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Abstract

In this paper, we study the effectiveness of the modelling approach on the pandemic due to the spreading of the novel

COVID-19 disease and develop a susceptible-infected-removed (SIR) model that provides a theoretical framework

to investigate its spread within a community. Here, the model is based upon the well-known susceptible-infected-

removed (SIR) model with the difference that a total population is not defined or kept constant per se and the

number of susceptible individuals does not decline monotonically. To the contrary, as we show herein, it can be

increased in surge periods! In particular, we investigate the time evolution of different populations and monitor

diverse significant parameters for the spread of the disease in various communities, represented by countries and

the state of Texas in the USA. The SIR model can provide us with insights and predictions of the spread of the

virus in communities that the recorded data alone cannot. Our work shows the importance of modelling the spread

of COVID-19 by the SIR model that we propose here, as it can help to assess the impact of the disease by offering

valuable predictions. Our analysis takes into account data from January to June, 2020, the period that contains

the data before and during the implementation of strict and control measures. We propose predictions on various

parameters related to the spread of COVID-19 and on the number of susceptible, infected and removed populations

until September 2020. By comparing the recorded data with the data from our modelling approaches, we deduce

that the spread of COVID-19 can be under control in all communities considered, if proper restrictions and strong

policies are implemented to control the infection rates early from the spread of the disease.
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1. Introduction

In December 2019, a novel strand of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China

causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic

declared by World Health Organization (WHO) on March 11, which has spread around the globe [1, 2, 3, 4, 5].

WHO published in its website preliminary guidelines with public health care for the countries to deal with the

pandemic [6]. Since then, the infectious disease has become a public health threat. Italy and USA are severely

affected by COVID-19 [7, 8, 9]. Millions of people are forced by national governments to stay in self-isolation and in

difficult conditions. The disease is growing fast in many countries around the world. In the absence of availability

of a proper medicine or vaccine, currently social distancing, self-quarantine and wearing a face mask have been

emerged as the most widely-used strategy for the mitigation and control of the pandemic.

In this context, mathematical models are required to estimate disease transmission, recovery, deaths and other

significant parameters separately for various countries, that is for different, specific regions of high to low reported

cases of COVID-19. Different countries have already taken precise and differentiated measures that are important

to control the spread of the disease. However, still now, important factors such as population density, insufficient

evidence for different symptoms, transmission mechanism and unavailability of a proper vaccine, makes it difficult

to deal with such a highly infectious and deadly disease, especially in high population density countries such as India
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[10, 11, 12]. Recently, many research articles have adopted the modelling approach, using real incidence datasets

from affected countries and, have investigated different characteristics as a function of various parameters of the

outbreak and the effects of intervention strategies in different countries, respective to their current situations.

It is imperative that mathematical models are developed to provide insights and make predictions about the

pandemic, to plan effective control strategies and policies [13, 14, 15]. Modelling approaches [8, 16, 17, 18, 19,

20, 21] are helpful to understand and predict the possibility and severity of the disease outbreak and, provide

key information to determine the intensity of COVID-19 disease intervention. The susceptible-infected-removed

(SIR) model and its extended modifications [22, 23, 24, 25], such as the extended-susceptible-infected-removed

(eSIR) mathematical model in various forms have been used in previous studies [26, 27, 28] to model the spread of

COVID-19 within communities.

Here, we propose the use of a novel SIR model with different characteristics. One of the major assumptions of

the classic SIR model is that there is a homogeneous mixing of the infected and susceptible populations and that the

total population is constant in time. In the classic SIR model, the susceptible population decreases monotonically

towards zero. However, these assumptions are not valid in the case of the spread of the COVID-19 virus, since new

epicentres spring up around the globe at different times. To account for this, the SIR model that we propose here

does not consider the total population and takes the susceptible population as a variable that can be adjusted at

various times to account for new infected individuals spreading throughout a community, resulting in an increase

in the susceptible population, i.e., to the so-called surges. The SIR model we introduce here is given by the same

simple system of three ordinary differential equations (ODEs) with the classic SIR model and can be used to gain

a better understanding of how the virus spreads within a community of variable populations in time, when surges

occur. Importantly, it can be used to make predictions of the number of infections and deaths that may occur

in the future and provide an estimate of the time scale for the duration of the virus within a community. It also

provides us with insights on how we might lessen the impact of the virus, what is nearly impossible to discern from

the recorded data alone! Consequently, our SIR model can provide a theoretical framework and predictions that

can be used by government authorities to control the spread of COVID-19.

