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Abstract

Background: Even though the BCI field has quickly grown in the last few years, it is still mainly investigated as a
research area. Increased practicality and usability are required to move BCIs to the real-world. Self-paced (SP) systems
would reduce the problem but there is still the big challenge of what is known as the ‘onset detection problem’.

Methods: Our previous studies showed how a new sound-imagery (SI) task, high-tone covert sound production, is very
effective for onset detection scenarios and we expect there are several advantages over most common asynchronous
approaches used thus far, i.e., motor-imagery (MI): 1) Intuitiveness; 2) benefits to people with motor disabilities and,
especially, those with lesions on cortical motor areas; and 3) no significant overlap with other common, spontaneous
cognitive states, making it easier to use in daily-life situations. The approach was compared with MI tasks in online real-
life scenarios, i.e., during activities such as watching videos and reading text. In our scenario, when a new message
prompt from a messenger program appeared on the screen, participants watching a video (or reading text, browsing
images) were asked to open the message by executing the SI or MI tasks, respectively, for each experimental condition.

Results: The results showed the SI task performed statistically significantly better than the MI approach: 84.04% (SI) vs
66.79 (MI) True-False positive rate for the sliding image scenario, 80.84% vs 61.07% for watching video. The classification
performance difference between SI and MI was found not to be significant in the text-reading scenario. Furthermore,
the onset response speed showed SI (4.08 s) being significantly faster than MI (5.46 s). In terms of basic usability, 75% of
subjects found SI easier to use.

Conclusions: Our novel SI task outperforms typical MI for SP onset detection BCIs, therefore it would be more easily
used in daily-life situations. This could be a significant step forward for the BCI field which has so far been mainly
restricted to research-oriented indoor laboratory settings.
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Introduction
Even though the BCI field has quickly developed in the
last few years, it is mainly investigated as a research area
due to shortcomings in terms of practicality and usabil-
ity. Many BCI systems employ cue-based (synchronous)
approaches, where the analysis and classification of brain
signals are locked to the machine’s predefined timing
protocol [1]. This means that it forces users to follow

the computer’s timing commands (locked to the ma-
chine). Event-related approaches such as P300 and
SSVEP also require users to keep their mental focus
and/or gaze on the computer interface for long periods
of time, which is not only unnatural, but also leads to
loss of both user autonomy and the ability to have a rich
interaction with their environment [1–4]. These, along
with still prevailing reliability limitations, are the main
issues when BCIs are used outside laboratory settings.
On the other hand, self-paced (asynchronous) systems

enable users to control the system in a more natural
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way, i.e., according to their own timing and speed of
communication without any computer-controlled stimu-
lus [5]. Giving users more autonomy and flexibility in
terms of system control is integral to the ultimate aim of
utilizing BCIs in the real world [4].
However, self-paced approaches usually requires more

complex analyses and have worse correct classification
rates as well as a more complex system design compared
to cue-based systems due to the lack of knowledge about
precise time location of the user commands. That is, the
problem of when a relevant spontaneous event happens
supersedes the problem of what command was given by
the user. The system must thus first identify a specific
active task against the idle (i.e., no specific control) state
[6]. However, determining the time of spontaneous com-
mand onset, the so-called ‘onset detection problem’, is
difficult as there is no direct non-invasive means to val-
idate the timing of the onset event. Thus, onset detec-
tion systems have an inherent timing error, which has
recently been reduced to a promising few seconds [2, 4].
Nonetheless, onset detection can be used as an on/off
switch for self-paced BCIs [7].
In this paper, a novel sound-production related cogni-

tive task (sound-production imagery, SI), i.e., high tone
covert sound production, which showed promising onset
detection results in our previous offline setting studies
[2, 4, 6, 8], was compared with the still most common
approach for online self-paced onset detection systems
in real-life scenarios, i.e., motor imagery (MI). As the
self-paced covert sound-production task is a new con-
cept that we recently proposed, there is no literature
(other than our own) related to onset detection in BCIs
used with covert speech or sound-production related
tasks. In [9–11] the authors investigated a somewhat
similar imaginary speech case, but it was done in a cue-
based system, i.e., not for onset detection. In that study
the subjects were asked to think either the syllable ‘ba’
or ‘ku’ at a specific rhythm with audio cues. In addition,
other speech related EEG-based BCI studies using differ-
ent syllables (or vowels), e.g., [12], are focused on the
discrimination between various tasks and not on onset
detection (i.e., idle versus intentional state).
In the recent self-paced system, MI is mostly used

