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Abstract

Information needs to be appropriately encoded to be reliably transmitted over physical media. Similarly, neurons have
their own codes to convey information in the brain. Even though it is well-known that neurons exchange information
using a pool of several protocols of spatio-temporal encodings, the suitability of each code and their performance as a
function of network parameters and external stimuli is still one of the great mysteries in neuroscience. This paper sheds
light on this by modeling small-size networks of chemically and electrically coupled Hindmarsh-Rose spiking neurons.
We focus on a class of temporal and firing-rate codes that result from neurons’ membrane-potentials and phases, and
quantify numerically their performance estimating the Mutual Information Rate, aka the rate of information exchange.
Our results suggest that the firing-rate and interspike-intervals codes are more robust to additive Gaussian white noise.
In a network of four interconnected neurons and in the absence of such noise, pairs of neurons that have the largest rate
of information exchange using the interspike-intervals and firing-rate codes are not adjacent in the network, whereas
spike-timings and phase codes (temporal) promote large rate of information exchange for adjacent neurons. If that
result would have been possible to extend to larger neural networks, it would suggest that small microcircuits would
preferably exchange information using temporal codes (spike-timings and phase codes), whereas on the macroscopic
scale, where there would be typically pairs of neurons not directly connected due to the brain’s sparsity, firing-rate and
interspike-intervals codes would be the most efficient codes.

Keywords: Information, Mutual Information, Mutual Information Rate, neuroscience, brain, neurons, external stimuli,
neural codes, Hindmarsh-Rose system, neural networks, interspike-intervals code, firing-rate code

1. Introduction

The main function of the brain is to process and rep-
resent information, and mediate decisions, behaviors and
cognitive functions. The cerebral cortex is responsible for
internal representations, maintained and used in decision
making, memory, motor control, perception, and subjec-
tive experience. Recent studies have shown that the adult
human brain has about 86 × 109 neurons [1], which are
connected to other neurons via as many as 1015 synap-
tic connections. Neurophysiology has shown that single
neurons make small and understandable contributions to
behavior [2, 3, 4]. However, most behaviors involve large
numbers of neurons, which are often organized into brain
regions, with nearby neurons having similar response prop-
erties, and are distributed over a number of anatomically
different structures, such as the brain-stem, cerebellum,
and cortex. Within each of these regions, there are differ-
ent types of neurons with different connectivity-patterns
and typical responses to inputs.

∗Corresponding author: canton@essex.ac.uk

The coexistence of segregation and integration in the
brain is the origin of neural complexity [5]. Connectivity
is essential for integrating the actions of individual neu-
rons and for enabling cognitive processes, such as mem-
ory, attention, and perception. Neurons form a network of
connections and communicate with each other mainly by
transmitting action potentials, or spikes. To this end, the
mechanism of spike-generation is well understood: spikes
generate a change in the membrane potential of the target
neuron, and when this potential surpasses a threshold, a
spike might be generated [6]. Brain regions show signifi-
cant specialization with higher functions such as integra-
tion, abstract reasoning and consciousness, all emerging
from interactions across distributed functional neural net-
works.

At the local level, the function of individual neurons is
relatively well understood. However, the full understand-
ing of the information processing in networks of spiking
neurons, the so-called “neural code”, is still elusive. A
neural code is a system of rules and mechanisms by which
a signal carries information, with coding involving various
brain structures. It is clear that neurons do not commu-
nicate only by the frequency of their spikes (i.e. by a
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rate code) [7], since part of the information can also be
transmitted in the precise timing of individual spikes (i.e.
temporal code) [8]. Also, it is known that some parts of
the brain use rate codes (especially motor systems, match-
ing to the slower muscles) and some use timing codes. In
some cases, oscillations are very important (e.g. in sniff-
ing), while in others may not be that much [9]. There
is still a debate as to which neural code is used in which
brain region, and how much of the potential timing, in-
formation is actually used [9]. Interactions at different
timescales might be related to different types of process-
ing, and thus, understanding information processing re-
quires examining the temporal dynamics among neurons
and their networks. Precise spike-timing would allow neu-
rons to communicate more information than with random
spikes. Different types of neural coding, including tempo-
ral and spatial coding, may also coexist on different time
scales [10]. The scientific evidence so far supports the ar-
gument that we are still lacking full understanding on the
codes used by neurons to carry and process information, as
well as on which neural code is used in which brain region.

What emerges from the scientific evidence so far sug-
gests that fast systems and responses use fast spike-timings
coding. For example, the human visual system has been
shown to be capable of performing very fast classification
[11], where a participating neuron can fire at most one
spike. The speed by which auditory information is de-
coded, and even the generation of speech also suggest that
most crucial neural systems of the human brain operate
quite fast. For example, human fingertip sensory neurons
were found to support this by demonstrating a remarkable
precision in the time-to-first spikes from primary sensory
neurons [12]. Thus, investigating the fundamental proper-
ties of neural coding in spiking neurons may allow for the
interpretation of population activity and, for understand-
ing better the limitations and abilities of neural computa-
tions.

In this paper, we study neural coding and introduce
four neural codes. We quantify and compare the rate of in-
formation exchange for each code in small-size networks of
chemically and electrically coupled Hindmarsh-Rose (HR)
spiking neurons [13, 14]. We do not deal with spatial codes,
but only with temporal and firing-rate codes. For each
neuron in the network, we record the temporal courses of
its membrane-potential and phase. We construct a suit-
able map representation of these variables and compute
the rate of information exchange for each pair of neurons,
aka the Mutual Information Rate (MIR) [15], as a func-
tion of connectivity and synaptic intensities. We consider
the precise spike-timings of neural activity (i.e. a tem-
poral code), the maximum points of the phase of neural
activities (i.e. neural phase), considering all oscillatory
behaviors with arbitrary amplitude, including the high-
frequency spiking and low-frequency bursting oscillations,
the interspike intervals, and the firing-rate (i.e. ratio of
spiking activity over a specific time interval). For the first
three codes, we assume that all measurements are per-

formed with respect to the ticks of a local master “clock”
[16], meaning relative to the activity produced by one of
the participating neurons in the network. This choice is
arbitrary in the sense that the activity of any single neu-
ron in the network can be used as the “clock”. This al-
lows for the estimated mutual information rates to reflect a
measure between “synchronous” events that occur within
a reasonable short-time window. Thus, our estimations
provide the strength with which information is exchanged
without any significant time-delay, and therefore reflecting
a non-directional, non-causal estimation.

In relation to the estimations for the MIR of the neural
codes, it would be possible to refine them, considering finer
spatial partitions, for example finer than the binary ones
considered in this work. These refinements would corre-
spond to the search for a generating, higher-order, Markov
partition [17]. However, here, we study whether looking
at the codes based on the interspike intervals would pro-
vide one with more information than the instantaneous
spike-timings code. This is motivated by the question: in
a time-series of events, what does carry more information?
A code based on the times between events or a code based
on the precise times of the occurrence of the events? We
control our estimations by comparing them with a theo-
retical upper bound for MIR to verify the plausibility of
the analysis.

