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Abstract

In this thesis, we study the dynamics of the Hindmarsh-Rose (HR) model which

studies the spike-bursting behaviour of the membrane potential of a single neuron. We

study the stability of the HR system and compute its Lyapunov exponents (LEs). We con-

sider coupled general sections of the HR system to create an undirected brain dynamical

network (BDN) of Nn neurons. Then, we study the concepts of upper bound of mutual

information rate (MIR) and synchronisation measure and their dependence on the val-

ues of electrical and chemical couplings. We analyse the dynamics of neurons in various

regions of parameter space plots for two elementary examples of 3 neurons with two dif-

ferent types of electrical and chemical couplings. We plot the upper bound Ic and the

order parameter ρ (the measure of synchronisation) and the two largest Lyapunov expo-

nents λ1 and λ2 versus the chemical coupling gn and electrical coupling gl. We show that,

even for small number of neurons, the dynamics of the system depends on the number of

neurons and the type of coupling strength between them. Finally, we evolve a network

of Hindmarsh-Rose neurons by increasing the entropy of the system. In particular, we

choose the Kolmogorov-Sinai entropy: HKS =
∑

λi>0 λi (Pesin identity) as the evolution

rule. First, we compute theHKS for a network of 4 HR neurons connected simultaneously

by two undirected electrical and two undirected chemical links. We get different entropies

with the use of different values for both the chemical and electrical couplings. If the en-

tropy of the system is positive, the dynamics of the system is chaotic and if it is close to

zero, the trajectory of the system converges to one of the fixed points and loses energy.

Then, we evolve a network of 6 clusters of 10 neurons each. Neurons in each cluster are

connected only by electrical links and their connections form small-world networks. The

six clusters connect to each other only by chemical links. We compare between the com-

bined effect of chemical and electrical couplings with the two concepts, the information

flow capacity Ic and HKS in evolving the BDNs and show results that the brain networks

might evolve based on the principle of the maximisation of their entropies.
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Chapter 1

Introduction

In this chapter, an introduction to the thesis’ research subject, its objectives and ap-

proach are presented followed by brief descriptions of the content of each chapter.

The brain is by far the most complex structure in the known universe [188]. It pro-

duces our thoughts, feelings, actions, memories and experiences of the world. It contains

a staggering number of nerve cells, or neurons. The neuron is the functional unit of the

brain. A typical neuron consists of the soma or cell body, the dendrites, and the axon.

It is a specialised cell designed to receive signals at its dendrites and transmit them to

other neurons or cells through its axons [188]. Neurons communicate with one another

at junctions called synapses, the site of transmission of electric nerve impulses between

two neurons or between a neuron and a gland or muscle cell. The patterns of connections

between neurons form the physical basis for communication in the brain.

Of the countless unexplained phenomena in the universe, the brain is the most im-

portant challenge for humanity to resolve. We need to study the brain to understand the

human behaviour and mental processes. Understanding the brain is a challenge that is

attracting a growing number of researchers, from many research areas. The knowledge of

the brain development and functioning are shared across many disciplines such as phys-

iology, computer science, physics, biology, mathematics, engineering, psychology, etc.

Researchers are now focusing on how much the brain influences the course of health

and diseases in humans. Much of what we call them degenerative disorder diseases and

mental illnesses are the result of the malfunctioning of regions in the brain. In addition,

many scientists are studying the relation between brain and mind. The brain is a phys-

iological structure which produces the more abstract functioning of the mind. They try

to explain the functions and processes of the brain which produce concepts related to the
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mind through individual learning experiences [204]. The development of human cogni-

tion can be represented as a journey taken by the brain, from an organ of organised cells,

blood vessels, and chemicals at birth, through its shaping by experiences and environ-

ment into potentially the most powerful and exquisite force in the universe, the human

mind. The brain is built for sensory and motor functions and humans need to explore and

make discoveries (perception), a step that leads to new thoughts or capabilities (action).

Regions of the brain such as frontal cortex is associated with decision-making, problem-

solving, creating images, predicting events and more, all are highly satisfying behaviours.

Resources for the development of intelligence are found in the integrative regions of the

brain [204].

In the past few decades, advances in science and technology have led to the develop-

ment of innovative models to study the activity of neurons and how they communicate

with one another. The process that incorporates the biophysical and geometrical char-

acteristics of biological neurons and represents it by a mathematical structure is called

neuronal modelling. This mathematical structure or model is referred to as the model of

the neuron [128]. The objective of the neuronal modelling is to provide a quantitative

description of the behaviour of the membrane potential at the neuron as it is shaped by

injected currents and synaptic inputs. A good neuron models inspire new experiments and

provide new insights, they can suggest what variables are most important to investigate in

an experiment [96]. The variables and parameters of the model must be defined with their

associated limiting assumptions to express the model properties [128]. Still, while these

models have led to remarkable insights about the brain in both health and in diseases, they

do have their limitations in explaining the behaviour and inner workings of neurons.

The combination of excitatory and inhibitory synaptic inputs allows neurons to per-

form complex information processing tasks, while brain regions which each consists of a

large number of neurons can perform tasks of extraordinary complexity. In this thesis, we

use simplified models of brain networks by reducing the amount of detailed information

[147]. The simplified neuron models are fundamental for studying the emergent proper-

ties of neural networks. The studies of detailed neuron dynamics in simplified models

at different levels of biological details provide insights into neuronal functions and allow

to analyse physiological and pathological phenomena of spiking networks in simulations.

Therefore, it is essential to obtain simplified neuronal models that could be at the same
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time biologically meaningful and computationally efficient [80]. Despite decades of in-

tense research efforts investigating the brain at the molecular, cell, circuit and system

levels, the operating principles of the human brain, or any brain, remain largely unknown

due to the level of complexity of the brain functions. In broad terms, we can say that we

now have a fairly good understanding of how individual neurons operate and process in-

formation, but still the behaviour of networks of such neurons is poorly understood [67].

At the level of networks, most studies have focused on generic properties of models with

a single or a handful of neuronal populations consisting of identical neurons with sta-

tistically identical connection properties. Such studies have given invaluable qualitative

insights into the wide range of possible network dynamics. However, real brain networks

have heterogeneous neural populations and more structured synaptic connections. For

small networks, excellent models aiming to mimic real neural networks have been de-

veloped and many brain initiatives and projects are focusing now on creating large-scale

network models for mathematical exploration of brain network dynamics [67].

The main purpose of this thesis is to study the dynamics of biological neurons. We

focus on the Hindmarsh-Rose (HR) equations which model the spike-bursting behaviour

of the membrane potential of a single neuron. The HR model not only simplifies the

Hodgkin-Huxley (HH) model but it also mimics almost all the behaviours of real, biolog-

ical neurons [110, 185]. After reviewing the development history of the model, we study

and plot the spike-bursting behaviour which is exhibited by the system for specific initial

conditions and parameter values.

We couple the HR system to create an undirected brain dynamical network (BDN) of

Nn neurons connected simultaneously by electrical (linear coupling) and chemical (non-

linear coupling) synapses. We use the coupled HR system with same parameter values

and slightly different initial conditions to study the dynamics of elementary examples of

three and four neurons and plot the Lyapunov exponents of the dynamics of these exam-

ples. Then, we study the concepts of upper bound of mutual information rate (MIR) and

synchronisation measure and their dependence on the values of electrical and chemical

couplings. The resulting dynamics of the basic HR neuron examples indicates that the

two types of coupling produce different patterns of dynamics. Even for small number of

neurons, it has been shown that dynamics depends on the number of neurons and the type

of coupling strength between them.
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Brain is a dynamic network which evolves over time, our goal is to evolve a network

of Hindmarsh-Rose neurons by increasing the entropy of the system. In particular, we

choose the Kolmogorov-Sinai entropy: HKS =
∑

λi>0 λi (Pesin identity) as the evolution

rule. We ran six realisations of the code for evolving 6 networks of coupled HR system

with different pairs of chemical and electrical couplings to compare between the com-

bined effect of chemical and electrical couplings with the two concepts, the upper bound

Ic = λ1 − λ2 and HKS in evolving the BDNs and show results that brain networks might

evolve based on the principle of the maximisation of their entropies.

In Chapter 2, we present the key concepts of dynamical systems. The chapter starts

with a brief review of the system states, state space and evolution rules. A continuous and

finite-dimensional state space is called the phase space. Then, we review two impor-

tant concepts related to dynamical systems, stability of equilibria and bifurcation theory.

When analysing dynamical systems, the stability of equilibria determines the dynamics of

the system. On the other hand, the system’s long-term behaviour depends on its parame-

ter values. When a slight change in parameter values causes a drastic, qualitative change

in the system’s behaviour, this change is called a bifurcation. For systems of nonlinear

differential equations, numerical integration methods are used to find numerical approxi-

mations to the analytical solutions (which exist or not). We present two time-integration

schemes, namely the Euler’s forward method and the fourth order Runge-Kutta method.

After that, we discuss in detail two main features of nonlinear chaotic systems, the sen-

sitive dependence on initial conditions and Lyapunov exponents. We discuss the compu-

tation of the Lyapunov exponents for continuous flows of differential equations by using

the Gram-Schmidt orthonormalisation method. Two of the classical examples of chaotic

systems, the Lorenz and Rössler are persented. Then, we review the concept of complex

systems and two of their main features, namely emergence and self-organisation. This

chapter also covers a literature review of complex networks. It explains in detail the main

characteristics of complex networks; the node-degree, average node-degree, degree dis-

tribution, shortest path-length and clustering coefficient. Finally, the main three complex

network types; random, scale-free and small-world networks are discussed. We review

the main structural properties of each network type focusing on small-world networks and

then we discuss a mathematical approach to quantify small-world networks.

In Chapter 3, we present some properties of biological neuron models. It starts by
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reviewing briefly the anatomy of both nerve cells (neurons) and the brain. We discuss the

structure of the two types of synapses: chemical and electrical and their specialised func-

tions. The initiation of action potential, the rapid rise and subsequent fall in membrane

potential is also discussed in detail. Then, we explain the concept of brain dynamical

networks as complex networks and in particular, as small-world networks. We show that

the topology of small-world networks can support both segregated (specialised) and dis-

tributed (integrated) information processing in brain networks. Brains perform sophisti-

cated information processing tasks and quantitative mathematical models are tools which

describe the neural dynamics and, transmission and processing of information. We briefly

review the two categories of biological neuron models. Then, we discuss the Hindmarsh-

Rose (HR) system which models the spike-bursting behaviour of the membrane potential

of a single neuron and provide us with a good mathematical description of neuronal ac-

tivity. We review the two HR models, HR 1982 and HR 1984 and then compute the Lya-

punov exponents using two different time-integration schemes, the Runge-Kutta (RK4)

and Euler’s forward method. Finally, we briefly discuss the bifurcations appearing in

biological neuron models.

In Chapter 4, we present a detailed study on the characteristics and dynamics of

neurons that are connected by electrical and chemical links. First, we discuss briefly the

mechanisms of information transfer and the structural organisation of the main types of

synaptic transmission; chemical and electrical. Coupling strengths play a crucial role in

information transmission and synchronous activities in neural systems. We couple the

HR system to create an undirected brain dynamical network (BDN) of Nn neurons con-

nected simultaneously by electrical (linear coupling) and chemical (nonlinear coupling)

synapses. Then, we examine the dynamics of coupled HR neurons through elementary

examples of 2, 3 and 4 neurons connected simultaneously by undirected chemical and

electrical links. Synchronisation is a common feature in biological systems and plays an

important role in information processing in neuronal networks. It depends on the network

structural properties, dynamics of individual neurons and on coupling strengths. After

that, we discuss the concepts of mutual information, mutual information rate (MIR) and

the upper bound for MIR. We study the upper bound for MIR and the effect of synchrony

on the dynamics of three interacting bursting neurons depending on the values of the

coupling strengths. To further examine the dynamics of the system, we select three dif-
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ferent values of chemical and electrical coupling strengths and plot the trajectories for all

neurons at each value.

In Chapter 5, we review the development of the concept of entropy. In the first

section, we describe the work of two physicists, Sadi Carnot and Rudolf Clausius. Carnot

envisaged an ideal engine in which any heat converted into work could be reinstated by

reversing the motion of the cycle. Building on the work of Carnot, Rudolf Clausius pre-

sented the first-ever mathematical formulation of entropy. His work stated the second law

of thermodynamics. In 1877, the Austrian physicist Ludwig Boltzmann developed a sta-

tistical mechanics approach to define entropy. Later, Josiah Gibbs extended Boltzmann’s

entropy formula to cases where the microstates of the system that realise the macrostate

may have different probabilities of occuring. Information entropy which represents a fun-

damental concept in information theory, was developed by Claude Shannon during his

work to quantify mathematically the statistical nature of “lost information” in phone-line

signals in 1948. After that, we review the metric entropy also known as Kolmogorov-

Sinai entropy which is based on Shannon entropy. The entropy in dynamical systems was

originally studied by the Russian mathematician Andrei Kolmogorov and later improved

by his student, Yakov Sinai. The Pesin identity relates the Kolmogorov-Sinai entropy

to positive Lyapunov exponents. Then, we briefly review the concept of brain entropy

which can provide an informative tool to assess brain states and functions. We also ex-

plain the use of two entropy-derived measures, functional magnetic resonance imaging

and electroencephalogram which have been used in mapping brain entropy for evaluating

the physiological complexity in neuroscience. Finally, we discuss the topic of the evolu-

tion of brain dynamical networks. In evolving dynamical networks; topology, dynamics

and evolution are all affecting one another. The dynamical processes that take place over

the network structure are coupled to the evolutionary rules of the network itself. We used

the Kolmogorov-Sinai entropy, HKS , which is equal to the summation of the positive

Lyapunov exponents (Pesin identity) as the evolutionary rule to evolve a network of cou-

pled Hindmarsh-Rose neurons. We ran six realisations of the code evolving 6 networks of

coupled HR system with different pairs of chemical and electrical couplings to compare

between the combined effect of chemical and electrical couplings with the two concepts,

the upper bound Ic and HKS in evolving the BDNs and show results that brain networks

might evolve based on the principle of the maximisation of their entropies.
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In Chapter 6, we discuss the main results of the thesis regarding the dynamics

of Hindmarsh-Rose neuronal model and the evolution of HR neuron networks. In the

Future Work section, we review briefly the neuronal models which we have suggested

for future work: the fractional-order Hindmarsh-Rose model, the time-delay Hindmarsh-

Rose model, the simple model of spiking neurons and the adaptive exponential integrate-

and-fire model. In addition, the study of the entropy-based metrics represents another

interesting approach in studying brain dynamical networks.

The work in this thesis offers an overview of this challenging, stimulating and yet

promising field of research, putting the main subject of BDN into perspective. Most of

the research papers on BDNs are dealing with two important concepts related to biolog-

ical neuron models, synchronisation and bifurcations. In this research, we explore other

important concepts, namely mutual information rate (MIR) and entropy. In Ref. [27], the

authors derived the upper bound of mutual information rate, Ic which is equal to the differ-

ence between the largest and the second largest Lyapunov exponents. This work inspired

us to concentrate our work on studying Lyapunov exponents of Hindmarsh-Rose model

and the two concepts which depend on its LEs, the upper bound of MIR: Ic = λ1 − λ2

and the Kolmogorov-Sinai entropy: HKS =
∑

λi>0 λi (Pesin identity). In Ref. [20], the

authors have used the upper bound for MIR to propose a working hypothesis that brain

networks evolve based on the principle of the maximisation of their internal information

flow capacity. We proposed that the amount of the increase of the entropy of the system

can be another approach that we used to evolve HR networks in this thesis. We investi-

gate the relation between Ic and HKS during the evolution process of the networks of HR

neurons. The main novelties of this thesis are

• Detailed study of Lyapunov exponents of HR model.

• Most research papers depend on one type of coupling strength. We used both cou-

pling strengths, the chemical and the electrical in basic examples of HR neurons to

show that dynamics of the system depends on the number of neurons and the type

of coupling strength between them.

• Researchers use entropy-based metrics in mapping brain regions. We construct

networks of 60 HR neurons with small-world properties and compute the HKS en-

tropy for the HR networks. Then, we investigate the relation between entropy and
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the evolution of HR networks.

• Proposing another approach for evolving HR networks by increasing the entropy of

the system.

• Evolving networks of HR neurons by increasing the entropy of the system and

investigating the relation between Ic and HKS during the evolution process.

The results from the work with six realisations of the code evolving 6 networks of

coupled HR system with different pairs of chemical and electrical couplings, show that

brain networks might evolve based on the principle of the maximisation of their entropies.

The relation between the upper bound and entropy during the evolution of brain networks

can provide new insights on how BDNs evolve and it needs further research with much

larger size networks.



Chapter 2

Dynamical systems, complex systems
and complex networks

Introduction
In this chapter, we will present basic concepts of dynamical systems, complex sys-

tems and complex networks. We briefly review the states, state space, phase space and

evolution rules which describe a system that evolves in time. Then, we review two impor-

tant concepts related to dynamical systems, stability of equilibria and bifurcation theory.

We discuss in more details the main features of nonlinear chaotic systems and the Lorenz

and Rössler are presented. We review the concept of complex systems and their two

main features, emergence and self-organisation. After that, we explain the characteristics

of complex networks and reviewing the three main complex network models; random,

scale-free and small-world networks.

2.1 Dynamical systems

A dynamical system is a system whose states are uniquely specified by a set of vari-

ables and whose behaviour is described by predefined rules which describe its temporal

evolution. Dynamical systems can be described over either discrete-time steps or along

a continuous-time line. Such systems consist of their states, an abstract state space or

phase space, whose coordinates describe a state at any instant, and an evolution rule that

specifies the immediate future of all state variables, given only their present values.

The state space of a dynamical system is an abstract space where every state of the

system is mapped to a unique spatial location [172]. It is the set of all possible values of

the state variables that completely describe the state of the dynamical system. The state
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space can be either discrete, consisting of isolated points such as when the state variables

can only take on integer values or it can be continuous, consisting of a smooth set of

points, such as when the state variables can take on any real value. In the case where the

state space is continuous and finite-dimensional, it is often called the phase space. The

state space can also be infinite-dimensional. The number of state variables in a dynamical

system represents the dimension of the system.

Dynamical systems describe the evolution with respect to time of all points of a given

space S. Mathematically, S can be an Euclidean space or an open subset of an Euclidean

space or some other space such as a surface in Rn, n ∈ Z [99]. The rule of the time

evolution of the dynamical system must be defined to make the state variables completely

describe the state of the system. Our world is modelled with dynamical systems; popu-

lation growth, weather systems, epidemics, traffic jams and economies at all scales are

examples of dynamical systems.

Given an initial position x ∈ Rn, a dynamical system on Rn tells us where x will be

located 1 unit of time later, 2 units of time later, and so on. At time zero, x is located at

position x0. One unit after time zero, x is at x1, etc. In general, the “trajectory” of x is

given by xt. The function that takes t to xt yields either a sequence of points or a curve in

Rn which represents the life history of x as time runs from x0 to infinity. If we measure the

positions of xt using only integer time values, we have an example of a discrete dynamical

system. If time is measured continuously with t ∈ Rn, we have a continuous dynamical

system. If the system depends on time in a continuously differentiable manner, then

we have a smooth dynamical system. These are the three principal types of dynamical

systems that arise in the study of systems of differential equations [99].

Definition 1

Let x = (x1, ...., xn) be a point in the n-dimensional space Rn that traces out a curve

through time. We can describe it as

x ≡ x(t) = (x1(t), ..., xn(t))

Often we do not know x(t) directly, but we know the rate and direction of change in some

region of Rn. Thus, we have

ẋ = f(x), x ∈ Rn,
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where ẋ indicates the derivative with respect to t as we always assume that f has partial

derivatives. We call x(t) a solution to the dynamical system if it satisfies such a set of

ordinary differential equations, in the sense that ẋ(t) = f(x(t)) for t in some (possibly

infinite) interval.

A dynamical systems is deterministic if there is a unique consequence to every change

of the system variables or initial states that uniquely determine its past and future trajec-

tories [162], or stochastic (or random) if there is more than one possible consequence for

a change in its variables or initial states according to some probability distribution. In

deterministic dynamical systems, trajectories never intersect in its phase space (though

they could merge), because if they did, that would mean having multiple future states and

that is a violation to the deterministic nature of the system. Once we specify an initial

state of the system, the trajectory that follows is uniquely determined [172].

2.1.1 Phase space

In studying the behaviour of a dynamical system, we use the concept of a phase

space, which is informally defined as a theoretical space where every state of the system

is mapped to a unique spatial location. The number of state variables needed to uniquely

specify a state of the system is called the degrees of freedom in the system. By having

an axis for each degree of freedom, one can construct a phase space of a system, i.e. by

taking each state variable as one of its orthogonal axes. Therefore, the system’s degrees

of freedom equal the dimensions of its phase space [172]. A 1-dimensional system is

called a phase line, while a 2-dimensional system is called a phase plane. For every pos-

sible state of the system a point is included in the multidimensional space. The system’s

evolving state over time traces a path through the high-dimensional space and is called

the trajectory or orbit, x(t) of the system’s phase space. Consider an autonomous system

(i.e. it does not explicitly depend on the independent variable t) of first-order ordinary

differential equations of the form

ẋ = F (x), (2.1.1)

where x(t) ∈ Rn is a vector of dependent variables and F : Rn → Rn is a vector field.

The trajectories are integral curves of the vector field F and each point in the vector field

has a tangent to an integral curve. The existence and uniqueness theorem for Initial Value
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Figure 2.1: A diagram of undamped pendulum. l is the length, m the mass and θ the angle
of the pendulum [9].

Problems (IVPs) implies that if the vector field F (x) is smooth (i.e. every one of its n

defining functions, f1, . . ., fn, has derivatives of any order with respect to any variables,

at any point in the domain of fi), then a unique trajectory passes through each point of

phase space and that trajectories cannot cross themselves [106].

A phase space trajectory represents by set of states starting from one particular ini-

tial condition. An undamped pendulum consists of a single particle mass that swings

in a plane and represents an example of a phase space. The differential equation which

describes the motion of the undamped pendulum is

d2θ

dt2
+
g

l
sin θ = 0, (2.1.2)

where θ is the angular displacement, g the gravitational acceleration and l the length of the

pendulum [18] (see Fig. 2.1). The dynamical system describing an undamped pendulum

requires two state variables; the angle θ of the pendulum and its angular velocity v = dθ
dt

.

These two variables completely describe the state of the pendulum. The initial angle and

angular velocity of the system is (θ0, v0) = (θ(0), v(0)) and its trajectory which indicates

the state at time t is (θ(t), v(t)). The phase state (θ, v) is periodic in θ and the range

is −π ≤ θ < π (see Fig. 2.2). If one draws the system’s states in a Cartesian plane

coordinate system, one can get an ellipsis or a circle that fully describes all possible states

of the pendulum.

A plot of the system’s variables as a function of time is sometimes called a phase plot

or a phase diagram. One of the benefits of plotting a phase space is that it allows us to
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Figure 2.2: The phase space of the motion of undamped pendulum. θ is the angular
displacement and v = dθ

dt
is the angular velocity [11].

represent visually the dynamical behaviour of a system as a static trajectory. From phase

space visualisations, one can learn about what will eventually happen to a system’s state

in the long run.

Trajectories may diverge to infinity, converge to a certain point, or remain dynamically

changing yet staying in a confined region in the phase space from which no outgoing

trajectories are running out. This converging point or a region is called an attractor. The

set of all the initial states which will eventually end up falling into that attractor is called

the basin of attraction of that attractor [18]. The concept of attractors is particularly

important for understanding the behaviour of the system. If the system has more than

one attractor in the phase space, one can divide the phase space into several different

regions and that reveals how sensitive the system is to its initial conditions. Otherwise,

if one region is dominating in the phase space, the system’s fate doesn’t depend much

on its initial condition. The system’s state is stable in a specific area if trajectories are

converging to that area and it is unstable if trajectories are diverging from it [172].

Historically, Carl Gustav Jacobi and Ludwig Boltzmann invented the concept of the

phase space and discovered the conserved volumes in it, but in his lectures, Boltzmann

gave French mathematician Joseph Liouville the credit as the first one who used it. The

view of a dynamical system as a single trajectory is made by analogy to a curve rather

than made explicitly, first appeared in Boltzmann’s “Lectures on Gas Theory” in 1896

[39]. The explicit reference to the trajectory of the phase point in a high-dimensional

space, later appeared in Josiah Gibbs “Elementary Principles in Statistical Mechanics” in
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1902 [83]. Henri Poincaré carried out much of the work in phase space. He introduced

new tools and geometric approaches that have become essential topics of modern dynam-

ics. Among his contributions are Poincaré maps which plot where trajectories intersect a

specified section of phase space and equilibria classifications that categorise various types

of equilibrium behaviour [150].

2.1.2 Stability of dynamical systems

When we talk about the stability of a dynamical system, we talk about the stability of

its solutions (trajectories) under small perturbations of their initial conditions. In general,

perturbing the initial state in some directions can change the behaviour of the trajectory.

Stability means that the trajectories do not change too much under small perturbations.

The qualitative behaviour of trajectories under perturbations can be analysed by using the

linear stability analysis of nonlinear systems. The linear stability analysis is an analytical

method to determine the stability of the system at or near its equilibrium point by approx-

imating its dynamics around that point as a linear dynamical system [172]. The simplest

kind of behaviour of a trajectory is exhibited by equilibrium points. An equilibrium point

(also known as the critical point and the stationary solution) is a constant solution to a

differential equation, whose derivative is zero for all times t.

2.1.2.1 Equilibria

The study of equilibria plays a central role in nonlinear systems of ordinary differential

equations and their applications [99]. The stability of equilibria determines the dynamics

of the system. Trajectories around a stable equilibrium point remain close even with small

perturbations. On the other hand, trajectories around an unstable equilibrium point move

away from it for small perturbations [133]!

Let us consider a general, 2-dimensional, autonomous system,

ẋ = f(x, y),

ẏ = g(x, y), (2.1.3)

with a given initial conditions (x0, y0) at time t = t0, where f and g are smooth nonlinear

functions. The path travelled by the solution of the system starting from the initial state

(x0, y0) is a trajectory, or the orbit of the system [55]. To distinguish a solution from
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the system state that produces it, and indicate its dependence on the initial condition, we

denote it by ϕt(x0, y0) where ϕt0(x0, y0) = (x0, y0). In x− y plane, any solution ϕt(x, y)

of an autonomous system which is considered as a family of trajectories with different

initial conditions, is called a flow. Equilibria, or fixed points, if exist, are the solutions

(x, y) that satisfy simultaneously the following two homogeneous equations:

f = 0 and g = 0. (2.1.4)

Equilibria are often among the most important solutions of any dynamical system. They

are time-independent, constant solutions. We can determine the stability of dynamical

systems by examining the behaviour of their solutions nearby equilibria. An equilibrium

point, which is usually denoted by (x?, y?) and is a solution of Eq. (2.1.4), can be stable,

if all nearby trajectories approach it and unstable, if nearby trajectories drift away from it

[55].