(e.g., [1, 3, 13–17]). However, MI self-paced onset detec-
tion systems have a crucial issue when they are used
outside laboratory settings. The mental procedure is
largely overlapping with other common, spontaneous
cognitive states. For example, a classifier would not be
able to reliably identify whether the onset detection was
from an actual relevant command or from other daily-
life gestures such as waving, head movements, etc., espe-
cially if MI is also used for multi-class control (i.e., not
for onset detection) within the same BCI system. This
has motivated the search for alternative cognitive tasks

for self-paced BCIs. Thus, the MI vs SI comparison in
daily-life conditions will be discussed in this paper.
A Sound-production related cognitive task is also

needed to reduce the chances of intentional command
(IC) false positives but this can be addressed by choosing
cognitive tasks that do not significantly overlap with
other common, spontaneous and frequent cognitive
states [6]. Using specific words, syllables or letters for
the onset detection would likely increase both the onset
false positives as well as the task-related false negatives
due to the large overlap with the continuous internal
speech in normal thought processes. For this reason, we
have chosen high tone sound production as an onset
switch as this task is unlikely to overlap with normal
thought processes. We also expected the chosen task to
be easy to produce and control voluntarily and there is
no dependence on the users’ mother-language or even
on their language capabilities. In addition, the SI task
used here is expected to be very intuitive for the vast ma-
jority of people as we almost constantly ‘speak’ internally
while awake. This is also a big advantage for people with
severe motor disabilities, especially those with damage in
motor control cortical areas, an important target popula-
tion for BCIs [4]. Besides these advantages, our approach
showed significantly better performance results than the
MI task for self-paced onset detection BCI, which will be
discussed in more detail below. Bringing BCI to the real
world and maintaining user autonomy and engagement
with the surroundings as much as possible is important
and this is the main novelty of the present paper.

Methodology
Cognitive tasks description
In this experiment, two different cognitive tasks were
tested for the sake of comparison. One was MI, which is
a typically used mental task in the BCI field. It is per-
formed by the imagining of limb movements such as
those of the hands, feet or the tongue [5]. In our experi-
ment, participants were instructed to imagine the move-
ment of their primary wrist.
The other task was a sound-production related cogni-

tive task (Sound Imagery (SI) proposed in our previous
studies [2, 4, 6, 8]). The task had showed encouraging
results in an offline semi self-paced onset detection sys-
tem. For this reason, we used this SI task in an online
experiment in order to test it in real-life task scenarios
and to compare it with a typically used MI task. In this
experiment, participants were instructed to imagine pro-
ducing an ‘um’ sound with a high tone in a covert (i.e.
imaginary) manner, which necessarily overlaps with
auditory recall (auditory imagery [18]). In addition, par-
ticipants were told not to tense any organs related to the
sound-production in order to ensure the purely covert
task execution. The high pitch tone level was chosen by
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the participants based on sounds they could comfortably
generate for a couple of seconds but high enough to
think that they were unusual tones to be used in a nor-
mal daily life situation.
As this experiment was about online self-paced onset

detection, the idle state (i.e., non-control or null state)
had to be defined for training purposes so that the
Intentional-Control (IC) task state could be reliably dis-
tinguished from the idle state. To this end, participants
were instructed not to think of any IC tasks and to stay
calm and relaxed for the idle state recordings.

