between the two conditions (No

Access and DHS) in non-induced Notch. The overall performance of the model is im-

proved by the addition of DNA accessibility in the model (see Figure-30). MSE displays

a slight decrease with the inclusion of DNA accessibility data. Predicted profiles show

a better agreement with ChIP-seq data when DNA accessibility is included. Figure-31

shows a comparison in predicted profiles between the two conditions. Figure-31 A

shows predicted profiles without accessibility. As expected, there is an increased level

of false positive hits. Figure-31 B shows how DNA accessibility can successfully reduce

the number of available binding sites and increase the predictive power of the model.

These results show that Su(H) prefers binding in open chromatin and ChIPanalyser

can recover this behaviour.
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Figure 31: Su(H) preferentially binds in open chromatin. (A) shows predicted profiles with-

out accessibility data. The model recovers some Su(H) peaks however this is also

accompanied with an increase in false positive binding. (B) shows the predicted pro-

files with DNA accessibility data included. DNA accessibility reduces the number

of available binding and in turn reduces the number of false positive predictions.

The red line represents predicted profiles while the dark blue area represents ChIP

data. Finally, yellow boxes are regions of inaccessible DNA.
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The induction of the Notch signalling pathway is accompanied by an opening of

chromatin at Su(H) binding sites. To investigate if the model could accurately recover

this mechanisms, I trained the model using varying levels of open chromatin. More

specifically, 17 QDA threshold between 0.9 and 0.999 were selected. For the purpose

this analysis, I elected to use QDA thresholds that would closely mimic DHS peaks

and by extension biologically relevant DNA accessibility. Furthermore, the model was

trained on Notch induced and Non-Induced ChIP-seq data. Notch induced should

perform better with slightly relaxed QDA thresholds compared to Non-Induced Notch.

Unfortunately, I was unable to recover chromatin opening by Su(H) binding (see

Figure-32). Interestingly, Figure-32 A and B illustrates changes in AUC scores and MSE

with varying QDA levels. AUC scores peaks around 0.96 QDA in both induced and

non-induced condition while MSE is at its lowest with 0.99 QDA in both conditions.

The resulting profiles in induced and non-induced are extremely similar (see Figure-32

C and D). The changes in DNA accessibility induced by Notch binding are likely

to be too minute for the model to pick up on this mechanisms. Furthermore, slight

variation in DNA accessibility would be offset by changes in ChIP-seq quality. A slight

increase in open chromatin windows are also accompanied by varying levels of ChIP

noise. Together, these opposing factors negate the ability of the model to pick up on

chromatin opening by Su(H) binding.
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Figure 32: Su(H) shows little to no effect on DNA accessibility around binding sites. Using

varying levels of DNA accessibility, I attempted to recover chromatin opening around

Su(H) binding sites after Notch induction. (A) and (B) show no indication that

Notch induction increases DNA accessibility at Su(H) binding sites. Furthermore,

(C) and (D) display no difference in predicted profiles between the two conditions.

Notch Induction increases Su(H) to DNA binding

The induction of the Notch signalling pathway drives the Notch Intra-cellular domain

to translocate to the nucleus. The NICD along with Su(H) will result in an increased

binding to DNA. However, experimentally, the translocation of the NCID does not seem

to increase Su(H) levels but rather modulates binding specificity. This would suggest

that the number of bound molecules should slightly increase after Notch activation. To

test if ChIPanalyser could recover this behaviour, the optimal set of parameters were
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Figure 33: Notch Induction increases Su(H) binding to DNA. The model was trained on

Notch Induced and Non-induced data sets and the optimal set of parameters were

extracted. The number of bound molecules slightly increases after Notch Induction

(B) (N=4000) compared to the Notch Non-Induced system (A) (N=3000)

computed by maximising or minimising a goodness of fit metrics (MSE, AUC, and

recall) over selected regions between each condition. As DNA accessibility improves

the binding predictions of Su(H), DHS was included in the model at this stage.

As reported previously, goodness of fit metrics are context dependant. MSE is

the most apt metric at determining the optimal set of parameters (see Figure-33).The

optimal number of bound molecules in slightly increased after Notch activation

(N=4000) as compared to Non Induced Notch (N=3000). Optimal parameters are

summarised in Table-9. Increased DNA occupancy by Su(H) after Notch activation

is translated in a slight increase in peak enrichment (see Figure-32 C). ChIPanalyser

accurately recovers the increase DNA occupancy by Su(H).

Su(H) binding can be recovered by considering chromatin states

Not only does Su(H) preferentially bind to open chromatin but shows preferences

towards certain chromatin states. Su(H) peaks were mainly located in enhancers and
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Data set N lambda MSE N lambda AUC N lambda recall

DHS Non-Induced 3000 1.25 0.003 100 1.5 0.963 100 1.5 0.908

DHS Induced 4000 1.25 0.003 1e+05 2.5 0.920 1e+05 2.5 0.844

CS Non-Induced 20000 1 0.005 1e+05 1.5 0.924 2e+05 2 0.895

CS Induced 20000 0.25 0.006 1e+05 1.25 0.86 20000 1 0.82

Table 9: Optimal parameters for Su(H) after minimising MSE and maximising AUC and

recall. The table includes optimal parameters inferred using DHS in both Notch

systems (Induced and Non Induced). CS data sets refers to the optimal parameters

selected after running the genetic algorithm for 50 generations. Both Notch systems

are included (Induced and Non-Induced).

active TSS as well as active Introns [Skalska et al., 2015]. In the previous chapter, I

described how using genetic algorithms in coordination with ChIPanalyser can uncover

chromatin state binding preferences. Here, I investigated if the chromatin state affinities

described experimentally can be recovered in silico. The genetic algorithm was trained

in selected regions for 50 generations on both Notch Induced and Non-Induced. At

every generation, only 10 out of 100 individuals made their way to the next generations.

The selected few would reproduce and undergo both cross-over and mutations events.

As described previously, mutations occurred with a 0.2 probability. MSE , AUC and

recall were used as fitness scores.
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Figure 34: Chromatin state affinity for Su(H) in BG3 cells. After 50 generations, Su(H)

displayed a clear preferences towards enhancers, active TSS and active introns in

both Non-Induced (A) and Induced (B) conditions. Su(H) showed an intermediate

affinity towards heterochromatin. However, the variability associated to these states

suggests that they do not represent true biological affinities but rather an artefact of

the genetic algorithm.

To describe chromatin state affinities, the fitness scores of the top "individuals"

after 50 generations were extracted, combined and averaged. The variance of fitness

scores was also computed in order to determine the robustness of affinity scores. High

variance for a certain chromatin states illustrates a reduced role of that chromatin state

in explaining the binding of Su(H). Regardless of the affinity score assigned to that

chromatin state, the fitness score is not affected.

Figure-34 A shows the chromatin state affinity of Su(H) in Non-Induced Notch.

Su(H) displays a clear preference towards Enhancers, active TSS and active introns.

The same affinities are described in Figure-34 B in the Notch Induced system. In

both case there also seems to be an intermediate to high affinity for Polycomb and

various heterochromatin states. However, the variability associated to these states

suggests that they do not represent true biological affinities but rather an artefact of the



4.4 results 147

genetic algorithms. The chromatin state affinities recovered by ChIPanalyser accurately

recovers the chromatin preferences determined experimentally [Skalska et al., 2015].