In particular, let λ1 and λ2 be the eigenvalues of the Jacobian matrix of the dynamical

system (2.1.3)

J =

fx fy
gx gy

 , (2.1.5)

where fx is the derivative of f with respect to x, etc. All the derivatives of the matrix

must be evaluated at the equilibrium point (x?, y?), and the dominant eigenvalue λd de-

termines the overall stability of the equilibrium point, although it would generally require

a nonlinear analysis to show that the equilibrium point is truly neutral (Lyapunov stable)

[172]. Figures 2.3 and 2.4 show several types of equilibrium points for both discrete- and

continuous-time dynamical systems. For the continuous dynamical systems (2.1.3), we

can classify the types of its equilibria depending on the values of the real parts of λ1 and

λ2, the two eigenvalues of the Jacobian matrix (2.1.5) which represent the roots of the

characteristic equation of the system

λ2 − tr(J)λ+ det(J) = 0, (2.1.6)

where tr(J) is the trace and det(J) is the determinant of the Jacobian matrix.

For distinct nonzero real eigenvalues, we have the following cases [18]:

• If λ1 < 0 and λ2 < 0, the equilibrium point is a stable node and all trajectories that
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Figure 2.3: Stability of equilibrium points in discrete-time dynamical systems [172].

Figure 2.4: Stability of equilibrium points in continuous-time dynamical systems [172].

start near it move toward the attracting equilibrium point as t→∞.

• If λ1 = 0 and λ2 = 0, for the linear systems the equilibrium point is a neutral point

and all trajectories that start sufficiently close to it remain close to it for all times.

However, for the nonlinear systems it requires a nonlinear analysis to show that the

equilibrium point is truly neutral (Lyapunov stable) [172].

• If λ1 > 0 and λ2 > 0, the equilibrium point is an unstable node and all trajectories

that start near it move away from the repelling equilibrium point as t→∞.

• If λ1 > 0 and λ2 < 0, the equilibrium point is a saddle point. The trajectories

that start near it move toward the equilibrium point in one direction and move away

from it in the other direction as t→∞.

In case of repeated nonzero real eigenvalues (degenerate case), we have two other
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types of equilibria, star and singular nodes. Both equilibria can be stable and un-

stable depending on the values of the real parts of the eigenvalues.

For complex conjugate eigenvalues, we have three other cases:

• If Re(λ1) = Re(λ2) < 0, the equilibrium point is a stable spiral and all trajectories

spiral toward the equilibrium point.

• If Re(λ1) = Re(λ2) = 0, the equilibrium point requires a nonlinear analysis to

show that it is a neutral centre. Trajectories neither approach the centre nor move

away from it. They move in closed curves or cycles around it.

• If Re(λ1) = Re(λ2) > 0, the equilibrium point is an unstable spiral and all trajec-

tories spiral away from the equilibrium point [18, 55, 99].

If the system has an eigenvalue with zero real part, then there exists a line of equilibrium

points. The behaviour of trajectories depends on the sign of λi, they may move toward or

get away from the line of equilibrium points [31].

2.1.3 Bifurcation theory

In analysing any dynamical system, one of the most important questions that need to

be answered is how the system’s long-term behaviour depends on its parameter values.

Most of the time, one can assume that a slight change in their values causes only a slight

quantitative change in the system’s behaviour with the essential structure of the system’s

phase space unchanged. However, sometimes we may witness that a slight change in

parameter values causes a drastic, qualitative change in the system’s behaviour and the

structure of its phase space topologically altered. This change is called a bifurcation, and

the parameter values at which a bifurcation occurs are called the critical thresholds or

bifurcation points. In many real-world systems, bifurcations play important roles as a

switching mechanism. Examples include excitation of neurons, pattern formation, com-

plex circuits, networks, and catastrophic transition of ecosystem states, to name a few

[172]. Various types of bifurcations exist in nonlinear dynamical systems and they can be

important and beneficial if they are under appropriate control. However, not all nonlinear

dynamical systems have bifurcations [54]. There are two categories of bifurcations: local

and global, and we will discuss them briefly next.
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2.1.3.1 Local bifurcations

A local bifurcation can be characterised and analysed entirely through changes in the

local stability properties of an equilibrium point. It is called local because it can be de-

tected and analysed only by using localised information around the equilibrium point. The

local bifurcations occur when the eigenvalues λi of the Jacobian matrix of the linearised

system, evaluated at an equilibrium point satisfy the following properties:

• For discrete-time models: |λi| = 1 for some i, while |λj| < 1 for j 6= i.

• For continuous-time models: Re(λi) = 0 for some i, while Re(λj) < 0 for j 6= i.

The previous conditions describe a critical situation when the equilibrium point is about to

change its stability. We can formulate these conditions in equations and then solve them

in terms of the parameters to obtain their critical thresholds [172]. Near a bifurcation

point, the dynamical system can be reduced to a generic mathematical form by a change

of variables and a reduction of its dimension in order to keep only the directions im-

plied in the bifurcation. Those reduced mathematical expressions are called normal forms

[66, 158] and each one of them is associated to a type of bifurcation. This normal form

reduction proves to be convenient for a discussion of local bifurcation as the reduction in

dimensionality proves especially helpful in the bifurcation analysis of high-dimensional

systems.

Bifurcations are classified according to how the stability of an equilibrium solution

changes. There are two ways in which this can occur, either an eigenvalue of the system

linearised about the equilibrium solution can pass through zero, or a pair of non-zero

eigenvalues may cross the imaginary axis [177]. Types of local bifurcations include:

• Saddle-node bifurcations.

A saddle-node bifurcation is represented by the collision and disappearance of two

equilibria at the bifurcation point. In systems generated by autonomous ODEs,

this occurs when the critical equilibrium has only one zero eigenvalue. This phe-

nomenon is also called fold or tangent bifurcation. The name saddle-node comes

from the corresponding 2-dimensional bifurcation in the phase plane,

ẋ = µ− x2,

ẏ = −y,
(2.1.7)
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(a) Saddle-node bifurcation. (b) Transcritical bifurcation.

Figure 2.5: Saddle-node and transcritical bifurcations. The solid red line corresponds
to the set of stable equilibrium points and the dashed blue line to the set of unstable
equilibrium points.

in which a saddle point and a node coalesce and disappear, but the other dimension

plays no essential role and this bifurcation is one-dimensional in nature.

For a first-order autonomous dynamical system, the normal form of a saddle-node

bifurcation is

ẋ = F (x) = µ− x2. (2.1.8)

The ODE (2.1.8) has two equilibria xeq = ±√µ. The critical condition at which a

bifurcation occurs in this system is given by dF (x)
dx
|x=xeq = 0. Then,

dF (x)

dx

∣∣∣∣
xeq=±

√
µ

= −2x

∣∣∣∣
xeq=±

√
µ

= ±2
√
µ. (2.1.9)

Therefore, the bifurcation occurs when µ = 0. Moreover, by plugging each equi-

librium of (2.1.8) into (2.1.9), we know that one equilibrium point is stable and the

other is unstable. We can summarise the results as follows [172]:

– For µ < 0: both equilibria xeq =
√
µ and xeq = −√µ do not exist.

– For µ > 0: xeq =
√
µ is stable and xeq = −√µ is unstable.

We refer to this bifurcation as a supercritical saddle-node bifurcation (Fig. 2.5a),

since the equilibria appear at the bifurcation point (x, µ) = (0, 0) as µ increases

through zero. With the opposite sign ẋ = µ+x2, the bifurcation is called subcritical

saddle-node and the equilibria appear at the bifurcation point (x, µ) = (0, 0) as µ

decreases through zero [106].
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• Transcritical bifurcation.

This type of bifurcation occurs where one equilibrium point “passes through” an-

other, changing their stabilities. This phenomenon is referred to as an exchange of

stability [172]. The transcritical bifurcation arises in systems where there is some

trivial solution branch, corresponding here to x = 0 and that exists for all values of

the parameter µ (in saddle-node bifurcation, the solution branches exist locally on

only one side of the bifurcation point). There is a second solution branch x = µ

that crosses the first one at the bifurcation point (x, µ) = (0, 0). The normal form

of transcritical bifurcation is

ẋ = F (x) = µx− x2. (2.1.10)

This dynamical system always has the following two equilibria: xeq = 0 and xeq =

µ.

dF (x)

dx

∣∣∣∣
xeq

= µ− 2x,

dF (x)

dx

∣∣∣∣
xeq=0

= µ,

dF (x)

dx

∣∣∣∣
xeq=µ

= −µ.

(2.1.11)

The equilibrium xeq = 0 is stable for µ < 0 and unstable for µ > 0, while the

equilibrium xeq = µ is unstable for µ < 0 and stable for µ > 0 (Fig. 2.5b). Thus,

the two branches have opposite stabilities and when cross one solution goes from

stable to unstable while the other goes from unstable to stable [106].

• Pitchfork bifurcation.

In pitchfork bifurcation, an equilibrium point splits into three. The two outermost

equilibria have the same stability as the original equilibrium point, while the one in

between has opposite stability to the original [172]. There are two types of pitch-

fork bifurcations, the supercritical pitchfork if the nontrivial equilibrium points oc-

cur for parameter values greater than the bifurcation value. The normal form with

the opposite sign of the nonlinearity is called subcritical pitchfork if the nontrivial

equilibrium points occur for values of parameter lower than the bifurcation value

[113]. The normal form of supercritical pitchfork, in which a stable equilibrium
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(a) Supercritical pitchfork. (b) Subcritical pitchfork.

Figure 2.6: Supercritical and subcritical pitchfork bifurcations. The solid red line corre-
sponds to the set of stable equilibrium points and the dashed blue line to the set of unstable
equilibrium points.

point splits into three, two stable and one unstable is:

ẋ = µx− x3. (2.1.12)

This dynamical system has the following three equilibrium points: xeq = (0,±√µ).

The two equilibrium points: xeq = ±√µ exist only for µ ≥ 0. The equilibrium

point xeq = 0 is stable for µ < 0 and unstable for µ > 0 while xeq = ±√µ are

always stable for µ > 0 (Fig. 2.6a). When the system crosses the bifurcation point

coming from µ < 0, it has to choose one of the two stable branches of the pitchfork

and this choice is called a symmetry breaking.

The normal form of subcritical pitchfork which makes an unstable equilibrium point

split into three, two unstable and one stable is:

ẋ = µx+ x3. (2.1.13)

This dynamical system has the following three equilibrium points: xeq = (0,±
√
−µ),

but the two equilibrium points xeq = ±
√
−µ exist only for µ ≤ 0 (Fig. 2.6b). Pitch-

fork bifurcations are generic to problems that have symmetry. Note that equation

(2.1.12) is invariant under the change of variables x→ −x [106].

• Period doubling (flip) bifurcation.

A period doubling bifurcation corresponds to the creation or destruction of a peri-

odic orbit with double the period of the original orbit. A period-doubling bifurca-
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Figure 2.7: Period doubling bifurcation for the logistic map. The equilibrium x versus the
parameter r [10].

tion occurs in both discrete and continuous dynamical systems. In a discrete system,

a slight change in a parameter value in the system’s equations leads to the system

switching to a new behaviour with twice the period of the original system. In the

following simplified version of the logistic map [18],

xn+1 = rxn(1− xn), (2.1.14)

where xn is the value of x at time n and lies in the interval (0, 1], xn changes over

time and that depends on the values of the parameter r ∈ (0, 4]. For values of r

between 1 and 3, xn converges to a stable fixed point x∗ = r−1
r

. Then, it converges

to a permanent oscillation between the fixed point x∗ and the differential equation

ẋ for values of r between 3 and 3.4494. Period doublings appears at r ≈ 3.5699

(see Fig. 2.7).

Period doubling bifurcations in continuous dynamical systems begin with a limit

cycle behaviour. The limit cycle appears from a bifurcation involving a node or

other fixed point and then it becomes unstable with the change of the control pa-

rameter. The main difference in case of period doubling bifurcation between a map

and a differential equation is that for a map, at certain value of the control param-

eter, the fixed point first undergoes a period doubling bifurcation. This produces a

period-2 solution which undergoes a second period doubling again at certain other

values of the control parameter. However, for a system of differential equations, the

first bifurcation is a Hopf bifurcation which produces a self-sustained oscillation,
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and the second bifurcation is the first period doubling bifurcation of the periodic

orbit. This indicates that the considered Hopf bifurcation is supercritical generating

a stable limit cycle of the system [170].

A period doubling cascade is a sequence of doubling the repeating period, as the

parameter is adjusted further and further. Cascades of period doubling bifurcations

have been observed in many dynamical systems, both dissipative and conservative.

Whereas, a period halving bifurcation is a bifurcation in which the system switches

to a new behaviour with half the period of the original system. A series of period

halving bifurcations can lead the system from chaos to order.

In general, the bifurcation phenomena that occur in one-dimensional nonlinear sys-

tems are usually referred to as static bifurcations. In higher dimensional systems,

as the situation is more complicated, bifurcations in systems of dimension two or

higher such as the Hopf bifurcation, are referred to as dynamic bifurcations [54].

• Hopf bifurcation.

A Hopf or Poincare-Andronov-Hopf bifurcation is a local bifurcation in which an

equilibrium point of a dynamical system with two or more variables, loses stability

as a pair of complex conjugate eigenvalues of the Jacobian matrix at the equilib-

rium point cross the imaginary axis of the complex plane (see Fig. 2.8) [113]. A

Hopf bifurcation typically causes the appearance (or disappearance) of a limit cycle

around the equilibrium point. A limit cycle is an isolated, closed trajectory in the

phase space. When the pair of complex conjugate eigenvalues moves from the left-

half plane to the right, crossing the imaginary axis, all the other eigenvalues remain

stable. At the moment of crossing, the real parts of the two eigenvalues become

zero, and the stability of the existing equilibrium changes from stable to unstable

and a limit cycle appears at the moment of crossing [18, 54].

Consider the 2-dimensional system

ẋ = y + µx,

ẏ = −x+ µy,
(2.1.15)

where µ is the bifurcation parameter. Then, the Jacobian matrix of the two dimen-
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Figure 2.8: Real eigenvalues in supercritical saddle-node, transcritical and supercritical
pitchfork bifurcations cross into the right half plane (in the direction of the blue dashed
line). Complex conjugate eigenvalues in Hopf bifurcation simultaneously cross the imag-
inary axis into the right half plane (in the direction of the blue dashed line).

sional system is

J =

 µ 1

−1 µ

 , (2.1.16)

for which the eigenvalues are λ1,2 = µ± i where Re(λ1,2) = µ and Im(λ1,2) = ±i.

For µ = 0, we have Re(λ1,2) = 0 and Im(λ1,2) 6= 0. Hence, we can conclude that

there exists a periodic solution for µ = 0 in every neighborhood of the origin [113].

2.1.3.2 Global bifurcations

A global bifurcation occurs when non-local features of the phase space, such as limit

cycles collide with equilibria in a phase space. This type of bifurcation cannot be char-

acterised by using only localised information around the equilibrium point. The changes

in the topology of the trajectories in the phase space cannot be confined in a small neigh-

bourhood, as is the case with local bifurcations. In fact, the changes in topology extend

out to an arbitrarily large distance. Types of global bifurcations include Homoclinic and

Heteroclinic bifurcations [87].

In a bifurcation, the number of parameters which must be varied for the bifurcation

to occur is called the codimension of a bifurcation. Saddle-node bifurcations, where the

equilibrium has a simple eigenvalue λ1 = 0 and no other eigenvalues with zero real

part and Hopf bifurcations where the equilibrium has a simple pair of purely imaginary

eigenvalues λ1,2 = iw0, w0 > 0 and no other eigenvalues with zero real part, are the

only generic local bifurcations which are really codimension-one. All others types of
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bifurcations have higher codimension. However, transcritical and pitchfork bifurcations

are often thought of as codimension-one, because the normal forms can be written with

only one parameter.

2.2 Nonlinear chaotic systems

The science of nonlinear dynamics and chaos theory has sparked many researchers

to develop mathematical models that simulate vector fields of nonlinear chaotic physi-

cal systems. In Mathematics and Physics, chaos theory is a mathematical sub-discipline

that studies such systems and deals with the behaviour of certain nonlinear dynamical

systems that under certain conditions exhibit an unpredictable behaviour known as chaos.

Chaos explores the transitions between order and disorder, which often occur in surprising

ways. Nonlinear phenomena arise in all fields of Engineering, Physics, Chemistry, Biol-

ogy, Economics, and Sociology among others. Examples of nonlinear chaotic systems

include climate prediction models, neural network models, data compression, informa-

tion processing, turbulence, nonlinear dynamical economics. In general, for a nonlinear

dynamical system to be classified as chaotic, it must have the following properties:

• An arbitrarily small change, or perturbation, of the current trajectory may lead to

significantly different future behaviour. That means the chaotic system has positive

Maximal Lyapunov Exponent (MLE) which is a quantity that characterises the rate

of separation of infinitesimally close trajectories in the phase space [64]. The con-

cept of nearby trajectories diverging away from each other plays an important role

in chaotic systems. We can characterise the types of trajectory divergence as linear

or exponential growth rates [136].

• It must be topologically mixing: this means that the system will evolve over time

so that any given region or open set of its phase space will eventually overlap with

any other given region in the phase space. This means any points initially far apart

in the phase space have been brought close together, and vice versa.

• It must have dense periodic orbits which means that every point in the space is

approached arbitrarily closely by periodic orbits.



2.2 Nonlinear chaotic systems 26

2.2.1 Sensitivity to initial conditions

In chaotic dynamical system, a small change to the initial conditions may lead to sig-

nificantly different future behaviour. Sensitivity to initial conditions (SDIC) is popularly

known as the “butterfly effect” [129]. The name, coined by Edward Lorenz for the effect

which had been known long before, is derived from the metaphorical example of the de-

tails of a hurricane (exact time of formation, exact path taken) being influenced by minor

perturbations such as the flapping of the wings of a distant butterfly several weeks earlier.

The flapping wing represents a small change in the initial condition of the meteorological

system, which causes a chain of events leading to large-scale phenomena.

The concept of nearby trajectories diverge from each other which can be caused by

a small perturbation to initial conditions plays an important role in chaotic systems. The

two types of the trajectory divergence are the linear and the exponential growth rates.

Linear growth can be represented by the simple expression y = ax + b, where a is an

arbitrary positive constant (growth) and b an arbitrary constant. Exponential growth can

be represented by the expression y = n0e
ax, where n0 is some initial quantity and a is an

arbitrary positive constant [36]. Rapid divergence of trajectories, which are close together

initially, when present in a dynamical system, makes long term predictions impossible

and hence is regarded as one of the key features of “chaotic” behaviour [25].

2.2.2 Lyapunov exponents

Lyapunov characteristic exponents (LCEs) or Lyapunov exponents are quantities that

characterise the rate of separation of trajectories which start infinitesimally close [18,

169]. They measure the sensitivity to initial conditions. Quantitatively, two trajectories

in phase space with initial separation δZ0 diverge (provided that the divergence can be

treated within the linearised approximation) at a rate given by

|δZ(t)| ≈ eλt|δZ0|, (2.2.1)

where λ is the Lyapunov exponent [64, 88]. There is a spectrum of Lyapunov exponents

{λ1, λ2, ..., λn}, equal in number to the dimensionality of the phase space, because the rate

of separation can be different for different orientations of initial separation vectors [88].

We refer to the largest one as the maximal Lyapunov exponent. It determines a notion
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of unpredictability for a dynamical system. A positive (MLE) which is the exponential

divergence rate is usually taken as an indication that the system is chaotic (provided that

phase space compactness, dense periodic orbits and transitivity are met). The MLE can

be defined as follows [18, 88]

λ = lim
t→∞

lim
δZ0→0

1

t
ln
|δZ(t)|
|δZ0|

. (2.2.2)

The short time Lyapunov exponent is a Lyapunov exponent defined over some finite

time interval and the local Lyapunov exponent is a short time Lyapunov exponent in the

limit where the time interval approaches zero. Both are dependent on initial conditions,

and the short time Lyapunov exponent is also dependent on the magnitude of the time

interval [137]. To compute the Lyapunov exponents for a continuous flow of a differential

equation, consider the following system of n autonomous differential equations

v̇ = f(v), (2.2.3)

where v = (v1, v2, ..., vn). The flow FT (v) is defined as the point at which the orbit

with initial condition v arrives after T time units (time-T map). We define the Lyapunov

exponent of a flow as the Lyapunov exponent of its time-T map for T = 1. If we fix T for

the moment, DFT (v) is the derivative of the time-1 map F1(v) with respect to the initial

value v and is a linear map on Rn represented by an n×nmatrix. The matrixDFT (v+w)

is the small variation in the solution of (2.2.3) at time T caused by a small change in the

initial value at t = 0 from v to v+w [16]. Since {Ft(v) : t ∈ R} is the solution of (2.2.3)

with initial value v, by definition we have

d

dt
Ft(v) = f(Ft(v)), F0(v) = v. (2.2.4)

Equation (2.2.4) has two variables, time t and the initial value v in Rn. Differentiating

with respect to v yields

d

dt
DFt(v) = Df(Ft(v))DFt(v), (2.2.5)

which is known as the variational equation of the differential equation (2.2.3). Solving

the equation for DFt(v), we would know the derivative matrix of Ft, and therefore know

how Ft acts under small variations in the initial condition v.
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Let’s define

J(t) = DFt(v),

and

A(t) = Df(Ft(v)),

to be the Jacobian matrix of the right-hand side of the differential equation (2.2.3) evalu-

ated along the solution. Then, we can rewrite the variational equation (2.2.5) as

J̇(t) = A(t)J(t). (2.2.6)

In order to uniquely define J(t) from (2.2.6), we add an initial condition, which is J(0) =

I , i.e. the identity matrix. The variational equation is a linear differential equation, even

when the original differential equation is nonlinear and is non-autonomous since A(t) is

in general time-dependent [16]. To compute the LCEs, we need the repeated application

of the Gram-Schmidt orthonormalisation process (GS) to orthonormalise the deviation

vectors of the variational equation (2.2.6) after computing the Lyapunov exponents which

depend on the values of their deviation at each time-step.

Given a set {J1, J2, ..., Jn} of n linearly independent vectors in Rn, the Gram-Schmidt

procedure generates an orthonormal set {E1, E2, ..., En} of vectors that spans the same

subspace spanned by {J1, J2, ..., Jn} [169]. The vectors Ei are given by

U1 = J1, E1 = U1/||U1||,

U2 = J2 − 〈J2, U1〉
〈U1, U1〉U1 , E2 = U2/||U2||,

...

Un = Jn −
∑n−1

j=1
〈Jn, Uj〉
〈Uj , Uj〉Uj , En = Un/||Un||,

where Ei are the orthonormalised vectors of Ji. The volume of the space spanned by

{J1, J2, ..., Jn} is

V ol{J1, J2, ..., Jn} = ||U1||... ||Up||.

Then, for a short time interval T we can obtain the p-th LCE:

λp = lim
k→∞

1

kT

k∑
i=1

ln(||U i
1||... ||U i

p||),
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where ||Up|| is the length of deviation vectors Jp of the variational equation (2.2.6). For

suitable value of T , we can compute the quantities [169]

λ1 ≈
1

kT

k∑
i=1

ln ||U i
1||, . . . , λn ≈

1

kT

k∑
i=1

ln ||U i
n||. (2.2.7)

It is worth it to mention that the classical Gram-Schmidt process is inherently numer-

ically unstable, i.e. it is possible to create a basis that is no longer orthogonal. This loss

of orthogonality comes from the accumulation of roundoff errors. To stabilize the ap-

proximation and guarantee that the numerical procedure will create an orthonormal basis

with finite precision, one can use the modified Gram-Schmidt process which guarantees

the vectors created will be numerically orthogonal than those from the classical Gram-

Schmidt.

Other orthonormalisation methods use the Householder transformation or the Givens

method. The Householder transformation [105] is usually preferred over the GS method

since it is numerically more stable, i.e. rounding errors tend to have less serious effects.

On the other hand, the GS method produces the jth orthonormalised vector after the jth

iteration, while the Householder method produces all the vectors only at the end. Givens

method (which is also called the rotation method) has one advantage over Householder

transformations as it can be easily parallelised. It is often used for very sparse matrices

which have a lower number of operations at each iteration. The three previous orthonor-

malisation methods are actually used in computing the QR decomposition (the decom-

position of a matrix A into a product A = QR of an orthogonal matrix Q and an upper

triangular matrix R).

Two of the classical examples of chaotic systems are the Lorenz system which de-

scribes the motion of a fluid between two layers at different temperatures and the Rössler

system that models chemical reactions [79]. Both models had been the focus of inter-

est in a large number of studies and they continue to appear in literature [79, 170]. The

main reason is that though these systems are well known, they are still not completely

understood and have become test problems for almost all new analytical and numerical

techniques in computational dynamics. They can display a rich diversity of periodic, mul-

tiple periodic and chaotic behaviours depending upon the specific values of one or more

of their control parameters. Since the minimal dimension for chaos in case of autonomous
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continuous systems is three, both models are systems of 3-dimensional nonlinear ordinary

differential equations [170].

2.2.3 The Lorenz system

The Lorenz system arose from the work of meteorologist and mathematician Edward

N. Lorenz. In 1963, Lorenz developed a simplified mathematical model for atmospheric

convection (i.e. heat transfer by mass motion of a fluid) [18]:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

(2.2.8)

where x, y and z are the system states, t the time and σ, ρ and β the system’s parameters

(σ, ρ, β ≥ 0) [130, 131]. The Lorenz system is nonlinear, three-dimensional and deter-

ministic system. Lorenz demonstrated that if one begins by choosing some values for x,

y, and z as initial conditions to plot the system trajectory, and then do it again with just

slightly different values, one will quickly arrive at fundamentally different results when

the two trajectories start to diverge from each other (Fig. 2.9). For certain parameter val-

ues and initial conditions, the MLE converges to a positive value which indicates that

the system is chaotic (Fig. 2.10). In particular, the Lorenz attractor is a set of chaotic

solutions which, when plotted, resemble a butterfly (Fig. 2.11). The Lorenz attractor is

an example of a strange attractor. Strange attractors are unique from other phase-space

attractors in that one does not know exactly where on the attractor the states of the system

will reside. Two points on the attractor that are near each other at one time, will be far

apart from each other at later times. The only restriction is that the states of the system

remain on the attractor. Strange attractors are also unique in that they are not close on

themselves as the motion of the system never repeats itself (aperiodic). The type of mo-

tion we are describing on strange attractors is what we mean by chaotic behaviour. The

Lorenz attractor was one of the first strange attractor, but there are many systems that

give rise to chaotic dynamics. Examples of other strange attractors include the Rössler

[164, 165] and Hénon attractors [92].

Five of the terms on the right hand side of Lorenz equations are linear, while two are
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Figure 2.9: Two trajectories: (x1, y1, z1) (red) and (x2, y2, z2) (black) with slightly dif-
ferent initial conditions. After some time, the two trajectories start to diverge from each
other.

Figure 2.10: The Lyapunov exponents of the Lorenz attractor: λ1 (∗), λ2 (♦) and λ3 (◦).
λ1 represents the MLE which indicates that the system is chaotic as it converges to a
positive value.

quadratic (see (2.2.8)). If one variable changes, the other two will change in response.

Each of the parameters in these equations has a physical meaning. The parameter σ is

the Prandtl number which describes the system physical characteristics. The two other

parameters, ρ represents a control parameter and β is a value that describes the shape of

the “box” which represents the boundaries that Lorenz attractor is contained within [99].