In our study, we used COVID-19 datasets from [29] in the form of time-series, spanning January to June, 2020.

In particular, the time series are composed of three columns which represent the total cases Idtot, active cases Id

and Deaths Dd in time (rows). These datasets were used to update parameters of the SIR model to understand

the effects and estimate the trend of the disease in various communities, represented by China, South Korea,

India, Australia, USA, Italy and the state of Texas in the USA. This allowed us to estimate the development of

COVID-19 spread in these communities by obtaining estimates for the number of deaths D, susceptible S, infected

I and removed Rm populations in time. Consequently, we have been able to estimate its characteristics for these

communities and assess the effectiveness of modelling the disease.

The paper is organised as following: In Sec. 2, we introduce the SIR model and discuss its various aspects. In

Sec. 3, we explain the approach we used to study the data in [29] and in Sec. 4, we present the results of our

analysis for China, South Korea, India, Australia, USA, Italy and the state of Texas in the USA. Section 5 discusses

the implications of our study to the “flattening the curve” approach. Finally, in Sec. 6, we conclude our work

and discuss the outcomes of our analysis and its connection to the evidence that has been already collected on the

spread of COVID-19 worldwide.

2. The SIR model that can accommodate surges in the susceptible population

The world around us is highly complicated. For example, how a virus spreads, including the novel strand of

Coronavirus (SARS-CoV-2) that was identified in Wuhan, Hubei Province, China, depends upon many factors,

among which some of them are considered by the classic SIR model, which is rather simplistic and cannot take into

consideration surges in the number of susceptible individuals. Here, we propose the use of a modified SIR model

with characteristics, based upon the classic SIR model. In particular, one of the major assumptions of the classic

SIR model is that there is a homogeneous mixing of the infected I and susceptible S populations and that the total

population N is constant in time. Also, in the SIR model, the susceptible population S decreases monotonically
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towards zero. These assumptions however are not valid in the case of the spread of the COVID-19 virus, since new

epicentres spring up around the globe at different times. To account for this, we introduce here a SIR model that

does not consider the total population N , but rather, takes the susceptible population S as a variable that can

be adjusted at various times to account for new infected individuals spreading throughout a community, resulting

in its increase. Thus, our model is able to accommodate surges in the number of susceptible individuals in time,

whenever these occur and as evidenced by published data, such as those in [29] that we consider here.

Our SIR model is given by the same, simple system of three ordinary differential equations (ODEs) with the

classic SIR model that can be easily implemented and used to gain a better understanding of how the COVID-

19 virus spreads within communities of variable populations in time, including the possibility of surges in the

susceptible populations. Thus, the SIR model here is designed to remove many of the complexities associated with

the real-time evolution of the spread of the virus, in a way that is useful both quantitatively and qualitatively. It

is a dynamical system that is given by three coupled ODEs that describe the time evolution of the following three

populations:

1. Susceptible individuals, S(t): These are those individuals who are not infected, however, could become infected.

A susceptible individual may become infected or remain susceptible. As the virus spreads from its source or

new sources occur, more individuals will become infected, thus the susceptible population will increase for a

period of time (surge period).

2. Infected individuals, I(t): These are those individuals who have already been infected by the virus and can

transmit it to those individuals who are susceptible. An infected individual may remain infected, and can be

removed from the infected population to recover or die.

3. Removed individuals, Rm(t): These are those individuals who have recovered from the virus and are assumed

to be immune, Rm(t) or have died, D(t).

Furthermore, it is assumed that the time scale of the SIR model is short enough so that births and deaths (other

than deaths caused by the virus) can be neglected and that the number of deaths from the virus is small compared

with the living population.

Based on these assumptions and concepts, the rates of change of the three populations are governed by the

following system of ODEs, what constitutes our SIR model

dS(t)

dt
= −aS(t)I(t),

dI(t)

dt
= aS(t)I(t)− bI(t),

dRm(t)

dt
= bI(t),

(1)

where a and b are real, positive, parameters of the initial exponential growth and final exponential decay of the

infected population I.