To exemplify the performance of the model, Figure-35 illustrates predicted profiles

with respect to Su(H) ChIP-seq data in Notch Non-Induced BG3 cells. Interestingly,

predicted profiles are similar to profiles presented in Figure-31 B. This similarity is

unsurprising as Su(H) preferentially binds to accessible DNA. Enhancers, active TSS

and active Introns are all chromatin states associated with open chromatin. Curiously,

not all peaks are recovered by the model. This suggests that something else could

drive the binding of Su(H).
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Figure 35: Chromatin state illustrate Su(H) binding preferences in BG3 cells. Predicted pro-

files after training the genetic algorithm for 50 generations. The red line represents

the model prediction. The dark blue represents ChIP data. The coloured rectangle

beneath the profiles show chromatin states and their respective range. Chromatin

colour code is described on the right hand side. Predicted profiles generally recover

Su(H) binding well after the inclusion of chromatin state affinity scores.

Translocation of the NICD to the nucleus is correlated with changes in DNA acces-

sibility, more specifically with spreading of H3K56ac. Increase in histone acetylation

would also imply changes in chromatin states. [Skalska et al., 2015] produced chro-

matin state maps before and after Notch Induction. Figure-34 illustrates that in both

conditions chromatin state affinities remain similar if not identical. However, to ensure

that changes in chromatin states between condition were effectively recovered by the

model, I trained the genetic algorithm over 50 generations on Notch Non-Induced

ChIP-seq data. Then, I selected the best performing parameters and validated chro-
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matin state affinities ( as well as number of bound molecules and λ) on Notch Induced

ChIP-seq data. The model accurately recovers the binding of Su(H) in the validation

set. Figure-36 A shows the training profiles and Figure-36 B exhibits the validation

profiles. Changes in chromatin states remain subtle and the most notable differences is

found at the Esp(l) locus. The Competent states shifts and extends itself towards the

enhancer state. This change is unsurprising as the competent state is often described

as an enhancer that has not yet fully been activated. Increase in H3K56ac drives an

increase in chromatin accessibility accompanied with a change in chromatin state.

Interestingly, these results are also incredibly similar with the profiles describes when

only DHS is used (see Figure-31 B). Despite recovering chromatin state affinities, these

results would suggest that DNA accessibility is sufficient to explain the binding of

Su(H) at the selected loci.
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Figure 36: Notch Induction induces changes in chromatin states. The activation of the Notch

pathway and the translocation of the NICD induces increased levels of H3k56ac

around Su(H) binding sites. The model was trained on Non-Induced Notch Su(H)

ChIP-seq data (A) and the optimal parameters where validated on Notch Induced

ChIP data (B). Changes in chromatin states are minute. Nevertheless, the model

accurately recovers binding profiles pre and post Notch activation. The red line

represents the predicted profile. The dark blue shaded area represents ChIP data.

The coloured rectangle show the various chromatin states and their extent.
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RNAi partial knock-down demonstrate Su(H) sensitivity towards changes in proteins abundance

One question that might arise is how quantitative is the prediction of number of bound

molecules. Can the model predict loss of binding in a knock-down experiment? Partial

Knock-downs of Su(H) using RNAi constructs demonstrated that Su(H) binding is

sensitive to changes in TF abundance. It was measured that RNAi knock-downs would

lead to a 70% decrease in Su(H) abundance and that this decrease lead to a reduction

in Su(H) peak enrichment. I investigated the model’s ability to predict changes in

Su(H) binding after RNAi treatment. First, ChIP scores of control and knock-downs

were cross normalised in order to ensure that I would recover changes in read density.

Then, I trained the model on wild type Non-Induced Su(H) ChIP data and simply

multiplied the estimated number of bound molecules by a factor of 0.3. Using these

parameters, I predicted changes in binding profiles of the RNAi knock-downs. For the

purpose of this analysis, I opted to use DNA accessibility instead of chromatin states.

Despite accurately recovering chromatin state preferences, Su(H) binding was mainly

driven by open chromatin. DNA accessibility on its own is sufficient to explain Su(H)

binding. Furthermore, this drastically reduced computational time as the feature space

is significantly smaller in the case of DNA accessibility only.
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Figure 37: ChIPanalyser recovers partial Su(H) knock-downs in BG3 cells. The model was

trained in wild type Su(H) and the optimal parameters ( N and λ) were estimated by

minimising MSE (A). The number of bound molecules were then rescaled to mimic

the extent of the RNAi knock-downs ( 70% reduction in abundance). The model

recovers the drop in Su(H) enrichment (B). The red line represents the predicted

profiles. The dark blue shaded area represents ChIP data. Finally, yellow boxes are

regions of inaccessible DNA.

The model was able to accurately recover the binding profiles between wild type

and RNAi knock-down (see Figure-37). After RNAi knock-down, Su(H) ChIP profiles

show a decrease in enrichment. By simply dividing the estimate Su(H) abundance,

ChIPanalyser recovers the decrease in ChIP enrichment and the loss of peaks.

discussion

The well studied case of Su(H) provides an interesting case study for ChIPanalyser.

Numerous data sets are available describing the binding of Su(H) in various conditions.

By using the wealth of data available, I sought to demonstrate that ChIPanalyser

could recover the binding mechanisms of Su(H). The results presented here further
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demonstrate the ability of the model to describe TF binding with respect to nature of

chromatin and TF abundance. ChIPanalyser has shown to be a useful tool in predicting

and understanding TF binding.

DNA accessibility is sufficient to explain Su(H) binding

One of the key factors of the model is DNA accessibility. Su(H) has been shown

to preferentially bind to open chromatin and increase chromatin accessibility post

binding [Lake et al., 2014, Skalska et al., 2015]. In this chapter, I was able to recover

Su(H) preferences towards open chromatin. Figure-30 shows that the inclusion of

DNA accessibility increase the predictive power of the model. In Figure-31, I illustrate

how the inclusion of DNA accessibility reduces the number of available binding

sites. In turn, this translates to a better agreement between the predicted profiles

and ChIP data. Unfortunately, the model was not able to recover the opening of

chromatin resulting from Su(H) binding. The opening of the chromatin is further

increased after Notch activation[Skalska et al., 2015]. I attempted to uncover this

mechanisms by varying chromatin accessibility during model training. However, no

clear differences can be observed between Notch Induced and Non-Induced data sets.

The results demonstrate that in both cases Su(H) binding is better predicted when

DNA accessibility is considered but not that Su(H) induced changes in chromatin after

binding. This is likely due to the fact that changes in chromatin accessibility after

Su(H) binding are likely minute. Small changes in DNA accessibility at the loci of

interest would be offset by an increase in ChIP noise. Together, these opposing factors

negate the ability of the model to pick up on chromatin opening by Su(H) binding.

One approach to overcome this issue would be to extend DHS peaks instead of using

QDA. The slightly extended peaks would be more apt to mimic the extension of open

chromatin.