Our main findings are summarized as follows: in the
simplest case of a single pair of coupled HR spiking neu-
rons, we find that they exchange the largest amount of in-
formation per unit of time when the neural code is based on
the precise spike-timings. If observable (additive Gaussian
white) noise is present, firing-rates are able to exchange
larger rates of information than those based on temporal
codes and together with the interspike-intervals code are
the most robust to noise. In the case of four chemically and
electrically coupled HR neurons as in Fig. 3, the largest
rate of information exchange can be attributed to the neu-
ral codes of the maximum points of the phases (mod 2π,
i.e. to a code dependent on the period of neurons’ oscil-
lations) and of the interspike intervals. Surprisingly, pairs
of neurons with the largest rate of information exchange
using the interspike-intervals and the firing-rate codes are
not adjacent in the network, with the spike-timings and
phase codes (temporal) promoting large rate of informa-
tion exchange for adjacent neurons in the network. The
latter is also backed by the results in Fig. 4 where con-
nectivity (chemical and electrical connections) is swapped.
These results provide evidence for the non-local character
of firing-rate codes and local character of temporal codes
in models of modular dynamical networks of spiking neu-
rons. When neurons form a multiplex network of 20 HR
neurons arranged in two equal-size modules in a bottleneck
configuration, communication between pairs of neurons in
the two modules is mostly efficient when using either the
spike-timings or the maximum points of their phases codes.
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2. Materials and Methods

2.1. The Hindmarsh-Rose Neural Model

We simulate the dynamics of each “neuron” by a single
Hindmarsh-Rose neuron system. Namely, following [13,
14], we endow each node (i.e. neuron) in the network with
the dynamics [18]

ṗ = q − ap3 + bp2 − n+ Iext,

q̇ = c− dp2 − q, (1)

ṅ = r[s(p− p0)− n],

where p is the membrane potential, q the fast ion current
(either Na+ or K+), and n the slow ion current (for ex-
ample Ca2+). The parameters a, b, c, d, which model the
function of the fast ion channels, and s, p0 are given by
a = 1, b = 3, c = 1, d = 5, s = 4 and p0 = −8/5, respec-
tively. Parameter r, which modulates the slow ion chan-
nels of the system, is set to 0.005, and the external current
Iext that enters each neuron is fixed to 3.25. For simplic-
ity, all neurons are submitted to the same external current
Iext. For these values, each neuron can exhibit chaotic
behavior and the solution to p(t) exhibits typical multi-
scale chaos characterized by spiking and bursting activity,
which is consistent with the membrane potential observed
in experiments made with single neurons in vitro [18].

We couple the HR system (1) and create an undirected
dynamical network (DN) of Nn neurons connected by elec-
trical (linear diffusive) and chemical (nonlinear) synapses
[13]

ṗi = qi − ap3i + bp2i − ni − gn(pi − Vsyn)

Nn∑

j=1

BijS(pj)

− gl
Nn∑

j=1

GijH(pj) + Iext,

q̇i = c− dp2i − qi, (2)

ṅi = r[s(pi − p0)− ni],

φ̇i =
q̇ipi − ṗiqi
p2i + q2i

, i = 1, . . . , Nn,

where φ̇i is the instantaneous angular frequency of the i-th
neuron [19, 20], φi is the phase defined by the fast variables
(pi, qi) of the i-th neuron, H(p) = p and [13]

S(p) =
1

1 + e−λ(p−θsyn)
. (3)

Our work intents to study the transmission of information
in models of small-size neural networks by treating them
as communication systems, for which we measure and eval-
uate the rates at which information is exchanged among
neurons. We are also not interested in considering realistic
biological models for the function S. Instead, we consider
a biologically inspired function S of a sigmoid type as in
Eq. (3) [13]. The remaining parameters θsyn = −0.25,

λ = 10, and Vsyn = 2 are chosen so as to yield an ex-
citatory DN [13]. The synaptic coupling behaves as a
short delta-function and carries other features required for
synaptic coupling. Particularly, Vsyn can be tuned to re-
produce excitatory or inhibitory behavior, and S(p) has
θsyn to allow for the disconnection of pre-synaptic neurons
that have not reached an activation level. For λ = 10, S(p)
is a continuous, sigmoid function that behaves similarly to
a “binary process”, either 0 or 1, a fundamental prop-
erty necessary to use in analytical works when networks
with neurons connected simultaneously by electrical and
chemical means become synchronous [13]. Naturally, this
is mimicking the democratic fashion with which chemical
synapses behave, where a large community of activated
pre-synaptic neurons needs to be activated to induce a rele-
vant response in the post-synaptic neuron(s). This further
allows us to study the system knowing the domain of pa-
rameters for which we can obtain oscillatory behavior. The
choices for the couplings and network topologies in this
work are purely abstract, not guided by realistic physio-
logical reasons, and so does time t in Eqs. (1) and (2). The
parameters gn and gl denote the coupling strength of the
chemical and electrical synapses, respectively. The chemi-
cal coupling is nonlinear and its functionality is described
by the sigmoid function S(p), which acts as a continuous
mechanism for the activation and deactivation of the chem-
ical synapses. For the chosen parameters, |pi| < 2, with
(pi − Vsyn) being always negative for excitatory networks.
If two neurons are connected via an excitatory synapse,
then if the pre-synaptic neuron spikes, it might trigger the
post-synaptic neuron to spike. We adopt only excitatory
chemical synapses here. G accounts for the way neurons
are electrically (diffusively) coupled and is represented by
a Laplacian matrix [13]

G = K−A, (4)

where A is the binary adjacency matrix of the electri-
cal connections and K the degree identity matrix of A,
leading to

∑Nn

j=1 Gij = 0 as Gii = Kii and Gij = −Aij

for i 6= j. By binary we mean that if there is a connec-
tion between two neurons, then the entry of the matrix
is 1, otherwise it is 0. B is a binary adjacency matrix
and describes how neurons are chemically connected [13]
and, therefore, its diagonal elements are equal to 0, thus∑Nn

j=1 Bij = ki, where ki is the degree of the i-th neuron.
ki represents the number of chemical links that neuron i
receives from all other j neurons in the network. A positive
off-diagonal value in both matrices in row i and column j
means that neuron i perturbs neuron j with an intensity
given by glGij (electrical diffusive coupling) or by gnBij

(chemical excitatory coupling). Therefore, the adjacency
matrices C are given by

C = A + B. (5)

For each neuron i, we use the following initial conditions:
pi = −1.30784489 + ηri , qi = −7.32183132 + ηri , ni =
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3.35299859 + ηri and φi = 0, where ηri is a uniformly dis-
tributed random number in [0, 0.5] for all i = 1, . . . , Nn
(see [14] for details). These initial conditions place the tra-
jectory on the attractor of the dynamics quickly, reducing
thus the computational time in the simulations.

