
1

A Framework and Protocol for Dynamic
Management of Fault Tolerant Systems in Harsh

Environments
Eduardo Weber Wächter, Server Kasap, Xiaojun Zhai, Shoaib Ehsan, and Klaus McDonald-Maier

University of Essex, UK
{eduardo.wachter,server.kasap,sehsan,xzhai,kdm}@essex.ac.uk

Abstract—Robots can be used to deal with hazardous materials
like nuclear waste. Unfortunately, electronic components are also
susceptible to radiation effects. Current proposals to tackle this
issue solve only parts of the problems for the specific scenarios
and the specific types of radiation. At the same time, current
computational devices should provide run-time capabilities to
monitor and adapt to different situations. In this paper, we
target a possible solution presenting a framework which provides
the flexibility to employ fault-tolerant techniques on distributed
systems. As proof of concept, we target a fault-tolerant technique
to extend the operating time of systems in harsh environments.
Results show a very low overhead, of few microseconds, to execute
a majority voter with replicated tasks.

Index Terms—fault tolerance, spatial redundancy, software
redundancy, SEE, SEU, soft errors, TID effects.

I. INTRODUCTION

Nuclear power plants have been used for the last six
decades in many European countries and across the world.
Due to the nature of nuclear power generation, the process of
transforming radioactive material into energy also creates a by-
product, named radioactive waste. Unfortunately, no country
has opened a permanent storage site for such hazardous
materials so far. Spent nuclear fuel and other contaminated
materials are stockpiled in temporary locations around Europe
and the world, sometimes in facilities open to air which
might lead to contamination. In the United Kingdom the
Nuclear Decommissioning Authority (NDA) [1], for example,
estimates that the process to clean up 17 nuclear sites may
take around 120 years, with estimated costs of hundreds of
billions sterling pounds.

One possible solution to this issue is the adoption of robots
since most of these materials are too hazardous for humans
handling. Usually, such places are named harsh environment
and can generally be described as a setting in which survival
is difficult or impossible. In this particular paper, we focus on
harsh environments which contain different kinds of radiation
that might damage electronic circuits and human beings.

When using electronic devices, human beings are spared
from entering harsh environments. However, this is not a
straightforward task because electronic circuits in these robots
are also susceptible to the radiation damages; this has become
even clearer after the Fukushima Daiichi nuclear power plant
in Japan suffered a series of meltdowns as a result of the failure
of its safety systems due to a tsunami. Robots dispatched

into the accident site to monitor radiation levels and facilitate
the cleaning-up process have kept breaking down and failing
very soon after entering as their circuits were destroyed by
the radiation, thus turning the entrance of the facility into
a graveyard of robots [2]. Henceforth, if robots are to be
deployed in such scenarios, the behaviour of electronic circuits
in extreme nuclear radiation environments remains to be
thoroughly studied, and radiation effects to be mitigated.

Most of the works targeting on the radiation fault tolerance
propose solutions to Single-Event Effects (SEE) [3], [4], [5],
[6], [7], therefore focusing on the types of radiations encoun-
tered in space. Although Total Ionizing Dose (TID) effects
on low-level devices have been reviewed in literature [8], [9],
few works focused on the solutions to provide reliability on
higher levels. In the case of SEEs, some available techniques
can expand the lifetime of the systems, but if exposed for
long periods of radiation, it will accumulate TID effects which
are inevitably going to result in total failure. Therefore, a
distributed approach where multiple entities capable of taking
decisions in parallel is required, especially when radiation
doses are unknown. For example, in the places with higher
radiation doses even systems using triple modular redundancy
(TMR) cannot guarantee a correct execution because. One
possible solution for this case is to employ a system which
understands the fault rate it is exposed to and then take actions
based on the available resources.

To deal with such environments, many proposals have been
employed in the state-of-the-art: (i) hardware enhancement
to provide fault tolerance for circuits [6], [7]; (ii) software
fault-tolerant techniques [4], [5] and (iii) a mix of different
proposals [3]. To the best of the authors’ knowledge, there is
no such system or framework which can provide the flexibility
to combine such different techniques. Therefore, in this paper,
we target a possible solution to this open research challenge.