Originally, Lorenz used the parameter values σ = 10, ρ = 28 and β = 8/3, for which

the system exhibits chaotic behaviour. To determine the overall stability of the equilibrium

points, we need to linearise the system and find the eigenvalues of the Jacobian matrix
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Figure 2.11: The Lorenz attractor for parameter values σ = 10, ρ = 28 and β = 8/3.
Note its butterfly-like shape!

evaluated at the equilibrium points:

J =


−σ σ 0

ρ− z −1 −x

y x −β

 . (2.2.9)

Evaluating (2.2.9) at the origin (i.e. for (x,y,z) = (0,0,0)),

J0 =


−σ σ 0

ρ −1 0

0 0 −β

 , (2.2.10)

and the roots of the characteristic equation det(J0 − λI) = 0 are:

λ1 = −β,

λ2 = −σ + 1

2
+

√
(σ − 1)2 + 4σρ

2
,

λ3 = −σ + 1

2
−
√

(σ − 1)2 + 4σρ

2
.

(2.2.11)

For ρ > 1, the origin is a saddle point (the eigenvalues have positive and negative real

parts) and for ρ < 1; the origin is a stable point (the eigenvalues have negative real

parts). Thus, if ρ < 1, then there is only one fixed point located at the origin. This

point corresponds to no convection (motionless state). All orbits converge to the origin,

which is an attractor [16]. If ρ = 1, we have a pitchfork bifurcation as the origin loses its
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stability, and for ρ > 1, two additional critical points appear [18]:

x∗1 = (+
√
β(ρ− 1),+

√
β(ρ− 1), ρ− 1),

x∗2 = (−
√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1).

(2.2.12)

The Jacobian matrix (2.2.9) at x∗1:

Jx∗1 =


−σ σ 0

1 −1 −
√
β(ρ− 1)√

β(ρ− 1)
√
β(ρ− 1) −β

 . (2.2.13)

and at x∗2:

Jx∗2 =


−σ σ 0

1 −1
√
β(ρ− 1)

−
√
β(ρ− 1) −

√
β(ρ− 1) −β

 . (2.2.14)

The characteristic equation of (2.2.13) then becomes [99]:

λ3 + (σ + β + 1)λ2 + β(σ + ρ)λ+ 2βσ(ρ− 1) = 0. (2.2.15)

Let T = −(σ + β + 1),

K = β(σ + ρ),

D = −2βσ(ρ− 1),

where T,D indicate the trace and determinant of the Jacobian matrix. According to the

Routh-Hurwitz criterion [170], a Hopf bifurcation occurs if

TK +D = 0 with T,K,D < 0,

and all eigenvalues has negative real parts if

TK +D > 0 with T,K,D < 0.

For ρ < ρH < σ σ+β+3
σ−β−1

, we have TK +D > 0.

From the Routh-Hurwitz criterion, it follows that x∗1 is stable within the range

1 < ρ < ρH < σ σ+β+3
σ−β−1

when σ > β + 1.

At ρ = ρH = σ σ+β+3
σ−β−1

, a change of stability occurs at which TK + D = 0. Complex

eigenvalues cross the imaginary axis as subcritical Hopf bifurcation takes place [170].
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To summarise: For 0 < ρ < 1, the origin is a stable equilibrium point and all tra-

jectories are attracted to it. At ρ = 1, a supercritical pitchfork bifurcation occurs. Two

stable critical points are created and the origin loses its stability. For 1 < ρ < ρH , both

critical points are stable points and at ρ = ρH , a subcritical Hopf bifurcation occurs and

both critical points x∗1 and x∗2 lose their stability. For ρ > ρH , there are no stable critical

points anymore and trajectories are always bounded and can not escape to infinity.

For the choice of parameters σ = 10, β = 8
3

and ρ = 28, the behaviour of the system

after an initial transient period is chaotic. The solution settles into an irregular oscillation

that persists as t tends to infinity but never repeats its path exactly. The motion is aperiodic

and the solution is sensitive to changes in initial conditions. The plot of the solution in

the (x, y, z) phase space resembles a butterfly structure, i.e., the Lorenz attractor [16].

2.2.4 The Rössler system

The Rössler system is a system of three nonlinear coupled ordinary differential equa-

tions originally studied by Otto Rössler in 1976 [164, 165]:

dx

dt
= −y − z,

dy

dt
= x+ ay,

dz

dt
= b+ z(x− c),

(2.2.16)

where x, y and z are the system states, t is the time and a, b and c are the system’s pa-

rameters. The system is a continuous-time dynamical system which for certain parameter

values and initial conditions exhibits chaotic dynamics associated with the fractal prop-

erties of its attractor, the Rössler attractor. The Rössler attractor was initially intended

to behave similarly to the Lorenz attractor, but also be easier to analyse qualitatively. An

orbit within the attractor follows an outward spiral close to the x-y plane around an un-

stable fixed point. Once the trajectory spirals out enough, a second fixed point influences

the trajectory, causing a rise and twist in the z-dimension (see Fig. 2.12). In the time do-

main, it becomes apparent that although each variable is oscillating within a fixed range

of values, the oscillations are chaotic such as for the parameter values a = 0.1, b = 0.1

and c = 14. This attractor has some similarities to the Lorenz attractor but is simpler.

The Rössler equations have one quadratic nonlinearity, and setting z = 0 and b = 0,
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Figure 2.12: The Rössler attractor for the parameter values a = 0.1, b = 0.1 and c = 14.

can allow us to examine the behaviour of the system on the x-y plane:

dx

dt
= −y,

dy

dt
= x+ ay.

(2.2.17)

The stability of the origin can be determined by finding the eigenvalues of the Jacobian

matrix:

J =

0 −1

1 a

 ,

which are a±
√
a2−4
2

. For 0 < a < 2, the eigenvalues are complex and both have positive

real parts, making the origin unstable with an outwards spiral on the x-y plane. Rössler

studied the chaotic attractor with the values a = 0.2, b = 0.2 and c = 5.7, though

properties for a = 0.1, b = 0.1 and c = 14 have been more commonly used since

then. We can set Eq. (2.2.16) equal to zero and solve the resulting equations to find the

equilibrium points of the system for a given set of parameter values. The coordinates of

the equilibrium points are:

x = c±
√
c2−4ab
2

, y = −( c±
√
c2−4ab
2a

) and z = c±
√
c2−4ab
2a

.

Two of these equilibrium points are:

x∗1 = (
c+
√
c2 − 4ab

2
,−c+

√
c2 − 4ab

2a
,
c+
√
c2 − 4ab

2a
),

x∗2 = (
c−
√
c2 − 4ab

2
,−c−

√
c2 − 4ab

2a
,
c−
√
c2 − 4ab

2a
).

(2.2.18)
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If c2 = 4ab, both fixed points are equal. The Jacobian matrix of the linearised system is

J =


0 −1 −1

1 a 0

z 0 x− c

 , (2.2.19)

The characteristic equation is

λ3 + (c− a− x)λ2 + (1 + ax+ z − ac)λ+ c− x− az = 0. (2.2.20)

The three roots λ1, λ2 and λ3 of the characteristic equation are the eigenvalues of the

Jacobian matrix of the linearised system.

2.3 Numerical integration methods

Many differential equations can be solved analytically for example, linear ODEs, i.e.

obtain the solution in closed form, but in many cases, such as when the analytical solution

of the mathematically defined problem is possible but time-consuming or even impos-

sible to find, a numerical approximation to the solution is often sufficient. Numerical

methods are used to find numerical approximations to the solutions of differential equa-

tions. For a differential equation that describes behaviour over time, the numerical method

starts with the initial values of the variables, and then uses the equations to figure out the

changes in these variables over a time interval. One of the most widely used method is

the Runge-Kutta method [178]. The method is a family of implicit and explicit iterative

methods, which includes the well-known Euler method, used in temporal discretisation

for the approximate solutions of ODEs. These methods were developed around 1900 by

two German mathematicians, C. Runge and M. Kutta [168]. In the following, we will

discuss briefly two of these numerical methods.

2.3.1 The Euler method

The Euler method is a first-order numerical procedure for solving ordinary differential

equations with a given initial value. It is the most basic explicit method for numerical

integration of ODEs and is the simplest Runge-Kutta method. The method is named after

Leonhard Euler who derived it in 1768 [71]. The order of numerical integration methods

reflects how many terms of the Taylor series are accounted for in each method. The
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Euler method is referred to as a first-order method which means that the local truncation

error (LTE) is on the order of O(h2). LTE is an error that induced at every time-step

due to the truncation of the Taylor series and a method with O(hk+1) is said to be of kth

order. While LTE is the error caused by one iteration, the global truncation error is the

accumulation of the local truncation error over all of the iterations. Higher order methods

provide lower LTE for the same step-size. For fourth-order Runge-Kutta method (RK4),

the local truncation error is of the order O(h5) and the global truncation error is of the

order O(h4).

From any point on a curve, one can find an approximation of a nearby point on the

curve by moving a short distance along a line tangent to the curve. To find an approximate

solution for the following first-order differential equation using Euler method,

y′(t) = f(t, y(t)),

y(t0) = y0,

we replace the derivative y′ by the finite difference approximation,

y′(t) ≈ y(t+h)−y(t)
h

,

which when we re-arrange it yields,

y(t+ h) ≈ y(t) + hy′(t),

y(t+ h) ≈ y(t) + hf(t, y(t)).

Then, we choose a step-size h and construct a time-sequence t0, t1 = t0 +h, t2 = t0 +2h,

.... We denote the numerical estimate of the exact solution y(tn) by yn and compute these

estimates by the following recursive scheme:

yn+1 = yn + hf(tn, yn),

y(t0) = y0.
(2.3.1)

This is the forward Euler method. It is an explicit method which means the new value

yn+1 is defined in terms of quantities already known, such as yn. For the backward Euler

method, we use the approximation,

y′(t) ≈ y(t)−y(t−h)
h

,
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which give us,

yn+1 = yn + hf(tn+1, yn+1). (2.3.2)

The backward Euler method is an implicit method, meaning that we have to solve an

equation to find yn+1 such as using the fixed point iteration method [47].

2.3.2 The fourth-order Runge-Kutta method

The fourth order Runge-Kutta method (RK4) is a numerical technique used to solve

systems of first order ordinary differential equation of the form [115]

y′ = f(x, y),

y(0) = y0, y ∈ Rn.

Let us consider the following IVP problem:

y′ = f(t, y),

y(t0) = α, α ∈ R.

Let h be the time-step and ti = t0+ih. Then, the formula for the fourth order Runge-Kutta

method (RK4) is:

y0 = α,

k1 = hf(ti, yi),

k2 = hf(ti + h
2
, yi + k1

2
),

k3 = hf(ti + h
2
, yi + k2

2
),

k4 = hf(ti + h, yi + k3),

yi+1 = yi + 1
6
(k1 + 2k2 + 2k3 + k4),

which allows to compute the approximate solution, that is yi ≈ y(ti). Here, yi+1 is the

RK4 approximation of y(ti+1), and the next value is determined by the present value

yi plus the weighted average of four increments, where each increment is the product of

time-step, h, and an estimated slope specified by f of the right-hand side of the differential

equation.

In the fourth order Runge-Kutta method,

• k1 is the increment based on the slope at the beginning of the interval, using y

(Euler’s method).
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• k2 is the increment based on the slope at the midpoint of the interval.

• k3 is again the increment based on the slope at the midpoint of the interval.

• k4 is the increment based on the slope at the end of the interval.

In averaging the four increments, greater weight is given to the increments at the

midpoints, since we regard them to be a better estimate of the slope when going from

y(t0) to y(t0 + h). Both k2 and k3 proved to be more accurate than k1 for making new

approximations for y(ti).

The difficulty in the Runge-Kutta methods is to find the appropriate time-step to be

less than a predefined error ε. We can use an adaptive time-step control during compu-

tations. To achieve this, we start with a moderate time-step and when we detect that the

expected error is larger than ε, we reduce the time-step and recalculate the current step.

If we detect that the expected error is less than ε, we keep the current step and slightly

enlarge the time-step in the next step. This requires a good estimation of the “expected

error”. An alternative time-step adjustment algorithm is based on the embedded Runge-

Kutta formulae, originally invented by Erwin Fehlberg (1969) [72] and is known as the

Runge-Kutta-Fehlberg method (RK45).

The purpose of this adaptive time-step control is to achieve some predetermined ac-

curacy in the solution with minimum computational effort. An interesting fact about

the Runge-Kutta formulae is that for orders M higher than four, more than M function

evaluations are required. Fehlberg discovered a fifth-order method with six function eval-

uations where another combination of the six functions gives a fourth-order method. The

difference between the two estimates of y(t + h) can then be used as an estimate of the

truncation error to adjust the time-step. Several other embedded Runge-Kutta formulae

have been found since Fehlberg’s original formula such as the Bogacki-Shampine [38]

and Cash-Karp methods [51].

2.4 Complex systems

We are surrounded by many complicated and complex systems. For example, consider

the society that requires cooperation between billions of individuals, or communications

infrastructures that integrate billions of cell phones with computers and satellites. Our
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biological existence is rooted in seamless interactions between thousands of genes within

our cells. Our ability to understand and comprehend the world around us requires the

coherent activity of billions of neurons in our brain. These systems are collectively called

complex systems. Complex systems play an important role in our daily life and the society

around us. Their understanding, mathematical description, prediction, and eventually

control is one of the major scientific challenges of the 21st century [30].

Systems are entities composed of well-defined components which act together to form

a functioning whole with dynamical behaviours and responses to the environment [37].

Complex systems are networks made of many components that interact with each other,

typically in a nonlinear fashion. They may arise and evolve through the dynamical inter-

action of the components without an intervening regulatory body. Many complex systems

generate spontaneously new and organised forms which are neither completely regular

nor completely random. Real-world systems, e.g., the global climate, food webs, stock

markets, social media, brains and other neural systems have these properties. The devel-

opment of many conceptual, mathematical and computational tools in complex systems

science enable us to properly describe systems that are made of interdependent compo-

nents [172]. The science of complexity studies the relationships between these compo-

nents that give rise to the cooperative behaviour of many interconnected components of

the system and how it interrelates with its environment. The social systems formed (in

part) out of people, the weather formed out of air flows, molecules formed out of atoms,

the brain formed out of neurons are all examples of complex systems and their compo-

nents.

Simple systems have few components and their behaviour is fully understandable and

predictable [37]. The science of classical systems, as exemplified by Newtonian mechan-

ics, reduces all complex phenomena to their simplest components, and then can describe

these components in a complete, objective, and deterministic manner. In contrast, com-

plex systems such as societies, organisms, stock markets or the Internet, have emergent

properties that cannot be reduced to the mere properties of their parts and have intrinsi-

cally unpredictable behaviour [95]. The cooperative interactions of the individual com-

ponents in complex systems determine their emergent functionalities. Small changes in

one of these components can have far reaching consequences for the system as a whole

but many complex system often show high level of robustness due to redundancy in their
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components [37].

The field of complex systems connects all traditional disciplines of science, engineer-

ing, medicines, management, etc. [28]. Many cross-disciplinary applications are made

available through the study of the structural and dynamical properties of various complex

systems. Emergence and self-organisation are the two core concepts that go across almost

all subareas of complex systems.

2.4.1 Emergence

Emergence refers to how collective properties of a complex system can arise from the

properties of its components and how behaviour at a larger scale arises from the detailed

structure, behaviour and relationships at a finer scale. However, many observed properties

at the macroscopic scales cannot be reduced to microscopic physical rules which control

the system’s behaviour. Many macroscopic properties such as living and consciousness

are emergent properties because it is hard to describe the neurophysiological processes

that make them. As the whole system evolves over time, emergence produces novel and

coherent interactions among the system’s entities following basic principles.

Predictable patterns of emergent phenomena, such as anthills and traffic flows are ex-

amples of weak emergence. In contrast, disruptions that dramatically change a system’s

structure is called a strong emergence as in revolutions and renaissance. Rules or princi-

ples in weak emergence act as the authority and provide context for the system to function

with no need for someone to be in charge. In strong emergence, the rules or assumptions

that shape a system cease to be reliable. The system becomes chaotic, yet emergent sys-

tems increase order even in the absence of command and central control. Open systems

extract information and order out of their environment and bring coherence to increasingly

complex forms [102]. Scientists generally agree on these qualities of emergence:

• Radical novelty: At each level of complexity, entirely new properties appear.

• Coherence: A stable system of interactions.

• Wholeness: It is not just the sum of the system’s parts, but also different and irre-

ducible forms of its parts.

• Dynamic: The system is always in process, continuing to evolve.
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• Downward causation: The system shapes the behaviour of its parts.

In any type of change in a complex system, emergence occurs when disruptions shape the

interactions between its component and coherence breaks apart. Then, differences appear

and reform in a novel system by one of the following dynamics:

• No one is in charge to orchestrate orderly activity (e.g., economic systems, ecosys-

tems).

• complex behaviour emerges from simple rules which results in randomness be-

comes coherent as individuals interact with their neighbours, with each following a

few basic principles or assumptions (e.g., traffic flows, birds flocks) [102].

The next subsection is devoted to self-organisation and its various aspects.

2.4.2 Self-organisation

Self-organisation can be defined as the spontaneous formation of global structures

out of local interactions in a complex system. it represents the spontaneous emergence of

order in natural and physical systems [61]. Emergence is about scale and self-organisation

is about time in addition to scale. The global structures which involve the system as a

whole, are the spatial, temporal, or functional structures. The self-organised system is the

one that spontaneously organises itself and produce a nontrivial macroscopic structure

and/or behaviour as time progresses. Many biological, physical and social systems show

self-organising behaviour [172]. Great attention is being recently paid to the processes

of self-organisation in various networks, including neuronal networks in the brain and

of various swarms and flocks, where self-organisation is understood as the unexpected

appearance of collective or coherent behaviour that is termed swarm intelligence.

A basic feature in all of these diverse systems is the means by which they acquire

their order and structure. In self-organised systems, pattern formation occurs through

interactions internal to the system, with no intervention by external directing influences.

Moreover, the rules specifying interactions among the system’s components are executed

using only local information, without reference to the global pattern. Thus, pattern is

an emergent property of the system, rather than a property imposed on the system by an

external ordering influence. It represents an organised arrangement of objects in space
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or time. A system of living cells or organisms builds a pattern and succeeds in doing so

with no external directing influence. In systems lacking self-organisation, order can be

imposed on them in many different ways, not only through instructions from a supervisory

leader but also through various directives such as blueprints or recipes, or through pre-

existing patterns in the environments [48].

The main challenge in self-organising systems is to understand how components in-

teract to produce a complex pattern as processes in complex systems are often nonlinear,

i.e., their effects are not proportional to their causes. The two basic modes of interactions

among the components of self-organising systems are positive and negative feedback.

Most self-organising systems use positive feedback which generally promotes changes

in a system. Two familiar examples of the effects of positive feedback are the spread

of a disease and the explosive growth of the human population (see Fig. 2.13). In the

past centuries, the reproduction of each generation was much bigger than its original size,

therefore more births occur with each successive generation. The snowballing effect of

positive feedback takes an initial deviation in a system and reinforces that change in the

same direction as the initial deviation. In negative feedback, effects are smaller than the

causes and produce a damping effect. A small perturbation applied to the system triggers

an opposing response that counteracts the perturbation. An individual acquires and pro-

cesses information that causes a negative feedback. A decrease in body temperature can

lead to shivering which counteracts the drop in body temperature [48].

Complex systems are distinguished by their capacity for self-organisation, i.e. rear-

ranging and reforming their patterns of operation in mutual adaptation to changes in their

environment and also the capacities of their components to the changing demands and

opportunities from the environment. This process occurs as a result of communication,

selection and adaptation processes within the system itself and between the evolving sys-

tem and its environment and is not imposed externally. The result of this process is a new

and more constructive order in dynamic response to a changing environment [61].

One feature of complex systems is nonlinear dynamics. In a complex system, non-

linear behaviour means it may respond in different ways to the same input. Inputs and

outputs can be the current and next states of the system and if their relationship is not

linear, the system is nonlinear. Nonlinearity means that the outputs of a system are given

by a non-linear function of its inputs and then the change in the size of the input does not
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BirthsDeaths Number of Individuals

Figure 2.13: A simple model of population growth which involves a positive feedback
loop of increased births and a negative feedback loop of increased deaths [48].

produce a proportional change in the size of the output. Nonlinearity is closely associated

with chaos, even though not all nonlinear systems produce chaotic dynamics. Systems

theories is another feature which contributed to the development of complex systems sci-

ence. Systems theory is the interdisciplinary study of systems which developed during

and after World War II in response to the huge demand for mathematical theories to for-

mulate systems that could perform computation, control, and/or communication [172].

There is an intricate network behind each complex system. Networks represent the

interactions between the system’s components and there are extensive studies of complex

system dynamics by means of complex network theory in recent years. The study of

networks is known as graph theory in mathematics, which was started back in the 18th

century. Many systems are composed of individual parts or components linked together in

some way and their pattern of connections can be represented as a network. The scientific

study of networks, such as computer networks, social networks, and biological networks

is an interdisciplinary field that combines ideas from mathematics, physics, computer

science, biology, the social sciences, and many other areas [147].

2.5 Complex networks

A network in its simplest form represents a collection of points joined together in pairs

by lines. The points are referred to as vertices or nodes and the lines as edges or links. It

can be viewed as a graph consisting of vertices connected by edges according to a certain-

rule or form. The network is a diagrammatical representation of some physical system or

structure while the graph, on the other hand, is a mathematical notion that represents only

the structure of a network without the physical meanings [55]. Each complex system com-
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poses of an intricate network that encodes the interactions between the components of the

system. The social network, sum of all family ties, friendship, and professional, is the

fabric of the society that determines the spread of knowledge, behaviour and resources.

The cellular network composes of genes, proteins, and metabolites integrates these com-

ponents into live cells. The wiring diagram capturing the connections between neurons,

called the neural network, holds the key to our understanding of the brain functions and

consciousness [30].

Many aspects of these complex systems are worth studying. Some people study the

nature of the individual components; how a human being feels or reacts, or how a com-

puter works. Others study the nature of the connections or interactions; the dynamics

of human friendships or the communication protocols used on the Internet. Another as-

pect which is always crucial to the behaviour of these interacting systems, is the pattern

of connections between components. In a given system, the pattern of connections can

be represented as a network, the components of the system being the network vertices

and the connections the edges. Networks are the simplified representations of these com-

plex systems. They reduce the systems to abstract structures capturing only the basics

of connection patterns. Even vertices and edges in a network can be labeled with addi-

tional information, such as names or strengths to capture more details of the system, a

lot of information is usually lost in the process of reducing a full system to a network

representation [147].

We live in a connected world and its networks come in many shapes and sizes. We

interact and communicate within vast social networks, the World Wide Web (WWW)

contains nodes and links that connect branches across the Earth and the ecosystems con-

tain countless species living in different environments. All these systems represent dy-

namic networks of interacting elements. They are dynamic networks, with nodes and

links forming and disappearing over time. Network topology which defines how nodes of

the network are connected determines how its properties evolve dynamically [151].

Definition 2

A network G is a pair (V,E), where V is the vertex set of G and its elements are the

vertices of G, while E is the set of edges.

• If E is symmetric, then G is an undirected network (Fig. 2.14a).
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(a) (b) (c) (d)

Figure 2.14: (a) An undirected network of 4 vertices and 4 edges (simple network). (b) A
directed network of 4 vertices and 4 edges (simple network). (c) An undirected network
of 4 vertices, both vertices 1 and 4 have selfedges. (d) An undirected network of 4 vertices
has two vertices with multiedges. Vertices 1 and 2 connected to each other with 2 edges
and vertices 2 and 4 with 3 edges [30].

• If E is nonsymmetric, then G is a directed network or (digraph) (Fig. 2.14b).

• If E is symmetric, anti-reflexive (no selfedges) (Fig. 2.14c) and contains no multi-

edges (duplicate links) (Fig. 2.14d) then G is a simple network [70].

Definition 3

Let R ⊆ S × S be a relation in S. R is anti-reflexive if and only if ∀x ∈ S : (x, x) /∈ R.

The structure and evolution of networks behind each complex system is driven by a

common set of fundamental laws and principles. Despite the differences in form, size,

nature, age, and scope of real networks, most networks are driven by common organising

principles. Networks are often defined in terms of statistics of nodes and links. There

are many statistical measures of the topology of networks and the physical behaviour

of dynamical networks may be distinguished depending on the different values of these

measures [151].

The concept of degree is the most fundamental measure of a node in a network. The

degree of the ith node is the number ki of its existing edges. Thus, an isolated node has

degree zero. The out-degree of a node is the number of outgoing edges and the in-degree

the number of incoming edges. In a directed network, there is a distinction between

in-degree and out-degree, describing the number of incoming edges and outgoing edges

respectively. However, in an undirected network, there is no difference between in- and

out-degrees.
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(a) (b)

Figure 2.15: (a) The adjacency matrix of an undirected network of 4 nodes. The adjacency
matrix is symmetric along the diagonal. (b) The adjacency matrix of a directed network
of 4 nodes. The adjacency matrix is nonsymmetric along the diagonal [30].

Definition 4

Suppose G = (V,E) is a simple network where V = {1, 2, ..., N} is the vertex set of G, E

the set of edges and N the number of vertices. For 1 ≤ i, j ≤ N , define

aij =

1, (i,j) ∈ E,

0, (i,j) /∈ E.

Then the square matrix A = (aij) is called the adjacency matrix of G (Fig. 2.15) [70].

If the network is undirected, the adjacency matrix is symmetric along the diagonal as for

every i and j, aij = aji and aii = 0 (Fig. 2.15a). The degree of the ith node is given by

ki =
∑
j

aij. (2.5.1)

In an undirected network, the total number of links l can be expressed as the sum of

the node degrees [30]:

l =
1

2

N∑
i=1

ki. (2.5.2)

The average degree of an undirected network is

〈k〉 =
1

N

N∑
i=1

ki =
2l

N
. (2.5.3)

In directed networks, we distinguish between incoming degree kini , representing the num-

ber of edges that point to node i, and outgoing degree kouti representing the number of
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edges that point from node i to other nodes. The total degree of node i is given by

ki = kini + kouti , (2.5.4)

where kini represents its incoming degree and kouti represents its outgoing degree. Then,

the total number of links in a directed network is

l =
N∑
i=1

kini +
N∑
i=1

kouti . (2.5.5)

The average degree of a directed network is

〈k〉 =
1

N

N∑
i=1

kini +
1

N

N∑
i=1

kouti =
l

N
. (2.5.6)

In a network, each node has its degree value, some large and some small, the distribution

of nodes in the network is an important concept. The degree distribution is defined by the

probability function P (k) which represents the probability of a randomly picked node has

degree k, where each node has an equal probability to be picked and

N∑
k=1

P (k) = 1. (2.5.7)

The degree distribution has assumed a central role in network theory [55]. Most calcula-

tions of network properties require us to know P (k). For example, the average degree of

a network can be written as

〈k〉 =
N∑
k=1

kP (k). (2.5.8)

For directed networks, there are two different degree distributions, the in- and out-degree

distributions depending on the number of incoming and outgoing edges at each vertex.

Most of the large-size real-world networks have degree distributions with a tail represent-

ing the high-degree vertices (hubs) and they are called right-skewed degree distributions.

Another concept which contains essentially the same-information as the degree distribu-

tion is the degree sequence, which is the set {k1, k2, k3, ...} of degrees for all vertices in

the network [147]. The degree sequence is decreasing sequence of its vertices degrees for

an undirected network and increasing sequence for a directed network.
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2.5.1 Shortest path-length

In physical systems, the physical distance plays a key role in determining the inter-

actions between the components. Distances between two atoms in a crystal or between

two galaxies in the universe determine the forces that act between them. In networks, the

physical distance is not relevant. Two individuals that live in the same building may not

know each other while two webpages could be sitting on computers on the opposite sides

of the globe have a link to each other. The physical distance in networks is replaced by

the concept of path-length [30].