2.2. Numerical Simulations and Upper Bound for MIR

We have integrated numerically Eqs. (2) using Euler’s
first order method with time-step δt = 0.01 to reduce the
numerical complexity and CPU time to feasible levels. A
preliminary comparison for trajectories computed for the
same parameters (i.e. δt, initial conditions, etc.) using
integration methods of order 2, 3 and 4 (e.g. the Runge-
Kutta method) produced similar results. The numerical
integration of Eqs. (2) was performed for a total integra-
tion time of tf = 107 units and the computation of the
various quantities were computed after a transient time
tt = 300 to make sure that orbits have converged to an
attractor of the dynamics. Thus, the sample size used in
the estimation of the MIR for the various neural codes is
large enough and amounts to 999,970,000 data points (ex-
cluding the transient period that corresponds to the first
30000 points).

After Shannon’s pioneering work [21] on information,
it became clear [22, 23] that it is a very useful and im-
portant concept as it can measure the amount of uncer-
tainty an observer has about a random event and thus
provides a measure of how unpredictable it is. Another
concept related to Shannon entropy that can characterize
random complex systems is Mutual Information (MI) [21],
a measure of how much uncertainty one has about a state
variable after observing another state variable in the sys-
tem. In [24], the authors have derived an upper bound for
the MIR between two nodes or groups of nodes of a com-
plex dynamical network that depends on the two largest
Lyapunov exponents l1 and l2 of the subspace formed by
the dynamics of the pair of nodes. Particularly, they have
shown that

MIR ≤ Ic = l1 − l2, l1 ≥ l2, (6)

where l1, l2 are the two finite-time and -size Lyapunov ex-
ponents calculated in the 2-dimensional observation space
of the dynamics of the pair of nodes [24, 25]. Typically,
l1, l2 approach the two largest Lyapunov exponents λ1, λ2
of the dynamics of the DN (2) if the network is connected
and the time to calculate l1, l2 is sufficiently small [24]. Ic
is an upper bound for MIR between any pair of neurons in
the network, where MIR is measured in the 2-dimensional
observation space. It can be estimated using mainly two
approaches: (i) the expansion rates between any pair of
neurons, taking the maximal value among all measure-
ments [24], which is tricky and difficult to compute [24]
and (ii) the two largest positive Lyapunov exponents λ1,
λ2 of the DN. Here, we use the second approach, since the
equations of motion of the dynamics are available (Eqs.
(2)) and the full spectrum of Lyapunov exponents can be

calculated [26]. Particularly, we estimate Ic by Ic = λ1−λ2
(assuming that l1 ≈ λ1 and l2 ≈ λ2) which will stand for
an approximation to the upper bound for the MIR in the
network. The phase spaces of the dynamical systems as-
sociated to the DNs are multi-dimensional and thus, esti-
mating an upper bound for MIR using λ1 and λ2, reduces
considerably the complexity of the calculations. Besides,
parameter changes that cause positive or negative changes
in MIR are reflected in the upper bound Ic with the same
proportion [24].

2.3. Estimation of MIR for Maps

There is a huge body of work on the estimation of
MI in dynamical systems and in neuroscience, for example
[24, 27, 28, 29, 30, 31, 32, 23, 17]. In this work, we fol-
low the method introduced recently in [33], to estimate MI
between pairs of time-series X(t) and Y (t). This method-
ology is the same one used in [17] to estimate MI using
refinements or generating Markov partitions. Below, we
explain how we estimate MIR by using the estimated val-
ues for MI. Pairs X(t) and Y (t) can represent a mapping of
any two variables, as in the neural codes introduced in this
work. Particularly, we estimate MI by considering binary
symbolic dynamics that encode each time-series X(t) and
Y (t) into the symbolic trajectory represented by (α, β).
N sequentially mapped points of X(t) and Y (t) are en-
coded into the symbolic sequences α = α1, α2, α3, . . . , αN
and β = β1, β2, β3, . . . , βN , each composed of N elements.
The encoding is done by firstly normalizing the time-series
X(t) and Y (t) to fit the unit interval. Both αi and βi can
assume only two values, either “0”, if the value is smaller
than 0.5 , or “1”, otherwise.

The Mutual Information, MI(L), between X(t) and
Y (t) is thus estimated by the MI between the two sym-
bolic sequences α and β by

MIXY (L) =

∑

k

∑

l

P (X(L)αk , Y (L)βl ) log
P (X(L)αk , Y (L)βl )

P (X(L)αk )P (Y (L)βl )
, (7)

where P (X(L)αk , Y (L)βl ) is the joint probability between
symbolic sequences of length L observed simultaneously in
α and β, and P (X(L)αk ) and P (X(L)βl ) are the marginal
probabilities of symbolic sequences of length L in the se-
quences α and β, respectively. The subindices k and l vary
from 1 up to the number of symbolic sequences of different
lengths L observed in α and β, respectively.

MIR is estimated by the slope of the curve of the MI
for symbolic sequences of length L ∈ [2, 5] with respect to
L, which amounts to grid sizes of smaller and smaller cells
as L increases. Consequently, this MIR can be considered
as an estimation of the increase of MI per time interval.
More details can be found in [33, 15].

The L interval considers sequences starting from L = 2
to L = 5 bits. The reason is that MI behaves linearly with
L in this interval, allowing the calculation of MIR. Partic-
ularly, the built-in correlations in the time-series and the
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fact that the chosen partition is likely not the best possible,
suggests the exclusion of L = 1, since correlations would
start appearing for larger symbolic sequences. Also, we
do not consider L > 5 as we would run into numerical
problems and would introduce under-sampling effects be-
cause of the time-series length. For example, if we would
assume L = 5, the analysis for 2 neurons would effectively
deal with symbolic sequences of length 2L = 10 and there
would be 210 different sequences of length L = 10. A
significant trajectory length would then have to be larger
than 10 210 = 10240 trajectory points. Due to the ergodic
property of chaotic systems, the probability of observing
a given symbolic sequence of length L in one neuron and
another of the same length in another neuron is equivalent
to the probability of finding trajectory points in a cell of
the phase space. The larger L is, the smaller the cell is,
and thus, it contains more information about the state of
the pair of neurons.

Our MIRii estimator in Subsec. 2.4.3 for the interspike
intervals is similar to the work in [34]. In [34], the authors
encode the time-signal by making a time partition, where
temporal bins are defined, and a binary encoding is done,
by associating 0’s to bins without spiking and 1’s to bins
with spikes. Our encodings in Sec. 2.4 are based on par-
titions of the space created by the two time-series X(t)
and Y (t). In our approach, we have not sought to max-
imize MI and search for the generating Markov partition
as in [17]. However, we have dealt with biasing, when we
compare our MIR estimations of the neural codes with Ic
estimated by the difference of the two maximal Lyapunov
exponents λ1 and λ2. All our MIR estimations in Sec.
2.4 are bounded by the mathematical upper bound Ic for
MIR, except for three cases on which we elaborate later.