Experimental paradigm
Twelve healthy subjects (Ten males and two females
aged between 19 and 27) with normal or corrected vi-
sion participated in the experiments. Four of them (P3,
P4, P10 and P12) had previous experience in other BCI
experiments and the remaining eight were naïve sub-
jects. Each subject sat comfortably on a medical chair
and a monitor was placed 50 cm away from the subject.
A keyboard was placed on their lap so that they could
give feedback to the system. The experiments were con-
ducted in accordance with the University of Essex Ethics
Committee guidelines.
The experiment was designed to simulate a message

opening system when a new message (prompt) arrived
during realistic daily-life task situations (i.e., watching
video, reading text from a book) and browsing photos.
Fig. 1 shows an example of the system interface. On the
background of the screen, a video clip was playing, and a
subject was watching it while panels (A), (B) and (C) were
hidden from the screen. Once the new message arrived
(randomly between 5 s and 15 s in order to prevent subject
anticipation), panel (A) smoothly and slowly slid into the
side of the screen in order to minimise any Visual Event-
related Potentials (VEPs). Then, the participants could

either keep watching the video without trying to open the
message, or they could open the message dialogue (B) by
executing the Sound Imagery (SI) task state. The partici-
pants could perform the SI task action at any point, as the
system was self-paced. However, they were asked to execute
their onset at least 2 s after the new message dialogue had
appeared, in order to eliminate any other event-related po-
tentials (e.g. negative potentials or P300) so that the results
were entirely based on the SI tasks. While participants were
executing their SI task, they could estimate how long it took
them to open the message dialogue by referring to the time
keeping interface (D). This circular progress bar continu-
ously turned from a light grey to a dark grey colour for 12
s, followed by dark to light grey again. There were small
marks at each 1 s interval so participants could estimate
their task execution time. As a result, the users could pro-
vide feedback to the PC on whether its response was cor-
rect (True-Positive, TP) or not (False-Positive, FP) as well
as the execution time if it was a TP. After this feedback,
panels (A), (B) and (C) disappeared. The process from (A)
to (C) comprised a trial and each single run consisted of 15
trials. Each participant had to go through three different
runs (which featured different background daily-life tasks).
Background daily-life tasks were randomly ordered for test-
ing for each participant in order to prevent any sequence-
dependent results. The block diagram in Fig. 2 summarises
the experimental protocol.

Daily-life task scenarios
There were three different experimental scenarios. In
the first two scenarios, the participants were instructed
to open a message dialogue (as explained above) while
they were on two different daily life scenarios (one was
watching video and the other was reading text). The
above message opening onset detection system was
tested separately on each of the two daily tasks. The last

Fig. 1 Messaging system interface example from the experiment. (a): new message alert, (b): message dialogue, (c): user feedback panel and (d):
time keeping interface) [8]
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experimental scenario was the sliding image task. The
participants were presented with an image and if they
wanted to slide the image to see the next one, they exe-
cuted the mental task. In this scenario, there was no ex-
ternal stimuli such as a message alert. Consequently, the
participants controlled the system in a 100% self-paced
approach. These three different experimental scenarios
were chosen because they are very common scenarios
for most people in real-life situations.
In terms of material, a documentary titled “BBC - The

Blue Planet” [19] was used for the video watching task
as it requires low cognitive load and emotional neutrality
[20, 21]. For the reading task, a book titled “English Fairy
Tales” [22] was used as it does not have any complex
text and is emotionally neutral as well. Hence, the ma-
terial had reduced cognitive loads for both native and
non-native English speakers. In the sliding image task,
natural images (wild background scenery without ani-
mals) from [23] were used for emotional neutrality.