Our proposal is a high-level approach to manage distributed
boards in a harsh environment. These boards can be off-the-
shelf (OTS) multi-core SoC or FPGA boards. Our proposal
can be used with available techniques, then providing two-
layer fault tolerance capabilities. For example, techniques
aforementioned using in-board spatial redundancy or software
redundancy would benefit from a higher level of management
and therefore extending the system’s life. The idea is to adopt
multiple inexpensive OTS boards instead of using one large
and normally expensive board.

2

We present a framework which provides the flexibility
to employ different techniques on distributed systems. We
target a well established fault-tolerant technique as proof of
concept, showing a case of study to demonstrate the usage
of the framework. Further, current computational systems
should provide more self-awareness: an emerging computing
paradigm that helps systems to understand, manage and report
on their system behaviour [10]. In this way, the system should
monitor and take actions by itself, required to tackle different
solutions for different scenarios. Fault-tolerant systems should
also employ self-healing techniques, i.e. an attempt to enable
computing systems to discover, diagnose, and repair (or at
least mitigate) faults by itself, without human intervention.

The paper is organized as follows. Section II provides the
effects of radiation on electronics in general, soft errors and
TID effects. Section III describes the proposed framework with
a focus on actual examples. Section IV presents a proof of
concept using a well-known technique within the proposed
solution to provide fault tolerance. Sections V shows results
regarding application performance and overheads and finally,
conclusions are drawn in Section VI.

II. BACKGROUND

A. Harsh Environments and Radiation
Ionizing radiation can damage electronics in two significant

ways. Radiation effects on electronics can either temporarily
change the behaviour of a circuit (a soft error), or permanently
damage the circuit (a hard error).

The first-way radiation damages electronics is called as total
ionizing dose [11] which refers to the cumulative, permanent
damage in an electronic device causing it to degrade over
time (i.e. hard error). It takes place when charge carriers
are implanted into the device’s insulators as radiation strikes,
where they consequently get trapped altering the electrical
characteristics of the integrated circuits [12].

The second major category of radiation-induced adverse
effects is generally called as single-event effects [11]. Most
often, this type of faults is transient (i.e. soft errors) and do not
cause permanent damage like TID, but they may still induce
unwanted behaviour changes. All these transient effects stem
from excess charge carriers generated through the ionization
of silicon atoms by radiation. If a sufficient amount of these
charges gathers in a metal line, the logic value of a line in that
area can be upset; this event is referred to as a single-event
transient (SET) which has a brief effect until the excess charge
dissipates. In case of a SET, if a storage device captures the
new state of the line, there would be a longer-lasting effect
on the system output, which is identified as a single-event
upset (SEU). Nevertheless, an SEU can be generally amended
by restoring all flip-flop (FF) values through a system reset.
However, it is not possible to fix some SEUs by a simple
reset; these type of SEUs are called as single-event functional
interrupts (SEFIs). There is another radiation effect called
single-event latch-up (SEL) which takes place when ionizing
radiation turns on parasitic transistors in the silicon. These
parasitic transistors can keep conducting current until a system
reset, causing parts of the device burn in some cases (i.e. hard
error) [13].

B. N version programming

N-version programming was first introduced by adapting the
concepts of hardware fault tolerance in a computer software. In
[14] the authors use the following notation to discuss n-version
programming. Multiple computations are implemented by N-
fold (N ≥ 2) replications in three domains: time (repetition),
space (hardware), and information (software). The nonfault-
tolerant system is characterized by one execution (simplex
time IT) of one program (simplex software IS) on one hard-
ware channel (simplex hardware 1H) and is described by the
notation: 1T/1H/1S. Later in this paper, we use a case study of
an application which can be replicated in a distributed system
on a parameterizable way, then using one execution (1T),
multiple hardware (NH) and multiple software (NS). In this
case, we adopt 1T/NH/NS, since we have spatially replicated
hardware and software executing in parallel.