It has been observed that in many communities, a spike in the number of infected individuals, I, may occur,

which results in a surge in the susceptible population, S, recorded in the COVID-19 datasets [29], what amounts

to a secondary wave of infections. To account for such a possibility, S in the SIR model (1), can be reset to Ssurge

at any time ts that a surge occurs, and thus it can accommodate multiple such surges if recorded in the published

data in [29], what distinguishes it from the classic SIR model.

The evolution of the infected population I is governed by the second ODE in system 1, where a is the transmission

rate constant and b the removal rate constant. We can define the basic effective reproductive rate Re = aS(t)/b,

as the fate of the evolution of the disease depends upon it. If Re is smaller than one, the infected population I

will decrease monotonically to zero and if greater than one, it will increase, i.e., if dI(t)
dt < 0 ⇒ Re < 1 and if

dI(t)
dt > 0 ⇒ Re > 1. Thus, the effective reproductive rate Re acts as a threshold that determines whether an

infectious disease will die out quickly or will lead to an epidemic.

At the start of an epidemic, when Re > 1 and S ≈ 1, the rate of infected population is described by the

approximation dI(t)
dt ≈ (a− b) I(t) and thus, the infected population I will initially increase exponentially according
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to I(t) = I(0) e(a−b)t. The infected population will reach a peak when the rate of change of the infected population

is zero, dI(t)/dt = 0, and this occurs when Re = 1. After the peak, the infected population will start to decrease

exponentially, following I(t) ∝ e−bt. Thus, eventually (for t → ∞), the system will approach S → 0 and I → 0.

Interestingly, the existence of a threshold for infection is not obvious from the recorded data, however can be

discerned from the model. This is crucial in identifying a possible second wave where a sudden increase in the

susceptible population S will result in Re > 1, and to another exponential growth of the number of infections I.

3. Methodology

The data in [29] for China, South Korea, India, Australia, USA, Italy and the state of Texas (communities) are

organised in the form of time-series where the rows are recordings in time (from January to June, 2020), and the

three columns are, the total cases Idtot (first column), number of infected individuals Id (second column) and deaths

Dd (third column). Consequently, the number of removals can be estimated from the data by

Rd
m = Idtot − Id −Dd. (2)

Since we want to adjust the numerical solutions to our proposed SIR model (1) to the recorded data from [29], for

each dataset (community), we consider initial conditions in the interval [0, 1] and scale them by a scaling factor f to

fit the recorded data by visual inspection. In particular, the initial conditions for the three populations are set such

that S(0) = 1 (i.e., all individuals are considered susceptible initially), I(0) = Rm(0) = Idmax/f < 1, where Idmax

is the maximum number of infected individuals Id. Consequently, the parameters a, b, f and Idmax are adjusted

manually to fit the recorded data as best as possible, based on a trial-and-error approach and visual inspections.

A preliminary analysis using non-linear fittings to fit the model to the published data [29] provided at best inferior

results to those obtained in this paper using our trial-and-error approach with visual inspections, in the sense that

the model solutions did not follow as close the published data, what justifies our approach in the paper. A prime

reason for this is that the published data (including those in [29] we are using here) are data from different countries

that follow different methodologies to record them, with not all infected individuals or deaths accounted for.

In this context, S, I and Rm ≥ 0 at any t ≥ 0. System (1) can be solved numerically to find how the scaled

(by f) susceptible S, infected I and removed Rm populations (what we call model solutions) evolve with time, in

good agreement with the recorded data. In particular, since this system is simple with well-behaved solutions, we

used the first-order Euler integration method to solve it numerically, and a time step h = 200/5000 = 0.04 that

corresponds to a final integration time tf of 200 days since January, 2020. This amounts to double the time interval

in the recorded data in [29] and allows for predictions for up to 100 days after January, 2020.