Signal pre-Processing & Artefacts Handling
An Enobio (dry electrode equipment [24]) system was
used for data acquisition. Seventeen electrodes were
placed on the head based on a 10–20 layout and 1 refer-
ence channel was recorded on the right-side earlobe.
Three extra external channels were placed on the fore-
head and both the right and left temples (anterior-most

edge of the temporalis muscle) based on [25] in order to
detect an Electrooculogram (EOG) and Electromyogram
(EMG) for artefact removal purposes. The sample rate
was 500 S/s (equipment bandwidth: 0–125 Hz) in order
to ensure that all the EEG rhythms, up to some high
gamma band, could be analysed. High gamma waves
have not been widely used in BCIs due to concerns over
contamination with EMG artefacts. However, studies
have shown high gamma activity is associated with lan-
guage tasks [26–28]. It was therefore included in the ex-
periments and EMG artefacts handling methods were
applied to avoid EMG-related classification results.
EEG data were wirelessly transferred from the Enobio

to a PC via Bluetooth. These EEG data were bandpass
filtered (Butterworth filter, order 5) with cut-off frequen-
cies at 4 Hz and 100 Hz followed by a notch filter (But-
terworth filter, order 5) at 49–51 Hz in order to remove
mains interference. Then, the data were segmented with
a 0.5 s window length.
The segmented data underwent automatic EOG detec-

tion based on [29]. A Discrete Wavelet Transform (DWT)
with a Haar mother wavelet (decomposition level 6) was
applied to the external channel that was placed on the
forehead. If the external channel’s data were detected as
EOG artefacts, the data segment was rejected from further
analysis. If there was no EOG artefact, the EEG data were
passed on to the EMG artefact removal process.

Fig. 2 Block diagram of the experimental protocol
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For automatic EMG removal, the Blind Source Separ-
ation by Canonical Correlation Analysis (BSS-CCA) was
used, which is a very common and widely used EMG re-
moval technique in BCIs. BSS-CCA assumes mutually
uncorrelated sources that are maximally auto-correlated.
It can therefore be used to separate the brain signal from
the muscle activity (mainly facial, body movements)
sources as the muscle artefacts have relatively low autocor-
relation compared to the brain signal (please see [30, 31]
for a more detailed discussion of BSS-CA). The threshold
of the autocorrelation coefficient ρ was chosen at 0.35
based on [32]. Then, these pre-processed and EOG/EMG
artefacts-handled EEG data was used for feature extraction
and classification.

Feature Extraction & Classification
Fig. 3 illustrates the feature extraction pipeline. In this
experiment, four different feature extraction techniques
were applied to the artefact-handled data. An AutoRe-
gressive Model (AR model, Burg’s method) with order
number 6 was applied based on [9]. The model coeffi-
cients were used as features. The second method was
Band Power (BP) extraction with a Fast Fourier Trans-
form (FFT). There were seven different bands: 4–8, 8–
12, 12–16, 16–20, 20–30, 30–42 and 42–100 Hz. Each
band’s FFT value was square powered and it was used as
a feature. The third method was the Common Spatial
Pattern (CSP). EEG source components were sorted in
order to maximise the variance in one class and minim-
ise it in the other class. Then, the first three and last
three EEG source component variances were taken and

linear regression was applied. The slope of the fitted line
was used as a feature. The last feature extraction method
was the Discrete Wavelet Transform (DWT). The data
were decomposed up to level 7 and detailed parts, which
represent the pseudo frequency bands of around 4–8, 8–
16, 16–31, 31–62 and 62–100 Hz, were taken. From each
detail part, the variance was calculated from the coeffi-
cients for dimensionality reduction. The mother wavelet
‘db2’ was chosen because of its common use in BCIs.
These four different feature extraction techniques were
chosen, as together they cover the time, frequency,
spatial and time-frequency domains.
These feature extraction processes generated hun-

dreds of feature points for each channel. Therefore, a
feature selection method was required. In this experi-
ment, the Davis-Bouldin Index (DBI [33]) was used.
The optimal DBI threshold was calculated from the
training data (training and validation set) for each
subject and task. Firstly, we used the training data for
optimal DBI threshold selection. Secondly, we divided
the training dataset into training_2 and the validation
set. Thirdly, we calculated the optimal DBI threshold
number from 1 (increasing by 1). The validation set
results show a gradual increase followed by a de-
crease. The peak point DBI value was chosen as the
DBI threshold point for the testing data. Then, fea-
tures that had DBIs below the threshold were used
for classification.
For the classification, the Linear Discriminant Analysis

(LDA) was used. It was chosen because of its simplicity
and low computational cost [34]. Therefore, it suits the

Fig. 3 Feature extraction pipeline
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online classification for real-time processing as well as
being a widely-used technique in BCIs.