The use of ChIPanalyser together with a genetic algorithm demonstrated that the model
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can accurately describe Su(H)’s chromatin state affinities. Su(H) preferentially binds to

enhancers, active TSS and active introns [Skalska et al., 2015]. Chromatin state affinity

scores show that Su(H) preferentially binds to open chromatin. Despite being able to

recover chromatin state affinities, it would seem that DNA accessibility is sufficient

to predict the binding of Su(H). The use of chromatin states increases the ability to

understand the intricacies of Su(H) binding but in terms of predictive capabilities

are unnecessary. Curiously, chromatin state affinity scores also suggests an affinity

towards heterochromatin. However, the variance of the affinity score was also increased

thus it is unlikely that this is biologically relevant. Furthermore, [Skalska et al., 2015]

observed Su(H) peaks in Polycomb and heterochromatic states but attributed this to

ChIP-seq noise.

Finally, despite DNA accessibility being a strong driver in Su(H) binding, certain ChIP

peaks were completely missed by ChIPanalyser. This could be due to two main factors.

First, the binding motif used to predict binding has been put into question as to its

ability to accurately describe Su(H)’s preferred binding motif. Other binding motifs

are available and result in different binding predictions. After testing both binding

motifs, I selected the JASPAR motif as overall it seemed to recover more peaks. Second,

recent work has suggested that Su(H) binding operates with high efficiency thanks to

the aid of co-factors such as Lz/Runx [Skalska et al., 2015]. The current model does

not include cooperative interactions thus it is likely that ChIPanalyser is unable to

capture all Su(H) binding events.

Notch Induction does not significantly induce an increased in Su(H) abundance

The activation of the Notch pathway is accompanied by the translocation of the NICD.

The NICD translocation is translated into an increase of Su(H) binding but not an in-

crease in Su(H) abundance [Krejčí and Bray, 2007, Bray, 2016, Gomez-Lamarca et al., 2018].

In an effort to recover this behaviour, the model was trained in both conditions using
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DNA accessibility only. The estimated number of bound molecules was slightly in-

creased after Notch Induction (N=4000) compared to Non-Induced Notch (N=3000).

The nuclear concentration of Su(H) might not change but there will be an increased

number of Su(H) molecules bound to DNA. The increase in peak enrichment at certain

loci would be the consequence of increased Su(H) binding but not necessarily increase

in Su(H) nuclear concentration. Recent studies on Su(H) mutants have revealed that

Su(H) abundance could be linked to NICD translocation but also to Su(H) alter-ego

Hairless (H) [Praxenthaler et al., 2017]. Nevertheless, the optimal set of parameters

described in Figure-33 suggest that the number of bound molecules remains similar.

The true role of Notch Induction on Su(H) abundance is still up to debate.

RNAi knock-downs reduce Su(H) abundance

The binding of Su(H) is affected by changes in nuclear abundance [Wang et al., 2015].

Experimentally, this was demonstrated by the use of RNAi Su(H) partial knock-

downs. Su(H) abundance was reduced by 70% after knock-downs. Using the ability

of ChIPanalyser to estimate number of bound molecules, I investigated the role of

protein abundance on Su(H) binding. To do so, I trained the model on wild type

Su(H) and rescaled the estimated number of bound molecules to reflect the effect of

the RNAi knock-down. The optimal parameters were then applied to RNAi ChIP

data. The model accurately recovered the reduction in Su(H) binding between wild

type and treatment. Interestingly, at the selected loci the change in ChIP signal was

not as striking as one would expect. Nevertheless, ChIPanalyser demonstrates its

ability to accurately recover changes in TF abundance. The abundance of Su(H) is an

integral part of its biological function as it is believe that changes in Su(H) abundance

will adjust its ability to locally modify chromatin. Furthermore, Su(H) depletion

compromises its ability to regulate target genes [Yuan et al., 2016].
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conclusion

The binding of Su(H) has been well studied and has provided wealth of data describing

the binding mechanisms of Su(H). By using this well studied system, I demonstrated

ChIPanalyser’s ability to recover numerous known binding mechanisms. Despite

displaying affinities towards chromatin states, DNA accessibility is sufficient to explain

the binding of Su(H) with respect to the nature of chromatin. Finally, change in Su(H)

abundance affects the binding of Su(H) to its target genes. Overall, ChIPanalyser

proved to be a powerful tool to not only predict TF binding but also understand the

mechanisms behind the binding of TFs.



5

D I S C U S S I O N

TFs play a central role in gene regulation. It comes to no surprise that TFs have

been studied for decades and there is still a vibrant field dedicated to understanding

how TFs function in the grand scale of a genome. For the most part, TFs recognise a

sequence of DNA and bind to a preferred binding motif. TFs induce or repress the

recruitment of the transcriptional machinery. This form of regulation will lead to the

activation ( or repression ) of gene transcription. The main issue is that binding sites

are fairly short (8 to 20bp) and occur at a high rate throughout the genome. Despite

numerous target motifs, genome occupancy profiling methods ( the gold standard

of in vivo TF binding determination) seem to show that only a subset of these sites

are bound by TFs. Furthermore, the argument could be made that in vivo binding to

the genome does not constitute functional binding. Functional binding would require

some sort of regulation of transcription. It has been suggests that only a subset of

genes bound by TFs were differentially expressed after TF knock-down. Most TF-DNA

interaction would not results in change in gene expression [Cusanovich et al., 2014].

Over millions of years of evolution, cells have found many tricks to ensure that

TFs would bind when and where they are required. Binding motifs can be made

unavailable for TF binding by decreasing the accessibility of DNA around those sites

[Klemm et al., 2019, Lamparter et al., 2017]. TF would only bind to sites in open chro-
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matin. This assumption comes with a few limitations. First, some TFs can bind

into regions of closed chromatin. Pioneer TFs have been shown to bind closed chro-

matin and induce the opening of said chromatin [Soufi et al., 2015, Mayran et al., 2018,

Donaghey et al., 2018, Zaret and Carroll, 2011]. Second, other DNA binding proteins

have shown varying affinities to DNA accessibility without being a pioneer transcrip-

tion factor [Van Bortle et al., 2012, Porcelli et al., 2019].

Instead of considering DNA as either open or closed, chromatin can be described

with respect to its local state. The chromatin state of a loci is defined by a specific

combination of histone modifications and/or histone variants. Chromatin states are

correlated with a "genomic" function such as enhancers or active TSS [Baker, 2011].

In recent years, the scientific community has seen a burst in computational based

methods to understand and predict biological phenomena. This is possible thanks to

the formidable increase in available data but also the computational means to analyse

large scale data sets. This lead to the rise of machine learning and Artificial intelligence

in the field of genomics. Machine learning methods have shown great promise thanks

to their powerful ability to recognise patterns in vast seas of data. However, what

they have in predictive capabilities, they lack in interpretability. Machines can easily

annihilate any human in a game of chess or Go but it sadly cannot explain why a

strategy is better than an other. The same principle can be applied to their use in

genomics. Deep learning algorithms are most certainly some of the strongest pre-

dictors of TF binding [Salekin et al., 2017, Salekin et al., 2018, Alipanahi et al., 2015,

Quang and Xie, 2019, Keilwagen et al., 2019, Li et al., 2019]. However, they lack the

ability to explain why they predict binding at at specific location. Recently, there has

been a strong push towards creating explainable machine learning. Methods that we

humans could understand. One such method takes inspiration directly from nature

and biology: Genetic algorithms.
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In biology, understanding mechanisms often trumps predictive power. It is in this

context that biology turned towards physics. The tools used in physics can be applied

to biological questions. Thanks to explicit modelling of parameters, we can gain insight

into the mechanisms driving biological phenomena. TF binding was no exception.