Obviously, what is important when studying the spread of a virus is the number of deaths D and recoveries R

in time. As these numbers are not provided directly by the SIR model (1), we estimated them by first, plotting the

data for deaths Dd vs the removals Rd
m, where Rd

m = Dd + Rd = Idtot − Id and then fitting the plotted data with

the nonlinear function

D = D0

(
1− e−kRm

)
, (3)

where D0 and k are constants estimated by the non-linear fitting. The function is expressed in terms of only model

values and is fitted to the curve of the data. Thus, having obtained D from the non-linear fitting, the number of

recoveries R can be described in time by the simple observation that it is given by the scaled removals, Rm from

the SIR model (1), less the number of deaths, D from Eq. (3),

R = Rm −D. (4)

4. Results

The rate of increase in the number of infections depends on the product of the number of infected and susceptible

individuals. An understanding of the system of Eqs. (1) explains the staggering increase in the infection rate around
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the world. Infected people traveling around the world has led to the increase in infected numbers and this results

in a further increase in the susceptible population [14]. This gives rise to a positive feedback loop leading to a very

rapid rise in the number of active infected cases. Thus, during a surge period, the number of susceptible individuals

increases and as a result, the number of infected individuals increases as well. For example, as of 1 March, 2020,

there were 88 590 infected individuals and by 3 April, 2020, this number had grown to a staggering 1 015 877 [29].

Understanding the implications of what the system of Eqs. (1) tells us, the only conclusion to be drawn using

scientific principles is that drastic action needs to be taken as early as possible, while the numbers are still low,

before the exponential increase in infections starts kicking in. For example, if we consider the results of policies

introduced in the UK to mitigate the spread of the disease, there were 267 240 total infections and 37 460 deaths

by 27 May and in the USA, 1 755 803 and 102 107, total infections and deaths, respectively. Thus, even if one

starts with low numbers of infected individuals, the number of infections will at first grow slowly and then, increase

approximately exponentially, then taper off until a peak is reached. Comparing these results for the UK and USA

with those for South Korea, where steps were taken immediately to reduce the susceptible population, there were

11 344 total infections and 269 deaths by 27 May. The number of infections in China reached a peak about 16

February, 2020. The government took extreme actions with closures, confinement, social distancing, and people

wearing masks. This type of action produces a decline in the number of infections and susceptible individuals. If

the number of susceptible individuals does not decrease, then the number of infections just gets increased rapidly.

As at this moment, there is no effective vaccine developed, the only way to reduce the number of infections is to

reduce the number of individuals that are susceptible to the disease. Consequently, the rate of infection tends to

zero only if the susceptible population goes to zero.

Here, we have applied the SIR model (1) considering data from various countries and the state of Texas in the

USA provided in [29]. Assuming the published data are reliable, the SIR model (1) can be applied to assess the spread

of the COVID-19 disease and predict the number of infected, removed and recovered populations and deaths in the

communities, accommodating at the same time possible surges in the number of susceptible individuals. Figures

1–17 show the time evolution of the cumulative total infections Itot, current infected individuals, I, recovered

individuals, R, dead individuals, D, and normalized susceptible populations, S for China, South Korea, India,

Australia, USA, Italy and Texas in the USA, respectively. The crosses show the published data [29] and the smooth

lines, solutions and predictions from the SIR model. The cumulative total infections plots also show a curve for

the initial exponential increase in the number of infections, where the number of infections doubles every five days.

The figures also show predictions, and a summary of the SIR model parameters in (1) and published data in [29]

for easy comparisons.

We start by analysing the data from China and then move on to the study of the data from South Korea, India,

Australia, USA, Italy and Texas.

4.1. China

The number of infections peaked in China about 16 February, 2020 and since then, it has slowly decreased. The

decrease only occurs when the susceptible population numbers decrease and this decrease in susceptible numbers

only occurred through the drastic actions taken by the Chinese government. China quarantined and confirmed

potential patients, and restricted citizens’ movements as well as international travel. Social distancing was widely

practiced, and most of the people wore face masks. The actual numbers of infections have decreased at a greater

rate than predicted by the SIR model (see Figs. 1 and 2). Our results in Figs. 1 and 2 provide evidence that the

Chinese government has done well in limiting the impact of the spread of COVID-19.

4.2. South Korea

From the plots shown in Figs. 3 and 4, it is obvious that the South Korean government has done a wonderful

job in controlling the spread of the virus. The country has implemented an extensive virus testing program. There

has also been a heavy use of surveillance technology: closed-circuit television (CCTV) and tracking of bank cards

and mobile phone usage, to identify who to test in the first place. South Korea has achieved a low fatality rate

(currently one percent) without resorting to such authoritarian measures as in China. The most conspicuous part of

the South Korean strategy is simple enough: implementation of repeated cycles of test and contact trace measures.
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Figure 1: China: Model predictions for the period from 22 January to 9 August, 2020 with data from January to June, 2020. The data
show a discrete jump in deaths D in mid-April.