Performance evaluation method
As the study was about an online onset detection sys-
tem, a performance evaluation took place with the
subjects’ feedback. Fig. 4 shows the feedback process.
If the machine classified the incoming EEG data as
an onset (intentional control) event from the user, a
message window would appear on the screen with a
feedback panel (A). The panel (A) could also be
opened manually by pressing the ‘Esc’ button on the
keyboard to indicate a True-Negative (TN) action. If
the event was indeed an intended action, the user
would choose ‘YES’. Otherwise the user would choose
‘NO’ for a False-Positive (FP). If the user chose ‘YES’,
the feedback panel would change to (B) in order to
clarify whether it was an actual thought command
(i.e. sound-production) or a manual opening of the
message (TN action). Subjects were asked to press
the ‘Esc’ button when the continuous onset command
(up to 11 s) did not work. If it was an intentional
thought command, users were directed to panel (C)
and were asked how much time had lapsed from the
start of the onset until the message dialogue was
opened. This will be regarded as a True-Positive (TP)
with additional system response speed information
(less than 3 s, 3–5 s, 5–7 s, 7–9 s or 9–11 s).
Based on the number of TP and FP, the True-Positive

rate and False-Positive rate was calculated:

TPrate¼ number of TP
number of TPþTNð Þ ; FPrate¼number of FP

Idle event

The definition of the number of idle events is import-
ant for the calculation of the FP rate. Firstly, the idle
period was defined as:

idle period¼total recording time−task activation period−refractory period

The refractory period is the period during which a sig-
nal is ignored for classification after the TP or FP action
(i.e. while the message is opened for user feedback).
Therefore, the total number of idle events which can yield
output from the classifier was idle period (sec) / windows
length (sec). In our case this was idle period / 0.5 s. In
addition, the True-False-Positive score (TFPScore) [35]
was also calculated in order to take the idle period length
into account for the final score in the self-paced system.

Results
Feature interpretation - spatial and spectral analysis for
sound-imagery task
In this section, spatial and spectral characteristics will be
analysed for the sound imagery task. As the experiment
was online, this analysis was carried out with the train-
ing dataset, which was recorded as an offline setting.
For the spatial analysis, the Common Spatial Pattern

(CSP) was found based on the Enobio 17 channels elec-
trode placement [24]. Fig. 5 (A) shows the visual pattern
for the average result. The pattern varies depending on
the subject because of the characteristic of EEG. How-
ever, the average result shows that channels around F3,

Fig. 4 User feedback process during the online experiment for performance evaluation [8]
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P3 and T7, which are located near Broca’s and Wer-
nicke’s area that are related to speech, had a big pattern
difference between the idle and sound imagery task
period. Similarly, channel F8 also showed some pattern
difference.
In addition to the CSP analysis, the channels that had

the best class separability based on the feature selection
method are shown in Fig. 5 (B). From each participant,
the 10 best feature points were selected based on the
DBI feature selection method and their channel numbers
were counted and summed up from twelve subjects. As
can be seen from the Figure, channel F3 was selected
the most amount of times as the best class separable
channel, followed by channel T7. It shares some com-
mon results with the CSP spatial analysis by having the
same F3 and T7 channels that are located near Broca’s
and Wernicke’s area.
In terms of spectral domain analysis, the frequency