Statistical thermodynamics has brought an interesting perspective on the mechanisms

of TF binding. Zabet and Adryan described the binding of TF as the results of four

main factors: binding energy, a specificity scaling factor, number of bound molecules

and, DNA accessibility [Zabet and Adryan, 2015].

It is in this context that the work in this thesis should be described. Hopefully, the

work presented in this thesis would have shed light on the mechanisms driving TF

binding.

the role of dna accessibility and chromatin states

A large part of this thesis was dedicated to understanding the role of DNA accessibility

in TF binding. To do so, I analysed among others three architectural proteins: namely

CTCF, BEAF-32 and su(Hw). All three proteins are known as Drosophila architectural

proteins [Van Bortle et al., 2014, Chathoth and Zabet, 2019]. This suggests that not

only do they have a role in transcription but they also play important roles in genome

architecture maintenance and insulation. It is important to note that none of these

DNA binding proteins are considered pioneer transcription factors. At least, they have

never been described as such. In theory, we would expect these proteins to be better

explained by the model when DNA accessibility is considered. In practice , the answer

was not clear cut.

BEAF-32 was better predicted when DNA accessibility was considered. By masking

binding motifs in closed chromatin, the cell is able to drive the binding of this TF
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to its target motifs. BEAF-32 binding occurs at a genome wide scale: any available

target site will be bound by BEAF-32. This preference towards open chromatin was

further confirmed when chromatin states were included. Chromatin state affinity

scores suggest that BEAF-32 preferentially binds to active TSS and to a lesser extent

to enhancers. Both of these chromatin states are unsurprisingly considered open and

active chromatin.

The role of accessibility in the binding of CTCF was unclear. The predictions did not

seem to improve when DNA accessibility was included. This would suggest that at

least certain peaks are located in less accessible DNA. Interestingly, CTCF has been

described as a chromatin insulator. CTCF plays the role of a road block stopping the

spreading of heterochromatin [Guelen et al., 2008, Van Bortle et al., 2014]. This could

explain why some peaks are partially covered by inaccessible DNA. Using chromatin

states demonstrated that CTCF had indeed a more nuanced role with respect to open

chromatin. CTCF showed increased affinity towards enhancer regions, active TSS and

competent states. Interestingly, competent states are often considered as enhancers that

have not yet been fully activated [Kamakaka and Thomas, 1990, Skalska et al., 2015].

CTCF has shown to be involved in insulating enhancers from their target gene

[Kim et al., 2015, Nichols and Corces, 2015]. The chromatin state affinities described

in this thesis seem to recover some of CTCF’s biological functions. CTCF displayed an

intermediate affinity towards heterochromatin that would confirm its role in chromatin

insulation. The overlap between CTCF ChIP data and chromatin states ( or DNA

accessibility for that matter) would not be clear cut. Many CTCF peaks would be

located in less accessible DNA. However, these results should be taken with caution as

affinity scores were also accompanied by increased affinity variance. Over all replicates

and all top performing "individuals", there was no clear consensus on which affinity

score produced the best fitness. Furthermore, CTCF’s performance tapered off when

more regions were included in the validation set. CTCF preferentially binds to genome
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hotspots and lower affinity sites ( cell specific sites) would be controlled by changes in

chromatin states.

The last architectural protein I analysed was su(Hw). This protein performed poorly

when DNA accessibility was included into the model. Drosophila displayed around

10% of accessible DNA. The question remains as to what drives the binding of su(Hw).

Thankfully, the predictive power of the model was greatly increased when chromatin

states were included. The picture drawn by su(hw) still remained fairly unclear. While

it did show increased affinity for heterochromatic states it also seem to exhibit inter-

mediate affinity towards transcriptionally active states. su(Hw) has been suggested

to be involved in many biological functions such as LAD stabilisation, TAD borders

and repression of gene expression [Kurshakova et al., 2007, Kuhn-Parnell et al., 2008,

van Bemmel et al., 2010, Adryan et al., 2007, Melnikova et al., 2019]. These biological

functions tend to display increased heterochromatin around TF binding sites. The

nuanced behaviour of su(Hw) can be partially explained by chromatin state affinity.

However, su(Hw) binding specificity could also occur with the help of co-factors

[Baxley et al., 2017, Glenn and Geyer, 2019].

Varying the levels of DNA accessibility by using quantized thresholds proved to

yield some interesting results. First, it showed that Hox TFs have varying affinities

towards DNA accessibility. While Ubx preferentially bind in open chromatin, both Dfd

and Abd-b show a more permissive behaviour with respect to DNA accessibility. This

method was also applied to Su(H) but in a different context. The aim was to describe

the opening of chromatin after Notch Induction. However, the model did not recover

this mechanism. Changes in DNA accessibility were to minute too be recovered and

moreover offset by an increase in ChIP seq noise.
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With the addition of chromatin state affinity scores, Ubx and Su(H) displayed similar

results as to the ones obtained with DNA accessibility. Unsurprisingly, both TFs

showed high affinity scores towards highly open chromatin states. In this case, DNA

accessibility is sufficient to explain their binding mechanisms. Abd-b and Dfd on the

other hand were better explained with the addition of chromatin states. Being able

to bind in lesser accessible DNA suggests that these TFs recognise certain histone

modification. Furthermore, chromatin affinities imply that Hox TFs may not bind in

heterochromatin but rather in regions of an intermediate accessibility (e.g. competent

state).

Taken together, these results show that the role of DNA accessibility is not clear cut.

Assuming that TFs can only bind to accessible DNA is only true for a subset of TFs.

For these TFs, increasing the level of information with the addition of chromatin states

did not significantly improve the model’s performance. DNA accessibility on its own

is sufficient to predict their binding. The other DNA binding proteins showed varying

affinities towards both DNA accessibility and chromatin states. Unfortunately, there is

no clear indication that a certain type of TF would bind to open or closed chromatin.

Their direct involvement in gene expression does not warrant the assumption that

they will bind open chromatin. A non-pioneer TF could also bind to less permissive

chromatin with the help of chromatin re-modellers. This was the case for Abd-b and

Dfd for example. Although it is tempting to make this assumption, understanding the

binding mechanisms of TFs requires more than DNA accessibility. The assumption

that only pioneer transcription factors bind to heterochromatin could be an over

simplification of the biology at hand.
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the role of protein abundance and binding site specificity

On top of DNA accessibility and DNA affinity, the model also includes three other

factors: binding energy (as a PWM), a scaling factor modulating PWM specificity and

the number of bound molecules.

Binding motifs are often described as Position weight matrices. PWMs are convenient

ways to describe weighted binding sequences. However, there are some limitations to

using PWMs. First, from a technical perspective, all base pairs in the binding motif are

considered independent from each other (see Models). Yet , in certain cases, the binding

of TF requires binding motif to act as unit, as a multimeric entity [Zhou et al., 2015].

Second, PWMs fail to demonstrate DNA shape feature that in certain cases have been

shown to influence TF binding [Zhou et al., 2015]. Finally, it seems that binding motifs

can also occur in clusters and that lower affinity binding sites can be preferred over

higher affinity sites [Farley et al., 2016].