Definition 5

A walk in a network is an ordered subset of edges (not necessarily distinct)

(u1, v1), (u2, v2), · · · , (un, vn),

for which node vi = ui+1 (i = 1, 2, · · · , n−1). If vn = u1 then the walk is closed. A path

is a walk in which all the nodes ui are distinct. A closed path is called a cycle or circuit.

A graph with no cycles is called acyclic. A cycle of length 3 is called a triangle [70].

Paths can be defined for both directed and undirected networks. In directed networks,

each edge traversed by a path must be in the correct direction for that edge. While in

undirected networks edges can be traversed in either direction as dij = dji, the distance

(number of edges) between node i and j is the same as the distance between node j and i.

Path can intersect itself, i.e. visiting again a vertex it has visited before, or even running

along an edge or a set of edges more than once. Paths that do not intersect themselves are

called self-avoiding paths and they are important in some areas of network theory.

An Eulerian path is a path that traverses each edge exactly once and a Hamiltonian

path is a path that visits each vertex exactly once. A network can have one or many Eu-

lerian or Hamiltonian paths, or none. By definition, a Hamiltonian path is self-avoiding,

but an Eulerian need not be. In a network,

• The path-length is the number of links that a path contains (Fig. 2.16a),

• The shortest path-length (or geodesic path) is a path with the shortest distance d

between two nodes (Fig. 2.16b),
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(a) (b)

Figure 2.16: (a) A path between nodes 1 and 7 (blue line). The path-length = 6 links. (b)
The shortest paths between nodes 1 and 7 (blue and grey lines). Both shortest path-length
= 3 links. The graph diameter (the longest shortest path dmax) = 3 links [30].

• The diameter (dmax) is the longest shortest path in a graph, or the distance between

the two furthest nodes (Fig. 2.16b) and

• The average path-length is the average of the shortest paths between all pairs of

nodes.

For a directed network of N nodes, the average path-length L is

L =
1

N(N − 1)

N∑
i,j=1,i 6=j

di,j, (2.5.9)

where di,j is the distance between nodes i and j [30].

It is possible that there is no geodesic path between two vertices in a network if these

vertices are not connected together by a link, i.e., if they are in different components

(subnetworks) of the network. In this case, one sometimes says that the geodesic distance

between the vertices is infinite which really means that the vertices are not connected.

Geodesic paths are not necessarily unique. It is possible to have two or more paths of

equal length between a given pair of vertices. They are necessarily self-avoiding paths.

If a path intersects itself, that means it contains a loop, also called a self-loop which is

an edge (i, i) that connects a vertex i to itself. Then, it can be shortened by removing

that loop while still connecting the same start and end points, and hence self-intersecting

paths are never geodesic paths [147].

In a small-size network, finding the shortest path between two nodes is an easy task.

For a network with millions of nodes, finding the shortest path between two nodes is a

time consuming task. The length of the shortest path and the number of such paths can be
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obtained from the adjacency matrix of the network. In practice, we use the breadth first

search (BFS) algorithm [181] for this purpose. BFS is a traversing algorithm which works

for both directed and undirected networks. We should start traversing from a selected node

and traverse the network level by level exploring the neighbour nodes. A single run of the

breadth-first search algorithm finds the shortest (geodesic) distance from a single node i

to every other nodes in the network that contains the node i.

2.5.2 Clustering coefficient

The clustering coefficient measures the average probability that two neighbours of

a node are themselves neighbours. In effect, it measures the density of triangles in a

network. Many real-world networks are characterised by having relatively large number

of triangles. The first definition for a clustering coefficient was introduced by Watts and

Strogatz in 1998 [70].

Ci =
number of pairs of neighbours of i that are connected

total number of pairs of neighbours of i
, (2.5.10)

which is the fraction of pairs of neighbours of vertex i that are themselves neighbours. If li

represents the number of triangles attached to node i of degree ki then the local clustering

coefficient for a node i is defined as

Ci =
li

ki(ki−1)
2

=
2li

ki(ki − 1)
, (2.5.11)

with Ci lying in [0, 1].

• Ci = 0 if none of the neighbours of node i link to each other (e.g. a star-shaped

graph and a set of isolated nodes).

• Ci = 1 if all neighbours of node i link to each other, i.e. they form a complete

graph.

• Ci = 0.5 if there is 50% chance that two neighbours of a node link to each other.

The average clustering coefficient 〈C〉 of the whole network which represents the

probability that two neighbours of a randomly chosen node link to each other, is the
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Figure 2.17: The increase in randomness; regular network with probability (β = 0) and
random network with probability (β = 1) [12].

average of Ci over the total number of nodes N ,

〈C〉 =
1

N

N∑
i=1

Ci. (2.5.12)

The global clustering coefficient C for the entire network is given by

C =
3× number of triangles

number of connected triples
. (2.5.13)

We defined the clustering coefficient as a measure of the density of triangles in a

network. We can also look at the densities of other small groups of vertices, often called

motifs. One can define similar clustering coefficient to measure the densities of different

motifs in a network [147].

2.5.3 Random networks

If all nodes in a network have the same degree, we have a regular network. It is called

k-regular or regular of degree k if the common degree is k. The null graph which is a

network ofN nodes but no edges is 0-regular [70]. A complete graph is a fully-connected

regular network, i.e. there exists an edge connecting every pair of nodes in the network.

A fully-connected regular network with N nodes has number of edges equal to N(N−1)
2

,

average path-length L = 1 and average clustering coefficient C = 1 [55].

The extreme opposite to regular networks are completely random networks (see Fig.

2.17), where the typical model is the random graph introduced in 1959 by Paul Erdős

and Alfréd Rényi [68].
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The other model which is closely related to their random graph model was introduced

in the same year by Edgar Gilbert [84], but it is closely associated with the names of Erdős

and Rényi, who published a series of papers about the model. Most scientific papers refers

to the model as Erdős-Rényi model (ER) or Erdős-Rényi random graph. The two variant

models of random graph are

• The G(N,M) model: a graph is constructed taking N nodes and place M edges

among them at random, provided that the network should not have self-edges (self-

loop) or multiedges (i.e. a simple graph).

Another equivalent definition of the model defines the random network as a graph

that is chosen uniformly at random from the set of all simple graphs with exactly

N nodes and M edges. This random graph model is not defined in terms of a

single randomly generated graph, but as an ensemble of graphs. The properties of

random graphs generated by this model typically mean the average properties of the

ensemble. Some properties of the random graphG(N,M) are easy to calculate: for

instance, the average number of edges is M and the average degree is 〈k〉 = 2M
N

.

Other properties are not so easy to calculate, thus most mathematical works related

to random graphs have actually been conducted on by the other variant of the model

which is a slightly different model but much easier to handle [147].

• The G(N, β) model: a graph is constructed by connecting nodes randomly. Each

edge is added to the graph with probability β independently from any other edge.

The random network is generated as follows:

1- Start with N isolated nodes.

2- Choose all possible pairs of nodes, once and only once, from the N nodes, and

connect each pair of nodes by an edge with probability β ∈ (0, 1).

The larger β is, the denser the resultant network. For β = 0, we have isolated nodes

and for β = 1, we obtain a fully-connected network [55].

The expected number of edges of such a network is βN(N−1)
2

. The average node-degree is

〈k〉ER = β(N − 1) ≈ βN, (2.5.14)
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where ER refers to the Erdős-Rényi model, the average path-length is

LER ∼ ln(N)/ ln(〈k〉)ER, (2.5.15)

and the clustering coefficient is

C ≈ 〈k〉ER/N = β. (2.5.16)

The clustering coefficient of a random network represents one of several aspects in

which random networks differ form most real-world networks as many of them have quite

high clustering coefficients. In our Matlab code, we adopt the G(N, β) random graph

model to generate a random graph because this model is more convenient to program. In

the example in Fig. 2.18, we used this code to produce the range of probabilities, where

we get small average path-length L and small clustering coefficient C. We compute the

differences between L and C for all probability values β and the minimum difference

happens for β ' 0.2595. The interval around the minimum difference is the range of β

values that represents the random network property and is denoted by (β1, β2).

The G(N, β) model has a binomial degree distribution. For a randomly chosen node

in the network, its probability of being connected to k other nodes and not to any of the

rest (N − 1− k) nodes is given by the binomial distribution.

Pk =

(
N − 1

k

)
βk(1− β)N−1−k. (2.5.17)

In most cases, we are interested in properties of a large-size networks. For a largeN limit,

the G(N, β) model has Poisson degree distribution, called Poisson random graph,

P (k) =
µk

k!
e−µ, (2.5.18)

where µ = 〈k〉ER is a constant parameter. The two distributions have identical properties,

but they depend on different parameters. While the Poisson distribution depends on only

one parameter 〈k〉ER, the binomial distribution has two parameters N and β. Both distri-

butions have a peak around 〈k〉ER but Poisson distribution has a simpler form and does

not depend on the number of nodes N in the network. Therefore, networks of different

sizes and same average degree 〈k〉ER have indistinguishable Poisson degree distributions

(see Fig. 2.19). This simplicity makes it the preferred form for the degree distribution of
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Figure 2.18: Plot of L in blue and C in red versus β. The green line represents the
difference between C and L curves. In this figure, we have used N = 500. The mini-
mum difference between C and L happens for β ' 0.2595, denoted by (o). The interval
(β1, β2) represents the range of β values in which the resulting network becomes a ran-
dom network with small average path-length and small clustering coefficient.

a random network [30].

For β = 0, there are no edges in the network and the size of the largest component

(subnetwork) in the network is 1. When β = 1, every edge is connected to all others and

the size of the largest component in the network isN . The size of the largest component in

the first case is independent of the number of nodes N in the network while in the second

case, it is proportional to N and is called a giant component. One of the interesting

aspects of random graphs is that the increase of the size of the largest component doesn’t

occur gradually with the increase of β. It undergoes a sudden change from constant size

to extensive size at one particular value of β.

The G(N, β) model is one of the best studied models of networks. It makes an useful

source of insight into the structure of other networks. However, random graphs have

some severe shortcomings as a network model. Its clustering coefficient tends to zero

in the limit of large N and even for finite values of N , the typical clustering coefficient

of random networks is very small. Also, real-world networks show grouping of nodes

into communities but there is no similar structure in random networks. There are many

other structures of real-world networks which are absent in random networks. The shape

of the degree distribution of random graph is the most significant aspect in which the

properties of random networks differ from those of real-world networks. While most

real-world networks have right-skewed degree distribution which have small number of
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Figure 2.19: Binomial and Poisson distributions of a random network with N =
102, 103, 104 and 〈k〉ER = 50. The Poisson degree distribution is independent of the
network size N [30].

nodes of high-degree “hubs” in the tail of the distribution, random networks have Poisson

degree distribution. Poisson curve decays exponentially fast when k moves away from

〈k〉ER which implies that nodes with too large or too small degree can hardly be found

[55]. These properties of the Poisson random graph make it inadequate to explain many

interesting aspects of networks [147].

The ER random graph has already been generalised to be more adequate in describing

many of the real-world networks [55]. One can modify it so that it is no longer restricted

in having a Poisson distribution. There are many ways to define random networks with

general degree distributions. One of the most widely studied generalised random graphs

is the Configuration model, developed by Bender and Canfield in 1978 [34]. The con-

figuration model is specified in terms of a degree sequence but it allows to generate a

random network with the same degree sequence or same degree distribution with a given

network. We can construct a random graph using a given degree sequence by choosing

a uniformly random matching on the degree “stubs” (half edges). This process generates

all the possible matchings of stubs with equal probability (i.e. each stub is equally likely

to be connected to any other). However, the number of stubs must be even to avoid no

dangling stubs leftover. The configuration model does not construct simple networks as

the random graph. Self-loops and multiedges are allowed in the configuration graph. The

process of random permutation allows self-loops (created when picking two stubs from
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(a) (b)

Figure 2.20: (a) Nodes of a network with their stubs (half the edges that are connected to
each node). (b) The rewired pairs of the network: node 1 is reconnected to node 4 and
also reconnected to node 2, node 2 is reconnected to node 3 and also reconnected to node
5, etc. Notice that node 1 is reconnected to node 2 which is a multiedge, and node 1 is
reconnected to node 1 again, which is a self-loop [57].

the same node) and multiedges (created when picking pairs of stubs from the same pairs of

nodes). Therefore, the generated graphs are not simple graphs but hypergraphs in which

an edge can join any number of vertices. However, the self-loops and multiedges repre-

sent a tiny fraction of all edges. One can ignore their existence in configuration graphs

as their average number is a constant and tends to zero when the number of nodes in a

graph is very large that makes it closer to being simple graph. Avoiding the creation of

self-loops and multiedges may result in a generated network which is no longer drawn

uniformly [147]. One can remove such edges by rewiring them to another randomly cho-

sen node. Such small change can preserve the degree sequence and also does not perturb

too much the results of the mathematical analysis. However, rewiring does not guarantee

that we obtain a simple graph.

Figure 2.20 shows an example of the “stub matching” construction of a configuration

model for random graphs. Figure 2.20a shows both the nodes with their stubs which rep-

resent the initial contents of an array Y and Fig. 2.20b the wired up network defined by

the in-order sequence of pairs given in the array, which has been replaced with a random

permutation of Y .

2.5.4 Scale-free networks

The ER random networks model assumes the number of nodes N is fixed. In contrast,

most real-world networks such as the World Wide Web (WWW) and citation networks

grow very fast as a result of a growth process that continuously increases N . In real-

world networks, nodes have the tendency to connect to nodes with higher degrees which
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gradually turn into hubs. The presence of these few highly connected nodes (the hubs)

represents the organising principle that we call the scale-free property [30].

In random networks, the degree distribution is described by the Poisson distribution

which peaks at the average degree 〈k〉 and decays as k → 0,∞ (i.e. highly connected

nodes, or hubs, don’t exist) [55]. Real-world networks have power-law distributions. The

relation between the logarithm of the degree distribution Pk and the node degree k is given

by

ln(Pk) = −γln(k) + c, (2.5.19)

where γ and c are constants. By taking the exponential of both sides of (2.5.19), we obtain

Pk = Ck−γ, (2.5.20)

where C is another constant. Equation (2.5.20) is called power law distribution and the

exponent γ is its degree exponent. The range 2 ≤ γ ≤ 3 represents the typical values

of the degree exponent although values outside this range are also observed occasionally.

In general, degree distributions do not follow power law distribution over their entire

range. Power law is obeyed in the tail of the distribution, for large values of k, but not

for small k [147]. Networks whose degree distributions follow a power law distribution

and are independent of the connectivity scale are called scale-free networks. In directed

networks, each node is characterised by either its in- or out-degree. Therefore, we have

two degree distributions, Pkin and Pkout as the scale-free property applies separately to the

in- and out-degrees. Both can be approximated by a power law,

Pkin ∼ k−γin ,

Pkout ∼ k−γout ,
(2.5.21)

where γin and γout are the degree exponents for in- and out-degrees [30].

The main difference between scale-free and random networks comes in the tail of

the degree distribution which represents the region with high-degree node, or hubs (Fig.

2.21). The tendency of a forthcoming node to connect itself with nodes of high degree

is referred to as preferential attachment which reflects the so-called “rich gets richer”

phenomenon, or Matthew effect. The term preferential attachment was coined in 1999

by Albert-László Barabási and Réka Albert [29] who proposed a model of a growing
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Figure 2.21: Poisson distribution (green line) of random networks and power law distri-
bution (violet line) of scale-free networks. The vertical grey line represents the average
node degree 〈k〉 for both networks [30].

network; the Barabási-Albert (BA) model [15]. The BA model can generate undirected

scale-free networks and shows that growth and preferential attachment are responsible for

emergent phenomena in scale-free networks.

The BA algorithm is the following:

- Growth: Start from a connected network of small size m◦ ≥ 1, add one new node to

the existing network each time. The new node is connected to m existing nodes in the

network simultaneously, where 1 ≤ m ≤ m◦.

- (Linear) Preferential attachment: The incoming new node is simultaneously connected

to each of the m existing nodes, according to the probability

Pi = ki∑N
j=1 kj

,

where ki is the degree of node i [55]. The average node-degree of the BA scale-free

network is approximately equal to 2m. The average path-length of the BA scale-free

network is

L ∼ lnN

lnlnN
. (2.5.22)

The clustering coefficient of BA model follows

〈C〉 ∼ (lnN)2

N
, (2.5.23)

and its degree distribution is approximately given by the power law

P (k) ∼ 2m2k−γ, (2.5.24)
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where 2m represents the average node degree of the BA network and γ = 3 characterises

the network topology [55]. The degree distribution of BA model reveals the close rela-

tionship between topology and dynamics of the network. In BA model, many nodes are

randomly connected by short paths and that means L is not very large in BA model. The

term (lnN)2 in (2.5.23) increases the clustering coefficient for large N and therefore, BA

networks are locally more clustered than random networks [30].

2.5.5 Small-world networks

The small-world effect, also known as six degrees of separation is often associated

with the psychologist Stanley Milgram’s letter-passing experiment in the 1960s [190]. In

Milgram’s experiment, people were asked to send a letter from an initial recipient to a

distant target person by passing it from one acquaintance to another through the social

network. It states that if we choose any two individuals anywhere in the world, we will

find a path of at most six acquaintances connecting them [147]. In mathematical terms,

the small-world effect implies that the distance between any two randomly chosen nodes

in a network is small. Hence, the small-world effect is defined by

L ∝ log(N), (2.5.25)

where L is the typical distance between any two randomly chosen nodes (the number of

steps required) and grows proportionally to the logarithm of the number of nodes N in

the network.

The Watts-Strogatz (WS) model is a family of small-world networks formulated by

Duncan Watts and Steve Strogatz in 1998 [197]. The WS model has small-world (SW)

properties, i.e. high clustering coefficient and small average shortest path-length. WS

network can be generated by the following algorithm (rewiring method):

1- It first creates a ring lattice withN nodes of mean degree 2K as each node is connected

to its K nearest neighbours on either side, where K is a small integer.

2- For every pair of connected nodes in the ring, rewire the edge in such a way that the

beginning end of the edge is kept but the other end is disconnected with probability β and

reconnected to a randomly chosen node from the ring.

The rewiring process is performed edge by edge, once only, and the rewired edge

cannot be a duplicate or self-loop [55]. The randomly placed edges are commonly referred
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(a) β = 0.3 (b) β = 0.5

(c) β = 0.8

Figure 2.22: Plots of average shortest path-length L versus the logarithm of the number
of nodes N for different size networks, log(N) with K = 2 and for different values of β,
(a) β = 0.3, (b) β = 0.5 and (c) β = 0.8. The red points represent L as a function of log(N)
for each network and the blue lines are fitting lines to the red points.

to as shortcuts because they create shortcuts from one part of the ring lattice to another.

We implemented a Matlab code for the rewiring method for ring lattices. For increasing

probability β, it computes the average shortest path-length L for each resulting graph and

plots them versus the logarithm of the number of nodes N in each graph (Figs. 2.22).

The rewiring process in WS network can destroy the network connectivity by possibly

creating some unconnected subnetworks. Later, a simplifying modification was made by

Newman and Watts (NW) by replacing “random rewiring edges” with “random adding

edges” (see Fig. 2.23). The NW algorithm is as follows:

1- Start from a ring with N nodes, in which each node is connected to its 2K neighbours,

where K > 0 is an integer (usually small).

2- For every pair of originally unconnected nodes, with probability β, add a new edge to

connect them.

In NW networks, one introduces new shortcut edges just as in the WS model, but

without removing edges from the ring substrate. For each edge in the ring-shaped net-
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Figure 2.23: Two small-world network models: (a) Watts-Strogatz (WS) network model.
(b) Newman-Watts (NW) network model [55].

work, there is an independent, uniform probability β of adding a shortcut between a pair

of nodes that are chosen uniformly at random. Thus, no disconnected parts can appear in

NW networks [203].

The average shortest path-length L of a WS small-world network is given by

L =
2

N(N − 1)

N∑
i=1

N∑
j=1

dij, (2.5.26)

where dij is the number of edges in the shortest path between nodes i and j and, N is the

number of nodes in the network. The local clustering coefficient of node i, Ci is the ratio

of the actual number of edges between all neighbours of node i over the expected number

of edges between all neighbours of node i and is represented by

Ci =
2li

ki(ki − 1)
, (2.5.27)

where li represents the number of triangles attached to node i of degree ki. The global

clustering coefficient is

C =
3× Number of triangles

Number of connected triples
, (2.5.28)

where a triangle consists of 3 nodes that are completely connected to each other and a

connected triple consists of three nodes i, j, k such that node i is connected to node j and

node j is connected to node k.
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Figure 2.24: Plot of the average path-length L in blue and clustering coefficient C in
red versus probability β. The green line represents the difference between C and L as a
function of β.

The degree distribution of the WS small-world network is given by

P (k) =

min(k−K,K)∑
i=0

(
K

i

)
(1− β)iβK−i

(Kβ)k−K−i

(k −K − i)!
e−Kβ (k ≥ K), (2.5.29)

with k represents the node-degree and K > 0 is a small integer where 2K is the initial

connections for each node to its nearest neighbours [55].

The regular ring lattice for β = 0 is a highly clustered network (large-world) where

L grows linearly with N and the random graph for β = 1 is a poorly clustered network

(small-world) where L grows logarithmically with N . The small-world network results

from the immediate drop in L caused by the introduction of a few shortcuts. For small β,

each shortcut has a nonlinear effect on L and is reducing the distance not just between the

pair of nodes but also in its immediate neighbourhood. By contrast, an edge rewired from

a clustered neighbourhood to make a shortcut has, at most, a linear effect on C [197].

Figure 2.24 shows both the effects on the average path-length L and clustering coefficient

C when β increases from 0 to 1. For a wide range of β values the resulting network

becomes a small-world network with a small average path-length and a large clustering

coefficient.

The class of small-world networks represents a middle ground between regular and

random networks (Fig. 2.17), i.e, they have high clustering coefficient like regular net-

works, and small average path-lengths as random networks . The small-world networks
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Figure 2.25: The values of σ for three types of networks: regular (blue), small-world
(red) and random (based on the configuration model) (green) for different network sizes
N . The lines are linear fittings to the data-points. The slope for the blue line (regular
network) is 0.0043, the slope for the red line (small-world network) is 0.07 and the slope
for the green line (random network) is 0.0002.

such as the Internet and neural networks also have other structural properties different

from those of random or regular networks which resemble those of small-world networks.

2.5.6 Quantifying Watts-Strogatz small-world networks

The structural properties of small-worldness can be quantified by comparing the average

shortest path-length L and clustering coefficient C of a given network to a random net-

work with the same degree probability distribution function (pdf) and same network size

N [33]. We first compute the average local clustering coefficient C of the studied net-

work and the average of the local clustering coefficients of a large number n of random

networks, 〈Cr〉n, of the same degree pdf with the studied network and using the configu-

ration model, the average shortest path-length L of the studied network and the average

shortest path-length of the same n random graph networks, 〈L〉n [20].

The small-world networks are in between the limits of regular networks with large L

and C and random networks with small L and C. To quantify small-worldness we use the

ratios [33],

µ =
L

〈Lr〉n
, γ =

C

〈Cr〉n
. (2.5.30)
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A simple measure of small-worldness can then be defined as

σ =
γ

µ
. (2.5.31)

The higher σ is from unity for a given network, the better it displays the small-world

property. We implemented a Matlab code to quantify three types of networks; regular,

small-world and random networks (based on the configuration model) for different sizes

N . In Fig. 2.25, the slopes for the regular and random networks are closer to 0 and

that indicates that both networks do not have small-world properties. However, in the

case of the small-world network, the slope is about 0.07 which indicates that σ increases

beyond 1 as the size of the network grows. This result shows that for large-size small-

world networks, σ is higher than one. That shows that the network acquired the main two

properties of a small-world network; namely, small average shortest path-length and high

clustering coefficient.



Chapter 3

Biological neuron models

Introduction
In this chapter, we will discuss properties of biological neuron models. First, we

briefly review the anatomy of both the nerve cells (neurons) and the brain. Then, we will

explain why we should think about the brain as a complex network and in particular, as a

small-world network. Quantitative mathematical models have proved to be an indispens-

able tool in understanding neural dynamics and transmission of information. We discuss

the Hindmarsh-Rose system which models the spike-bursting behaviour of the membrane

potential of a single neuron and provides a mathematical description of neuronal activity.

3.1 The neuron

The nervous system is, in effect, a communication system transmitting electro-chemical

impulses and the structural units of this communication system are the individual nerve

cells or neurons [74]. Neurons are cells that receive, process, and transmit information to

other nerve cells, muscle, or gland cells. Although neurons are highly diversified in both

structure and function, a typical neuron has all the parts that any cell in the body would

have, and also few specialised structures that set it apart. Its parts can be divided into:

the soma or cell body, the dendrites, and the axon (Fig. 3.1a). The soma contains the

nucleus, which in turn contains the genetic material in the form of chromosomes. Neu-

rons have a large number of tree-like cellular extensions called dendrites. The dendrites

are the primary sites for receiving and integrating information in the form of chemical

messages from other neurons [188]. Dendrites typically branch and get thinner with each

branching, and extend their farthest branches a few hundred micrometers from the soma.

The dendritic branches are often crucial to the neuron’s function. The axon is another ex-



3.1 The neuron 67

(a) (b)

Figure 3.1: (a) The three basic parts of a neuron: the soma (cell body) containing the
nucleus, the dendrites which are short branches off the cell body that receive incoming
impulses and a single long axon that carries impulses away from the cell body and to the
next neuron [7]. (b) Different types of branching in neurons [3].

tension from the cell body. It can extend for great distances and often gives rise to many

smaller branches before ending at axon terminals (Fig. 3.1b). These axon branches enable

the neurons to communicate with many target cells. But unlike dendrites, axons usually

maintain the same diameter as they extend. The purpose of the axon is to transmit electro-

chemical signals to other neurons. Sometimes, that happens over a considerable distance,

like in the neurons that make up the nerves running from the spinal cord to one’s toes,

the axons can be as long as three feet! Longer axons are usually covered with a myelin

sheath, fatty cells which have wrapped around an axon many times. Myelin sheaths serve

a similar function as the insulation around electrical wire.

The human brain has a large variety of shapes and sizes of neurons but most neurons

can fit in one of two classes: principle neurons and interneurons. Principle neurons are the

largest neurons in a given region of the brain and they control what kinds of messages will

be sent out to the other regions through their myelinated axons. Whereas, interneurons

come in a variety of shapes and sizes, they do not send their axons out to other regions.

They connect neurons within specific regions of the central nervous system [188]. The

structural classification of neurons depends on many aspects such as polarity, location

and function. Most neurons can be anatomically characterised as unipolar, bipolar, pseu-

dounipolar and multipolar (Fig. 3.2a). Other neuron types can be identified according to

their location in the nervous system and their distinct shape such as the pyramidal, gran-

ule, Purkinje and basket nerve cells (Fig. 3.2b). There is a very tiny gap between the axon

ending and the dendrite of the next neuron and is called the synapse. Synapses are spe-



3.1 The neuron 68

(a) (b)

Figure 3.2: (a) Classification of neurons depends on their polarity: unipolar, bipolar,
pseudounipolar and multipolar [4]. (b) Three neurons with distinct shapes: pyramidal
(A), granule (B) and Purkinje (C) [13].

cialised structures where neurotransmitter chemicals are released to communicate with

target neurons by chemically modifying the properties of the gap [147]. They compose of

three main parts: the presynaptic endings which contain the neurotransmitters (inside the

synaptic vesicles), the postsynaptic endings which contain the receptors and the synaptic

cleft between them (Fig. 3.3). The most common types of synapses in the brain are the

chemical synapses, in which the presynaptic neuron triggers the release of chemical mes-

sengers, the neurotransmitters through the voltage-gated ion channels. Neurotransmitters

diffuse across the synaptic cleft and bind to specialised receptors of the postsynaptic cell.