band that had the most class separability was found in a
similar fashion. From the 120 feature points (the best 10
features from each of the twelve subjects), the wavelet
transform feature was selected the most times (56
times), followed by the band power feature (44 times)
and autoregressive model feature (20 times). The com-
mon spatial pattern feature was not selected at all be any
of the subjects. From those 56 DWT and 44 band power
features, frequency bands were counted to find out
which range was selected the most as the best class sep-
arable frequency band. As can be observed from Fig. 6
(top part), the pseudo-frequency band of 16–31 Hz was
selected the most times followed by the range of 31–62
Hz for the DWT feature. On the other hand, in the band
power feature in the bottom part, the 20–30 Hz band
was selected the most times. A review paper [36] re-
ported that some studies suggested that the 30 Hz range
should be elicited by linguistic processing of meaningful
words but not of meaningless non-words. However, our
high pitch sound imagery task showed the best class sep-
arability versus the idle state with the range of around
20–30 Hz.

Sound-imagery vs. Motor-imagery for Onset Detection
Table 1 shows the classification performance with the
True-Positive (TP) rate and False-Positive (FP) rate on
both the Sound Imagery (SI) and Motor Imagery (MI)
tasks in three different scenarios. In the sliding image
task scenario, the twelve subjects’ average TP rate for
the sound imagery task was 88.3% while the motor im-
agery task had a 73.3% rate. Only one out of twelve par-
ticipants (P3) showed that the motor imagery task’s TP
rate was higher than the sound imagery task’s and P5
showed the same TP rate with a lower FP rate in the
sound imagery task. The Wilcoxon method was used for
the statistical tests in this paper. It was chosen as it is a
suitable test for our (non-parametric) data and it is
widely used in BCIs. In terms of the Wilcoxon test p
value, the sound imagery onset detection task had a sig-
nificantly higher (p value at 0.033) TP rate than the
motor imagery task. Even though the average FP rate in
sound imagery had a lower value of 2.6% than the motor
imagery at 4.8%, there was no statistically significant dif-
ference with a p value of 0.451.
In the video-watching scenario, the 12 subjects’ aver-

age showed an 86.1% TP rate for the SI task and 63.9%
for the MI task. All the subjects had a higher TP rate
with the SI than the MI task except for participant 3.
The Wilcoxon test p value was 0.031, which depicts that
SI had a significantly higher TP rate than the MI task.
On the other hand, the average result of the FP rate
shows that the SI task’s FP rate is slightly higher than
the one of the MI tasks but there is no significant differ-
ence with a p value of 0.259. In the reading text scenario,
the average TP rate of the SI task was 81.1 and 77.2%
for the MI task. Even though the SI task showed a
slightly better TP rate result, there was no statistically
significant difference between them with a p value of
0.243. The FP rate also showed that the SI task provided
a slightly better result (lower FP rate) but the difference
was minor. If the two different daily-task scenarios are
averaged, the TP rate of the SI task is significantly higher
(83.6%) than the one of MI (70.6%) with a p value of

Fig. 5 a Common spatial pattern averaged result. (Left: minimum variance for the idle period state. Right: minimum variance for the sound
imagery task). b Spatial analysis with the DBI feature selection method
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0.0106. There is, however, no significant difference with
the FP rate.
In order to take into account all the true-positives,

false-positives and the idle period length at the same
time, as they are very important aspects of performance

evaluation in self-paced BCI systems, the True-False-
Positive score (TFPScore) presented in [35] was calcu-
lated and discussed here. 83.3% (10 out of 12) of the par-
ticipants showed that the sound imagery onset detection
task performed better in the TFP score than the motor

Fig. 6 Spectral analysis with DBI feature selection method

Table 1 Online onset detection performance results in three different scenarios

Sliding Image Scenario Watching Video Scenario Reading Text Scenario

Sound Imagery Motor Imagery Sound Imagery Motor Imagery Sound Imagery Motor Imagery

TP rate
(%)

FP rate
(%)

TP rate
(%)

FP rate
(%)

TP rate
(%)