Interestingly, clustering of lower affinity binding sites will be considered within

the ChIPanalyser workflow. ChIPanalyser selects sites above a certain threshold and

these sites will be considered as potential targets. Modulating this threshold value will

include more or less potential binding motifs. Occupancy scores are computed for each

of these sites and ChIP-like profiles are generated by applying a gamma distribution

to the occupancy scores. The gamma distribution will both consider and amplify clus-

ters of lower affinity binding sites. Despite being technically included, ChIPanalyser

does not explicitly model low affinity binding motif clustering. This limitation was

demonstrated with Hox TFs and chromatin states. The predicted profiles generated

wide yet flat peaks. Multiple peaks would be present under the curve but as they

represent low affinity sites the model does not capitalise on their importance in TF

binding. Furthermore, the inclusion of the scaling factor will increase the strength of

high affinity sites over lower affinity sites despite being above the PWM threshold. It
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would be interesting to test the model without using a PWM threshold. This would

yield a much higher number of binding sites and potentially lead to a clearer picture

of TF binding. On the other hand, this could also reduce the ability of the model to

predict ChIP peaks at it is likely the model would optimise against noise rather than

ChIP peaks. The resulting profiles might end up being flat as this would affect the

scoring method the least or conversely overestimating TF binding leading to a reduced

ability to recover ChIP peaks and their enrichment. ChIPanalyser uses ChIP enrich-

ment scores for goodness of fit assessment and heavily penalises predicted profiles

that overestimate or underestimate ChIP enrichment. While the best goodness of fit

score is not the goal of the package, recovering ChIP peak location and enrichment is

one of them as this serves as the basis for understanding the mechanisms of TF binding.

The number of bound molecules is assumed to be a proxy for TF concentration.

However, I believe it is important to recognise that bound molecules and concentration

are different concepts. First, as demonstrated by Notch activation described in chapter

4, the number of bound molecules slightly increases after the activation of the Notch

pathway. It is believed that Notch induction does not change the abundance of Su(H)

but rather increases the binding of Su(H) to DNA. In this context, Su(H) is present

at a higher rate bound to DNA. The model recovers this mechanisms but in this case

number of bound molecules can not be used a proxy for concentration.

Second, concentration is a function of volume. In the context of cells and DNA,

local concentration can be increased by decreasing the volume in which proteins find

themselves. Numerous studies on phase separation have suggested that chromatin

confirmation plays an active role in TF binding by modulating local concentration

[Hnisz et al., 2017, Boeynaems et al., 2018]. Furthermore, high local concentration

would increase the probability of binding to low affinity sites [Lickwar et al., 2012,
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Erbas and Marko, 2019].

Third, concentration of a single TF does not consider the interaction between a

TF and its cofactors. Hox TFs are a prime example of TF binding driven by concen-

tration. However, Hox TFs also show cooperative binding and the correct binding

to Hox target genes seems to be driven by complex relationships between each co-

factor [Petkova et al., 2019]. Despite being in high concentration, certain TFs would

require the binding of co-factors in order to induce favourable binding conditions

[Iwafuchi-Doi and Zaret, 2014]. Furthermore, many TF posse protein-protein interac-

tion domains [Sammak and Zinzalla, 2015, Shokri et al., 2019]. The presence of these

domains and the known role of co-factors suggests that protein concentration describes

an incomplete picture of TF binding.

Forth, I described that architectural proteins saturate their binding sites and only

strong knock-downs can reduce the enrichment of strong peaks. This suggests that

in many cases, DNA binding proteins are at saturating levels in order to ensure that

protein abundance fluctuations would not affect their biological function.

Finally, the number of bound molecules are inferred by maximising the goodness

of fit between predicted ChIP like profiles and ChIP profiles. Simply, the higher the

peak, the higher the expected number of bound molecules. However, ChIP-seq is not a

fully quantitative method. While peaks with a high enrichment score are considered to

be sites highly bound by TFs, peak enrichment scores are also dependant on number

of cells used, sequencing depth , anti-body specificity and the ChIP protocol used

[Chen et al., 2016]. It should be noted that ChIPanalyser uses normalised ChIP scores

to ensure that data sets are as comparable as possible. While there has been an

ongoing effort to make ChIP data quantitative [Bonhoure et al., 2014, Egan et al., 2016,



166 discussion

Orlando et al., 2014], these protocols and methods had not been applied to the data

sets used in this thesis. The estimated number of bound molecules shown in this thesis

tend to fall into biologically acceptable ranges but should be taken with caution. The

same caution should be applied to experimental ChIP peaks as they might not fully

represent stronger TF binding events.

the limitations of genome occupancy profiling

ChIP-seq has become the gold standard of defining in vivo protein binding to DNA.

Despite over a decade of maturation, ChIP-seq and the subsequent analysis comes

with caveats.

First, the choice of anti-body can affect the specificity of DNA binding pull down.

This is further increased by unspecific DNA pull down [Teytelman et al., 2013]. The

increase of unwanted DNA will lead to an increase of false positive peaks.

Second, the ChIP-seq protocol is affected by DNA accessibility [Auerbach et al., 2009].

The fragmentation of the genome occurs at a higher rate in open chromatin. This bias

will likely lead to an over representation of DNA fragments in accessible DNA. Under-

standing the binding of DNA binding proteins such as su(Hw) would be hindered by

this bias.

Third, the production of false positive peaks is also related to sequencing depth

[Sims et al., 2014]. Increasing sequencing depth will limit the number of false positive

peaks. It has been reported that many publicly available ChIP data sets display low

sequencing depth. The modEncode and Encode consortium have developed guidelines

[Landt et al., 2012a] to increase the overall quality of publicly available data however

there is no guarantee that these guidelines will be correctly followed. It should be
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noted that spike in controls and negative controls tend to limit false positive peaks.

Nevertheless, all peaks observed in ChIP data are not always reflective of true in vivo

binding [Wreczycka et al., 2017].

Finally, the end product of ChIP analysis is often the production of ChIP peak

coordinates and/or signal enrichment pile-up. The ability of peak calling algorithms

to distinguish true peaks from background noise are limited by both the quality of the

data used but also the statistical method used. Peak calling limitations was reviewed

by [Nakato and Shirahige, 2017] and benchmarked by [Thomas et al., 2016].

The quality of ChIP data has a strong influence on the prediction quality of ChIPanal-

yser. This is especially true when considering the scoring method used by ChIPanalyser.

Many competing tools provide a prediction of TF binding based on the overlap between

the predicted peak location and actual ChIP peak in 200bp windows. ChIPanalyser on

the other hand uses enrichment scores to assess goodness of fit. This approach attempts

to recover peak height as well as peak location. As described above, ChIP enrichment

scores are normalised prior to analysis in order to maximise the "comparability" of

each data set. Moreover, the prediction resolution can be increased to base pair level

rather than 200bp windows. The trade-off of using this method resides in the fact

that ChIP noise or missing enrichment will be heavily penalised. In many cases, I

observed data sets containing wide and noisy peaks and the model was not able to

recover experimental fluctuations. The goodness of fit score would reflect this despite

accurately describing peak location. Noise filtering methods were able to slightly

reduce noise however the filtering occurred on low level peaks. If strong peaks were

still characterised by a messy signal, ChIPanalyser would still be strongly penalised.