It is worth it to note that the parameters and initial
conditions in Eqs. (2) give rise to chaotic behavior with
positive Lyapunov exponents. Thus, chaos is responsible
for generating the probabilities necessary for the estima-
tion of MIR in the 2-dimensional spaces of the data from
the encoding of the trajectories of pairs of neurons [33].
Chaotic behavior in turn gives rise to uncertainty and pro-
duction of information. Information is then transmitted
through the various nodes in the neural network through
the electrical and chemical connections (see Eqs. (2)).

2.4. Neural Codes

Here, we introduce four neural codes and their method-
ologies to quantify the rate of information exchange be-
tween pairs of neurons.

The first uses the spike-timings of neural activity (tem-
poral code), the second the maximum points of the phase
of neural activities (neural phase), the third the interspike
intervals and the fourth, the firing-rates (ratio of spiking
activity over a specific time interval). For the first three,
we assume that all recordings are done with respect to the
ticks of a local master “clock” [16], relative to the activity
produced by a single neuron. This choice can be arbitrary
in the sense that the activity of any single neuron can

be used. The purpose is to obtain MIR values that can
be interpreted as being the current rate of information ex-
changed between any two neurons, and not any time-delay
mutual information. For the estimation of the MIR of the
neural codes, we integrate numerically the system of Eqs.
(2) as discussed in Subsec. 2.2 to obtain the numerical so-
lutions to pi, qi, ni, φi, i = 1, . . . , Nn as a function of time.
We then use these solutions (time-series) to construct the
pairs of time-series X(t) and Y (t) to estimate the MIR for
each particular neural code as explained below.

Our coupling and topology choices are abstract and in-
spired by current research in multilayer networks [35, 36,
37, 38]. We seek to study whether looking at the instan-
taneous spike-timings provides less information than the
codes based on the interspike intervals. Particularly, our
study is motivated by the question: having a time-series of
events, what does carry more information? A code based
on the times between events, or a code based on the exact
times of the occurrence of the events?

2.4.1. Neural Code Based on spike-timings: MIRst

Here, we explain how we estimate the amount of in-
formation exchanged per unit of time between neurons
i, j based on the spike-timings of the first neuron, MIRst,
where st stands for spike-timings. Particularly, we assume
that the first neuron plays the role of the “clock” and we
record pi, pj from Eqs. (2) at times when p1 of the first
neuron attains its local maxima. This allows us to con-
struct a time-series of events Xi(t), Yj(t) by transforming
the continuous dynamics of variables pi, pj into a time-
series of discrete-time spike events Xi, Yj . We then use
Xi, Yj to compute the rate of information exchanged be-
tween neurons i and j as explained in Subsec. 2.3. We
divide the rate of information exchanged by the mean of
the interspike times of the spike activity of the first neu-
ron. We call this quantity, MIRst of the pair of neurons
i, j.

2.4.2. Neural Code Based on Phase: MIRmφ

Next, we explain how we estimate the amount of in-
formation exchanged per unit of time between neurons i, j
based on the maximum points of the time evolution of the
phase variables φi, φj , what we denote by MIRmφ, where
mφ stands for maximum phase φ. We assume that the
first neuron plays the role of the “clock” and record in
time Φi ≡ mod(φi, 2π) and Φj ≡ mod(φj , 2π) from Eqs.
(2) at times when Φ1 of the first neuron attains local max-
ima as a function of time t. This allows us to construct a
time-series of events Xi(t), Yj(t) by transforming the con-
tinuous dynamics of the phase variables of both neurons
into a time-series of discrete time events Xi, Yj . We then
use Xi, Yj to estimate the rate of information exchanged
between neurons i, j. We divide the rate of information
exchanged by the mean of the time intervals for Φ1 of the
first neuron to attain its local maxima. We call this quan-
tity, MIRmφ of pair i, j.
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2.4.3. Neural Code Based on interspike Intervals: MIRii

Here, we show how we estimate the amount of infor-
mation exchanged per unit of time between neurons i, j
based on the interspike intervals of their pi, pj variables,
denoted by MIRii, where ii stands for interspike intervals.
Each neuron can produce a series of different interspike in-
tervals in the course of time. When measuring MI between
two interacting systems, we need to specify two correlated
relevant events occurring at roughly the same time, if no
time-delays are to be considered. These events need to
match, i.e., one event happening for one neuron needs to
be correlated to one event happening to the other neuron.
In order to relate two such time-series with matched pairs
of events, we introduce the notion of a relative “clock”.
An interspike interval in neuron i will be matched to the
interspike interval of neuron j, if neuron j spikes after
neuron i. Notice that by doing this, we neglect several
spikes happening for both neurons, however, we produce
a discrete two-dimensional variable that is meaningfully
correlated, and therefore, producing a meaningful MI. An-
other cumbersome approach would be to find an appropri-
ate time-interval within which the two neurons spike, and
then correlate their spike-timings intervals or a method as
complicated as to calculate the MI considering interspike
intervals occurring at different time-delays. This analysis
would be more complicated than the one adopted in this
work, and would not be necessary. This allows us to con-
struct a time-series of interspike events Xi(t), Yj(t) from
the continuous trajectories of both neurons. We then use
Xi, Yj to compute the rate of information exchanged be-
tween neurons i and j, dividing this by the mean of the
time intervals constructed as the difference between the
spike-timings of neuron j and those of neuron i, given that
the spike of neuron j occurred after that of neuron i. We
call this quantity, MIRii of pair i, j.

2.4.4. Neural Code Based on firing-rates: MIRfr

Lastly, we show how we estimate the amount of infor-
mation exchanged per unit of time between neurons i, j
for the firing-rates of the pi, pj variables, MIRfr, where fr
stands for firing-rate. Here, we divide the time window
between the first and last recorded spike-timing of neuron
i into 1.5× 106 equal-size time windows, and compute the
firing-rates for both neurons in these time windows. By
firing-rate, we mean the ratio between the number of spikes
in a given time interval divided by the length of the time
interval. This allows us to construct a time-series of firing-
rate events Xi(t), Yj(t). We then use these time-series to
compute the rate of information exchanged between neu-
rons i, j, dividing it by the length of the equal-size time
windows. We call this quantity, MIRfr of pair i, j.

2.5. The link between interspike-intervals and firing-rate
codes

There is a link between interspike-intervals and firing-
rate codes that goes back to Kac’s lemma [39], which re-
lates return-time intervals, first Poincaré returns of the

trajectory recurring to a region in phase space, with the
probability measure of the trajectory returning to a region
in phase space. The firing rate is calculated by f = N/t,
where N denotes the number of spikes in the time win-
dow t. Now, t =

∑N
i τi, where τi represents the first

Poincaré returns, which could also represent the inter-
spike intervals. Defining the average interspike interval
by 〈τ〉 =

∑N
i τi/N , one can see that f = 1/〈 τ〉. The last

equation relates firing rates with the average spike times,
though in a statistical sense.