Most of these receptors are ligand-gated ion channels which open to allow ions to pass

Figure 3.3: The typical structure of a synapse composes of presynaptic neuron, postsy-
naptic dendrite and the synaptic cleft. The neurotransmitters diffuse across the synaptic
cleft and bind to the specialised receptors [14].
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(a) (b)

Figure 3.4: (a) The neurotransmitters bind to a specific location on the extracellular sur-
face of the channel protein and the pore opens to allow selected ions to go through [8].
(b) The typical shape of an action potential that passes through a neuron, consists of four
stages: depolarisation, repolarisation, hyperpolarisation and the resting potential [1].

through (Fig. 3.4a). The voltage-gated ion channels are proteins embedded in the plasma

membrane. They are usually ion-specific; sodium Na+, potassium K+, calcium Ca2+,

and chloride Cl− ions channels have been identified. Neurotransmitters, either excite or

inhibit the postsynaptic neuron. Glutamate and dopamine are two types of neurotransmit-

ters which have excitatory effects on the neuron. Whereas, inhibitory neurotransmitters

such as gamma-aminobutyric acid (GABA) and serotonin keep the excitatory system from

becoming overactive.

Apart from chemical synapses, neurons can also be coupled by electrical synapses

which allow electrical signals to travel quickly from the presynaptic cell to the postsynap-

tic cell. Specialised membrane proteins make the direct electrical connections between

the two neurons [82]. Chemical synapses can be excitatory or inhibitory while electrical

synapses are excitatory only. The excitation leads to the firing of an action potential (also

called spike or impulse) while inhibition prevents the propagation of the electrical signal.

In all types of cells, there is an electrical potential difference between the inside of

the cell and the surrounding extracellular fluid and is termed the membrane potential of

the cell. This phenomenon is especially important in nerve cells, because changes in their

membrane potentials are used to code and transmit information. The action potential

is the rapid rise and subsequent fall in voltage or membrane potential across the cellular
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membrane of the neuron. Sufficient current must be administered to the neuron in order to

raise the voltage above the threshold voltage (about -55 mV) to start membrane depolari-

sation which is caused by opening of sodium channels in the cellular membrane, resulting

in a large influx of sodium ions. That is followed by rapid sodium channel inactivation

as well as a large efflux of potassium ions resulting from activated potassium channels

which causes the membrane repolarisation. Hyperpolarisation is a lowered membrane

potential caused by the slow closure of the potassium channels. Then, the membrane po-

tential returns to the resting voltage (resting potential, the value of which is in general

about -70 mV) that occurred before the next stimulus (see Fig. 3.4b). While an action

potential is in progress, another one cannot be initiated. This effect is referred to as the

refractory period. It has two phases; the absolute refractory period, in which the neu-

ron cannot spike no matter how the strength of the stimulus is and the relative refractory

period, in which the neuron can spike given a sufficiently strong stimulus. In case that

the membrane potential does not reach the threshold value, the neuron respects the all or

none principle and no action potential is fired [63].

In addition to nerve cells, there are non-neuronal cells in the central nervous system

called glial cells or neuroglia. They are quite different from nerve cells, glia do not

participate directly in synaptic interactions and electrical signaling. They provide support

and protection for neurons and their supportive role help define synaptic contacts and

maintain the signaling abilities of neurons [160].

3.2 The brain

The brain is a jelly-like mass of tissue containing a staggering number of neurons. In

the adult human brain, there exists approximately 86 billion neurons [23, 127] interacting

through approximately 150 trillion synapses [127, 154]. It is divided into left and right

cerebral hemispheres that are separated by a groove filled with cerebrospinal fluid (Fig.

3.5a). Each of these hemispheres has an outer layer of grey matter, the cerebral cortex

which gives the brain its characteristic wrinkly appearance and supported by an inner layer

of white matter. The grey matter consists of neuron cell bodies and subcortical nuclei is

the site of neuronal interactions [188]. Each hemisphere has been divided into four lobes:

frontal, parietal, temporal and occipital (see Fig. 3.5b). The frontal lobe is the biggest
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(a) (b)

Figure 3.5: (a) The right hemisphere of the brain is responsible for the control of the left
side of the body and the left hemisphere is responsible for the control of the right side of
the body [2]. (b) Each hemisphere is divided into four lobes: frontal, parietal, temporal
and occipital [6].

part of the brain and located at the front of each cerebral hemisphere. It looks after func-

tions associated with attention, short-term memory tasks, planning, and the control of our

behaviour and emotions. The parietal lobe is located above the occipital lobe and behind

the frontal lobe. The parietal lobe is important in language processing and contains the

primary sensory cortex which controls inputs from the skin (touch, temperature, and pain

receptors). The temporal is the portion of the cerebral cortex laying roughly above the

ears and includes the auditory areas, each receiving information primarily from the oppo-

site ear. The occipital lobe is the visual processing centre of the brain. Several regions

of the occipital lobe are specialised for different visual tasks, such as color differentia-

tion, visuospatial processing and motion perception. In addition to the brain lobes, other

important regions in the brain such as the cerebrum, thalamus, hippocampus, cerebellum

and brainstem perform and coordinate many other functions of the brain and connect it to

the spinal cord [188].

3.3 Brain plasticity

The capacity to change is a fundamental characteristic of nervous systems. Brain

plasticity, also known as neuroplasticity, can be defined as the ability of the nervous sys-

tem to change its activity in response to stimuli by reorganising its structure, functions or

connections. Understanding brain plasticity is obviously of considerable interest because
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it provides a window to understanding the development of the brain and behaviour and

allows insight into the causes of normal and abnormal behaviour [41, 116, 135].

One of the main properties of neurons is their ability to modify the strength and ef-

ficiency of synaptic transmission through a diverse number of activity-dependent mech-

anisms which are typically referred to as synaptic plasticity. At the single cell level, it

refers to changes in the connections between neurons, whereas non-synaptic plasticity

refers to changes in their intrinsic excitability. Furthermore, synaptic plasticity can be

classified as either short-term or long-term because it happens at different time scales,

from tens of milliseconds to life-long changes in synaptic transmission [91]. Synaptic

plasticity is essential to the development and function of the brain, especially for mem-

ory and learning processes [135]. The Hebbian theory, also called Hebb’s rule, was a

leading attempt to explain synaptic plasticity and the adaptation of brain neurons during

the learning process. It was introduced by the Canadian psychologist Donald Hebb in his

book “The Organisation of Behaviour” in 1949 [89]. It states that: ‘’When an axon of

cell A is near enough to excite cell B or repeatedly or persistently takes part in firing it,

some growth process or metabolic change takes place in one or both cells such that A’s

efficiency, as one of the cells firing B, is increased‘’ [81, 89]. It claims that an increase

in synaptic efficiency arises from a presynaptic neuron’s repeated and persistent stimula-

tion of a postsynaptic cell. Hebb’s theory is often summarised by Siegrid Löwel’s phrase:

‘’Cells that fire together, wire together‘’ [91, 132].

Brain plasticity is used in a broader context to indicate changes that occur throughout

life either at the synapse or whole neurons or even at entire brain regions [91]. It allows

an individual to adapt to a rapidly changing environment through strengthening, weak-

ening, pruning, or adding of synaptic connections. Among the many factors that affect

neuronal structure and behaviour are experiences, genetic factors, diseases, hormones and

psychoactive drugs [116]. There are two types of neuroplasticity:

• Functional plasticity: The brain’s ability to adapt to loss of or damage to tissue by

transferring all or part of the functions previously performed by those damaged ar-

eas to other regions. The degree to which the brain is able to do this successfully

has been called functional reserve, the ability of the brain to cope with increas-

ing damage while still functioning adequately and that depends on several factors,
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including age and health status of the brain.

• Structural plasticity: The brain’s ability to actually change its physical structure by

rewiring its connections as a result of learning and training.

Less is known about the possibility that plastic changes in neuronal circuits are likely to

be the basis of pathological behaviour. Many drug addicts often show cognitive deficits

and it seems reasonable to propose that at least some of these deficits could arise from

abnormal neuronal circuitry [116]. The brain plasticity concept is not part of the research

subject in the thesis and we did not deal with it. Still, it is an important concept related to

the proper functioning of the brain and needs to be discussed.

3.4 Brain dynamical networks (BDNs)

Complex networks model the behaviour of systems that are composed of thousands or

millions of interacting elements. They display diverse and organised patterns which are

the outcome of highly structured and selective coupling between these elements through

an intricate web of connectivity [183]. It is useful to approach the interactive nature of

brain function from a complex network perspective. This approach can provide us with

fundamental insights into the means by which thousands of simple elements can organise

into complex and dynamic patterns. The collective actions of individual neurons linked

together by a dense web of connectivity, shape our thoughts and behaviour, retrieve mem-

ories and create consciousness. To fully understand brain function, we need to approach

the brain on multiple scales, by identifying the networks that bind the neurons. Brain

networks compose of multiple spatial scales, from the microscale of individual cells and

synapses to the macroscale of cognitive systems and embodied organisms [183].

Small-world networks lie in between regular and random networks but have the ben-

efits of both configurations; short average path-length and high clustering coefficient.

The small-world configuration represents an attractive model for the organisation of brain

anatomical and functional networks. Its topology can support both segregated (spe-

cialised) and distributed (integrated) information processing in brain networks [22]. The

high clustering in small-world network is compatible with segregated or modular pro-

cessing and its short path-length is compatible with distributed or integrated processing

of information [33].
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The network efficiency of information transmission is an alternative metric that can be

related to average path-length L and clustering coefficient C. The global efficiency can

be represented as the inverse of the average path-length between all pairs of nodes in the

network, Eglob ∼ 1
L

. The shorter the average path-length, the more efficient the network.

Global efficiency is preferable to average path-length as a metric of brain network topol-

ogy. It is related to the efficiency of the system for information transmission between any

two nodes via multiple parallel paths as we know the brain instantiates parallel processing

[19]. Also, we can define the local efficiency of a network as proportional to the clustering

coefficient C, Eloc ∼ C [33].

Another aspect related to the small-world brain network topology is the economic

problem of cost-effective information processing. Many parts of brain structure are com-

patible with a selection to minimise wiring costs; the separation of visual cortical areas,

the segregation of white and grey matters and the scaling of the number of areas/neuronal

density with brain size. However, that can allow only local connections and not long-

distance connections which could lead to delay in information transfer. By adding several

long-distance connections, the brain minimises energy costs and creates a small-world

network [33]. Watts and Strogatz (1998) indicate that with the increasing of random con-

nections in a regular network by only 4%, the network efficiency can be increased by

a staggering 40%! Thus, the small-world model is of special interest when describing

human brain networks. It is well suited for complex brain dynamics (e.g. a high rate of

information transmission) because it supports efficient information segregation and inte-

gration with low energy and wiring costs [197].

The graphical analyses of cortical networks preceded the mathematical development

of the small-world model. Later, many aspects of the anatomical connectivity had been

identified to be compatible with the structure of the small-world networks. The neural

network of the Caenorhabditis elegans worm was the first to be formally quantified as

a small-world network. The brain of C. elegans is simple and almost every specimen of

the worm has the same wiring pattern which has been exactly described in terms of the

2462 synaptic connections between each of 282 constituent neurons. The characteristics

of its network were found neither random nor regular but a small-world network, with an

average path-length of L = 2.65 and an average clustering coefficient of C = 0.28 [197].

The primary information processing element in the brain is the neuron which com-
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bines several inputs to generate a single output. The output signal of the presynaptic

neuron must be conveyed through synapse to reach the postsynaptic neuron. If inputs

to neurons are excitatory, they increase the chance of firing. Otherwise, inhibitory inputs

make the receiving neuron less likely to fire. The combination of excitatory and inhibitory

inputs allows neurons to perform quite complex information processing tasks, while brain

regions which each consists of large number of neurons can perform tasks of extraordi-

nary complexity. In the thesis, we use simplified models of brain networks by reducing

the amount of detailed information. In network terms, nodes can represent the functional

units, information sources or brain regions and edges can represent the connections be-

tween them [147].

3.5 Biologically inspired neuron models

The fundamental building block of every nervous system is the neuron. Neurons have

remarkable numbers of shapes, sizes and functions, and therefore exhibit many different

types of dynamics [119]. Understanding the dynamics and computations of single neurons

and their role within brain dynamical networks is therefore at the core of neuroscience

[94, 185].

Neuronal modelling is the process that produces a mathematical structure which in-

corporates the biophysical and geometrical characteristics of a biological neuron. This

structure is referred to as a model of the neuron which serves a number of purposes such

as; it can be used as the basis for estimating the biophysical parameters of real neurons

or it may be used to define the computational and information processing properties of

a neuron [128]. Quantitative models have been designed to address the question: how

do single-cell properties contribute to information processing and, ultimately, behaviour?

Later, experiments with single-cell models led to the development of data analysis tools

for efficient parameter estimation and assessment of model performance. A delicate bal-

ance is required between incorporating sufficient details to account for complex neuron

dynamics and reducing this complexity to the essential characteristics to make a model

tractable. Incorporating every biological detail of the investigated neurons is likely to

obscure the focus on the essential dynamics whereas highly abstract processing schemes

casts doubt on the biological relevance of specific findings. It remains unclear which level
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of neuron modelling is appropriate to understand the dynamics and computations carried

out by the brain network. However, by understanding how neurons operate as part of a

network can help us assess the appropriate level of detail required for modelling as that

depends on the particular goal of the model. Deriving model parameters from experi-

mental data has its own problems: how should we deal with the cell-to-cell variability

of parameters values? In general, the dynamical behaviour of single-cell models is not a

monotone function of their parameters [94].

Neuron biological models can be divided into two categories according to the physical

units of the interface of the model. Each category could be further divided according to

the abstraction/detail level:

• Electrical input-output membrane voltage models: models in this category describe

the relationship between neuronal membrane currents at the input stage, and mem-

brane voltage at the output stage. The types of models in this category include:

– Integrate-and-fire [46].

– Leaky integrate-and-fire [186].

– Fractional-Order Leaky integrate-and-fire [187].

– Exponential integrate-and-fire [32, 44].

– Compartmental models [124].

• Natural input stimulus neuron models: models in this category were derived fol-

lowing experiments involving natural stimuli such as sound, light, touch or odour.

The average response of several different spike patterns often converges to a clear

pattern. The types of models in this category include:

– Non-homogeneous Poisson process model [90, 161].

– Two-state Markov model [152].

The integrate and fire neuron model is probably the best-known and the most widely

used model for analysing the behaviour of neural systems. The signals received by a

neuron via its synaptic contacts rise its membrane potential as the result of the stimula-

tion and an action potential (spike) is generated when the membrane potential reaches a

threshold. These signals are labelled as excitatory or inhibitory depending upon whether
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the membrane potential is depolarised or hyperpolarised. The spike provides a stimu-

lus to neighboring neurons. At the beginning of the spike time, currents of appropriate

shapes are injected into neighboring neurons [46, 119]. This complicated process is de-

scribed by the Hodgkin-Huxley (HH) model which is a neuronal model developed by Alan

Hodgkin and Andrew Huxley in 1952 [101]. The model consists of three coupled first or-

der nonlinear ordinary differential equations, known as the Hodgkin-Huxley equations

which describe the ionic mechanisms underlying the initiation and propagation of action

potentials in the squid giant axon:

Iion = ḡNam
3h(Vm − ENa) + ḡkn

4(Vm − Ek) + ḡL(Vm − EL),

ṁ = αm(V )(1−m)− βm(V )m,

ḣ = αh(V )(1− h)− βh(V )h,

ṅ = αn(V )(1− n)− βn(V )n,

(3.5.1)

where Vm is the membrane potential, Ek the equilibrium potential and Iion the total ionic

current. The sodium conductance is modelled with gates of types m, h and the potassium

conductance is modelled with gates of type n. ḡNa, ḡk are voltage-dependent quantities

and the leakage current gL is a constant [101, 146]. The Hodgkin-Huxley model will

continue to play an active role in our understanding of neural information processing but

because of its complexity and limitations, several simplified neuronal models have also

been developed such as the Fitzhugh-Nagumo model [75]. There are many forms of the

equations in the Fitzhugh-Nagumo model. In general, it is a 2-dimensional model given

by:

V̇ = f(V )−W + I,

Ẇ = a(bV − cW ),
(3.5.2)

where V is the membrane potential, W a recovery variable, I the magnitude of the stimu-

lus current and a, b and c are constant parameters. The function f(V ) = V − V 3

3
is a third

order polynomial that provides the positive feedback, while the slower recovery variable

W provides the negative feedback [192].
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3.6 The Hindmarsh-Rose model

The Hindmarsh-Rose (HR) model developed by Jim Hindmarsh and Malcolm Rose

(1982-1984), is a system for neuronal activity which studies the spike-bursting behaviour

of the membrane potential of a single neuron. It can be seen either as a simplification of

the Hodgkin-Huxley model or a generalisation of the Fitzhugh-Nagumo model. The HR

model not only simplifies the HH model but it also mimics almost all the behaviours of

real, biological neurons [110, 185]. The HR 1984 model comprises three nonlinear ordi-

nary differential equations and thus, has three dynamical variables, namely x(t), y(t), and

z(t) written in dimensionless units. The relevant variable x(t) is the membrane potential.

The two other variables are y(t) and z(t), which represent the transport of ions across the

membrane potential through the ion channels. The rate of transport of ions through the

fast ion channels is measured by y(t), which is called the spiking variable (also known

as the recovery current). The transport of other ions is made through the slow channels,

and its rate is measured by z(t), which is called the bursting variable (also known as the

adaptation current). The system is given by

dx

dt
= y − ax3 + bx2 − z + Iext,

dy

dt
= c− dx2 − y,

dz

dt
= r[s(x− x◦)− z],

(3.6.1)

where a, b, c, d, s, r, x◦ and Iext are the system’s eight parameters. It is common to fix

the values of some of them and let the others be control parameters. Iext mimics the

membrane input current for biological neurons. It is usually taken as a control parameter

and its value ranges between −10 and 10. The other control parameters are a, b, c, d and

when fixed, they take the values a = 1, b = 3, c = 1, d = 5. r modulates the slow

dynamics of the system by controlling the speed of variation of the slow variable z(t) and

takes value of the order of 10−3. The parameters that are kept fixed are s = 4 and the

resting potential x◦ = −1.6 [20, 21, 98, 185]. It is worth mentioning that as the parameter

r is set to a very small value, it divides the model into a fast subsystem (i.e. the first two

equations) and a slow subsystem, the third equation [108].

The original HR system is the 2-dimensional HR 1982 model. It is a two-variable

model of the action potential which is a modification of the Fitzhugh 1961 model [97, 98].
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Figure 3.6: The changes in x and y as the state changes up the narrow channel between
the x- and y-nullclines (thin lines) from C to A are ∆x and ∆y which cause the long
interspike interval. The closed curve A, B, C, A represents the firing limit cycle (thick
line) in HR 1982 model [97, 184].

dx

dt
= a(y − f(x) + I(t)),

dy

dt
= b(g(x)− y),

(3.6.2)

where x is the membrane potential, y the recovery variable, I(t) the applied current as

function of t and a, b are time constants. f is a cubic and g a linear function. However,

the model does not provide a very realistic description of the rapid firing of the neuron.

In an attempt to achieve a more realistic description of firing, Hindmarsh and Rose did

replace the linear function g(x) in the Fitzhugh 1961 model with a quadratic function

[184]. This slight modification provides the HR 1982 model with the property that each

action potential is separated by a long interspike interval (i.e. a long interval between

rapid firing) typical of real neurons. This property results from the close proximity of the

x- and y-nullclines (curves in the phase plane where ẋ = 0 and ẏ = 0), in the nullcline

diagram which Hindmarsh and Rose called the narrow channel property [97, 98]. When

the state is in this channel, it changes slowly because it is close to both nullclines and that

means both ẋ and ẏ are small. This slow change causes the long interspike interval (see

Fig. 3.6) [97, 184, 185]. The value of the membrane potential x rises steadily during the

application of the current pulse and the model discharges repetitively after the termination

of the current as in a real neuron.

Spiking is represented by a generation of action potentials while bursting refers to

a patterns of neural activity in which the neuron fires bursts of spikes. Each burst is fol-

lowed by a period of inactivity (quiescence) until the next burst occurs. The 2-dimensional
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model is not able to reproduce some interesting phenomena such as terminating a trig-

gered state of firing [108]. Later, Hindmarsh and Rose realized that the model required

more than the one equilibrium point of the 1982 model, one point for the subthreshold

stable resting state and another one inside the firing limit cycle (an isolated closed orbit).

Therefore, some modifications were done on the nullclines intersection and thus create

the additional two equilibrium points [97, 184]. The equations were chosen to be

dx

dt
= y − ax3 + bx2 + I,

dy

dt
= c− dx2 − y.

(3.6.3)

In order to terminate firing of the neuron in the model, an adaptation variable z was

added which represents the slowly varying current (changing the applied current I to an

effective applied current I − z). Since the additional variable z is needed for the sole

purpose of terminating the firing, a third first order differential equation was added to the

system to obtain the 3-dimensional HR 1984 model (3.6.1) [98, 148],

dz
dt

= r[s(x− x◦)− z].

The third equation raises the value of z when the model is firing and so lower the effective

applied current leading to the termination of firing. The additional variable z is designed

to act on a longer time scale and that divides the model into a fast and a slow subsystem.

Several phenomena of the system can be accurately described only by studying the fast

subsystem, eventually with some interactions with the slow component but only with the

3-dimensional model one can explain the complete variety of the behaviours exhibited by

the HR model [108].

The HR 1984 model has three equilibrium points representing the stable resting state,

the threshold potential and the equilibrium point inside the limit cycle, respectively. The

basic equations of the HR 1984 model are given by

dx

dt
= y − ax3 + bx2,

dy

dt
= c− dx2 − y.

(3.6.4)

The three equilibrium points (e.p.s) are given by the intersection of the x- and y-nullclines:

x3 + px2 = q, (3.6.5)
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where p = (d− b)/a and q = c/a. Denoting h(x) = x3 + px2, the function h has a local

maximum at (−2p
3
, 4p3

27
). Therefore, the condition for three equilibrium points is 27q < 4p3

which requires that b < d. The roots of (3.6.5) are the x-coordinates of the intersection

points A, B and C with the horizontal line q; −1.6, −1 and 0.6 (Fig. 3.7).

Figure 3.7: The locations of roots of the equation x3 + px2 = q equal to the x-coordinates
of the points of intersection A, B and C. The parameter values are: a = 1, b = 3, c = 1,
d = 5.

We use linear stability analysis to determine the stability of the equilibrium points.

The Jacobian matrix of the linearised system evaluated at an equilibrium point xeq is

given by

J(xeq) =

−3ax2
eq + 2bxeq 1

−2dxeq −1

 . (3.6.6)

The type of the equilibrium points can be determined using the signs of the trace and

determinant of J [98, 114]

Tr(J(xeq)) = −3ax2
eq + 2bxeq − 1,

Det(J(xeq)) = 3ax2
eq + 2(d− b)xeq.

For b2 ≥ 3a, Tr(J(xeq)) = −3ax2
eq + 2bxeq − 1 has two positive real roots; γ1 =

b−
√
b2−3a
3a

and γ2 = b+
√
b2−3a
3a

. Tr(J(xeq)) will be positive for xeq ∈ (γ1, γ2) and negative

otherwise. Det(J(xeq)) is positive for all xeq /∈ (−2(d−b)
3a

, 0). Thus, the x-axis can be di-

vided into five regions of stability depending on the signs of Tr(J(xeq)) and Det(J(xeq))

[98, 114].

For b2 < 3a, Tr(J(xeq)) does not have real roots and therefore Tr(J(xeq)) < 0 for any

xeq ∈ R. In this case, the only possible types of equilibrium points are saddle points or
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stable spiral focuses. This could block the possibility of having an unstable spiral focus

whose phase paths approach a stable limit cycle. Therefore, for a model of a repetitive

firing, the condition b2 > 3a must be imposed [98, 114].

To find the three equilibrium points of the 3-dimensional HR 1984 model (3.6.1),

we can solve the system’s equations directly or by using the new approach in Cardano’s

method [149]:

x3 +
(d− b)
a

x2 +
s

a
x+

(−c− I − sx0)

a
= 0. (3.6.7)

The roots are given by:

X1 = XN + 2
√
δ cos(θ),

X2 = XN + 2
√
δ cos(θ + 2π

3
),

X3 = XN + 2
√
δ cos(θ + 4π

3
),

where xN = −(d−b)
3a

,

δ = 1
9

(
(d−b)2
a2
− 3s

a

)
, y = 2

27
(d−b)3
a3
− 1

3
s(d−b)
a2

+ (−c−I−sx0)
a

,

h = 2(
√
δ)3, cos 3θ = −y

h
, θ = arccos(cos 3θ)

3
.

By substituting the parameter values [20, 35]: a = 1, b = 3, c = 1, d = 5, r = 0.005,

s = 4, x◦ = −1.6 and Iext = 3.25, the three equilibrium points (eq1,2,3) are:

eq1 = −0.6951302412, −1.416030261, 3.619479035

eq2 = −0.6524348794 + 1.633179200I , 12.20801514 + 10.65543074I , 3.790260482 +

6.532716800I

eq3 = −0.6524348794 − 1.633179200I , 12.20801514 − 10.65543074I , 3.790260482 −

6.532716800I , where I is the imaginary unit.

We need to do linearisation to the nonlinear system and solve the characteristic equa-

tion of the linearised system. The overall stability of the equilibrium points is determined

by the eigenvalues of the Jacobian matrix of the linearised system evaluated at each equi-

librium point. The Jacobian matrix of the linearised system is given by

A(xeq) =


−3ax2

eq + 2bxeq 1 −1

−2dxeq −1 0

rs 0 −r

 . (3.6.8)

The eigenvalues for eq1 are: λ1 = −6.813233982, λ2 = 0.176752442, λ3 = 0.0110819368,

and for eq2: λ1 = 1.872078132 + 15.60278796I , λ2 = −0.064015272 + 0.589503045I ,
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Figure 3.8: Spike-bursting behaviour in the HR system: Panel a) shows the membrane
potential x(t) vs time, panel b) shows the transport of ions across the membrane through
the fast ion channels (sodium and potassium ions) y(t) (spiking variable) vs time and
panel c) the transport of other ions through slow channels (bursting variable) z(t) vs time.
The parameter values are: a = 1, b = 3, c = 1, d = 5, r = 0.005, s = 4, x◦ = −1.6 and
Iext = 3.25.

λ3 = −0.002863058 + 0.000042639I .

Finally, for eq3, the eigenvalues are: λ1 = 1.872078132−15.60278796I , λ2 = −0.064015272−

0.589503045I , λ3 = −0.002863058− 0.000042639I.