One way to overcome these issues is by using alternative methods such as CUT&run,

CUT &tag, or ChIP-exo [Skene and Henikoff, 2017, Kaya-Okur et al., 2019, Serandour et al., 2013].

These methods offer sharper peaks and reduced background noise. As described above,
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both back ground noise and peak "sharpness" strongly affect the goodness of fit of the

model. It should be noted that the goal of decreasing background noise and unspecific

binding should not be to improve goodness of fit of the model but rather displaying a

fairer assessment of the model’s performance. Reducing background noise and increas-

ing peak sharpness would mitigate over or under representation of model performance.

Furthermore, methods such as CUT &run or CUT &tag are both in situ method using

few cells to determine TF binding. This lends a more quantitative nature to these

methods. As described above, estimating the number of bound molecules based on

ChIP data should be taken with caution as ChIP-seq is not always a quantitative. While

not perfect, this could potentially lead to clearer estimations of bound molecules.

A question that one might ask is whether low level peaks are actual noise or rather

the consequence of low affinity binding. It has been suggested that TFs can bind to

DNA and perform 1D walks before finding their target sites [Zabet and Adryan, 2012,

Hammar et al., 2012]. This could also transpire at strong peaks. The noise surrounding

a peak could be the illustration of such a mechanism. The vast majority of ChIP data is

based on a large population of cells. Cell population ChIP would recover the spectrum

of binding locations thus giving the impression of noisy peaks. Furthermore, lower

affinity peaks could actually play a biological role. Cohesin has been shown to act as a

transcriptional regulator independently of CTCF at peaks of lower enrichment in Homo

sapiens [Schmidt et al., 2010]. It could be conceivable that a similar mechanism exists

in Drosophila.

Finally, ChIP-seq binding illustrates in vivo binding of TFs to DNA but does not

describe functional TF binding. Generally, TFs are involved in transcriptional regu-

lation. The binding of a TF will activate or repress the transcription of target genes.

However, ChIP-seq on its own does not give any indication wherever TF binding

peaks will lead to transcriptional regulation. Furthermore, the role of a DNA binding

proteins might not directly lead to transcriptional regulation. Architectural proteins
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for example could stabilise genome structures that will then lead to gene regulation by

other regulatory TFs. It is important to recognise the limitations of ChIP data in order

to fully understand the mechanisms of gene regulation.

dissecting the mechanisms of tf binding

Work on machine learning and artificial intelligence has been an ongoing field since

the 1950s. Interestingly, the game of chess has been at the heart of the development

of artificial intelligence. The 1950s saw the first human to loose a game of chess

against these smart algorithms. In 1996, Deep Blue was famous for being the first

machine capable of beating a chess grand master (non other than Garry Kasparov).

Unfortunately, the enthusiasms for artificial intelligence dropped in the 1970s and

1980s as it seemed they did not deliver on the promise of understanding human

consciousness and intelligence. However, machine learning was not forgotten but

rather picked up by other fields of study. The field of finance was especially keen on

developing algorithms capable of predicting changes in the stock market. This push

came at a cost. Most of these new methods were developed with predictive power in

mind and not explainability. Decades later, when machine learning came back to world

of pure science, the crisis of explainable AI started. Many algorithms have shown to

be powerful predictive tools. Recently, image recognition algorithm has demonstrated

their ability to recognise cancerous growths at a higher rate than human specialists

[Wu et al., 2019, McKinney et al., 2020]. The main issue is that despite following the

rules of mathematics, machine learning algorithms are inherently black boxes. What

happens inside, what happens to trigger differential weighting of neural network layers

remains largely unknown.

Overcoming these limitations has been at the center of AI research. In fact, genetic

algorithms are one of the ways to overcome the black box problem. All factors are
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explicitly given before hand and only these factors are optimised in order to improve

predictive power. Recently, there was an approach to incorporate thermodynamic

parameters to neural networks to explain gene expression [Tareen and Kinney, 2019].

The goal of this thesis was to demonstrate the ability of statistical thermodynamics to

describe the mechanisms of TF binding. ChIPanalyser has shown to be a valuable tool

to predict and understand TF binding. However, it some case, ChIPanalyser predicted

TF binding quite poorly. The binding of su(Hw) using only DNA accessibility proved

to be limited.

The strength of statistical thermodynamics and by extension biophysical models

resides in interpreting the mechanisms driving TF binding. Biophysics explicitly

models a relationship between factors thought to contribute to TF binding. Even when

predictions fall short, biophysical models still give us the ability to speculate on other

potential contributing factors. ChIPanalyser exemplifies how biophysics can be used

to understand biological mechanisms even when predictions fall short. While the

package showed a limited ability to predict the binding of Su(Hw), it was still possible

to understand or at least have an educated guess onto which factors contribute to its

binding. While predicting biological phenomena is a crucial aspect of modern science,

the goal of this thesis and ChIPanalyser was to understand how they happen.



Part III

C O N C L U D I N G R E M A R K S





1

C O N C L U S I O N

The work in the thesis explores the mechanisms of TF binding using a statistical

thermodynamic framework. The model proposed by Zabet and Adryan suggests that

TF binding to DNA is the results of four main factors: binding energy in the form

of PWMs, a PWM scaling factor, the number of bound molecules, and finally DNA

accessibility. I aimed to recover known binding mechanisms and potentially uncover

unknown factors driving the binding of certain TFs.

To do so, I developed ChIPanalyser, a user-friendly R package available on Bio-

conductor. I demonstrated the package’s ability to accurately predict the binding

of TFs in both Drosophila melanogaster and Homo sapiens. Furthermore, ChIPanalyser

can infer the number of bound molecules and scaling factor by maximising or min-

imising a goodness of fit metric. The estimated number of bound molecules remain

within biologically acceptable boundaries. The development of ChIPanlyser lead to

interesting insight into the choice of goodness of fit metrics. I showed that goodness

of metrics could be classified into two classes (similarity and dissimilarity metrics).

While similarity metrics correctly predict peak location, they often fall short in terms of

peak enrichment. The opposite was observed for dissimilarity metrics. They correctly

recovered local enrichment but were often subject to a higher number of false positive
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peaks. Choosing the right metric will depend on both the question and the data at hand.

Then, I demonstrated that DNA accessibility plays a more nuanced role in TF bind-

ing than previously thought. I investigated the binding of three architectural proteins

(CTCF , BEAF-32 and su(Hw)) in three Drosophila cell lines (Kc167, BG3, and S2). While

the inclusion of DNA accessibility greatly increased the binding prediction of BEAF-32,

CTCF and su(Hw) were less well predicted. Both CTCF and su(Hw) displayed peaks

in inaccessible DNA suggesting that open chromatin was not sufficient to explain their

binding. I investigated the role of TF abundance on the binding of architectural proteins

only to demonstrate that TF abundance plays a minor role in their binding. Differential

binding preferences towards DNA accessibility was further demonstrated by investi-

gating the binding of three Hox TFs. Ubx was preferentially bound to open chromatin

while Dfd and Abd-b were more permissive with DNA accessibility in terms of binding.

These results suggests that DNA accessibility can not only be considered as either open

or closed. The role of chromatin on TF binding stems from more complex relationships.

To further investigate the role of chromatin, I developed a genetic algorithm to

demonstrate that TFs display different binding affinities towards chromatin states.