3. Results

3.1. Neural Codes for the Communication of Two Neurons

We study the four neural codes introduced, in the sim-
plest case of a pair of chemically and bidirectionally con-
nected HR neurons (see Fig. 1a), in the absence of noise
as we consider its effect in the next section. Our goal is to
understand which neural code can maximize the rate of in-
formation exchange between the two neurons, considering
them as a communication system. We are also interested
in finding the chemical coupling strengths gn this is hap-
pening. This is motivated by the question how would two
neurons exchange information when disconnected from a
network, acting as a single pair. We note that we are
not interested in the directionality of the information flow
but only in the rate of information exchanged pair-wise.
Particularly, in Fig. 1, we calculate the amount of MI per
unit of time exchanged between the two neurons, aka their
MIR, for the four neural codes and for different chemical
coupling strengths gn.

Before we proceed with a detailed analysis, we sum-
marize the main results of this figure as we increase the
synaptic coupling strength from 0.1 (panels c-f), to 0.48
(panels g-j) and to 1 (panels k-n). The time-series of the
membrane potential is not synchronous for gn = 0.1, it
becomes strongly synchronous for gn = 0.48, and weakly
synchronous for gn = 1. The scenario is similar to the
amplitudes of the spikes, in panels d, h and l. There is
no localization in panel d for gn = 0.1, total localization
in h for gn = 0.48, and partial localization in panel l. In
fact, Fig. 1l is the most interesting, as it shows there is
a low-dimensional attractor associated to the membrane
potential, something usually observed when coupled sys-
tems are generalized-synchronous. This scenario changes
considerably when observing the behavior of the phases
(panels e, i, and m) and the spike-timings (panels f, j, and
n). Even though, there is weak phase-synchronization in
panel e for gn = 0.1, there is no apparent synchronization
in panels i and m for gn = 0.48 and gn = 1, respectively.
Figure 1c shows that the membrane potentials (p1 and
p2) are mainly asynchronous in time with epochs (time
intervals) of synchronicity already visible in this small in-
terval depicted in the panel. This is indeed happening
in the full time-series of the numerical simulations (not
shown in Fig. 1) and is depicted in Fig. 1e for the phases
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which are defined in Eqs. (2) as a function of p1, p2, q1,
q2 and their derivatives. However, the interspike intervals
become weakly synchronous in panels f and n, for gn = 0.1
and gn = 1, respectively, and strongly synchronous in j for
gn = 0.48. These differences in the intensity of how neu-
rons exchange information will be explored further in the
following.

We first see in Fig. 1b that MIRst and MIRmφ are big-
ger than MIRii and MIRfr in certain regions of intermedi-
ate and large enough chemical coupling strengths gn. Al-
most all MIR quantities are smaller than the upper bound
for MIR, Ic, except for three chemical coupling strengths,
ranging from smaller to larger values. This intriguing re-
sult is due to the fact that when calculating Ic using the
Lyapunov exponents λ1 and λ2 as discussed previously,
Ic is an approximation to the real upper bound for MIR.
Consequently, when comparing this upper bound to any
lower bound estimations for the MIR, as the neural codes
in our work, it might happen these lower bounds be larger
than the estimated upper bounds. We note that for gn
values larger than about 1.3, the dynamics becomes quasi-
periodic and thus, there is no production of information.
The reason is that in such cases, the largest Lyapunov ex-
ponent of the dynamics is negative, and consequently there
is no chaos, but quasi-periodic behavior which gives rise to
predictability, lack of uncertainty and thus no production
of information.

In Fig. 1b, we present MIR based on the spike-timings
of both neurons (MIRst), the MIR for the maximum val-
ues of the phase (MIRmφ), the MIR of the interspike in-
tervals (MIRii) and the MIR of the firing-rates (MIRfr).
We also plot the upper bound for MIR, i.e. Ic = λ1 − λ2
[24]. We focus on three characteristic cases: the first cor-
responds to the case where MIRmφ >MIRst for chemical
coupling strength gn = 0.1. The second, to a case where
MIRii > Ic, MIRmφ and MIRst for gn = 0.48 (one of
the three distinct cases where the computed MIR is bigger
than the upper bound Ic), and the last one to a case where
MIRst >MIRmφ for gn = 1. In the first case, the two neu-
rons communicate more efficiently by exchanging larger
amounts of information per unit of time using their phases
whereas in the third case by exchanging information by the
precise spike-timings. In the second case, the two neurons
communicate more efficiently by encoding their informa-
tion in their interspike activity.

To appreciate the performance of the four codes, we
first focus on the case of gn = 0.1 for which MIRmφ >MIRst.
We plot in Fig. 1c the time evolution of p1, p2, the data
used to compute MIRst in panel d, the plane of the phase
variables of both neurons (Φ1,Φ2) in panel e, in which
the computation of MIRmφ is based, and in panel f, the
data used to compute MIRii, where τi, i = 1, 2 are the
interspike intervals of both neurons. We observe in panel
c that the spike times of both neurons are different. Fig.
1c shows that the membrane potentials of the two neurons
(p1 and p2) are mainly asynchronous in time with epochs
(time intervals) of synchronised activity already visible in

this small interval depicted in the panel. This is charac-
terized by the two neurons having a phase shift of about
π. The displacement between the phases causes a time
shift in the spike trains, thus making time-discrete vari-
ables such as the spike-timings asynchronous. The phase
reflects the continuous oscillatory behavior of the trajec-
tory, and is connected to the zero Lyapunov exponent. The
spike trains reflect its timely character, and is connected to
the positive Lyapunov exponent. In fact, both spike trains
and phases are asynchronous. However, when discretiza-
tion filters out the continuous oscillatory behavior of the
trajectory, such as those producing the spike-timings, it
is expected that asynchronous behavior is more noticeable
from the timing variables due to its connection to the pos-
itive Lyapunov exponents.

Particularly, panel d shows that when the first neu-
ron spikes, the second usually remains silent as there is
a high density of p2 values around -1, with spikes occur-
ring around p2 ≈ 1.9. This behavior is due to the second
neuron which is actually in its quiescent period when the
first is spiking. In contrast, when observing the plane of
phases in panel e, it becomes apparent that there are two
regions of high phase-synchronicity (i.e. stripes of high
concentration) and the rest of the region with consider-
ably smaller concentration of phase points. This behavior
indicates that the two neurons communicate by chaotically
adapting their phases. For the same gn, panel f indicates
that the interspike activity of both neurons is well spread
in the plane with a high concentration of points occurring
close to the origin. Moreover, MIRfr is seen to attain the
smaller value with respect to all other quantities.