3.6.1 Lyapunov exponents of the Hindmarsh-Rose system

The HR 1984 model has three Lyapunov exponents equal to the dimensionality of

the system. The system exhibits a muli-scale chaotic behaviour characterised as spike-

bursting for the specific parameter values mentioned in section 3.6. We used Matlab

codes to compute the Lyapunov exponents (LEs) of the HR model. For these parameters,

the HR system enables the spike-bursting behaviour of the membrane potential (see Figs.

3.8,3.9) [20]. In calculating LEs, we use two different time-integration schemes, namely

the Runge-Kutta (RK4) and Euler’s forward method. To compute LEs, we adopted in our

Matlab codes the steps covered in more detail in subsection 2.2.2. After computing the

LEs with the use of the variational equations, the deviation vectors enter the loop for the
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Figure 3.9: The Hindmarsh-Rose (3.6.1) attractor for parameter values a = 1, b = 3,
c = 1, d = 5, r = 0.005, s = 4, x◦ = −1.6 and Iext = 3.25.

application of the Gram-Schmidt orthonormalisation process to orthonormalise them.

The Matlab code computes the Lyapunov exponents using the Runge-Kutta (RK4)

method. The parameter values used are: a = 1, b = 3, c = 1, d = 5, r = 0.005, s = 4,

x◦ = −1.6 and Iext = 3.25. We used the initial condition (x0, y0, z0) = (−1.30784489,

−7.32183132, 3.35299859) with time interval: [0, 104] and time-step h = 0.001. The

symbol zz in the Matlab code represents the number of deviation vectors which equals

the number of Lyapunov exponents.

In Fig. 3.10a), we used zz = 1 and the execution time is 1189 sec. For small times, the

maximal Lyapunov exponent (MLE) is positive and then changes to negative values. As

time increases, the MLE starts to converge to positive values which indicate that the HR

system behaves chaotically for the current parameters and initial condition.

Then, we used zz = 2 and the execution time is 2189 sec. Initially, in Fig. 3.10b),

the first and second Lyapunov exponents (i.e. the two largest) alternate between positive

and negative values. However, after a transient period (i.e. [0, 1000]), the MLE starts to

converge to positive values indicating that the HR system is again chaotic.

For zz = 3, the execution time is 3620 sec. The first and second Lyapunov exponents

alternate in time between positive and negative values. The third Lyapunov exponent is

not shown in the figure because it is negative and we are using logarithmic scale in both

axes which makes the figure for zz = 3 similar to Fig. 3.10b). However, as time increases
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Figure 3.10: The Lyapunov exponents of the HR system using the RK4 method for the
time interval [0, 104] and time-step 0.001: λ1 (+) and λ2 (×). In panel a), λ1 represents
the MLE which indicates that the system is chaotic. In panel b), we run the same code
for two deviation vectors and after a transient period (i.e. [0, 1000]), the MLE starts to
converge to positive values indicating that the system is chaotic. We also plot 1/t to guide
the eye. Note that both axes are logarithmic.

the maximal Lyapunov exponent starts to converge to a positive value indicating that the

HR system with the current parameters is chaotic. The execution time for zz = 1 is 1189

sec, for zz = 2 is 2189 sec and for zz = 3 is 3620 sec. It takes about 1000 to 1400 seconds

to compute each additional deviation vector and its associated LE. For example, the CPU

time for the computation of the three LEs is three times the CPU time for the computation

of the maximum, as expected.

The second Matlab code computes the Lyapunov exponents using the Euler’s 1st order

method. We used the same parameter values, initial condition, time interval and time-step

to compare the execution time and accuracy for both the RK4 and Euler’s methods.

For one LE, the execution time for the code using the Euler’s method is 162 sec and for

the code using the RK4 method is 249 sec.

In Fig. 3.10a) and Fig. 3.11a), the values for maximal LE for HR system are almost the

same for both codes with same time-step because the first deviation vector does not enter

into the loops in the Gram-Schmidt orthonormalisation process. The code with the Euler

method is thus much faster.

For two LEs, the execution time using the Euler’s method is 331 sec and for the RK4

method is 488 sec.

In Fig. 3.10b) and Fig. 3.11b) the values for both the first and second LEs for the HR

system are almost the same for both codes with slight differences. Still, the code that uses

the Euler method in Fig. 3.11b) is faster. However, in both panels, after a transient period
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Figure 3.11: The Lyapunov exponents of the HR system using the Euler’s method for the
time interval [0, 104] and time-step 0.001: λ1 (+) and λ2 (×). In panel a), λ1 represents
the MLE which indicates that the system is chaotic. In panel b), we run the same code
for two deviation vectors and after a transient period (i.e. [0, 1000]), the MLE starts to
converge to positive values indicating that the system is chaotic. We also plot 1/t to guide
the eye. Note that both axes are logarithmic.

(i.e. [0, 1000]), the maximum LE starts to converge to a positive value indicating that the

HR system is chaotic.

For three LEs, the execution time for the code that uses the Euler’s method is 582 sec

and the RK4 method is 776 sec. The values for both the first and second LEs for the

HR system are almost the same for both codes and the third Lyapunov exponent is not

shown in both figures because it is negative and we use logarithmic scale in both axes,

which makes the figures for zz = 3 look almost the same as for zz = 2. The code for the

Euler’s 1st order method is much faster than the one using the RK4 method for the same

time-step.

In both Matlab codes for the RK4 and Euler’s methods, we used the same parameter

values, initial condition, time interval: [0, 104] and time-step: 0.001 to compute the Lya-

punov exponents of the HR system . Then, we compare the accuracy and the CPU time

for both the RK4 and Euler’s method codes. There is not much differences in accuracy as

the LEs look almost the same in all figures for both methods. However, Euler’s method

is much faster in computing all LEs and therefore it is more preferable than the RK4,

especially when shorter integration times are required.

3.6.2 Bifurcations in biological neuron models

Bifurcations are among the most important dynamical properties in dynamical systems

in general, and in particular, in chaotic neural systems. It corresponds to the dynamical
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systems, in which different initial conditions can converge to different solutions while all

parameters are held constant. A difference in convergence or a change in the behaviour

of a system can be observed but no bifurcation might have occurred. To quantify as a bi-

furcation, the change in the behaviour of the system must be associated with a change in

a parameter value [42]. A dynamical system can exhibit local and/or global bifurcations.

Local ones are more common in neuroscience and also much easier to recognise and un-

derstand. It can also provide us with a better understanding of the properties of equilibria

in neuronal systems [194]. The simplest local bifurcation involves assessing the existence

and stability of equilibrium points. Both the existence and stability of equilibrium points

depend on the values of a parameter, in which case the possibility of a local bifurcation

exists. To determine if a bifurcation occurs, we need to linearise the system about each

equilibrium point and analyse the eigenvalues of the Jacobian matrices. The eigenval-

ues also depend on the parameter values. Bifurcation analysis can be used to simplify

the identification of different kinds of stable and unstable solutions. In many dynamical

systems, the conditions for identifying the existence of a bifurcation are often easier to

satisfy than proving the existence of an actual solution [42].

Bifurcations play an essential role in describing mode transitions between a quies-

cence state and different kinds of oscillatory motion such as spiking and bursting in

neuronal activities [63, 194]. Bifurcations in neuroscience are not only important at the

single-cell level but also in understanding the dynamics of the whole network. A bifur-

cation mechanism that has been identified at the single-cell level often suggests how dy-

namical changes occur at the network level. The most widely studied bifurcations which

arise in single neuronal models are saddle node and Hopf bifurcations [42].

The most important neuronal activities such as quiescence, spiking, bursting, irregular

spiking and irregular bursting depend on the neuron biophysical parameter values. The

HR system is able to reproduce all these dynamical activities and has been analysed with

respect to one or two bifurcation parameters [185]. We chose two parameters I and b:

I mimics the membrane input current for biological neurons and b allows one to switch

between bursting and spiking behaviours and to control the spiking frequency. They cause

several types of bifurcations in the system: saddle-node, Hopf (either supercritical or

subcritical), period doubling and homoclinic [185]. In the parameter space plots in Fig.

3.12, we used (b, I) ∈ [0, 5] x [1, 6] for 100 x 100 points to plot the three Lyapunov
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(a) (b) (c)

Figure 3.12: Plots of the parameter spaces of the three Lyapunov exponents of the HR
system for: a) LE1, b) LE2 and c) LE3 on the (b, I) plane.

(a) (b) (c)

Figure 3.13: Plots of the parameter spaces of the three Lyapunov exponents of the HR
system for: a) LE1, b) LE2 and c) LE3 on the (b, I) plane. The white spots reflects the
chaotic behaviour of the system.

exponents to examine the changes in the dynamics of the system through the changes of

values of the two HR parameters I and b. In the parameter space plots in Fig. 3.13, we

used (b, I) ∈ [2.5, 3.5] x [2.5, 4.5] for 100 x 100 points to further examine the dynamics

in the central chaotic region. In these plots, the HR model exhibits most of the dynamical

behaviours mentioned above [185]. The parameter values used are: a = 1, c = 1, d = 5,

r = 0.01, s = 4 and x◦ = −1.6.

In spite of the fact that the HR system can produce several modes of spike-bursting

behaviours seen in biological neurons, its parameter space for chaotic activity is much

more limited than the one observed in real neurons [148]. That is why in the last few

years, a wide variety of modified versions of the HR neuron model such as extended or

nonlinear feedback coupled HR models [148, 189], time-delayed HR models [122, 195],

fractional-order HR models [111] have been proposed. These models are further studied

by bifurcation analysis methods to understand better the dynamics of electrical activity

among neurons [26].



Chapter 4

Dynamics in networks of coupled HR
systems

Introduction
In this chapter, we will present a detailed study on the characteristics and dynamics

of neurons that are connected by electrical and chemical synaptic couplings. We examine

the dynamics of coupled HR neurons through elementary examples of 2, 3 and 4 neurons

connected simultaneously by undirected chemical and electrical links (i.e. link (i, j) =

(j, i)). We review neural synchronisation which plays an important role in information

processing in neuronal systems. Then, we discuss the two important concepts in infor-

mation theory; the mutual information and the mutual information rate (MIR). The upper

bound for MIR can be derived by the two largest Lyapunov exponents of the dynamics of

the full system. Finally, we study the upper bound of MIR and the effect of synchronisa-

tion on the dynamics of three interacting bursting neurons depending on the values of the

coupling strengths.

4.1 Electrical and chemical couplings

The functions of the brain rely on the ability of neurons to communicate with each

other. Interneuronal communication takes place primarily at synapses, where informa-

tion from one neuron is rapidly conveyed to another. Synapses mediate the functional

interaction between two neurons or between a neuron and another cell type. The two

main types of synaptic transmission are chemical and electrical. The electrical and chem-

ical synapses can operate independently or through the interaction with each other [156].

These interactions that occur via chemical and electrical synaptic transmissions are re-
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Figure 4.1: The principal features of the two types of synapses. A) In chemical synapses,
an action potential arriving at the presynaptic terminal triggers the release of neurotrans-
mitters (grey) which diffuse in the synaptic cleft and bind to specific receptors on the
postsynaptic cell. B) In electrical synapses, gap junction channels allow a direct commu-
nication between the two coupled cells. While chemical transmission is unidirectional,
electrical synapses usually pass signals equally well in both directions [104].

quired for normal brain development and function [104, 156]. Electrical and chemical

synapses differ in their molecular mechanisms of information transfer and also in their

structural organisation. In chemical synapses, the information is transferred via the re-

lease of neurotransmitters from presynaptic to postsynaptic neurons. Their synaptic cleft

distance is of the order of 20-40 nm. Chemical transmission is unidirectional and requires

sophisticated presynaptic molecular machinery that regulates neurotransmitter release in

a probabilistic manner when an action potential enters the synaptic terminal. In electrical

synapses, the action potential in the presynaptic neuron induces a passive current flow

into the postsynaptic cell. The electrical transmission is bidirectional and not probabilis-

tic in nature. The synaptic cleft distance in electrical synapses is in the order of 2-4 nm

and their gap junction channels have relatively large pores that allow ions as well as small

molecules to pass from one cell to another (see Fig. 4.1) [104, 156].

The electrical and chemical coupling strengths play a crucial role in the information

transmission and synchronous activities in neural systems. Many studies of neuronal

networks dealt with fixed coupling strength values. However, neuronal coupling is always

changing due to the dynamics of synapses and ion channels [201] and often coupling

strengths are used as bifurcation parameters [53].
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4.2 Coupled Hindmarsh-Rose systems

One can couple the HR system to create an undirected brain dynamical network of Nn

neurons connected simultaneously by electrical (linear coupling) and chemical (nonlinear

coupling) synapses [20, 21, 100], i.e.,

dxi
dt

= yi − ax3
i + bx2

i − zi + Iext − gn(xi − Vsyn)
Nn∑
j=1

BijS(xj)

− gl
Nn∑
j=1

GijH(xj),

dyi
dt

= c− dx2
i − yi,

dzi
dt

= r[s(xi − x◦)− zi],

dφi
dt

=
ẏixi − ẋiyi
x2
i + y2

i

, i = 1, ..., Nn,

(4.2.1)

where φi is the phase variable defined by the fast variables (xi, yi) of the i-th neuron,

H(xj) = xj and S(xj) is the synaptic coupling modelled by a sigmoidal function with a

threshold

S(xj) = 1

1+e−λ(xj−θsyn) ,

with θsyn = −0.25, λ = 10 and the reversal potential Vsyn = 2 to create excitatory

BDNs. gn is the coupling strength associated to the chemical synapses and gl to the

electrical synapses [20, 100]. The Laplacian matrix Gij accounts for the way neurons

are electrically coupled (Gij = Kij − Aij , where A is the binary adjacency matrix of the

electrical connections andK is the degree matrix based onA). Bij is the binary adjacency

matrix of the chemical connections. In both matrices A and B, diagonal elements are

equal to zero and any connection between neuron i and neuron j is represented by a

positive off-diagonal value (i.e. 1). The binary adjacency matrices C of the BDNs are

given by [20]

C = A+B.

Any change in the electrical or chemical connections in the network will be reflected

by a similar change in the structure of their adjacency matrices A and B. Their sum C

represents the adjacency matrix for the whole network at any time-step.
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N1
CL

EL
N2

Figure 4.2: An elementary example of 2 neurons N1 and N2 connected simultaneously by
undirected electrical (EL) and chemical (CL) links.

4.2.1 Expanding the coupling terms in two coupled Hindmarsh-Rose
neurons

The two coupling terms in the HR system (4.2.1) enable us to use the system for any

number of neurons. The variational equations of the coupled HR system are

J̇t = M(t)Jt, (4.2.2)

where Jt is the matrix of deviation vectors and M(t) the Jacobian of (4.2.1).

In the case of the coupled HR system, we need to expand and derive the two coupling

terms in Eq. (4.2.1) to include them in the Jacobian M(t) in Eq. (4.2.2). We expand

and derive the electrical and chemical terms for an elementary example of two neurons

(Nn = 2) connected simultaneously by undirected electrical and chemical links (Fig.

4.2):

A =

 0 1

1 0

 , B =

 0 1

1 0

 , K =

 1 0

0 1

 , G =

 1 −1

−1 1

 ,

where A is the binary adjacency matrix of the electrical connections, K is the degree

matrix based on A, G is the Laplacian matrix of the electrical connections and B is the

binary adjacency matrix of the chemical connections.

Expanding the electrical coupling term Gl(i) = −gl
∑Nn

j=1GijH(xj), we get:

For i = 1:

Gl(1) = gl(x2 − x1).

For i = 2:

Gl(2) = gl(x1 − x2).

The derivative of the Gl(i) terms with respect to xi are: dGl(i)
dx1

= −gl and dGl(i)
dx2

= −gl.

Expanding the chemical coupling termGn(i) = [−gn(xi−Vsyn)
∑Nn

j=1BijS(xj)], we get:

Gn(i) = −gn(xi − Vsyn)
∑2

j=1 BijS(xj)⇔

Gn(i) = −gn(xi − Vsyn)[Bi1S(x1) +Bi2S(x2)]⇔
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Gn(i) = −gn[xiBi1S(x1) + xiBi2S(x2)− VsynBi1S(x1)− VsynBi2S(x2)].

The derivative of the four terms with respect to xi is:
dGn(i)
dxi

= −gn[xiBi1Ṡ(x1) + ẋiBi1S(x1) + xiBi2Ṡ(x2) + ẋiBi2S(x2) − VsynBi1Ṡ(x1) −

VsynBi2Ṡ(x2)],

where Ṡ(xj) is the derivative of S(xj) with respect to xi.

For i = 1:
dGn(i)
dx1

= −gn[x1B11Ṡ(x1)+ ẋ1B11S(x1)+x1B12Ṡ(x2)+ ẋ1B12S(x2)−VsynB11Ṡ(x1)−

VsynB12Ṡ(x2)]⇔
dGn(i)
dx1

= −gn[x1B11Ṡ(x1) +B11S(x1) +B12S(x2)− VsynB11Ṡ(x1)].

For i = 2:
dGn(i)
dx2

= −gn[x2B21Ṡ(x1)+ ẋ2B21S(x1)+x2B22Ṡ(x2)+ ẋ2B22S(x2)−VsynB21Ṡ(x1)−

VsynB22Ṡ(x2)]⇔
dGn(i)
dx2

= −gn[x2B22Ṡ(x2) +B22S(x2) +B21S(x1)− VsynB22Ṡ(x2)].

After we have obtained the variational equations for two HR neurons, we compute

the lengths of the eight deviation vectors of the variational equations. Then, we use

equation (2.2.7) in section 2.2.2 to compute the eight LEs of the system. We apply the

Gram-Schmidt orthonormalisation process to orthonormalise these deviation vectors for

the computation of LEs for the next time-step.

4.2.2 Lyapunov exponents of three and four coupled Hindmarsh-Rose
neurons

For one neuron, the HR system has three Lyapunov exponents equal to the dimen-

sionality of the system. The system exhibits a multi-scale chaotic behaviour characterised

as spike-bursting for the following parameter values as described in the previous chapter

(see Fig. 3.8) [35, 100]: a = 1, b = 3, c = 1, d = 5, r = 0.005, s = 4, x◦ = −1.6,

Iext = 3.25.

We ran the Matlab code of the coupled HR system with same parameter values and

slightly different initial conditions, studying the dynamics of elementary examples of

three and four neurons (Fig. 4.3). The initial conditions used are: (−1.30784489 + x1+

rand(x2−x1) −7.32183132 +x1+ rand(x2−x1) 3.35299859 +x1+ rand(x2−x1) 0),

where the term rand(x2 − x1) is a perturbation to the initial conditions. These initial

conditions place faster the trajectory in the attractor of the dynamics, so there is less need
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Figure 4.3: Two elementary examples of 3 and 4 neurons connected simultaneously by
undirected chemical (CL) and electrical (EL) links. In a), 3 neurons connected by one
chemical and two electrical links. In b), 4 neurons connected by two chemical and two
electrical links as shown.

to consider longer transient periods [20]. We used Euler forward integration method with

time interval [0, 104] and a time-step = 0.001. The values we chose for the chemical

and electrical coupling parameters are gn = 0.2 and gl = 0.25, 0.35. These values for

the time interval, time-step and coupling parameters provide us with best runtime to get

the convergence of LEs to positive constant values in the long run with less time for the

transient period.

In Fig. 4.4a), we plot nine of the twelve Lyapunov exponents of the coupled HR

system for three neurons in the time interval [0, 104] with time-step = 0.001, gn = 0.2

and gl = 0.25. The other three LEs are equal to zero because we set the deviation vector

equations for the fourth variable φ to zero to reduce the CPU time. We used the Euler

integration method and the identity matrix as initial deviation vectors in Eq. (4.2.2). The

vectors of the identity matrix are linearly independent and form a basis of R3 (i.e. they

are orthogonal and unit vectors). After the transient period (i.e. [0, 400]), in which the

dynamics of the system is unsettled, λ1 starts to converge to a positive value and represents

the maximal Lyapunov exponent (MLE). Due to the dynamics of the system, three of the

LEs are equal to zero. In Fig. 4.4b), we used a random matrix for A(t = 0) as initial

deviation vectors in Eq. (4.2.2). The vectors of the random matrix are not orthogonal but

that does not effect the computation of the LEs as we use them only for the first time-step.

In the transient period (i.e. [0, 400]), all nine LEs converge to 0 as 1/t trend. Then, the

MLE starts to converge to a positive value indicating that the system is chaotic and three

of the LEs decrease to 0 like 1/t as we use the logarithmic scale. Due to the dynamics of

the system, at least three LEs must equal to zero.

Finally, in Fig. 4.5a), we plot the twelve of the sixteen Lyapunov exponents of the coupled
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Figure 4.4: The nine of the twelve Lyapunov exponents for 3 coupled HR neurons in the
time interval [0, 104] with time-step = 0.001, gn = 0.2 and gl = 0.25. In panel a), we
used an identity matrix as initial deviation vectors in Eq. (4.2.2). After the transient period
(i.e. [0, 400]), λ1 starts to converge to a positive value and represents the MLE. Three of
the LEs are equal to zero. In panel b), we used a random matrix for A(t = 0) as initial
deviation vectors in Eq. (4.2.2). In the transient period (i.e. [0, 400]), all nine LEs follow
a 1/t trend. Then, MLE starts to converge to a positive value indicating that the system is
chaotic and three of the LEs decrease to 0 like 1/t trend. We used the Euler integration
method in both panels and we plot 1/t to guide the eye. Note that all axes are logarithmic.
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Figure 4.5: The twelve of the sixteen Lyapunov exponents for 4 coupled HR neurons in
the time interval [0, 104] with time-step = 0.001, gn = 0.2 and gl = 0.35. In panel a),
we used an identity matrix as initial deviation vectors in Eq. (4.2.2). After the transient
period (i.e. [0, 400]), λ1 starts to converge to a positive value and represents the MLE.
Four of the LEs are equal to zero. In panel b), we used a random matrix for A(t = 0)
as initial deviation vectors in Eq. (4.2.2). In the transient period (i.e. [0, 400]), all twelve
LEs follow a 1/t trend. Then, MLE starts to converge to a positive value indicating that
the system is chaotic and four of the LEs decrease to 0 like 1/t trend. We used the Euler
integration method in both panels and we plot 1/t to guide the eye. Note that all axes are
logarithmic.

HR system for four neurons in the time interval [0, 104] with time-step = 0.001, gn = 0.2

and gl = 0.35. The other four LEs are equal to zero because we set the deviation vector
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equations for the fourth variable φ to zero to reduce the CPU time. We used the Euler

integration method and the identity matrix as initial deviation vectors in Eq. (4.2.2). The

dynamics of the system is unsettled in the transient period (i.e. [0, 400]), however after

that, λ1 starts to converge to a positive value. Due to the dynamics of the system, four

of the LEs are equal to zero. In Fig. 4.5b), we used a random matrix for A(t = 0) as

initial deviation vectors in Eq. (4.2.2). In the transient period (i.e. [0, 400]), all twelve LEs

converge to 0 as 1/t. Then, the MLE starts to converge to a positive value indicating that

the system is chaotic and four of the LEs decrease to 0 like 1/t as we use the logarithmic

scale. Due to the dynamics of the system, at least four LEs must equal to zero.

4.3 Synchronisation measures in brain dynamical networks

Synchronisation plays an important role in information processing in neuronal sys-

tems. The word “synchronisation” has a Greek root, syn = common and chronos = time,

which means to occur at the same time [62]. Synchronisation, as a collective behaviour in

coupled systems, seems to be the central mechanism for neuronal information processing

and transmission, communication between different brain areas and neurological diseases

such as epilepsy or Parkinson’s disease [41, 53, 193]. Synchronisation in chaotic sys-

tems has attracted considerable interest and attention because of its potential applications

in many scientific disciplines such as biology, physics, chemistry, communication theory

and others [103]. At first sight, synchronisation in chaotic systems seems to be rather

surprising. One may expect the sensitive dependence on initial conditions would lead

to an immediate breakdown of any synchronisation of coupled chaotic systems. Over the

past decade, research showed that two chaotic systems could be synchronised by coupling

them as one system and that could decrease or increase the number of positive Lyapunov

exponents [62]. In neuronal networks, the interactions between bursting neurons may

exhibit different forms of synchrony depending on the coupling strengths and coupling

configurations [73].

Many nonlinear measures of neuronal signal synchrony have been developed to quan-

tify the degree of synchronisation in signals, such as transfer entropy [45, 173], mutual

information [200], nonlinear interdependence [43] and phase synchronisation. Phase syn-

chronisation of chaotic systems is defined as the appearance of a certain relation between
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the phases of interacting systems while the amplitudes may remain uncorrelated [163]. It

is widely used in neurophysiology since the analysis can be restricted to certain frequency

bands which reflect specific brain rhythms and allows relating the results to cognitive pro-

cesses.

To compute the synchronisation level of neural activity, we use the order parameter ρ

which is originated from the theory of dynamical coherence measures with a population

of Nn Kuramoto type oscillators [120]. It can be computed by taking the modulus ρ of

the complex number z(t):

z(t) = ρ(t)eiΦ(t) =
1

Nn

Nn∑
j=1

eiφj(t), (4.3.1)

where φj(t) is the phase variable of the j-th neuron of the HR system Eq (4.2.1) given

by its fourth equation and Φ(t) is the average phase of the population of oscillators. We

obtain the order parameter by averaging ρ over time:

ρ = 〈ρ(t)〉t,

which represent the tendency of ρ in time. The value of ρ = 1 corresponds to complete

synchronisation and ρ = 0 to complete desynchronisation [20, 100]. For Newman-Watts

(NW) small-world network model with Nn neurons, the synchronisability of the network

increases as more edges are being added to the network (i.e. as the probability β is in-

creased from 0 to 1). This is the case for any fixed coupling strength g > 0. A network

with a large enough number of nodes so that Nn >
d
g
, d > 0 is a constant and the proba-

bility becomes larger than a threshold β̄, β̄ ≤ β ≤ 1 then the network will synchronise. In

general, different small-world models generated by different coupling strengths have dif-

ferent phase synchronisation characteristics. For weak coupling strength g → 0, all nodes

are uniformly distributed for which no synchronous group exists. As g increases, a syn-

chronous group is formed and then grows in size. The whole group of nodes synchronise

in phase at ρ = 1 regardless of the network topology [55].

4.4 Upper bound for Mutual Information Rate

Claude Shannon’s entropy quantifies information [175]. It defines as a measure of

the amount of uncertainty an observer has about an event being produced by a random
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system. The mutual information (MI) is another important concept in Shannon’s theory

of information which measures how much uncertainty one has about a state variable after

observing another state variable. MI is an important quantity because it not only quantifies

linear and nonlinear interdependencies between two systems but also measures how much

information exchanged between them. It is used as a measure to quantify the information

capacity of a communication system. MI became a fundamental quantity to understand

the development and function of the brain and also to characterise and model complex

and chaotic systems [27, 35].

Definition 6

Given two discrete random variables X and Y whose joint probability distribution is

PXY (x, y), the mutual information between them, denoted I(X;Y ), is given by

I(X;Y ) =
∑

x,y PXY (x, y) log PXY (x,y)
PX(x)PY (y)

,

where PX(x) =
∑

y PXY (x, y) and PY (y) =
∑

x PXY (x, y) are the marginal probability

distribution functions of X and Y respectively. In case of X and Y are two continuous

random variables, the mutual information between them is given by

I(X;Y ) =
∫
Y

∫
X
PXY (x, y) log PXY (x,y)

PX(x)PY (y)
dxdy,

where PXY (x, y) is the joint probability density function ofX and Y . PX(x) =
∫
Y
PXY (x, y)dy

and PY (y) =
∫
X
PXY (x, y)dx are the marginal probability density functions of X and Y

respectively [35, 198].