III. PLATFORM AND FRAMEWORK

The approach in [15] proposed a framework which divided
the system management into three different layers: device
layer, application layer and run-time management layer. This
is currently the state-of-the-art approach to apply run-time
management since it decouples the management layer to
be platform agnostic, facilitating the portability to different
platforms or applications and thus supporting the reuse of
software. The separation of the system into the three distinct
layers — application, run-time management and device —
shown in Fig. 1 reduces design complexity and provides
flexibility during operation. The application layer comprises
any number of software processes, while the device layer
includes the hardware and its software drivers. The run-
time management layer comprises a (Run-Time Manager)
RTM responsible for the control and monitoring of the other
two layers. This separation ensures portability and cross-
compatibility; applications and device drivers only need to be
written once to be used with any implemented RTM.

A. Knobs and monitors

Knobs and monitors, shown in the dashed regions of Fig. 1,
facilitate communication between the layers. Knobs allow for
the run-time tuning of application and device-specific param-
eters, while monitors enable the measurement of hardware
properties and the observation of application behaviour. An
RTM’s primary objective is to ensure that the monitor values
of all applications and the device remain within their specified
bounds. Beyond this, it is free to optimise any unbounded
monitors in order to meet secondary objectives, e.g. reducing
power consumption. Minimal modification of applications is
required to expose knobs and monitors through the framework.
As an example application, an AES encryption process was
shown in Fig. 1 which provides the option of selecting
hardware or software execution for its operations at run-time.
This choice will be controlled by an RTM using an application
knob with options {0, 1}. If the same application requires a
minimum throughput, e.g. expressed as an encryption rate,
an application monitor with this bounds can be provided. In
this case, the application will periodically update the current

3

encryption rate so that the RTM can keep it within the
range [α,∞). On the hardware side, Dynamic Voltage and
Frequency Scaling (DVFS) of the CPU is achieved via a device
knob with options {0, 1, · · · , 9}, enabling the RTM to switch
between ten distinct voltage-frequency pairs. Finally, to enable
thermal management by the RTM, a temperature sensor is
exposed as a device monitor.

Fig. 1. Framework and API enabling communication between application,
run-time management and device layers using knobs and monitors. Examples
are given for an AES encryption application executing on a CPU. [15]

B. Local and remote knobs and monitors

This framework built with three layers copes very well with
multi-core architectures where all the decisions are executed
locally in the same cluster or Processing Element (PE) for a
limited number of cores. These type of architectures have an
intrinsic communication bottleneck between PEs and memory
which does not provide scalability to comply with systems
with more than a dozen of PEs. Larger architectures with
dozens of general purpose PEs are composed of Networks-on-
Chip (NoC), a technology that emerged as a possible solution
to the aforementioned limiting factors.

For much larger systems, the framework would show limited
results, since it does not target platforms where distributed
processing elements with the exchange of network messages is
required, i.e., a system which is composed of multiple clusters
of multi-core architectures interconnected through a NoC [16]
or even a system with multiple computers interconnected by
an off-chip network.

Furthermore, all the decisions on the run-time management
layer are taken locally, which does not allow a management
decision to be taken with all the distributed information.
Because of these drawbacks, an extension solution is proposed
in Fig. 2 where a hierarchical run-time management layer is
included.

The hierarchical RTM presents a subdivision between local
and remote communications. Local communications are the
ones executed locally only, between application, local RTM
(LRTM) and the device layer. On the other hand, remote
communications are executed between remote RTMs (RRTM).
With the new paradigms of remote and local communications,
knobs and monitors can also be categorised in these two types.

Application Layer

Runtime
Management

Layer

Hierarchical
Runtime

Management
Layer

Device Layer

Remote
Communication

Local Communication

Fig. 2. Proposed communication between application, run-time management
and device layers using knobs and monitors. The run-time management layer
is divided with local and remote knobs and monitors management.

Remote knobs and monitors represent higher levels of manage-
ment which should be handled in a remote fashion. Normally,
remote knobs and monitors are related to the applications layer
only, since device related knobs and monitors would be better
managed locally, but there is no such restriction.