In panels g to j we study the second case, for gn = 0.48,
for which MIRii > Ic. We note that this apparent viola-
tion comes about because we estimate Ic by the Lyapunov
exponents and not by the expansion rates. Since MIR
is estimated by a mesh grid of finite resolution, an up-
per bound for MIR calculated for this grid would require
the calculation of expansion rates using the very same grid
resolution. Ic estimated by Lyapunov exponents is smaller
than the bound estimated by expansion rates (see Supple-
mentary material in [24]). Therefore, Ic in this case could
not be a true upper bound for MIR. Here, we also observe
that MIRst >MIRmφ (see panel b), a result that shows
that the two neurons communicate mostly by exchang-
ing information by their precise spike-timings and less by
their phases. This can be appreciated in panel g where
both p variables attain approximately similar amplitudes
during their time evolution. It becomes evident in panel
h where the second neuron spikes when the first neuron
spikes and that both attain approximately the same am-
plitudes in their p time-evolution. This behavior is highly
localized. In contrast, panel i shows that their phases ac-
tually spread all over [0, 2π]× [0, 2π] and that there is no
localization of points as it happened for gn = 0.1 in which
the two neurons communicate by exchanging the largest
amount of information per unit of time by their phases.
Here, panel j indicates that the interspike activity of both
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Figure 1: Results for the neural communication channel and the code used between two chemically, bidirectionally connected,
non-noisy HR neurons. Panel a: the pair of chemically connected neurons, where gn is the strength of the chemical coupling. Panel b: Ic,
the MIR of spike-timings MIRst, MIR of the maxima of the phases MIRmφ, MIR of the interspike intervals MIRii and MIR of the firing-rates
MIRfr, respectively. Panels c to f: p1, p2 as a function of time in panel c, the plane of phase variables (Φ1,Φ2) (panel d) and, the data used
to compute MIRii (panel f), where τi, i = 1, 2 are the interspike intervals of both neurons. Panels g to j: similarly for gn = 0.48 and panels
k to n for gn = 1. In panel b, gn = 0.1 that corresponds to a case where MIRmφ >MIRst, gn = 0.48 to a case where MIRii > Ic, MIRmφ
and MIRst, and the case for gn = 1 that corresponds to MIRst >MIRmφ.

neurons is well localized in two regions with high concen- tration closer to the origin and on the right upper part of
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the plot. Moreover, MIRfr is seen to attain the smallest
value for this particular chemical coupling strength.

Finally, we focus on the third characteristic case in
which MIRst >MIRmφ for gn = 1. The situation here is
quite different. Indeed, panel k reveals a phenomenon in
which the spike times and quiescent periods of both neu-
rons are actually similar. Particularly, panel l reveals that
most of the times, either when the first neuron spikes, the
second spikes or when the first is in its quiescent period,
so is the second, showing a higher density of points in
the upper right corner of the plot (spike activity) and a
smaller one in its lower left corner (quiescent period). In
contrast, the plane of phases in panel m reveals there is
no phase synchronization in their activity, as there are no
dense regions as in the first case in which MIRmφ >MIRst.
These results show that the two neurons communicate by
their spike-timings, i.e. they use a temporal neural code
in which the time of each spike conveys information that
is transmitted to other neurons. Lastly, panel n exhibits
an interspike activity mostly concentrated in the lower left
corner of the plot and less in the other three, a situation
completely different to the behavior in panel j of the sec-
ond case. MIRfr is seen here to attain the smallest value,
similarly to the first case.

3.2. Neural Codes for the Communication Between Two
Noisy Neurons

We now study the same problem in the presence of
noise. We consider the effect of additive Gaussian white
noise in the performance of the neural codes introduced in
Subsec. 2.4. We want to understand which neural code
is more robust to the increase of the noise strength σ, a
case which is more close to realistic neural behavior [40,
41]. Particularly, in the neural activity of variable p of
each neuron, we add white Gaussian noise with standard
deviation σ to obtain its noisy signal p̄:

p̄ = p+ σN (0, 1), (8)

where N (0, 1) is the Gaussian distribution of zero mean
and standard deviation equal to 1. We then use such noisy
data to estimate the MIR of the different neural codes for
different chemical coupling strengths and noise strengths
σ. The dynamics is chaotic and comes from the determin-
istic system in Eqs. (2).

We demonstrate these results in Fig. 2. Particularly,
we plot the MIR between the two neurons in Fig. 1a,
for different chemical couplings and three noise strengths.
Figure 2a shows the same MIR quantities of Fig. 1b but
for σ = 0.4, panel b for σ = 0.8 and panel c for σ = 1.5.
As σ increases from zero, all MIR quantities start decreas-
ing, except MIRfr and MIRii, which remain practically
unaffected by the increase of noise strength. Figure 2 re-
veals that even though for small noise strengths, MIRst

and MIRmφ are larger than MIRfr, they are nevertheless
considerably affected by the increase of the noise strength.
As we demonstrate in panels d, e and f, MIRfr and MIRii

prove to be consistently robust with respect to the increase
of σ, even for values as high as 1.5. This underlines the
importance of firing-rate against temporal codes, such as
spike-timings or phase codes, which prove to be prone to
noise contamination and to the transmission of smaller
amounts of information per unit of time with the increase
of noise strength.

Comparing Fig. 1b and Fig. 2, it can be seen that
in the presence of Gaussian additive noise (8), the various
MIR quantities drop below Ic around gn = 0.48. Also, the
region where MIRst >MIRmφ disappears. Particularly,
with the noisy strength increasing, MIRfr and MIRii be-
came dominant as they are larger than MIRmφ and MIRst,
respectively, except for some singular values. Our findings
suggest that the firing-rate and interspike-intervals codes
are more robust to readout noise.

3.3. Neural Codes in a Communication System of Four
Neurons

Here, we extend our study to the case of four bidi-
rectionally connected non-noisy HR neurons, which are
chemically and electrically coupled as shown in Fig. 3a.
The first neuron is chemically connected with the third,
whereas the first with the second and, the third with the
fourth, are electrically connected. The strengths of the
electrical and chemical connections are given by gl and
gn, respectively. The four neurons in Fig. 3a are ar-
ranged in a typical configuration when one wants to in-
fer topology from information-theoretical quantities. The
open-ring topology offers a way to test whether adjacent
(non-adjacent) neurons share higher (lower) rates of in-
formation exchange. We aim to understand which neural
code is best suited for the maximization of the rate of
information-exchange for different coupling strengths and
also, for which pairs this is so. The first and third neurons
are the intermediates that facilitate the communication
between the second and fourth. We consider the setup of
Fig. 3a as a communication system in which, informa-
tion is transmitted through the connections and reaches
the neurons. In what follows and for each pair of coupling
strengths, we estimate the MIR of the neural codes, and
for each of them, we find its maximum MIR value and the
corresponding pair of neurons that produces it. Then, for
each coupling pair, we plot that maximum value and the
corresponding pair of neurons.