The units of information depend on the base of the logarithm. When base 2 is used,

the unit is called the shannon (SH), also known as the bit, and one shannon is equal to the

information content of one bit. It can be in one of two states 0 or 1.

The amount of information exchanged per unit of time between two nodes in a dynam-

ical network is a powerful concept for analysing complex systems. This quantity, known

as the mutual information rate (MIR), is obtained from the mutual information and mea-

sures the time rate of information exchanged between two non-random and correlated

variables. MIR is an appropriate quantity to access the amount of information exchanged

in complex systems, since variables in complex systems are not purely random [27, 35].

An upper bound Ic for the MIR between two nodes or two groups of nodes of a complex
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Figure 4.6: Two elementary examples of 3 neurons connected simultaneously by undi-
rected chemical (CL) and electrical (EL) links. In a), 3 neurons connected by one chemi-
cal and two electrical links. In b), 3 neurons connected by one electrical and two chemical
links.

dynamical network can be derived depending on the two largest Lyapunov exponents [20]

MIR ≤ Ic = L1 − L2, L1 ≥ L2, (4.4.1)

where L1, L2 are the two finite time and size Lyapunov exponents which typically should

approach the two largest Lyapunov exponents λ1, λ2 of the dynamical network if it is

connected and the time used to compute L1, L2 is sufficiently small [20]. Therefore,

Ic = λ1 − λ2, (i.e. λ1 = L1 and λ2 = L2). In non-excitatory networks, the formula

ρ ∝ 1
λ2

where λ2 is the second largest Lyapunov exponent of the BDN, represents the

relation between the order parameter ρ and the upper bound Ic. The non-excitatory factor

is expected to be prominent when the electrical coupling has the largest contribution to

the behaviour of the network comparing to the chemical. This situation raises the level of

global neural synchronisation [20, 27].

In Fig. 4.7, we plot the upper bound Ic, order parameter ρ and the two largest Lya-

punov exponents λ1 and λ2 versus the chemical coupling gn and electrical coupling gl for

an elementary example of 3 neurons connected simultaneously by undirected one chemi-

cal and two electrical links (see Fig. 4.6a).

A =


0 1 1

1 0 0

1 0 0

 , B =


0 0 0

0 0 1

0 1 0

 , K =


2 0 0

0 1 0

0 0 1

 , G =


2 −1 −1

−1 1 0

−1 0 1

 ,

where A is the binary adjacency matrix of the electrical connections, K is the degree

identity matrix based on A, G is the Laplacian matrix and B is the binary adjacency

matrix of the chemical connections.
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Figure 4.7: Plots of the upper bound Ic, the order parameter ρ and the two largest Lya-
punov exponents λ1 and λ2 versus the chemical coupling gn and electrical coupling gl for
an elementary example of 3 neurons connected simultaneously by one undirected chemi-
cal and two undirected electrical links (see Fig. 4.6a).

For the parameter spaces in Fig. 4.7, we used (gn, gl) ∈ [0, 2] x [0, 2] for 100 x 100

points. The plot for the upper bound Ic versus gn and gl shows that the highest value for Ic

is at the lower left corner. The dynamics of neurons in many spots in this area of the plot

is chaotic but at the lower right and upper left corners, the motion is completely periodic.

In the plot for the order parameter, the values of ρ increase with the increase of gl (almost

equal to 1) and that indicates the behaviour of the neurons is chaotically synchronised but

on the other regions is periodically synchronised. The two other plots represent the two

largest Lyapunov exponents λ1 and λ2 versus gn and gl. The upper bound Ic = λ1 − λ2

and with both values of λ1 and λ2 being positive, the plot for λ1 is different to the Ic plot.

To further examine the dynamics of the system, we select three different values for

gn and gl from regions with different dynamics and plot the trajectories for all neurons at

each of these values to analyse the behaviour of the system in these regions.

In Fig. 4.8, gn = 0.2 and gl = 1.9. Plots of panels a) to d) represent the behaviour of
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Figure 4.8: Spiking behaviour of neuron 1 in the coupled Hindmarsh-Rose system for
gn = 0.2 and gl = 1.9. Panels a) to d): plots of the behaviours of variables x, y, z and φ
of neuron 1 show the spiking dynamics and resembles the behaviour of neuron 2 and 3.
The dynamics of the three neurons is periodic.

variables x, y, z and φ of neuron 1 with a spiking behaviour which indicates that the

dynamics of neuron 1 is periodic and resembles the dynamics of the other two neurons

2 and 3 . In Fig. 4.9, gn = 1.4 and gl = 1.1. Plots of the panels a) to d) represent

the behaviour of variables x, y, z and φ of neuron 1 with a spike-bursting dynamics and

resembles the dynamics of neuron 2 and 3 and that indicates the behaviours of the three

neurons are chaotic.

Finally, in Fig. 4.10, gn = 1.9 and gl = 1.3. Plots of the panels a) to d) represent the

behaviour of the variables x, y, z and φ of neuron 1. The plots of x and y show the intense

spiking for a short period of time, then the trajectory converges to one of the fixed points

and resembles the behaviour of neuron 2 and 3.

For the second elementary example of 3 neurons connected simultaneously by undi-

rected one electrical and two chemical links (see Fig. 4.6b), we take

A =


0 1 0

1 0 0

0 0 0

 , B =


0 0 1

0 0 1

1 1 0

 , K =


1 0 0

0 1 0

0 0 0

 , G =


1 −1 0

−1 1 0

0 0 0

 .
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Figure 4.9: Spike-bursting behaviour of neuron 1 in the coupled Hindmarsh-Rose system
for gn = 1.4 and gl = 1.1. Panels a) to d): plots of variables x, y, z and φ of neuron 1
show the spike-bursting behaviour and resembles the behaviour of neuron 2 and 3.
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Figure 4.10: The behaviour of neuron 1 in the coupled Hindmarsh-Rose system for gn =
1.9 and gl = 1.3. Panels a) to d): plots of the behaviour of the variables x, y, z and φ of
the neuron 1. The plots of x and y show the intense spiking for a short period of time then
the trajectory converges to one of the fixed points and resembles the behaviour of neuron
2 and 3.
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Figure 4.11: Plots of the upper bound Ic, the order parameter ρ and the two largest Lya-
punov exponents λ1 and λ2 versus the chemical coupling gn and electrical coupling gl for
an elementary example of 3 neurons connected simultaneously by one undirected electri-
cal and two undirected chemical links (see Fig. 4.6b).

We also used the density plots to plot the upper bound Ic and the order parameter ρ and

the two largest Lyapunov exponents λ1 and λ2 versus gn and gl to analyse the dynamics

of the system with different coupling connections between the same number of neurons.

In Fig. 4.11, we used (gn, gl) ∈ [0, 2] x [0, 2] for 100 x 100 points. The plot for the upper

bound Ic versus gn and gl shows that the highest value for Ic is between gn = 0.7 and 0.8

and for all the values of gl. The dynamics of neurons in this area of the plot is chaotic.

For gn ≥ 1.2, the motion is completely periodic. In the order parameter plot, the highest

value of ρ is between gn = 1.2 and 1.4 and for all the values of gl (almost equal to 1) and

that indicates the behaviour of the neurons is periodically synchronised. The two other

plots represent the two largest Lyapunov exponents λ1 and λ2 versus gn and gl. The upper

bound Ic = λ1 − λ2 and, the value of λ1 is positive and λ2 is either negative or equal to

0, the plot for λ1 is more similar to the Ic plot. Then, we plotted the trajectories for the

3 neurons at two different values for gn and gl. We select the values for gn and gl from
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Figure 4.12: Spike-bursting behaviour of neuron 1 in the coupled Hindmarsh-Rose system
for gn = 0.75 and gl = 1. Panels a) to d): plots of the behaviours of variables x, y, z
and φ of the neuron 1 show the chaotic dynamics and resembles the behaviour of neuron
2 and 3. The dynamics of the three neurons is chaotic.

regions with different dynamics and plot the trajectories for all neurons at each of these

values to analyse the behaviour of the system in these regions.

In Fig. 4.12, gn = 0.75 and gl = 1. Plots of panels a) to d) represent the behaviour of

variables x, y, z and φ of neuron 1 with a spike-bursting behaviour which indicates that

the dynamics of neuron 1 is chaotic and resembles the dynamics of the other two neurons

2 and 3.

In Fig. 4.13, gn = 1.3 and gl = 1. Plots of panels a) to d) represent the behaviour

of variables x, y, z and φ of neuron 1. The plots of x and y show the intense spiking

for a short period of time, then the trajectory converges to one of the fixed points of the

dynamics and resembles the behaviour of neuron 2 and 3.

4.5 Conclusions

In this chapter, we used two elementary examples with different types of coupling to

examine the effect of chemical and electrical couplings on the dynamics of three coupled

neurons. To compare the resulting dynamics, we use the parameter space plots in Figs.

4.7 and 4.11.
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Figure 4.13: The behaviour of neuron 1 in the coupled Hindmarsh-Rose system for gn =
1.3 and gl = 1. Plots of panels a) to d) represent the behaviour of variables x, y, z and
φ of neuron 1. The plots of x and y show the intense spiking for a short period of time,
then the trajectory converges to one of the fixed points of the dynamics and resembles the
behaviour of neuron 2 and 3.

In 4.7, the range of gl for spike-bursting behaviour for the three neurons is between 0

and 0.6 and for values of gn between 0 and 1.5. For any value of gl greater than 0.6 the

dynamics of the three neurons is either spiking or completely periodic, for all values of

gn. The electrical coupling has more effect on the dynamics of the coupled neurons but

its range is smaller than the chemical coupling in the second example. The plot of the

order parameter shows that we have chaotically synchronised neurons for all values of gl

and that depends on the values of gn.

In 4.11, the range for gn for spike-bursting behaviour for the three neurons is between

0.4 and 1.2, for all values of gl. For any value of gn greater than 1.2 the dynamics is

periodic regardless of the value of gl. This indicates that the chemical coupling dictates

the dynamics of the coupled neurons but increasing it beyond a specific value (i.e. 1.2),

the dynamics converges to one of the fixed points of the dynamics. In the order parame-

ter plot, the highest values for ρ is for gn between 1.2 and 1.4, for all values of gl. This

indicates the neurons are periodically synchronised. Both examples do not have desyn-

chronised neurons.
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The resulting dynamics indicate that the two types of coupling produce different pat-

terns of dynamics. The dynamics depends on the number of neurons and the type of

coupling strength between them. Even for small numbers of neurons, increasing the num-

ber of chemical links can produce chaotic dynamics for the whole range of electrical

coupling values. However, the increase of chemical coupling beyond a specific value can

result in periodic motion for wide range of chemical coupling values. Whereas, in the first

example which has more electrical links, the periodic motion appears in various regions

for different values of the couplings.



Chapter 5

Evolution of networks of
Hindmarsh-Rose neurons (by
increasing the KS entropy)

Introduction
In this chapter, we review the development of the concept of entropy. We first describe

the work of the physicist Rudolf Clausius (2 January 1822 - 24 August 1888). He used the

concept of entropy in his work to tackle the problem of finding a mathematical expression

to describe all transformations of a body through heat exchange between that body and

another one or the environment. His work stated the second law of thermodynamics. In

statistical mechanics, Ludwig Boltzmann developed a statistical mechanical evaluation of

the concept of entropy. Then, we review with some detail the metric entropy also known

as the Kolmogorov-Sinai entropy which is based on the notion of entropy introduced ear-

lier by Claude Shannon. The Pesin identity formula relates Kolmogorov-Sinai entropy

to positive Lyapunov exponents of the dynamics of a chaotic system. Later, we briefly

review the concept of brain entropy which can provide an informative tool to assess brain

states and brain functions. Finally, we discuss the topic of the evolution of brain dynam-

ical networks. In evolving dynamical networks; topology, dynamics and evolution are

all affecting one another. We used the Kolmogorov-Sinai entropy HKS which equals the

sum of positive Lyapunov exponents (Pesin identity) as the evolutionary rule for a cou-

pled Hindmarsh-Rose system to evolve a network of 6 clusters composed of 10 neurons

each with different values for both the chemical and electrical coupling parameters.
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5.1 Entropy

The term “entropy” was coined by the German physicist Rudolf Clausius in 1850

from the Greek words “εν” and “τροπη” which mean “in a turning” or internal change

[58]. The word reveals analogy to “energy” and was designed to mean a form of energy

that eventually “turns into” useless heat. Entropy has multiple definitions related to dis-

tinct entropic functions that belong to different disciplinary domains such as Clausius’

physical entropy which is proportional to the quantity of energy no longer available to do

physical work. In 1877, Ludwig Boltzmann put entropy into the probabilistic setup of

statistical mechanics [39] and has also been generalised to quantum mechanics by John

von Neumann [65, 191]. Later, this led to the invention of entropy as a term in probability

and information theory by the American mathematician Claude Shannon in 1948 [176].

The dynamical entropy in dynamical systems was created by the Russian mathematician

Andrei Kolmogorov [117, 118] and later improved by his student Yakov Sinai [179].

The disorder in a system is a consequence of the increase of its entropy. The increase

in thermal motion after heat is added to a working substance changes the highly structured

and orderly system to disorderly one in which molecules have no fixed positions. This

will create more disordered distributions and arrangements of molecules and subsequently

leads to an increase in the measure of entropy [39]. The concept of entropy is an integral

part of thermodynamics and it has played a central role in dynamical systems, but in

recent years this long-standing use of the term “disorder” to discuss entropy has met with

some criticism [123, 141]. Today, entropy stands as an open concept still undergoing a

continuous evolution [155].

5.1.1 Clausius entropy

The historical development of the concept of entropy started as a response to the obser-

vation that a certain amount of functional energy released from heat-powered engines is

not transformed into useful work and instead is lost to dissipation or friction. In 1803, the

French mathematician Lazare Carnot published his work on the Fundamental Principle of

Equilibrium and Movement which includes a discussion on the efficiency of fundamental

machines. After his death, his son Sadi Carnot published the Reflections on the Motive

Power of Fire [50]. He envisaged an ideal engine in which any heat converted into work
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Figure 5.1: Diagram of Sadi Carnot’s heat engine, 1824 [5].

and could be reinstated by reversing the motion of the cycle. Later, Rudolf Clausius re-

discovered Carnot’s works and in his mathematical presentation of the First Fundamental

Theorem [60], he presented the first-ever mathematical formulation of entropy, although

at this point he called it “equivalence-value”.

Clausius used the concept of entropy in his attempt to tackle the problem of finding a

mathematical expression to describe all transformations of a body through heat exchange

between that body and another one or the environment [76]. For two transformations

which can mutually replace one another, the generations of the amount of heat Q from

work at temperature T , has the equivalence-value Q
T

. The passage of the amount of heat

Q from temperature T1, through the “working body” which was typically a body of steam

(see Fig. 5.1) to temperature T2 (with T2 > T1) has the equivalence-value

Q
(

1
T2
− 1

T1

)
,

where T is a function of the temperature which is independent of the nature of the process

by which the transformation is effected. Equivalence-value is thought to be “entropy” in

modern terminology and symbolised by S. We can compute the change in entropy ∆S

when increasing the temperature from T1 to T2. If we make S = Q
T

, it is equivalent to the

amount of heat at temperature T produced by (external) work [76]. Then, the change in

entropy for this transformation is

∆S = Sfinal − Sinitial,

which equals to the form that was derived by Clausius

∆S = Q

(
1

T2

− 1

T1

)
. (5.1.1)

In 1862, Clausius stated the “theorem respecting the equivalence-value of the transforma-

tions” [59] what is now known as the second law of thermodynamics.
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Let dQ be an element of heat given up by the body to any reservoir of heat during

its own changes. The heat that may be absorbed from the reservoir is negative. T repre-

sents the absolute temperature of the body which does not depend on the properties of its

material, at the moment of giving up this amount of heat. Then,∫
dQ

T
= 0, (5.1.2)

must be true for every reversible cyclical process (i.e. the system is without entropy

production), and the relation ∫
dQ

T
≥ 0, (5.1.3)

must hold for every non-compensated relation (irreversible cyclical process) [76]. This

early formulation of the second law of thermodynamics is one of the original forms of

the concept of entropy. The second law of thermodynamics implies that entropy of closed

systems always increases and for systems that are not closed, entropy can decrease with

time. In processes of living systems, local entropy reduces but at the same time the entropy

of the surrounding increases, resulting in a net increase in entropy. The concept of arrow

of time which was developed by Arthur Eddington in 1927, implies that time flows in

“one-way direction” [159]. At microscopic level, physical processes are believed to be

time-symmetric (i.e. the theoretical statements that describe them would remain true

under time reversal). However, at the macroscopic level it appears that time moves at

one-way direction. The arrow of time and the second law of thermodynamic show that

the thermodynamic arrow of time points in the direction of increase in entropy. It is

important to recognise that there are two types of changes in entropy, we have to consider

at all times. The entropy change of the system and the entropy change of its surroundings

and their sum represents the entropy change of the universe

∆Suniv = ∆Ssys + ∆Ssurr =
Qsys

T
+
Qsurr

T
. (5.1.4)

In an isothermal reversible expansion, the heat Q absorbed by the system from the sur-

roundings is

Qrev = nRT ln V2
V1
,

where R is the ideal gas constant, n is the amount of substance of gas, V1 the initial

volume, V2 the final volume and T is the absolute temperature. Since the heat absorbed
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by the system is the amount lost from the surroundings, Qsys = −Qsurr. Therefore, for a

truly reversible process, the change in entropy is

∆Suniv =
nRT ln

V2
V1

T
+
−nRT ln

V2
V1

T
= 0.

However, for irreversible process, the change in entropy is

∆Suniv =
nRT ln

V2
V1

T
> 0.

From the equations of ∆Suniv for both types of processes, we get the second law of

thermodynamics

∆Suniv = ∆Ssys + ∆Ssurr ≥ 0, (5.1.5)

where ∆Suniv equals zero for truly reversible process and is greater than zero for an

irreversible process. The second law of thermodynamics stated that it is impossible to

perform a process whose only final effect is the transfer of heat from a cooler medium to

a warmer one. Any such transfer must involve an external work, the elements participating

in the work will also change their states and the overall entropy will rise [65].

In 1876, physicist Josiah Willard Gibbs, building on the work of Clausius and others,

derived a measurement of “the available energy to do useful work” also known as Gibbs

free energy, ∆G in a thermodynamic system. For a process at constant temperature T and

pressure p

∆G = ∆H − T∆S, (5.1.6)

where ∆H represents the total energy change of the system and T∆S the energy loss [86].

The second law of thermodynamics can also be stated that "all spontaneous processes

produce an increase in the entropy of the universe". If ∆G < 0, then the process is

spontaneous. If ∆G > 0, then the process is non-spontaneous. In a closed system,

if T∆S ≥ ∆G that means the system is not in equilibrium and its Gibbs energy will

continue to decrease and when it is in equilibrium (i.e. no longer changing), ∆G will

be zero. In state of equilibrium, the entropy of the system cannot increase (because it is

already at a maximum) and it cannot decrease (because that would violate the second law

of thermodynamics). The only changes allowed are those in which the entropy remains

constant.

In thermodynamic interpretation of evolution of life, both concepts of entropy and

free energy are used. The Austrian physicist Erwin Schrödinger in his book What is life?
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published in 1944, theorises that life dictated by the second law of thermodynamics, de-

creases or maintains its entropy by consuming negative entropy [174]. In 1982, American

biochemist Albert Lehninger argues in his book, Principles of Biochemistry that the or-

der produced within cells as they grow and divide is more than compensated for by the

disorder they create in their surroundings in the course of division and growth. He stated

that “living organisms preserve their internal order by taking from their surroundings free

energy, in the form of nutrients or sunlight, and returning to their surroundings an equal

amount of energy as heat and entropy” [145].

5.1.2 Entropy in Statistical Mechanics

In 1877, Ludwig Boltzmann developed a statistical mechanical evaluation of the con-

cept of entropy S [39]. The macroscopic state of a system is characterised by a distribu-

tion of its microstates. A thermodynamical state A or macrostate can be realised in many

different ways at the microscopic level and corresponding to many points v (called mi-

crostates) in a phase space Ω. The Boltzmann entropy of A is defined to be proportional

to the logarithm of the phase space volume of the set MA of all v that realise the state A

S(A) = S0 + k log2(vol(MA)), (5.1.7)

where the constant S0 depends on the unit of phase space volume and the proportionality

factor k is known as Boltzmann’s constant. If we take to be Ω a finite set and #MA to

denote the number of elements in the set MA, then Boltzmann entropy can be defined by

S(A) = k log2(#MA). (5.1.8)

Formulae (5.1.7) and (5.1.8) can be written in probabilistic terms if we choose one el-

ement of the phase space Ω at random with uniform distribution. Then, if the set Ω of

all microstates has M elements and the set MA of those realising the macrostate A has

N elements, we can assign probabilities 1
M

to each microstate and N
M

to state A. Then,

Boltzmann’s formula becomes

S(A) = Smax + k log2(Prob(A)), (5.1.9)
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where Smax = k log2(#Ω) represents the maximal possible entropy of a macrostate, since

MA cannot have more elements than Ω. Hence, the probability of the maximal state is

almost equal to 1, while the probabilities of states of lower entropy are exponentially

small. This approach provides another interpretation of the second law of thermodynam-

ics, the system spontaneously assumes the state of the maximal entropy, not any of the

other states’ entropies. [65].

The second law of thermodynamics states that a spontaneous process increases the

entropy of the universe, ∆Suniv > 0 and non-spontaneous one decreases it, ∆Suniv < 0.

If ∆Suniv = 0, the system is at equilibrium. Consider a system which can be described

by a single microstate (A = 1), a perfect crystallinity and complete lack of motion that

means there is only one possible location for each identical atom or molecule comprising

the crystal. According to the Boltzmann equation, the entropy of such system with only

one possible microstate is zero. This limiting condition for a system’s entropy represents

the third law of thermodynamics: the entropy of a pure, perfect crystalline substance at a

temperature of absolute zero (0 Kelvin) is zero.

Later, Josiah Gibbs extended formula (5.1.9) to the case where microstates v realising

the macrostate A may have different probabilities pv

S(A) = −k
∑
v∈MA

pv log2(pv). (5.1.10)

For the continuous probability distribution with density function p, Gibbs entropy is de-

fined as

S(A) = −k
∫
p(v) log2(p(v))dv. (5.1.11)

5.1.3 Shannon entropy

The concept of entropy, as it is now used in information theory, was introduced by

Claude Shannon in 1948 [176]. As he was working to quantify mathematically the sta-

tistical nature of “lost information” in phone-line signals, Shannon developed the very

general concept of information entropy which represents a fundamental cornerstone in

information theory. In his work, Shannon made use of the two different but related mea-

sures, entropy and mutual information. Entropy is really a notion of self-information

(i.e. the entropy of a random process is the amount of information in it) while mutual
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information is a measure of the information contained in one process about another one

[85]. Shannon’s information entropy, which is originally an idea inherited from thermo-

dynamics, is a much more general concept than the statistical thermodynamic entropy,

while the information entropy is present whenever there are unknown quantities that can

be described only by a probability distribution. Statistical thermodynamic entropy can be

seen as a particular application of Shannon’s information entropy to the probabilities of

particular microstates of a system that occur in order to produce a particular macrostate.

Suppose we have an experiment with n possible outcomes, such as rolling a dice with

n faces and let p1,p2,...,pn be the probabilities of the different outcomes. Then, a measure

of the amount of uncertainty about which outcome will turn out, H(p) is

H(p) = −
n∑
i=1

pi log2 pi, (5.1.12)

where p is the probability vector of finitely many nonnegative numbers p1,p2,...,pn whose

sum equals 1 [18, 167]. Equation (5.1.12) represents the Shannon entropy of a probabil-

ity vector p which is a straightforward adaptation of the Gibbs entropy Eq. (5.1.10) but

leaving out the proportionality factor k.

5.1.4 Kolmogorov-Sinai entropy

The definition of Kolmogorov-Sinai entropy (K-S entropy) also known as the metric

entropy of a dynamical system is based on the notion of entropy that was developed by

Claude Shannon.

Let’s consider a measure-preserving dynamical system consisting of two fundamental

mathematical objects: a measure space (X ,W , µ) and a measure-preserving transforma-

tion T : X → X . X is a set and W is a collection of subsets of X such that:

1. X ∈ W .

2. If A ∈ W , then the complement of A, X\A ∈ W . So, ∅ ∈ W .

3. Given a finite sequence Ai of subsets of X such that Ai ∈ W then their union

∪iAi ∈ W .

4. ∩iAi ∈ W , W is closed under the operation of intersection [138, 202].
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If W satisfies the above properties then it is called a σ-algebra set. The third element µ of

the triple (X ,W , µ) is a measure which belongs to a class of set functions, i.e. functions

assigning numerical values to sets. µ must satisfy the following requirements:

1. µ(A) ≥ 0 for all A ∈ W ,

2. µ(∅) = 0, i.e. the empty set has zero measure,

3. If {Ai} is a sequence of pairwise disjoint sets, then µ
(⋃∞

i=1Ai
)

=
∑∞

i=1 µ(Ai).

The quantity µ(A) is called the measure of A and the sets Ai ∈ W are called measurable

sets as for them the measure is defined. If µ(X) = 1, the measure space is said to be

“probabilistic” and 0 ≤ µ ≤ 1 is called a probability measure [138].

The transformation T is said to be measurable if A ∈ W → T−1(A) = {x|T (x) ∈

A} ∈ W . T is called a measure-preserving map with respect to µ and µ is said to be

T-invariant, whenever µ(A) = µ(T−1(A)) for all sets A ∈ W . For flows, we can say that

a family φt(x) of measurable maps preserves the measure µ if µ(A) = µ(φ−1
t (A)) for all t

and all measurable subsets A ⊂ X [138, 202]. For the invariant probability measure µ of

the measure-preserving map T on the defined space X , the KS entropy can be denoted by

HKS(µ). Let’s consider a bounded region M ⊆ X such that µ(M) = 1 and be invariant

under the transformation of the map T (x). Let M consists of k disjoint partitions such

that

M = M1 ∪M2 ∪ ... ∪Mk.

We use this partition to define the entropy function using the Shannon entropy form

h(Mi) =
∑k

i=1 µ(Mi) log(µ(Mi)
−1).

We need to construct a series of partitions {Mn
i } that must get finer and finer (i.e. the set

size gets smaller and smaller). Since the map T (x) evolves in time, it produces a series

of intersections of the form Mj ∩ T−1(Mi), j, i = 1, 2, ..., k such that for n iterations the

refined {Mn
i } are given as

Mi1 ∩ T−1(Mi2) ∩ T−2(Mi3) ∩ ... ∩ T−(n−1)(Min).

Then, we can write the entropy equation as

H(µ, {Mi}) = lim
n→∞

1

n
h({Mn

i }). (5.1.13)
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The KS entropy can be formally defined as the supremum of Eq. (5.1.13) over all initial

partitions of Mi.

HKS(µ) = sup{Mi} (H(µ,Mi)), (5.1.14)

which is the entropy of the system with respect to the partition M [18, 77, 180, 202].