The novelty also allows a shift for self-awareness systems:
the exposure of different knobs and monitors locally and
remotely. Exposing monitors to a remote entity enables the
implementation of multiple kinds of management: hierarchi-
cal management by a region of the platform, one manager
per application, one manager per group of applications, etc.
Further sections will discuss such management options.

C. Local and Remote Communications

Local communication is executed in the same device, requir-
ing a thread to thread communication protocol. Fig. 3 shows
two examples of how communication is employed between
different layers. The first transaction (a) is a local knob request,
executed between two threads, the run-time manager thread
(RTM) and an example application (APP). First, the APP layer
requests a given local knob and the RTM responds with its
value. A similar example is shown in (b) where the RTM
requests a local monitor and APP returns.

RTM APP

request local knob

return value

request local monitor

return value

A

B

Fig. 3. Local communication example. Dashed lines represents local com-
munications between threads.

All remote communications can also be seen as hierarchical
control messages, passing through the LRTM, which is going
to be processed and, if required, forwarded to the other nodes,
specifically to the RRTM. Fig. 4 presents three examples
of remote and local communications. In Fig. 4(a), we have
a different setup when remote communication is used. The
LRTM sends a message to the RRTM to register its execution
and the RRTM acknowledges. These remote messages are sent
through network sockets. In Fig. 4(b) we have an example of
an LRTM updating a remote monitor value in the RRTM.
First, the remote monitor is updated locally and later sent to

4

the RRTM. Note that the LRTM can decide the rate to update
the manager with the monitor values, allowing a design space
exploration, since it might be more reasonable to the LRTM
to send monitor values less regularly that it reads locally. In
Fig. 4(c) the manager RTM wants to set up a remote knob
which is in a different node. First, it sends a network message
to the RTM which then forwards it locally to the application.

RTM APP RTM

LOCAL REMOTE

board registration

ack

request remote monitor

return value

remote monitor value update

remote knob value update

local knob value update

A

B

C

Fig. 4. Remote communication protocol example. Dashed lines represents
local communications between threads while solid lines represents remote
communications employed with sockets.

D. Manager and Worker Nodes

The ability to control local knobs remotely allows the use
of different management layouts. The decision can be taken
remotely, e.g. one distributed application can have local and re-
mote knobs and monitors. Locally, the RTM can decide which
frequency to set while an application related knob can be
controlled remotely by another RRTM. This decentralization
process raises another question regarding which entity needs to
be responsible for the remote knobs and monitors. The easiest
way to tackle it is to visualise a scenario with one manager and
multiple workers, where each one of these entities (manager
or worker) is a member of a cluster and/or boards/computers
interconnected by a NoC or an off-chip network. The manager
is responsible for handling remote knobs and reading remote
monitors.

In this paper, we present the setup where a central manager
is responsible for allocating and controlling tasks, but it is
important to emphasize that different scenarios with multiple
managers or even a hierarchy between them are possible. Even
in scenarios with a central manager a protocol [17] can be
used to determine when it has become faulty, and migrate the
management software safely to another worker.

IV. CASE STUDY

This section shows an example application of the proposed
framework using an established technique to provide fault
tolerance. The objective is to show how the characteristics
of the framework could be employed in a real case scenario.

The proposal comprises a management approach which can
be employed in different systems: future many-core systems
with multi-core PE clusters interconnected by NoCs or even
distributed approaches with multiple boards interconnected via
an off-chip network. The main advantage of such hierarchical
approach is that it can adapt to different scenarios, with remote

knobs and monitors being handled by a Manager node, for
example, while local knobs and monitors are handled locally.

Fig. 5 presents an implementation of an N-version program-
ming example with a majority voter system where N is equal
to three. In that case, a, b and c represents a given application
which has been replicated three times. Source sends the same
data to tasks a, b and c, which are replicated and executing
the same task code and forwarding the computed output to
the voter. The voter compares the input data from tasks and
if at least two of them matches, acknowledges its reception
and tasks can send another round of data. If none of the
inputs matches, a re-run message is sent to re-execute the
last round. In case of a mismatched data from one task,
the voter must report one mismatched value to the manager,
via a remote monitor. This is an important metric since it
allows the manager to observe the system fault rate and decide
if a node needs to be replaced. The number of tasks can
be communicated as a remote knob. This operation would
require idle nodes running the task’s code to have its remote
knobs updated at run-time. To do so, the application has the
knobs and monitors listed in Table I. The manager node S is
responsible for controlling the number of replicated tasks and
voters in the system.