Figure 2: China: (a) Nonlinear fitting with Eq. (3) using a trial-and-error method to estimate the number of deaths, D from the
removed population, Rm (see text for the details). (b) Plots of the number of removals, Rm against the cumulative total infections Itot
and current active cases I.
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Figure 3: South Korea: Model predictions for the period from 26 February to 13 September, 2020 with data from February to June,
2020.

Figure 4: South Korea: (a) Nonlinear fitting with Eq. (3) using a trial-and-error method to estimate the number of deaths, D from the
removed population, Rm (see text for the details). (b) Plots of the number of removals, Rm against the cumulative total infections Itot
and current active cases I.
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Figure 5: India: Model predictions for the period from 14 March to 30 September, 2020 with data from March to June, 2020.

4.3. India

To match the recorded data from India with predictions from the SIR model (1), it is necessary to include a

number of surge periods, as shown in Fig. 5. This is because the SIR model cannot predict accurately the peak

number of infections, if the actual numbers in the infected population have not peaked in time. It is most likely the

spread of the virus as of early June, 2020 is not contained and there will be an increasing number of total infections.

However, by adding new surge periods, a higher and delayed peak can be predicted and compared with future data.

In Fig. 5, a consequence of the surge periods is that the peak is delayed and higher than if no surge periods were

applied. The model predictions for the 30 September, 2020 including the surges are: 330 000 total infections, 700

active infections and 7 500 deaths, whereas if there were no surge periods, there would be 130 000 total infections,

700 active infections and 6 300 deaths, with the peak of 60 000, which is about 40% of the current number of active

cases occuring around 20 May 2020. Thus, the model can still give a rough estimate of future infections and deaths,

as well as the time it may take for the number of infections to drop to safer levels, at which time restrictions can

be eased, even without an accurate prediction in the peak in active infections (see Figs. 5 and 6).

4.4. Australia

A surge in the susceptible population was applied in early March, 2020 in the country. The surge was caused

by 2 700 passengers disembarking from the Ruby Princes cruise ship in Sydney and then, returning to their homes

around Australia. More than 750 passengers and crew have become infected and 26 died. Two government enquires

have been established to investigate what went wrong. Also, at this time many infected overseas passengers arrived

by air from Europe and the USA. The Australian government was too slow in quarantining arrivals from overseas.

From mid-March, 2020 until mid-May, 2020, the Australian governments introduced measures of testing, contact

tracing, social distancing, staying at home policy, closure of many businesses and encouraging people to work from

home. From Figs. 7 and 8, it can be observed that actions taken were successful as the actual number of infections

declined in accord with the model predictions. There have been no further surge periods. From end of May, 2020,

these restrictions are being removed in stages. The SIR model can be used when future data becomes available to

see if the number of susceptible individuals starts to increase. If so, the model can accommodate this by introducing

surge factors.
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Figure 6: India: (a) Nonlinear fitting with Eq. (3) using a trial-and-error method to estimate the number of deaths, D from the removed
population, Rm (see text for the details). (b) Plots of the number of removals, Rm against the cumulative total infections Itot and
current active cases I.

Figure 7: Australia: Model predictions for the period from 22 January to 9 August, 2020 with data from January to June, 2020.
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Figure 8: Australia: (a) Nonlinear fitting with Eq. (3) using a trial-and-error method to estimate the number of deaths, D from the
removed population, Rm (see text for the details). (b) Plots of the number of removals, Rm against the cumulative total infections Itot
and current active cases I.

4.5. USA

As of early June, 2020, the peak number of infections has not been reached. When a peak in the data is not

reached, it is more difficult to fit the model predictions to the data. In the model, it is necessary to add a few

surge periods. This is because new epicentres of the virus arose at different times. The virus started spreading in

Washington State, followed by California, New York, Chicago and the southern states of the USA. The need to add

surge periods shows clearly that the spread of the virus is not under control.