FP rate
(%)

TP rate
(%)

FP rate
(%)

TP rate
(%)

FP rate
(%)

TP rate
(%)

FP rate
(%)

P1 66.7 5.9 60 23.0 80 7.6 46.7 1.4 53.3 8.2 80 11

P2 100 4 93.3 3.2 93.3 1.5 73.3 2.6 100 1.7 73.3 2.5

P3 73.3 1 80.0 2.9 46.7 1.7 60 1.2 33.3 2.1 80 2.6

P4 93.3 9.4 86.7 3.9 100 6.9 86.7 4.3 93.3 4.2 86.7 6.7

P5 86.7 0.5 86.7 2.7 86.7 1.9 46.7 1.5 66.7 3.7 80 3.7

P6 80 5.5 60.0 5.2 86.7 6.8 60 1.5 73.3 5.5 73.3 2.6

P7 86.7 4 46.7 0.8 86.7 6.4 20 0.5 86.7 3.9 46.7 0

P8 93.3 0 33.3 0.0 73.3 0.7 20 0 100 2.6 66.7 0.1

P9 100 0.9 93.3 9.1 100 0.9 93.3 4.3 93.3 0.6 80 2.7

P10 93.3 0 73.3 0.5 86.7 0.6 73.3 0.2 86.7 0 86.7 0.5

P11 100 0 86.7 2.5 100 0 100 4.1 100 0.4 100 2.1

P12 86.7 0 80.0 3.5 93.3 6.5 86.7 1.5 86.7 2.5 73.3 1

Avg 88.3 2.6 73.3 4.8 86.1 3.40 63.9 1.90 81.1 2.90 77.2 3.00
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imagery task in both the sliding image and watching
video scenario. 66.7% (8 out of 12) of the participants
showed a higher TFP score with the sound imagery task
for the reading text scenario. Participant 3, who had pre-
vious experience in BCIs, showed that the motor im-
agery task performed better than the sound imagery task
in all the daily-life scenarios but other participants, such
as P4, P10 and P12, who also had BCI experience, did
not follow the same pattern. Only two out of nine sub-
jects showed that the MI task had a higher TFP score.
From the naïve subjects, 87.5% (21 out of 24 cases) of
them showed a higher TFP score with the SI task.
Figure 7 (A) shows the twelve subjects’ averaged TFP

score for each daily-life task scenario. The sound im-
agery onset detection task produced a significantly
higher TFP score than the motor imagery task with a p
value of 0.035 and 0.04 for the sliding image and watch-
ing video scenario, respectively. However, there was no
statistically significant difference for the reading text sce-
nario even though the TFP score was higher for the SI
task. The TFP score differences were very large in some
cases. The image-sliding scenario had a more than a
17% difference (SI: 84.04%, MI: 66.76%) while the video
watching scenario had a 19.77% difference (SI: 80.84%,
MI: 61.07%). The text reading scenario, on the other
hand, had only a 4.56% difference (SI: 77.17%, MI:
72.61%), and this difference was found to have no statis-
tical significance (p = 0.298)
In terms of system response speed, the users’ feedback

from Fig. 4 (C) was used in order to calculate the onset
response time. Figure 7 (B) shows the twelve subjects’
averaged onset speed for the SI and MI tasks. The SI
task required 3.93 s, 4.03 s and 4.28 s on average for the
sliding image, watching video and reading text scenario,
respectively, while the MI one required 4.8 s, 5.83 s and

5.75 s. In all of the three-different daily-life task scenar-
ios, the SI task had a significantly faster onset response
than the MI task by having a p value of 0.0262, 0.0119
and 0.0055, respectively.