Nodes

Manager & Fault Inserter

source

a b c

voter

S

Fig. 5. Example voter application. Manager S can control knobs and read
monitors from all the nodes (dashed lines).

TABLE I
REMOTE AND LOCAL KNOBS UTILISED IN EXAMPLE VOTER APPLICATION.

node type function
source remote knob number of task’s
source remote knob task’s addresses
task remote knob number of voters
task remote knob voter’s addresses
voter remote knob number of tasks
voter remote monitor number mismatches
all local knob core frequency

This application target aims to implement a distributed and
parameterizable form of the N-version programming using
local and remote knobs and monitors. In this case, the manager
node is responsible for tuning the remote knobs observing
the remote monitors. Fig. 6 presents an example of how
the system’s protocol is employed during the insertion and
removing of a node from the system. When the system is
initialised all the LRTMs should register with the manager
RTM as shown in process a. As nodes are being included in
the system, the manager needs to update remote knobs in each
node (process b). After that, the application can initialize and
start sending messages to the voter as in process c; when the
voter receives messages from all tasks, it acknowledges each

5

and every task (see process d) and the cycle restarts. Note
that these are data messages, being sent from application to
application and differ from control messages. In case one of
the tasks becomes faulty, the voter communicates with the
LRTM to deregister this task as shown in process e. The LRTM
then signalizes that this particular task is faulty to the manager
RTM, see process f, which in return updates the remote knobs
in the voter and sends a signal to reconfigure the node of the
responsible task (refer to process g) – this process will be
described later. When the corresponding node is reconfigured,
its process should restart with the registration (as in process
h).

RTM APP RTM APP RTM APP

TASK VOTER MANAGER

register rtm

register rtm

update app knobs

update app knobs

send

ack

send

ack

TASK becomes faulty

deregister TASK

task deregister

update knobs

send reboot

reboot

register rtm

update knobs

update knobs

A

B

C

D

E

F

G

H

Fig. 6. Illustration of the proposed management protocol. Blue lines represent
control messages for remote knobs.

The nodes can be considered faulty in two scenarios: (i) if
a node does not send messages within a certain time frame;
(ii) if the node’s computed output does not match with the
final output of the majority voter. In both cases, the voter can
employ techniques to detect such events, i.e. a watchdog timer
for the first case and simple comparison for the second case.
In the meanwhile, since the error rate of each node is delivered
to the manager regularly, it can take a preemptive decision to
remove the node before it becomes completely unresponsive.

In our context, we can categorize faults into two types: tran-
sient and permanent faults. If the number of faults happening
in one node is below a given threshold within a certain time
frame, we categorize it as transient faults for that particular
node. If it exceeds the threshold, we consider it as a permanent
fault which means that the board is inoperative.

In case of a transient fault, the reconfiguration process,
illustrated in process g, refers to an actual reboot of the node.
In case of a permanent fault, since rebooting would not solve
the issue, a healthy node has to replace the faulty one within
the system. From the voter’s point of view, it does not matter
which node is fulfilling the task’s computation.

V. RESULTS

To evaluate a distributed system with multiple clusters of
CPUs requires an SoC with a high density of transistors. Un-
fortunately, today’s SoCs are targetting systems, e.g. NVIDIA
GPUs or Intel’s Xeon Phi Knight Landing architecture, which
only focus on specific applications. For this reason, we try
to emulate future generation general purpose systems using
many off-the-shelf boards. During our experiments, we employ
affordable boards that can mimic future in-chip clusters. This
paper carries out an evaluation on multiple heterogeneous
multi-core platform, i.e. Odroid-XU4, interconnected by an
off-the-shelf network switch. Therefore, each Odroid-XU4
board acts like a cluster, where one instance of the hierarchical
framework proposed in Fig. 2 is running.