In the USA, by the end of May, 2020, the number of active infected cases has not yet peaked and the cumulative

total number of infections keeps getting bigger. This can be accounted for in the SIR model by considering how the

susceptible population changes with time in May. During that time, to match the data to the model predictions,

surge periods were used where the normalized susceptible population S was reset to 0.2 every four days. What is

currently happening in the USA is that as susceptible individuals become infected, their population decreases, with

these infected individuals mixing with the general population, leading to an increase in the susceptible population.

This is shown in the model by the variable for the susceptible population, S, varying from about 0.06 to 0.20,

repeatedly during May. Until this vicious cycle is broken, the cumulative total infected population will keep

growing at a steady rate and not reach an almost steady-state. The fluctuating normalized susceptible variable

provides clear evidence that government authorities do not have the spread of the virus under control (see Figs. 9

and 10).

4.6. Texas

The plots in Figs. 11 and 12 show that the peak in the total cumulative number of infections has not been

reached as early as June, however, the peak is probably not far away. If there are no surges in the susceptible

population, then one could expect that by late September, 2020, the number of infections will have fallen to very

small numbers and the virus will have been well under control with the total number of deaths in the order of 2

000. In mid-May, 2020, some restrictions have been lifted in the state of Texas. The SIR model can be used to

model some of the possible scenarios if the early relaxation of restrictions leads to increasing number of susceptible

populations. If there is a relatively small increase in the future number of susceptible individuals, no series impacts
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Figure 9: USA: Model predictions for the period from 22 January to 9 August, 2020 with data from January to June, 2020.

Figure 10: USA: (a) Nonlinear fitting with Eq. (3) using a trial-and-error method to estimate the number of deaths, D from the removed
population, Rm (see text for the details). (b) Plots of the number of removals, Rm against the cumulative total infections Itot and
current active cases I.
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Figure 11: Texas: Model predictions for the period from 12 March to 28 September, 2020 with data from March to June, 2020.

Figure 12: Texas: (a) Nonlinear fitting with Eq. (3) using a trial-and-error method to estimate the number of deaths, D from the
removed population, Rm (see text for the details). (b) Plots of the number of removals, Rm against the cumulative total infections Itot
and current active cases I.
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Figure 13: Texas: Model predictions with a surge period occurring at the end of June, 2020.

occur. However, if there is a large outbreak of the virus, then the impacts can be dramatic. For example, at the end

of June, 2020, if S was reset to 0.8 (S = 0.8), a second wave of infections occurs with the peak number of infections

occurring near the end of July, with the second wave peak being higher than the initial peak number of infections.

Subsequently, the number of deaths will rise from about 2 000 to nearly 5 000, as shown in Figs. 13 and 14.

If governments start lifting their containment strategies too quickly, then it is probable there will be a second

wave of infections with a larger peak in active cases, resulting to many more deaths.

4.7. Italy

Figure 15 shows clearly that the peak of the pandemic has been reached in Italy and without further surge

periods, the spread of the virus is contained and number of active cases is declining rapidly. The plots in panels

(a), (b) in Fig. 16 are a check on how well the model can predict the time evolution of the virus. These plots also

assist in selecting the model’s input parameters.

5. Flattening the curve

The term flattening the curve has rapidly become a rallying cry in the fight against COVID-19, popularised by

the media and government officials. Claims have been made that flattening the curve results in: (i) reduction in

the peak number of cases, thereby helping to prevent the health system from being overwhelmed and (ii) in an

increase in the duration of the pandemic with the total burden of cases remaining the same. This implies that social

distancing measures and management of cases, with their devastating economic and social impacts, may need to

continue for much longer. The picture which has been widely shown in the media is shown in Fig. 17(a).

The idea presented in the media as shown in Fig. 17(a) is that by flattening the curve, the peak number of

infections will decrease, however, the total number of infections will be the same and the duration of the pandemic

will be longer. Hence, they concluded that by flattening the curve, it will have a lesser impact upon the demands in

hospitals. Figure 17(b) gives the scientific meaning of flattening the curve. By governments imposing appropriate

measures, the number of susceptible individuals can be reduced and combined with isolating infected individuals,

will reduce the peak number of infections. When this is done, it actually shortens the time the virus impacts the

society. Thus, the second claim has no scientific basis and is incorrect. What is important is reducing the peak
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Figure 14: Texas: If a second wave occurs, there could be increase in the number of deaths, D.