In the following, we study the four neural codes for
the model of four non-noisy neurons in Fig. 3a. In pan-
els b and c, we plot the parameter spaces (gn, gl) for the
MIRst of the spike-timings and for the links that maxi-
mize it, respectively. The orange spots in panel b corre-
spond to couplings that produce the largest amounts of
MIRst whereas blue to regions with the smallest MIRst.
The former occurs for relatively big chemical and electri-
cal couplings whereas the latter for very small electrical
and, small to large chemical couplings. Panel c reveals
that, depending on the couplings, the largest amounts of
MIRst are transmitted between different pairs of neurons,
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Figure 2: Results for the neural code used between two chemically connected noisy HR neurons. Panel a: the MIR values of
the different neural codes for noise strength σ = 0.4. Panel b is for σ = 0.8 and panel c for σ = 1.5. Panels d, e and f are similar to a, b and
c for MIRii and MIRfr only and same σ = 0.4 (panel d), σ = 0.8 (panel e) and σ = 1.5 (panel f) noise strengths as in the first three panels.
We also plot Ic in all panels to guide the eye. Notice that MIRii and MIRfr in panels d, e and f, remain unaffected by the increase of the
noise strength.

giving rise to a complicated pattern in the parameter space
(see Fig. 3). The pattern is mainly characterized by the
pair of neurons 3,4 (red) for small chemical and small to
large electrical coupling strengths, by pair 1,2 (black) for

comparatively small to large chemical and small to large
electrical coupling strengths, and by many smaller-sized
regions of different colors, such as blue, magenta, green
and yellow that correspond to the remaining pairs of neu-
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Figure 3: Topology and parameter spaces for the neural codes for four, non-noisy, HR neurons connected by 2 electrical
and 1 chemical connection. Panel a: the network of connections of the four neurons, where gn, gl are the strengths of the chemical and
electrical couplings, respectively. Panels b and c: the parameter spaces for MIRst for the two nodes that provide the largest MIR value and
for the links that maximizes it, respectively. Panels d and e: similarly for MIRmφ. Panels f and g: similalry for MIRii. Panels h and i:
similarly for MIRfr. In all cases, the notation i↔ j indicates the bidirectional transfer of information between neurons i, j.

rons.
We decided to use as a “clock” the first neuron as it is

one of the two mediators that facilitate the transmission
of information in this network (with the other one being
neuron 3). This choice however is relative in the sense
that for every pair of neurons we want to estimate MI, we
should choose a “clock”. In this sense, there is no universal
“clock”, but several ones can be used. This choice also
intends to maximize the amount of MI measured between
any two pairs of neurons.

The parameter space for MIRmφ in panel d is mainly
dominated by red (that corresponds to comparatively large
values), a smaller blue region of moderately very low values
and a smaller orange region, for high chemical and elec-
trical couplings, that corresponds to the highest observed
MIRmφ values in the parameter space. Similarly to panel c

(for MIRst), panel e for the pairs of neurons that maximize
MIRmφ shows that, depending on the coupling values, the
largest amounts of MIRmφ are transmitted between differ-
ent pairs of neurons, giving rise to a complicated pattern
in the parameter space, dominated mainly by the pair of
neurons 3,4 (red) for small chemical and small to large elec-
trical coupling strengths, by pair 1,2 (black) for compara-
tively small to large chemical and small to large electrical
coupling strengths, and by many smaller-sized regions of
different colors, (i.e. blue, magenta, green and yellow) that
correspond to the remaining pairs of neurons.

The situation changes slightly in panel f for MIRii

where almost all the parameter space is dominated by red
(of moderately large MIRii values) with a few orange spots
(very large values) and blue spots (of very low MIRii val-
ues). The blue regions are considerably smaller in size
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than the blue region in panel d. The case for MIRii is also
different with respect to the pairs of neurons for which it
is maximal. The parameter space in panel g reveals com-
pletely different structural properties than in panels c and
e. Interestingly, the largest amounts of MIRii occur for all
pairs except 3,4 and, less for 1,2, implying that the first
and third neurons play mainly the role of the facilitators
in the transmission of information in the system.

A similar situation is happening for MIRfr, with the
parameter space in panel h looking uniformly covered by
red of moderately high MIRfr values and with a few quite
small blue spots of very low values. MIRfr is less depen-
dent on the coupling strengths. The parameter space for
the links that maximize this quantity looks quite similar
to that of MIRii, in the sense that the largest amounts
of MIRfr occur for all pairs except 3,4 (red) and, less be-
tween 1 and 2 (black). This implies again that the first
and third neurons play mainly the role of the facilitators
in the transmission of information in the system.

A comparison of the parameter spaces in Fig. 3 shows
that the highest rate of information exchange can be at-
tributed to the neural codes of the maximum points of
the phase MIRmφ and to the interspike intervals, MIRii.
Moreover, MIRfr is practically unaffected by the coupling
strengths, even though its maximum values are smaller
than the maximum values of the neural codes based on
the maximum points of the phase and interspike intervals.
This result is in agreement with its performance in the case
of the two neurons in Sec. 3.1, where it attained the lowest
values of all other codes. Interestingly, the pair of nodes
more likely to exchange the largest amount of information
per unit of time using the interspike-intervals and firing-
rate codes are not adjacent in the network, whereas the
spike-timings and the phase codes promote large exchange
of information from adjacent nodes in the network. This
provides evidence for the non-local character of firing-rate
codes and local character of precise, spike-timings, codes.

The latter result on the character of the codes is also
backed by the results in Fig. 4 where the role of chemi-
cal and electrical connections has been swapped (compare
Figs. 3a and 4a). In particular, comparing panels c, e
and g, i in Fig. 4, one can again deduce that temporal
codes (MIRmφ and MIRii) perform optimally for adjacent
neurons in the network whereas MIRfr and MIRii for non-
adjacent neurons. It becomes thus clear that the type of
neural code with largest information transmission rate de-
pends on network adjacency.

3.4. Neural Codes in a Network of Twenty Neurons in a
Bottleneck Configuration

Finally, we study the neural codes in an extended model
of two identical clusters of 10 HR, non-noisy, neurons each.
For simplicity, both clusters have the same small-world
structure [44] and their neurons are internally coupled with
electrical connections of strength gl. This construction
is interesting as it resembles a bottleneck, in which the
two clusters communicate via the only link between the

first and the eleventh neuron in the two clusters. The
bottleneck is represented by a single, chemical link with
strength gn that connects the two clusters. We used one
interconnection as this is the simplest case in which infor-
mation travels from one cluster to the other through the
only chemical link. Moreover, it allows to draw interesting
conclusions with regard to the neural codes for different
coupling strengths. The topology in Fig. 5a is an example
of how two neural networks would interact via a connec-
tion which implements a bottleneck. Again, the network
is undirected and for each pair of coupling strengths, we
estimate the MIR of the four neural codes. For each code,
we find its maximum MIR and the corresponding pair of
neurons that produces it. Then, for each coupling pair, we
plot the maximum value. The network in Fig. 5a is mo-
tivated by the modular organization of the brain in which
neurons are linked together to perform certain tasks and
cognitive functions, such as pattern recognition, data pro-
cessing, etc. Modular processors have to be sufficiently
isolated and dynamically differentiated to achieve inde-
pendent computations, but also globally connected to be
integrated in coherent functions [45, 46, 4]. The structure
in Fig. 5a helps us understand which neural code in mod-
ular neural networks is best suited for the transmission of
the largest amount of information per unit of time and for
which coupling strengths it occurs. Again, we treat the
model in Fig. 5a as a communication system in which,
information is transmitted through the links and reaches
out to its different parts.