Chromatin states affinity scores were able to recover known binding affinities and give

a more nuanced picture of TF binding mechanisms. The binding of CTCF and su(Hw)

revealed to be driven by chromatin states more than DNA accessibility on its own.

Binding of TFs to DNA would be better explained by the specific nature of chromatin

rather than being in an open or closed state.

Finally, I explored the model’s ability to recover the binding mechanisms of Su(H).

The wealth of data available for Su(H) made this TF an ideal case study. While Su(H)

displayed clear affinities towards chromatin states, DNA accessibility seemed to be



conclusion 175

sufficient to predict Su(H) binding. The model also accurately recovered changes in TF

abundance after partial RNAi Su(H) knock downs.

Despite being able to recover many known binding mechanisms, the model showed

some limitations. The current model does not include cooperative binding. Many

TFs examined in this thesis have been shown to bind to DNA with the help or in

collaboration with co-factors. The model also fails to capitalise on low affinity binding

sites where site clustering would induce binding. Finally, the role of 3D chromatin

structure should not be neglected.

Overall, ChIPanalyser provides useful insight into the binding mechanisms of TFs.

Chromatin states would drive the binding of TFs to DNA rather than simply open

or closed chromatin. Furthermore, protein abundance does not always explain why

TFs bind the way they do. In some instance, TFs would bind at saturating levels as a

mechanisms against unwanted protein level fluctuations. Assumptions of TF binding

have often been over-simplified with respect to the nature of chromatin.





2

L O O K I N G F O RWA R D

The mechanisms of TF binding and gene regulation are complex and poorly under-

stood. ChIPanalyser has provided insights into the binding of TFs to DNA. That

being said, I recognise that many improvements could be made in order to further our

understanding of TF binding.

First, the bulk of the analysis presented in this thesis focused on Drosophila. It would

be interesting to investigate the performance of the model of other organisms. To do so,

it would be wise to test a large number of TFs. As shown in this thesis, the assumption

that non-pioneer TFs bind to open chromatin is somewhat an over-simplification of the

problem at hand. To capture a wide range of binding mechanisms, I would suggest

testing the model in multiple organisms with as many data sets as possible.

Second, as described in this thesis, the model could be improved by the inclusion of

cooperative binding. Preliminary work has already been done with respect to coopera-

tive binding inclusion. However, the underlying master equation would need to be

drastically modified. This would also require a complete re-factoring of ChIPanalyser

as a package.
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Third, including 3D chromatin structure will provide a more in depth understand-

ing of TF binding. In its current form, ChIPanalyser provides the option to select

the optimal parameters ( N and λ) based on frequency of occurrence of parameter

combinations for every region selected for analysis. Simply put, every region selected

( in the case of this thesis - over 3000 regions of 20kbp) would return an optimal

combination of parameters. By ranking the combinations of parameters with respect

to frequency of occurrence, it would be possible to select optimal parameters on a

region to region basis. By including chromosome conformation capture contact maps,

it would be interesting to investigate if regions that display a high contact frequency

with each other would also share similar predicted number of bound molecules and

PWM scaling factor at TF binding events.

An experimental validation of the results obtained in this thesis would be a welcome

addition. More specifically, the work in this thesis would benefit by experimentally

determining protein abundance. One of the main parameters of the model presented

in this thesis is the number of bound molecules. While the inferred number of bound

molecules often seemed to be in biologically acceptable boundaries, experimentally

quantifying the number of molecules within a cell would greatly increase the credence

of the model presented within this thesis. The model should not only be able to predict

the binding of TF to DNA but also describe the mechanisms driving TF binding.

Furthermore, experimentally quantifying protein abundance is possible thanks to

methods such as Fluorescence Correlation Spectroscopy, Flow Cytometry, or in-gel

fluorescence. While explicit measurement of binding energies to random binding

sequences in vitro could give an insight into λ, in vivo binding specificity remain

extremely challenging to determine.

Finally, while I have shown that differential binding between cell lines could be ex-

plained by change in chromatin accessibility, it would be interesting to alter chromatin

states to further demonstrate the role of chromatin accessibility and chromatin states.
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Global alteration of chromatin accessibility using degron fusions of core chromatin

proteins could provided modified chromatin accessibility/ chromatin state maps to be

used as input to the model. It would be interesting to investigate how strong changes

in chromatin states would affect the models ability to predict and explain TF binding.

The same approach could be applied to specific regions using (CRISPRi/CRISPRa).

For example, in the case of Su(H), changes to DNA accessibility or chromatin states

at known binding loci ( e.g. E(spl) locus) could further our understanding of the

binding mechanisms driving its binding. While it was shown that Su(H) seems to open

chromatin around its strong binding sites, what would happen if the chromatin had

already been opened?
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Appendix-A: Data sources for all TFs. Data sets have been separated into modEn-

code ChIP data , GEO ChIP data, Accessibility Data, and ENCODE data for Homo

sapiens

Cell Line TF modEncode Accession #

S2 CTCF 2638

S2 CTCF 2639

S2 CTCF 283

S2 CTCF 3281

S2 CTCF 3749

S2 CTCF 913

S2 BEAF-32 922

S2 BEAF-32 3745

S2 BEAF-32 274

S2 Su(Hw) 3719

S2 Su(Hw) 330

S2 Su(Hw) 331

BG3 CTCF 282

BG3 CTCF 3280

BG3 BEAF-32 3663

BG3 BEAF-32 3664

BG3 BEAF-32 3665

BG3 BEAF-32 921

BG3 CTCF 3671

BG3 CTCF 3672

BG3 CTCF 3673

BG3 CTCF 3674

BG3 Su(Hw) 3714

BG3 Su(Hw) 3715

BG3 Su(Hw) 3716

BG3 Su(Hw) 3717

BG3 Su(Hw) 3718

BG3 Su(Hw) 951

Kc167 CTCF 908

Kc167 Su(Hw) 3801

Cell Line TF GEO Accession #

Kc167 CTCF GSM762842

Kc167 Su(Hw) GSM762839

Kc167 BEAF-32 GSM762845

Kc167 BEAF-32 GSM1535963

Cell Line Method GEO Accession #

Kc167 DNase Kharchenko et al. 2011

S2 DNase Kharchenko et al. 2011

BG3 DNase Kharchenko et al. 2011

Kc167 ATAC-seq GSE122575

Cell Line Method
File

Type
ENCODE #

Astrocyte DNase BAM ENCFF384CCQ

Astrocyte DNase BAM ENCFF885IAD

Astrocyte DNase BigWig ENCFF901UBX

Astrocyte DNase bed ENCFF021SAS

Astrocyte DNase bed ENCFF352LYZ

Astrocyte ChIP-seq bigWig ENCFF424JNY

Astrocyte ChIP-seq bed ENCFF600CYD

Astrocyte ChIP-seq bed ENCFF183YLB
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CSL Nuclear Dynamics. Dev. Cell, 44(5):611–623.e7.

[Granek and Clarke, 2005] Granek, J. A. and Clarke, N. D. (2005). Explicit equilib-

rium modeling of transcription-factor binding and gene regulation. Genome Biol.,

6(10):R87.

[Grant et al., 2011] Grant, C. E., Bailey, T. L., and Noble, W. S. (2011). FIMO: scanning

for occurrences of a given motif. Bioinformatics, 27(7):1017.