The Odroid-XU4 is composed of the Samsung Exynos 5422
SoC. It contains four ARM Cortex-A15 (big) CPUs, four ARM
Cortex-A7 (LITTLE) CPUs. Such an architecture provides op-
portunities to exploit different designs as low power processing
(LITTLE cores) and high-performance processing (big cores).
For the Cortex-A15, the frequency can be varied between 200
MHz and 2000MHz with a 100 MHz step, whereas for the
Cortex-A7, it can be varied between 200 MHz and 1400 MHz
with a step of 100 MHz.

A. Overhead

The objective is to measure the impact of the proposed N-
version programming voter compared to a baseline where there
are no replicated tasks. To do so, we create a baseline scenario
where no voter is employed and measured the average time
that each AES encryption algorithm takes to compute and send
the result in 50 runs. Then, we repeated this scenario 50 times.
The first graph in Fig. 7 shows the average of each run, taking
on most cases around 100 ms. Later, we executed the same
measurements for scenarios with 2, 3 and 5 replicated tasks
sending messages to the voter. Results showed an expected
increase since there is a time overhead to deliver multiple
messages and also the voter’s computation time. The scenario
with two tasks shown an increase of 10 to 30% while scenarios
with 3 and 5 tasks shown an increase of 30%.

To evaluate the voter computation overhead, we measured
the time it took for the voter to compute and respond since it
received the last message. Fig. 8 shows these results, with
voters taking on average 20 µs with a small increase in
scenarios with 3 and 5 replicated tasks.

B. Fault Insertion Campaign

If desired, the manager can also insert faults in any of the
boards to test the correct execution of the proposal. Faults can
be inserted at a board level by a thread in the manager RTM.
The manager sends a message to LRTM forcing the board
to reboot. At current status the grain of fault is a complete
board, i.e. a message sent to a board is going to deregister
the complete board from the system as explained before.
Nevertheless, the system can be modified to a fine grain, per
processing core, for example. One can decide the time and a
given board to be affected by a fault. During our experiments,
faults are being inserted at random boards at random times.

6

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 10 20 30 40

A
v
g
.
E

x
e
c
.
T

im
e
 (

m
s
)

Scenario number
Baseline

 0 10 20 30 40
Scenario number
2 replicated tasks

 0 10 20 30 40
Scenario number
3 replicated tasks

 0 10 20 30 40
Scenario number
5 replicated tasks

Fig. 7. Overhead scenarios comparing average computation time with baseline design.

 0

 5

 10

 15

 20

 25

 30

2 3 5

V
o
te

r
C

o
m

p
u
ta

ti
o
n
 T

im
e
 (

µ
s
)

Number of Tasks

Fig. 8. Voter computation overhead. Boxes represents average computation
time and lines the standard deviation.

To stress and test the system, a fault insertion campaign
was developed. The same previous scenarios with 3 and 5
tasks were exposed to fault injection. Each scenario executed
the AES application for one minute, with one or two faults
being inserted at random times at random boards. Then, these
processes were repeated one hundred times for each case. All
scenarios were capable of rebooting boards and continue its
execution after reboot, as illustrated in Fig. 6. In our case,
as we are employing a fault injection mechanism which is
of a very high level, we cannot mimic a scenario where a
fault would go effectless or would cause a system failure. In
any case, one fault would cause silent data corruption, which
would be detected and masked by the three-input majority
voter. However, if an increase in the fault rate is detected, then
instead of three, the system should adapt itself by increasing
the number of replicated tasks to be able to mask two faults,
for example. The faults insertion campaign is automated using
a shell script to connect via ssh to the boards, start its execution
and collect its results when it is finished.

VI. CONCLUSIONS

This paper proposed a framework to provide ways for dif-
ferent fault-tolerant techniques to be employed in a distributed
system. A case study was presented using a scenario where
a parameterizable number of tasks were replicated and its
outputs compared, providing an example implementation of
a majority voter. Results have shown that produced overheads
were very small. Additionally, fault insertion scheme can be
extended to a finer grain, where bit-flip can be inserted at
run-time to test soft-error mitigation techniques.