Discussion
This experiment investigated an online onset detection
method for BCIs by prompting participants to open a
message when it arrived in two different daily-life task
scenarios (watching video and reading text) and in the
sliding image task. Our new sound imagery task and typ-
ical MI task were tested and compared.
In terms of system performance, the sound imagery

task achieved 84.04, 80.84 and 77.17% as a TFP score for
the sliding image, watching video and reading text sce-
nario, respectively, on average for twelve subjects. In
contrast, the MI task achieved values of 66.79% (signifi-
cantly worse), 61.07% (significantly worse) and 72.61%
(no significant difference), respectively. In addition, the
system speed showed a significantly faster response with
the sound imagery than the MI task.
Although it is difficult to directly compare our results

with other onset detection systems as the experiment
environment and tasks are different, our SI task showed
a relatively high TP rate. In [13], three subjects produced
on average a classification TP accuracy of 79.67% be-
tween the motor-imagery task and the non-control state.
In [37], six different mental tasks versus the idle state
showed TP rates of between 55% (auditory imagery) and
72% (motor-imagery) on average over five subjects in an
offline setting. Compared to these results, our 88.9% (in
the video-watching case) and 78.9% (in the text-reading
case) TP rates look very promising even though our
study was carried out for more realistic scenarios than
the ones previously reported by others.

Fig. 7 a Averaged True-False-Positive score result comparison between the SI and MI task in three different daily-life task scenarios. b Averaged
onset system response speed comparison between the SI and MI
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From a usability point of view, participants completed
a short survey at the end of the experiment regarding
the level of difficulty of use of the two different SI and
MI tasks. 0 depicts very easy to use and 10 represents
very difficult to use. On average, SI received a value of
4.42 while MI received 6.42. Nine out of twelve (75%)
subjects marked a lower value (easier to use) for the SI
than the MI. Only participants P3, P4 and P12 said that
the MI was easier. These three participants were BCI re-
search students, who had experience in MI but not SI.
On the other hand, one BCI research student and all the
other naïve subjects marked the SI as easier to use. The
p value of the twelve subjects was 0.0108. Therefore, the
SI task was significantly easier to use than the MI one
for the onset detection of BCIs.
Based on these results, our new sound imagery task

outperformed the motor imagery task for the self-paced
onset detection BCI system not only in performance but
also in usability and system speed. Therefore, this onset
detection system prototype showed some strong poten-
tial in terms of the real-life application of BCIs (com-
pared to the typical motor imagery task) and it will
move the BCI field a significant step forward once it is
developed further by improving current EEG recording
issues such as practicality and usability.
Contrary to the other two real-life activities, the text-

reading scenario showed no significant TFP score differ-
ence between SI and MI. This may be because sound
production imagery is harder while reading as they use
same brain region (Broca’s area) based on our spatial
pattern analysis and silent reading literature [38, 39].
With this in mind, the limitations of the proposed ap-
proach specifically in text-reading and related activities
need to be further explored. Also, BCI researchers have
discussed the so-called “BCI Illiteracy” problem, which is
that about 15 to 30% of users are not able to use a MI
BCI [40, 41]. As the SI task uses different parts of the
brain, it may produce different results in regards to the
BCI Illiteracy problem. This would be an interesting
investigation.

Conclusions
The scope of this study was to investigate how well our
new sound imagery task works for a self-paced onset de-
tection system in real-life scenarios by comparing it to a
typical motor imagery task. From a performance point
of view, our novel sound imagery task showed a signifi-
cantly better TFP score in the sliding image (84.04%)
and watching video (80.04%) scenario (opening message
onset task) than in the motor imagery task (66.79 and
61.07%, respectively). Furthermore, the reading text sce-
nario also reported a higher performance result with our
approach (77.17% SI vs 72.61% MI). Moreover, the
sound imagery task showed a significantly faster system

response (4.08 s SI vs 5.46 s MI on average for the three
scenarios) and had a significantly better usability (easier
to use) score than the motor imagery.
Based on these results, our novel sound imagery onset

detection system outperformed the motor imagery one
and it showed great potential. This could be a significant
step forward for the BCI field which is mainly restricted
to research-oriented indoor laboratory settings with the
use of motor imagery and cue-based studies.
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