[Guelen et al., 2008] Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B.,

Talhout, W., Eussen, B. H., De Klein, A., Wessels, L., De Laat, W., and Van Steensel,

B. (2008). Domain organization of human chromosomes revealed by mapping of

nuclear lamina interactions. Nature, 453(7197):948–951.

[Guo et al., 2015] Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I.,

Wu, H., Zhai, Y., Tang, Y., Lu, Y., Wu, Y., Jia, Z., Li, W., Zhang, M. Q., Ren, B.,

Krainer, A. R., Maniatis, T., and Wu, Q. (2015). CRISPR Inversion of CTCF Sites

Alters Genome Topology and Enhancer/Promoter Function. Cell, 162(4).

[Halder et al., 1995] Halder, G., Callaerts, P., and Gehring, W. J. (1995). Induction

of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science,

267(5205):1788–92.

[Hammar et al., 2012] Hammar, P., Leroy, P., Mahmutovic, A., Marklund, E. G., Berg,

O. G., and Elf, J. (2012). The lac repressor displays facilitated diffusion in living cells.

Science, 336(6088):1595–1598.

[Hansen et al., 2019] Hansen, A. S., Amitai, A., Cattoglio, C., Tjian, R., and Darzacq,

X. (2019). Guided nuclear exploration increases CTCF target search efficiency. Nat.

Chem. Biol.



194 bibliography

[Hansen et al., 2018] Hansen, A. S., Cattoglio, C., Darzacq, X., and Tjian, R. (2018).

Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus,

9(1).

[Harr et al., 1983] Harr, R., Häggström, M., and Gustafsson, P. (1983). Search algorithm

for pattern match analysis of nucleic acid sequences. Nucleic Acids Res., 11(9):2943–57.

[Hayashi and Scott, 1990] Hayashi, S. and Scott, M. P. (1990). What determines the

specificity of action of Drosophila homeodomain proteins? Cell, 63(5):883–894.

[Hayes and Wolffe, 1992] Hayes, J. J. and Wolffe, A. P. (1992). The interaction of

transcription factors with nucleosomal DNA. BioEssays, 14(9):597–603.

[He et al., 2010] He, X., Samee, M. A. H., Blatti, C., Sinha, S., Casamayor, A., Lebrecht,

D., Foehr, M., Smith, E., Lopes, F., Vanario-Alonso, C., Arnosti, D., Barolo, S., Levine,

M., Small, S., Fakhouri, W., Ay, A., Sayal, R., Dresch, J., Dayringer, E., Shea, M.,

Ackers, G., Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U., Gaul, U.,

Buchler, N., Gerland, U., Hwa, T., Joung, J., Le, L., Hochschild, A., Berg, O., von

Hippel, P., Stormo, G., Fields, D., Bauer, D., Bailey, T., Gertz, J., Siggia, E., Cohen, B.,

Janssens, H., Hou, S., Jaeger, J., Kim, A., Myasnikova, E., Zinzen, R., Papatsenko,

D., Tanay, A., Lifanov, A., Makeev, V., Nazina, A., Papatsenko, D., Gray, S., Levine,

M., Kulkarni, M., Arnosti, D., Makeev, V., Lifanov, A., Nazina, A., Papatsenko, D.,

Nibu, Y., Zhang, H., Bajor, E., Barolo, S., Small, S., Sauer, F., Fondell, J., Ohkuma, Y.,

Roeder, R., Jackle, H., Green, M., Carey, M., Struhl, K., Veitia, R., Sauer, F., Hansen,

S., Tjian, R., Ma, X., Yuan, D., Diepold, K., Scarborough, T., Ma, J., Hoch, M., Gerwin,

N., Taubert, H., Jackle, H., Moses, A., Pollard, D., Nix, D., Iyer, V. V. V., Li, X.,

Dermitzakis, E., Bergman, C., Clark, A., Birney, E., Stamatoyannopoulos, J., Dutta,

A., Guigo, R., Gingeras, T., Hu, Z., Killion, P., Iyer, V. V. V., Reinitz, J., Hou, S., Sharp,

D., Beer, M., Tavazoie, S., Zinzen, R., Girardot, C., Gagneur, J., Braun, M., Furlong,

E., Benos, P., Bulyk, M., Stormo, G., Maerkl, S., Quake, S., Keller, S., Mao, Y., Struffi,

P., Margulies, C., Yurk, C., Hermsen, R., Tans, S., ten Wolde, P., Teif, V., Andrioli, L.,



bibliography 195

Vasisht, V., Theodosopoulou, E., Oberstein, A., Small, S., Jimenez, G., Guichet, A.,

Ephrussi, A., Casanova, J., Noyes, M., Meng, X., Wakabayashi, A., Sinha, S., Brodsky,

M., Bergman, C., Carlson, J., Celniker, S., Homsi, D., Gupta, V., Stormo, G., Ray, P.,

Shringarpure, S., Kolar, M., Xing, E., Borneman, A., Gianoulis, T., Zhang, Z., Yu, H.,

Rozowsky, J., Ludwig, M., Gao, F., Foat, B., Bussemaker, H., Burz, D., Rivera-Pomar,

R., Jackle, H., Hanes, S., Chi, T., Lieberman, P., Ellwood, K., Carey, M., Gray, S.,

Szymanski, P., Levine, M., Small, S., Arnosti, D., Levine, M., Rosee-Borggreve, A. L.,

Hader, T., Wainwright, D., Sauer, F., Jackle, H., Small, S., Blair, A., Levine, M., Yan,

R., Small, S., Desplan, C., Dearolf, C., Jr, J. D., Krumm, A., Hickey, L., Groudine,

M., Nakanishi, H., Mitarai, N., Sneppen, K., Zenklusen, D., Larson, D., Singer, R.,

Fowlkes, C., Hendriks, C., Keranen, S., Weber, G., Rubel, O., Morozov, A., Fortney,

K., Gaykalova, D., Studitsky, V., Widom, J., Wasson, T., Hartemink, A., Zhu, H.,

Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Lusk, R., and Eisen, M. (2010).

Thermodynamics-Based Models of Transcriptional Regulation by Enhancers: The

Roles of Synergistic Activation, Cooperative Binding and Short-Range Repression.

PLoS Comput. Biol., 6(9):e1000935.

[Hernandez et al., 2000] Hernandez, A., Smith, F., Wang, Q., Wang, X., and Evers,

B. M. (2000). Assessment of differential gene expression patterns in human colon

cancers. Ann. Surg., 232(4):576–85.

[Heumann et al., 1994] Heumann, J. M., Lapedes, A. S., and Stormo, G. D. (1994).

Neural networks for determining protein specificity and multiple alignment of

binding sites. Proc. Int. Conf. Intell. Syst. Mol. Biol., 2:188–194.

[Hnisz et al., 2017] Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K., and

Sharp, P. A. (2017). A Phase Separation Model for Transcriptional Control. Cell,

169(1):13–23.

[Honrado et al., 2006] Honrado, E., Osorio, A., Palacios, J., and Benitez, J. (2006).

Pathology and gene expression of hereditary breast tumors associated with BRCA1,



196 bibliography

BRCA2 and CHEK2 gene mutations. Oncogene, 25(43):5837–5845.

[Inukai et al., 2017] Inukai, S., Kock, K. H., and Bulyk, M. L. (2017). Transcription
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