In Fig. 5a, we study the four neural codes. Panels b
and c show the parameter space (gn, gl) for MIRst and
MIRmφ, respectively. Orange corresponds to couplings
that produce the largest amounts of MIR values whereas
blue or black to regions with the smallest values. Red is for
intermediate MIR values. Panel b is for MIRst and reveals
that the highest values can be achieved for large chemical
and intermediate electrical coupling strengths. For exam-
ple, for zero chemical coupling (i.e. gn = 0), MIRst is
considerably smaller than for gn around 1.4. This under-
lines the importance of chemical connections among the
clusters as they help the system transmit larger rates of
information when neurons exchange information by the
precise spike-timings (temporal code). In contrast, MIRmφ

seems to perform more consistently in the sense that the
parameter space in panel c is more uniformly red with a
few orange spots of large MIR values. Interestingly, this
quantity becomes maximal for large chemical and moder-
ate electrical coupling strengths, similarly to MIRst. The
situation is similar for MIRii, where again it becomes max-
imal for large chemical and moderate electrical coupling
strengths. We note that the maximum MIRii values of the
orange spots in panel d are bigger by one order of mag-
nitude than those in panels b and c. Finally, MIRfr still
shows the same dependence on the coupling strengths to
achieve its maximum, even though these maximum values
are smaller by one or two orders of magnitude than those
of the other three neural codes. Lastly, for MIRfr, there
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Figure 4: Topology and parameter spaces for the neural codes for four, non-noisy, HR neurons connected by 2 chemical
and 1 electrical connection. Panel a: the network of connections of the four neurons, where gn, gl are the strengths of the chemical and
electrical couplings, respectively. Panels b and c: the parameter spaces for MIRst for the two nodes that provide the largest MIR value and
for the links that maximizes it, respectively. Panels d and e: similarly for MIRmφ. Panels f and g: similalry for MIRii. Panels h and i:
similarly for MIRfr. In all cases, the notation i↔ j indicates the bidirectional transfer of information between neurons i and j.

are blue regions of very small values, distributed evenly in
the parameter space.

Comparing the behavior of the various neural codes,
the firing-rate seems to be less advantageous with respect
to the maximum amounts of transmitted information for
the rest. Our results suggest that it is more prominent
for neurons to use temporal codes or the maximum points
of their phases to communicate the maximal rate of infor-
mation in modular neural networks, for chemical coupling
strengths twice as that of the electrical coupling.

4. Discussion

In this paper we sought to study how information is en-
coded in neural activity as it is crucial for understanding
the computations underlying brain functions. Information

is encoded by patterns of activity within neural popula-
tions responsible for similar functions and the interest in
studying them is related to how the “neural code” can be
read, mainly to understand how the brain processes in-
formation to accomplish behavior and cognitive functions.
Thus, investigating the fundamental properties of neural
coding in networks of spiking neurons may allow for the in-
terpretation of population activity and, for understanding
better the limitations and abilities of neural computations.

To this end, we studied numerically neural coding in
small-size networks of chemically and electrically coupled
Hindmarsh-Rose spiking neurons. We have introduced
four codes and have quantified the rate of information ex-
change for each code. The quantity used to measure the
level of information exchanged is the Mutual Information
Rate. The latter is by definition a symmetric quantity and
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Figure 5: Topology with a bottleneck configuration and parameter spaces for the neural codes between two identical small-
world, chemically connected, non-noisy clusters. Panel a: the two identical clusters of electrically connected neurons with coupling
strength gl and chemical strength gn. Panel b: the parameter space for MIRst, Panel c: similarly for MIRmφ, Panel d: similarly for MIRii
and panel e: for MIRfr. The colors indicate the maximal MIR value that any two nodes exchange using a particular neural code.

cannot be used to infer the directionality of information
flow. Therefore, our analysis cannot infer the direction of
information exchange, only its intensity. In the simplest
case of pairs of spiking neurons we have found that they
exchange the largest amount of information per unit of
time by opting for a temporal code in which the time of
each spike conveys information which is transmitted to the
other participating neuron. Our findings suggest that the
firing-rate and interspike-intervals codes are more robust
to additive Gaussian white noise.

We have also studied four, chemically and electrically,
coupled neurons and found that the largest rates of in-
formation exchange are attributed to the neural codes of
maximum points of their phases and interspike intervals.
In this network and in the absence of noise, pairs of nodes
that are likely to exchange the largest amount of infor-
mation per unit of time using the interspike-intervals and
firing-rate codes are not adjacent in the network, whereas
the spike-timings and phase codes promote large rate of in-
formation exchange for adjacent neurons in the network.
This finding is also backed by similar results obtained for
the same network with the role of chemical and electrical
connections swapped. Our results provide evidence for the
non-local character of firing-rate codes and local charac-
ter of precise spike-timings, temporal, codes in modular

dynamical networks of spiking neurons. It becomes thus
clear that the type of neural code with largest information
transmission rate depends on network adjacency. This re-
sult, if possible to extend to larger neural networks, would
suggest that small microcircuits of fully connected neu-
rons, also known as cliques [4], would preferably exchange
information using temporal codes (spike-timings and phase
codes), whereas on the macroscopic scale, where typically
there will be pairs of neurons not directly connected due
to the brain’s sparsity, the most efficient codes would be
the firing-rate and interspike-intervals codes.

For a relatively larger network of 20 neurons arranged
in two equal-size small-world modules that form a bot-
tleneck, our work shows that neurons choose a tempo-
ral code or the maximum points of their phases to trans-
mit the maximal rate of information for chemical coupling
strengths twice as that of the electrical coupling.

Our estimations of the Mutual Information Rate are
based on the symbolic encoding of trajectories, and thus,
depending on the encoding, similar results can be obtained
with the standard binary code [34, 47]. Particularly, if the
chosen time-window for the binary code is close to the
average interspike-intervals, MIRii would produce similar
values with the binary code, as 1’s would encode spikes
and 0’s would typically encode relaxation in the neural
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activity.
Another possibility would be to use refinements in the

estimation of the Mutual Information Rate, aiming at ob-
taining its true value for each. These refinements would
correspond to the search for a generating Markov partition
of higher order as in [17]. Since this is out of the scope
of the present paper, we leave it for a future publication.
In fact, we sought to study whether looking at the instan-
taneous spike-timings would provide less information than
the codes based on the interspike intervals. Our decision
was driven by the question: in a time-series of events, what
does carry more information? A code based on the times
between events, or a code based on the precise times of
the occurrence of the events?

Here, we have used chemical and electrical synapses
with identical coupling strengths among all model neurons.
As such, it is a limited study of relatively simple dynami-
cal model neurons, small-size networks and equal synaptic
connectivity. This choice was made for simplification. A
similar study using unequal coupling strengths and larger
networks would allow for more general results and would
add more value from a neurophysiological perspective.

Lastly, we have shown the importance of firing-rate and
interspike-intervals codes against the spike-timings code
and those based on phases. The latter codes prove to be
more prone to noise contamination and to the transmission
of smaller amounts of information per unit of time with the
increase of noise intensity.
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