ACKNOWLEDGMENT

This work is supported by the UK Engineering and Physical
Sciences Research Council through grants EP/R02572X/1 and
EP/P017487/1.

REFERENCES

[1] “NDA,” https://www.gov.uk/government/publications/nuclear-provision-
explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-
provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy.

[2] “Fukushima Daiichi nuclear power plant accident,”
https://techcrunch.com/2017/03/25/japanese-authorities-decry-ongoing-
robot-failures-at-fukushima/.

[3] A. Lindoso, L. Entrena, M. Garcı́a-Valderas, and L. Parra, “A hybrid
fault-tolerant leon3 soft core processor implemented in low-end sram
fpga,” IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 374–
381, Jan 2017.

[4] P. Bernardi, L. Bolzani Poehls, M. Grosso, and M. Sonza Reorda, “A
hybrid approach for detection and correction of transient faults in socs,”
IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4,
pp. 439–445, Oct 2010.

[5] J. R. Azambuja, S. N. Pagliarini, M. Altieri, F. G. de Lima Kastensmidt,
M. K. Hubner, J. Becker, G. Foucard, and R. Velazco, “A fault tolerant
approach to detect transient faults in microprocessors based on a
non-intrusive reconfigurable hardware,” IEEE Transactions on Nuclear
Science, vol. 59, no. 4, pp. 1117–1124, 2012.

[6] F. Ferlini, F. A. da Silva, E. A. Bezerra, and D. V. Lettnin, “Non-intrusive
fault tolerance in soft processors through circuit duplication,” in 2012
13th Latin American Test Workshop (LATW), April 2012, pp. 1–6.

[7] A. M. Keller and M. J. Wirthlin, “Benefits of complementary seu
mitigation for the leon3 soft processor on sram-based fpgas,” IEEE
Transactions on Nuclear Science, vol. 64, no. 1, pp. 519–528, Jan 2017.

[8] D. M. Fleetwood, “Total ionizing dose effects in mos and low-dose-rate-
sensitive linear-bipolar devices,” IEEE Transactions on Nuclear Science,
vol. 60, no. 3, pp. 1706–1730, June 2013.

[9] F. Faccio and G. Cervelli, “Radiation-induced edge effects in deep
submicron cmos transistors,” IEEE Transactions on Nuclear Science,
vol. 52, no. 6, pp. 2413–2420, Dec 2005.

[10] A. Jantsch, N. Dutt, and A. M. Rahmani, “Self-awareness in systems
on chip— a survey,” IEEE Design Test, vol. 34, no. 6, Dec 2017.

[11] D. K. Pradhan, Ed., Fault-tolerant Computer System Design. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[12] T. Nidhin, A. Bhattacharyya, R. Behera, T. Jayanthi, and K. Velusamy,
“Understanding radiation effects in sram-based fpgas for implementing
instrumentation and control systems of nuclear power plants,” Nuclear
Engineering and Technology, vol. 49, no. 8, pp. 1589–599, 2017.

[13] M. Wirthlin, “High-reliability fpga-based systems: Space, high-energy
physics, and beyond,” Proceedings of the IEEE, vol. 103, no. 3, pp.
379–389, March 2015.

[14] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Transactions on Software Engineering, vol. SE-11, no. 12, 1985.

[15] G. M. Bragg, C. Leech, D. Balsamo, J. J. Davis, E. Wachter, G. V.
Merrett, G. A. Constantinides, and B. M. Al-Hashimi, “An application-
and platform-agnostic runtime management framework for multicore
systems,” in PECCS, 2018, pp. 57–66.

[16] A. Karkar, T. Mak, K. Tong, and A. Yakovlev, “A survey of emerging
interconnects for on-chip efficient multicast and broadcast in many-
cores,” IEEE Circuits and Systems Magazine, vol. 16, no. 1, 2016.

[17] V. Fochi, L. L. Caimi, M. Ruaro, E. Wächter, and F. G. Moraes,
“System management recovery protocol for mpsocs,” in 2017 30th IEEE
International System-on-Chip Conference (SOCC), 2017, pp. 367–374.