Figure 15: Italy: Model predictions for the period from 26 February to 13 September, 2020 with data from February to June, 2020.
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Figure 16: Italy: (a) Nonlinear fitting with Eq. (3) using a trial-and-error method to estimate the number of deaths, D from the
removed population, Rm (see text for the details). (b) Plots of the number of removals, Rm against the cumulative total infections Itot
and current active cases I.

Figure 17: Flattening the curve: Panel (a): The flattening of the curve diagram used widely in the media to represent a means of
reducing the impacts of COVID-19. Panel (b) If the number of susceptible individuals is reduced, then the peak number of infections
will be less and the time for the number of infections to fall to low numbers is reduced.
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in the number of infections and when this is done, it shortens the duration in which drastic measures need to be

taken and not lengthen the period as stated in the media and by government officials. Figure 17 shows that the

peak number of infections actually reduces the duration of the impact of the virus on a community.

6. Conclusions

Mathematical modelling theories are effective tools to deal with the time evolution and patterns of disease

outbreaks. They provide us with useful predictions in the context of the impact of intervention in decreasing the

number of infected-susceptible incidence rates [30, 31, 32].

In this work, we have augmented the classic SIR model with the ability to accommodate surges in the number

of susceptible individuals, supplemented by recorded data from China, South Korea, India, Australia, USA and the

state of Texas to provide insights into the spread of COVID-19 in communities. In all cases, the model predictions

could be fitted to the published data reasonably well, with some fits better than others. For China, the actual

number of infections fell more rapidly than the model prediction, which is an indication of the success of the

measures implemented by the Chinese government. There was a jump in the number of deaths reported in mid-

April in China, which results in a less robust estimate of the number of deaths predicted by the SIR model. The

susceptible population dropped to zero very quickly in South Korea showing that the government was quick to act

in controlling the spread of the virus. As of the beginning of June, 2020, the peak number of infections in India

has not yet been reached. Therefore, the model predictions give only minimum estimates of the duration of the

pandemic in the country, the total cumulative number of infections and deaths. The case study of the virus in

Australia shows the importance of including a surge where the number of susceptible individuals can be increased.

This surge can be linked to the arrival of infected individuals from overseas and infected people from the Ruby

Princess cruise ship. The data from USA is an interesting example, since there are multiple epicentres of the virus

that arise at different times. This makes it more difficult to select appropriate model parameters and surges where

the susceptible population is adjusted. The results for Texas show that the model can be applied to communities

other than countries. Italy provides an example where there is excellent agreement between the published data and

model predictions.

Thus, our SIR model provides a theoretical framework to investigate the spread of the COVID-19 virus within

communities. The model can give insights into the time evolution of the spread of the virus that the data alone does

not. In this context, it can be applied to communities, given reliable data are available. Its power also lies to the

fact that, as new data are added to the model, it is easy to adjust its parameters and provide with best-fit curves

between the data and the predictions from the model. It is in this context then, it can provide with estimates of the

number of likely deaths in the future and time scales for decline in the number of infections in communities. Our

results show that the SIR model is more suitable to predict the epidemic trend due to the spread of the disease as it

can accommodate surges and be adjusted to the recorded data. By comparing the published data with predictions,

it is possible to predict the success of government interventions. The considered data are taken in between January

and June, 2020 that contains the datasets before and during the implementation of strict and control measures.

Our analysis also confirms the success and failures in some countries in the control measures taken.

Strict, adequate measures have to be implemented to further prevent and control the spread of COVID-19.

Countries around the world have taken steps to decrease the number of infected citizens, such as lock-down measures,

awareness programs promoted via media, hand sanitization campaigns, etc. to slow down the transmission of the

disease. Additional measures, including early detection approaches and isolation of susceptible individuals to avoid

mixing them with no-symptoms and self-quarantine individuals, traffic restrictions, and medical treatment have

shown they can help to prevent the increase in the number of infected individuals. Strong lockdown policies can be

implemented, in different areas, if possible. In line with this, necessary public health policies have to be implemented

in countries with high rates of COVID-19 cases as early as possible to control its spread. The SIR model used here

is only a simple one and thus, the predictions that come out might not be accurate enough, something that also

depends on the published data and their trustworthiness. However, as the model data show, one thing that is

certain is that COVID-19 is not going to go way quickly or easily.
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