The entropy of a system with respect to a partition can be given an alternative formulation

by making use of the auxiliary concept of conditional entropy for the two partitionsA and

B, defined by

H(A|B) = −
∑
a,b

µ(a, b) log µ(a|b), (5.1.15)

where a, b denote elements of the partitions A and B, respectively. We can think of a par-

tition as an experiment whose outcome is uncertain. The conditional entropy represents

the amount of uncertainty of the experiment A when the outcome of the experiment B is

known [138]. H(A|B) = 0 if and only if the value of A is completely determined by the

value of B. The mutual information between A and B, I(A;B) measures how much the

entropy of A is reduced (i.e. reduction in the amount of uncertainty about A) if we know

the realisation of B [18]

I(A;B) = H(A)−H(A|B) (5.1.16)

5.1.5 Pesin identity

By definition [176], the entropy of a dynamical system is the measure of the amount

of uncertainty about the outcome of an experiment with n possible outcomes. This un-

certainty is caused by the exponential separation of nearby points or trajectories due to

their sensitivity to initial conditions in chaotic systems. Since positive Lyapunov expo-

nents characterise this exponential divergence, one should expect that the entropy must be

related to the positive Lyapunov (characteristic) exponents [18]. This divergence leads to

a change in the information we have about the state of the system. If we consider that the

two initial conditions are different (i.e. indistinguishable within certain precision), then

they will evolve into distinguishable states after a finite time and that change leads to the

creation of information [138, 167]

Consider an m-dimensional ball of radius ε in a measure space. If we let this ball

evolves according to a transformation f , we see that the ball will be deformed into an

ellipsoid, since a positive Lyapunov exponent signifies the growth along the orthogonal
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direction of the ellipsoid. The semi-axes of the ellipsoid are stretched by the transforma-

tion and we have

εi → εie
nλi .

The two indistinguishable points lying on an expanding axis (i.e. an unstable direction)

become distinguishable after a finite time [167]. Although the total volume of the el-

lipsoid generally shrinks due to dissipation, the uncertainty about the future position of

the trajectories grows with lengths of the expanding semi-axes. If there are several posi-

tive exponents λi, each of the related unstable directions contributes to this effect. Then,

the relation between the Kolmogorov-Sinai entropy and the positive Lyapunov exponents

which has been established by Ruelle theorem [166] is

HKS ≤
∑
λi>0

λi. (5.1.17)

The sum of all positive Lyapunov exponents represents an upper bound of the Kolmogorov-

Sinai entropy [18, 112, 166]. This inequality holds as equality often, but not always for

natural measures. However, Yakov Pesin proved that the equality holds for Lebesgue ab-

solutely continuous invariant measure and in a closed system where no trajectories escape

to infinity when the motion is bounded and is called Pesin identity [157],

HKS =
∑
λi>0

λi. (5.1.18)

Equations (5.1.17) and (5.1.18) suggest that entropy is created by the exponential diver-

gence of nearby trajectories.

Definition 7

Given a set N ⊂ R, µ(N) will denote its Lebesgue measure if it satisfies the following

properties:

1- Extends length: For every interval I , µ(I) = l(I), where l(I) = b− a for the bounded

interval I with endpoints a and b (a < b),

2- Monotone: If A ⊂ B ⊂ R, then 0 ≤ µ(A) ≤ µ(B) ≤ ∞,

3- Translation invariant: For every subset A of R and for every point x0 ∈ R, we define

A+ x0 := {x+ x0 : x ∈ A}. Then, µ(A+ x0) = µ(A),
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4- Countably additive: If A and B are disjoint subsets of R, then µ(A ∪ B) = µ(A) +

µ(B). If {Ai} is a sequence of disjoint sets, then µ
(⋃∞

i=1Ai
)

=
∑∞

i=1 µ(Ai) [139].

The Pesin identity (5.1.18) is the formula that relates Kolmogorov-Sinai entropy to

positive Lyapunov exponents and represents a suitable tool to compute the increase or the

decrease of the entropy in a dynamical system. In our work with the Hindmarsh-Rose

system for neuronal activity, we need to evolve a network of HR neurons by maximising

the flow of information in the network. The increase of the entropy in the network which

equals to the sum of the positive Lyapunov exponents can give us a good indication of the

maximisation of the flow of information in the evolved network.

5.2 Brain entropy

Entropy is an important property for life as well as the human brain. It is a measure

of uncertainty about the state of a system but it also reflects the degree of randomness or

disorder in a system [49]. Characterising brain entropy (BEN) can provide an informative

tool to assess brain states and brain functions [196]. Recently, the concept of brain entropy

has been defined as the number of neural states a given brain can access [52, 171]. Low

entropy is characterised by orderliness, repetition and less long-range network synchrony.

The lowest levels of entropy can be observed in deep sleep or, at the extreme, in coma.

Higher levels of entropy is marked by greater long-distance correlations in brain network

activities which leads to higher information processing capacity [52].

The human brain has an imperative need for sustaining its entropy for normal func-

tioning [196]. Entropy can be used as a measure of the complexity and irregular variability

in brain activity from one moment to the next. That means more entropy in the brain’s

connectivity can lead to better adaptation to dynamically changing environment rich with

unpredictable events. Hence, brain entropy can be understood as a measure of the brain’s

overall flexibility or readiness to encounter unpredictable stimuli and predict the outcomes

of our complex and chaotic world [52].

Many researchers investigate the relationship between brain entropy, consciousness

and human intelligence. Consciousness arises naturally as a result of a brain maximising

its information content. They found that the greatest number of possible configurations

of interactions between brain networks is associated with conscious states and represent-
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ing the highest level of brain entropy. However, lower entropy is associated with uncon-

scious or altered states which results from fewer configurations of interactions. Therefore,

one can suggest that consciousness could be the result of an optimisation of information

processing [69]. Human intelligence comprises comprehension of and reasoning about

infinitely variable external events. Brain has large variability in neural configurations,

or states, and that provides better ability in understanding and predicting these external

events. Entropy, is the measure of the variety of these possible configurations within a

brain [171]. Researchers suggest that entropy can be a reliable predictor of human intelli-

gence, and can provide us with unique information not captured by either developmental

status or educational status [52, 69, 171].

Entropy-derived measures can represent a physical means for characterising brain sta-

tus as well as its alterations in diseases [196]. Entropy measures the rate of increase in

dynamical complexity as the system evolves with time [202]. Therefore, these entropy-

derived measures have been used for evaluating the physiological complexity in neuro-

science. Complexity measured by entropy evaluates the amount of information needed

to predict the future state of the system, more complex dynamics means that the system

has higher entropy. Physiological signals obtained from a healthy individual should con-

tain rich information about their complex behaviours. Whereas aging and diseased status,

usually implying decrease of the richness of physiological information, show reduced

entropy values and loss of complexity within the dynamics of physiological output [56].

The functional magnetic resonance imaging (fMRI) and resting-state fMRI (rsfMRI)

scanners are two entropy-based metrics used in mapping brain entropy [56, 171, 196].

They measure brain activity by detecting changes associated with blood flow depending

on the fact that cerebral blood flow and neuronal activation are coupled. The blood flow

to an area of the brain is remarkably sensitive to any change in brain activity and that

leads to the blood being more oxygenated when neural activities increase, which is called

the blood oxygenation level-dependent (BOLD) effect. Brain activity can also be seen as

a time series and the electroencephalogram (EEG) applies the concept of entropy to time

series. There are relations between EEG time series and the functioning of the vast num-

ber of neurons within the human brain [107]. As entropy is a measure of irregularity or

randomness in a signal, EEG recordings can be used for quantifying, in a statistical sense,

the amount of uncertainty or randomness in the pattern, which is also roughly equivalent
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to the amount of information contained in the signal. The entropy-derived measures have

been widely employed as a noninvasive clinical tool for examining normal and pathologic,

neurophysiological temporal dynamics. They have been applied to understand the phys-

iological processes in patients with neurodegenerative disorder diseases, a range of con-

ditions primarily affect the neurons in the human brain. Examples of neurodegenerative

diseases include Alzheimer’s, Parkinson’s and Huntington’s diseases. Entropy measures

have also been applied in many other pathological states, including autism, epilepsy and

schizophrenia [56] and widely used during anaesthesia to quantify the anaesthetic drug

effect [126].

5.3 Evolution of brain dynamical networks

Static networks lack two fundamental characteristics that are displayed by many com-

plex systems: the dynamic nature of the components and their interactions, and the pos-

sible evolution of the underlying network structure. Real-world networks evolve over

time, either by adding or removing nodes or links (for example, the addition or removal

of neurons or synapses during the growth and development of the neural network). In

evolving dynamical networks; topology, dynamics and evolution are all affecting one an-

other. The dynamical processes that take place over the network structure are coupled to

the evolutionary rules of the network itself. Therefore, the network dynamics influence

its evolution and vice versa. Deep understanding of network evolution can reveal the rich

interplay between network topology and its dynamics [17].

The human brain which consists of approximately 86 billion neurons and 150 trillion

synapses [23, 127] represents perhaps one of the most complex systems in the world.

The brain undergoes profound anatomical changes during the first two decades of life.

These developmental changes in neuronal connectivity parallel the maturation of social,

cognitive, and motor skills from birth to young adulthood and alterations of normal de-

velopment can also increase the risks for neurodevelopmental disorder diseases such as

autism and schizophrenia [153]. Recently, the brain has been modelled using small-world

networks that consist of neural units (e.g. neurons and brain regions) linked by structural

and functional connectivity [127]. Brain possesses the small-world topology immediately

after birth and becomes more stable within two years [78]. Its anatomical connectivity
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is sparse, locally clustered, and with a few long-range connections mediating short path-

lengths between any pair of regions [33], that leads to excellent local and global wiring

efficiency for information transfer [78].

In the human brain, the complete network of neuronal connections is called the con-

nectome. Connections within this intricate network are distributed unevenly with certain

network elements possessing a relatively large number of connections, marking them as

network hubs. Brain hubs facilitate the integration of functionally specialised and anatom-

ically diverse neural systems [153]. In complex networks, flow is distinct from network

connectivity. The network connectivity describes the static structure of a network (i.e. its

wiring diagram). In contrast, network flow describes the dynamic utilisation of a network

as a communication medium and anatomical connections in the brain all relate to net-

work connectivity. Determining how information flows along anatomical brain pathways

is a fundamental requirements for understanding how brain dynamical networks (BDNs)

perceive and learn about their environments [182].

Mutual information is a fundamental quantity to understand the development and

function of the brain. It is a measure of how much information two systems or two data

sets exchange. However, the calculation of mutual information in dynamical networks

faces many difficulties because it is based on probabilities of significant events. An alter-

native way is to calculate the mutual information rate (MIR) which represents the amount

of information exchanged per unit of time between two nodes in a dynamical network.

We can compute the upper bound for the MIR in terms of the positive Lyapunov expo-

nents, i.e. Ic = λ1 − λ2 (see Eq. (4.4.1)) instead of relying on probabilities [27]. In Ref.

[20], the authors have used the upper bound for MIR to propose a working hypothesis

that brain networks evolve based on the principle of the maximisation of their internal

information flow capacity. The amount of the increase of the entropy of the system is

another approach that we used to evolve HR networks in this thesis.

5.4 Evolution of Hindmarsh-Rose neurons in brain dy-
namical networks

To evolve a network of Hindmarsh-Rose neurons, we used the Kolmogorov-Sinai en-

tropy HKS which is equal to the sum of positive Lyapunov exponents, as an evolutionary
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Figure 5.2: An elementary example of 4 neurons connected simultaneously by two undi-
rected electrical (EL) and two undirected chemical (CL) links.

rule for a coupled Hindmarsh-Rose system. First, we developed a Matlab code to com-

pute the Kolmogorov-Sinai entropy HKS using the Pesin identity (5.1.18), for a network

of 4 neurons connected simultaneously by two undirected electrical and two undirected

chemical links for a coupled Hindmarsh-Rose system (see Fig. 5.2). We used the same

parameter values and initial conditions as in subsection 4.2.2 in the Matlab code but with

different values for the chemical coupling gn and electrical coupling gl to compute the

Lyapunov exponents and theHKS of the network at each case in the time interval: [0, 104]

with time-step 0.01. The coupled HR system for an undirected brain dynamical network

of Nn neurons is given by

dxi
dt

= yi − ax3
i + bx2

i − zi + Iext − gn(xi − Vsyn)
Nn∑
j=1

BijS(xj)

− gl
Nn∑
j=1

GijH(xj),

dyi
dt

= c− dx2
i − yi,

dzi
dt

= r[s(xi − x◦)− zi],

dφi
dt

=
ẏixi − ẋiyi
x2
i + y2

i

, i = 1, ..., Nn,

(5.4.1)

where xi is the membrane potential, yi the spiking variable, zi the bursting variable and

φi the phase variable. Bij is the adjacency matrix of the chemical connections. Gij is the

Laplacian matrix accounts for the way neurons are electrically coupled, Gij = Kij − Aij
with A is the adjacency matrix of the electrical connections and K the degree identity

matrix based on A [20].

For gn = 0.8 and gl = 0.1, the entropy of the system is positive: HKS = 0.275 as the

dynamics of the system is chaotic. For gn = 1.2 and gl = 1.6, the entropy of the system is

close to zero: HKS = 0.001 as the trajectory of the system converges to one of the fixed
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Figure 5.3: Plots of the upper bound Ic, the order parameter ρ and the two largest Lya-
punov exponents λ1 and λ2 versus the chemical coupling gn and electrical coupling gl for
an elementary example of 4 neurons connected simultaneously by two undirected electri-
cal and two undirected chemical links.

points and loses energy.

We also plot the upper bound Ic for MIR (4.4.1), the synchronisation measure ρ (4.3.1)

and the two largest Lyapunov exponents λ1 and λ2 versus the chemical coupling gn and

electrical coupling gl for the network of 4 neurons.

In the parameter spaces in Fig. 5.3, we used (gn, gl) ∈ [0, 2] x [0, 2] for 100 x 100 points.

The plot for the upper bound Ic versus gn and gl shows that the highest value for Ic is

between gn = 0.6 and 1 and gl = 0 and 0.2. The dynamics of neurons in this area

of the plot is chaotic. In the order parameter ρ plot, the highest value for ρ is between

gn = 0 and 0.2 and for all the values of gl and that indicates the behaviour of the neurons

is periodically synchronised. The two other plots represent the two largest Lyapunov

exponents λ1 and λ2 versus gn and gl. The upper bound Ic = λ1 − λ2, with the value

of λ1 positive and λ2 either positive or very close to 0 (e.g., for gn = 0.8 and gl = 0.1,

λ1 = 0.234 and λ2 = 0.035) the plot for λ1 is more similar to the Ic plot.

Then, we used the Kolmogorov-Sinai entropy HKS of Eq. (5.1.18) as the evolutionary
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Figure 5.4: A network of 6 clusters composed of 10 neurons each. Neurons in each
cluster are connected only by electrical links (black connections) and their connections
form small-world networks. The six clusters connect to each other only by chemical links
(red connections) [20].

rule for a coupled Hindmarsh-Rose system to evolve a network of 6 clusters of 10 neurons

each (see Fig. 5.4). Neurons in each cluster are connected only by electrical links and

their connections form a small-world networks as the neural network exhibits a small-

world topology. The small-world topology implicates networks that exhibit a densely

connected local neighbourhoods to achieve a higher clustering of connections than the

random network and exert direct long-range connections to distant regions to achieve a

shorter path-length than the regular network, that provide excellent wiring efficiency for

information transmission [33, 78]. The six clusters connect to each other only by chemical

links, where each link connects two neurons in different clusters.

In the Matlab code, we used two binary adjacency matrices. The first adjacency matrix

A is a block diagonal matrix for the electrical connections in the six clusters. We construct

each network in the six clusters using Watts-Strogatz algorithm (rewiring method) so

their connections form a small-world networks as the neural network exhibits a small-

world topology. The second binary adjacency matrix B is for the chemical connections

among the clusters. The adjacency matrix for the whole network C is the sum of these

two adjacency matrices A and B. We start the evolution of the network by computing

the Lyapunov exponents (λi) for initial network using the method in subsection 2.2.2 for

whole time interval. Then, we compute the values for the upper bound of MIR: Ic = λ1−

λ2 and the Kolmogorov-Sinai entropy using Pesin identity formula: HKS0 =
∑

λi>0 λi
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for the initial network.

After that, we add a new chemical link to simulate the creation of new chemical

synapses between neurons of different clusters. The idea is that the new chemical link

should connect two randomly chosen neurons without any chemical connection between

them and should belong to two different clusters. We again run the code and compute

the Lyapunov exponents, Ic and the HKS1 values for the evolved network (i.e. the initial

network plus the new chemical link). If the newly added chemical connection leads to an

increase of HKS (i.e. HKS1 > HKS0), we keep the new connection. If not, it is deleted

from the network and another random search for a new one starts. This procedure will be

repeated until the maximum number of possible pairs of neurons from different clusters

is exhausted.

To compute the maximum number of possible pairs of neurons, we used the following

combinations which provide us with all possible combinations of pairs between any two

neurons i and j in each cluster and in the whole network. These possible combinations

of pairs are equal to the maximum number of possible pairs of neurons in the network,

since the connections in the network are undirected. As each cluster in the network has

10 neurons, the number of pairs of neurons in each cluster is 10

2

 =
10!

2!(10− 2)!
= 45,

and for the whole network with 60 neurons is 60

2

 =
60!

2!(60− 2)!
= 1770.

Then, 1770 − (45 × 6) = 1500 represents the maximum number of possible pairs of

neurons for chemical connections. The code needs to run 1500 times to exhaust all pos-

sibilities of adding new chemical links to connect two randomly chosen neurons with no

chemical link between them and belong to two different clusters. At each time, we first

add a new chemical link and after the run of the system we compute the values of Ic

and HKS . We compare the value of HKS with all previous ones and keep the added link

only if it leads to increase in the HKS entropy. At the end, the sum of the two adjacency

matrices for the electrical and chemical connections C = A + B, which represents the
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(a) Synchronisation measure 〈ρ〉5 (b) Upper bound for MIR, 〈mMIR〉5

Figure 5.5: (a) Parameter space for the synchronisation measure 〈ρ〉5. Selected chemical
coupling gn and electrical couplings gl: with low synchronisation measure ρ and low
information flow capacity Ic, gn = 0.2, gl = 0.2 (N) and with high ρ and low Ic, gn = 0.2,
gl = 0.7 (F) and gn = 0.2, gl = 1.9 (J). (b) Parameter space for the averaged upper
bound for MIR, 〈mMIR〉5, from the five realisations of a network of 60 neurons with six,
equally sized, small-world clusters. Selected gn and gl values: with low ρ and low Ic,
gn = 0.9, gl = 0.2 (�) and with low ρ and high Ic, gn = 0.9, gl = 0.9 (I) and gn = 0.9,
gl = 1.5 (•) [20].

adjacency matrix for the finally evolved network has the highest HKS value.

The information flow capacity is an important property of the dynamics in brain dy-

namical networks. The authors in Ref. [20], have used the upper bound Ic for the amount

of information exchanged per unit of time between two nodes in a dynamical network to

propose a working hypothesis that the brain networks evolve based on the principle of

the maximisation of their information flow capacity Ic. We will use a similar principle

in evolving a network of 6 clusters of 10 neurons each by increasing the Kolmogorov-

Sinai HKS entropy of the network and compare between the combined effect of chem-

ical and electrical coupling with the two concepts, the upper bound Ic = λ1 − λ2 and

HKS =
∑

λi>0 λi. First, we select 6 characteristic values for the chemical coupling gn

and electrical coupling gl from the two parameter space plots (Fig. 5.5) for the Model for

Brain Network Evolution in Ref. [20] which has the same network structure. From the

parameter space plot for the average of the global synchronisation of the evolved BDNs

for the five realisations [20], the three coupling pairs are: gn = 0.2, gl = 0.2 (N) that

corresponds to low ρ and Ic, gn = 0.2, gl = 0.7 (F) and gn = 0.2, gl = 1.9 (J), that

correspond to high ρ and low Ic (Fig. 5.5a). We select the remaining 3 coupling pairs of

〈mMIR〉5: gn = 0.9, gl = 0.2 (�) that corresponds to low ρ and Ic, gn = 0.9, gl = 0.9
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(I) and gn = 0.9, gl = 1.5 (•) that correspond to low ρ and high Ic (Fig. 5.5b) [20].

Then, we use the values of the 6 coupling pairs in the coupled Hindmarsh-Rose system

(5.4.1) to evolve a network of 6 clusters of 10 neurons each. We used the same parameter

values and initial conditions as in subsection 4.2.2, the time interval was set [0, 103] and

the time-step to 0.01. Each of the 6 realisations of the code run 1500 times to exhaust

all possibilities of adding new chemical links following the evolutionary rule described

before.

We plot HKS and Ic versus the number of added links for each coupling pair (Fig.

5.6) to compare how HKS and Ic behave as the networks evolve by using the evolutionary

rule. We analyse the behaviours ofHKS and Ic for the plots of all pairs of gn and gl values

in Fig. 5.5:

At the first row: plots of points with low synchronisation measure ρ and low information

flow capacity Ic. The plot in Fig. 5.6a, for the coupling pair gn = 0.2, gl = 0.2 (N) from

Fig. 5.5a shows that HKS increases slowly as we evolve the network by increasing HKS ,

while Ic decreases to even smaller values with the adding of new chemical connections.

The plot in Fig. 5.6b, for the coupling pair gn = 0.9, gl = 0.2 (�) from Fig. 5.5b shows

that HKS increases slowly and Ic fluctuates and later remains almost constant.

At the second row: plots of points with high ρ and low Ic. The plot in Fig. 5.6c, for the

coupling pair gn = 0.2, gl = 0.7 (F) from Fig. 5.5a shows that HKS increases and Ic

increases with some drops for smaller number of added links. The plot in Fig. 5.6d, for

the coupling pair gn = 0.2, gl = 1.9 (J) from Fig. 5.5a shows that HKS increases and

that Ic fluctuates and later decreases.

At the third row: plots of points with low ρ and high Ic. The plot in Fig. 5.6e, for the

coupling pair gn = 0.9, gl = 0.9 (I) from Fig. 5.5b shows that both HKS and Ic increase.

The plot in Fig. 5.6f for the coupling pair gn = 0.9, gl = 1.5 (•) from Fig. 5.5b shows

that HKS and Ic increase.

Brain networks evolve over time by adding or removing large number of connections

in short period of time and that evolution produce either increase or decrease of their

entropies. We note here that we evolve the networks by adding new chemical connections

which increase their entropy, therefore we expect to see HKS increasing for all coupling

pairs. Different values of coupling strengths result in different values of Ic, HKS and

numbers of added links. The plots for coupling pairs from regions with low ρ and low
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(a) N low ρ and low Ic (b) � low ρ and low Ic

(c)F high ρ and low Ic (d) J high ρ and low Ic

(e) I low ρ and high Ic (f) • low ρ and high Ic

Figure 5.6: The 6 plots of HKS (red line) and Ic (blue line) versus the number of added
chemical links (red and blue dots) using different coupling pairs (Fig. 5.5) to evolve a
network of 6 clusters of 10 neurons each by increasing HKS . (a) gn = 0.2, gl = 0.2
(N): HKS increases slowly and Ic decreases to smaller values with adding new chemical
connections. (b) gn = 0.9, gl = 0.2 (�): HKS increases slowly and Ic fluctuates and then
remains almost constant. (c) gn = 0.2, gl = 0.7 (F): HKS increases and Ic increases
with some drops for smaller numbers of added links. (d) gn = 0.2, gl = 1.9 (J): HKS

increases, Ic fluctuates and then decreases. (e) gn = 0.9, gl = 0.9 (I): HKS and Ic
increase. (f) gn = 0.9, gl = 1.5 (•): HKS and Ic increase.

Ic show the highest initial HKS but with very slow increase in its values and the smallest

number of added links. We also notice that the plots for coupling pairs that are either
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from regions with high values of synchronisation measure ρ and low information flow

capacity Ic or regions with low ρ and high Ic have the highest number of added chemical

connections. We know adding many links to a network can create a synchronised network.

But this small portion of added chemical links (out of 1500 possibilities) will not produce

a synchronised network instead it will produce a new evolved one with greater entropy.

We used the adjacency matrices of two evolved networks, one with the lowest number

of added links and the other with the highest number of added chemical links to compare

between the properties of these evolved networks. The two evolved networks have cou-

pling pairs from Fig. 5.5b of the parameter space for the averaged upper bound for MIR.

The first adjacency matrix of the evolved network of the plot in Fig. 5.6b, for the coupling

pair gn = 0.9, gl = 0.2 (�) with low ρ and low Ic. The second adjacency matrix of the

evolved network of the plot in Fig. 5.6e, for the coupling pair gn = 0.9, gl = 0.9 (I)

with low ρ and high Ic. We compute the average node degree, average path-length, global

clustering coefficient and global efficiency for both evolved networks using the following

rules:

The average node degree of an undirected network of N nodes is

〈k〉 = 1
N

∑N
i=1 ki.

and average path-length is

L = 2
N(N−1)

∑N
i,j=1,i 6=j di,j,

where di,j is the distance between node i and node j, the global clustering coefficient C

is

C = 3×number of triangles
number of connected triples .

The global efficiency of a network is Eglob ∼ 1
L

.

First, the properties of the evolved network of Fig. 5.6b which has only 4 added chemical

links:

〈k〉 = 4.3333, L = 4.0989, C = 0.4041 and Eglob = 0.3209.

Second, the properties of the evolved network of Fig. 5.6e which has the highest number

of added links 25:

〈k〉 = 5.0333, L = 3.1278, C = 0.2979 and Eglob = 0.3825.
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The increase in average node degree for evolved network of Fig. 5.6e related to the in-

crease in the number of added chemical links and that also results in lower value for the

average path-length. These added links connect neurons in two different clusters which

can explain why the evolved network has lower C as the neurons in each cluster can

have more connected neighbours. The evolved network has the higher network efficiency

0.3825 as the shorter the average path-length, the more efficient the network.

The evolution of network in Fig. 5.6b started with higher HKS value but then it in-

creases slowly and Ic fluctuates and later remains almost constant. While the evolution of

network in Fig. 5.6e started with lowerHKS value, then bothHKS and Ic increase steadily

with each added link and produce an evolved network with higher network efficiency.

The relation betweenHKS , Ic and the number of added chemical connections in evolv-

ing the network in the plots is evident even when the values of Ic fluctuate or decrease.

However, they still exhibit a higher increase in HKS as more chemical connections are

added when the pairs of gn and gl values have high Ic. Both HKS and Ic depend on Lya-

punov exponents (LEs). The upper bound Ic for the amount of information exchanged

per unit of time between two nodes in a dynamical network has been used to demonstrate

evidence that the brain networks might evolve based on the principle of the maximisation

of their information flow capacity [20]. The relation that we have investigated here be-

tween HKS and Ic shows that the evolution of networks by increasing their entropies can

be another approach to evolve BDNs.

Working with the three concepts: ρ, Ic and HKS and their dependence on coupling

strengths gn and gl needs many runs of the codes with different values of gn and gl which

require more time and much faster cluster. We selected constant values to gn and different

values to gl. We need to run the codes with constant values to gl and different values to gn

and compare the results to see which coupling strength has more effect on the dynamics

and the increase in HKS entropy. We first used the code to evolve a network of 6 clusters

of 5 neurons each. After that, we increase the number of neurons in each cluster to 10 for

each evolved network. Both runs of the code produce same results but still we need to run

the code with much bigger size of networks. Then, we can compare the number of adding

links and the increase in HKS and their relation with the increase in Ic.



Chapter 6

Conclusions and future work

In the thesis, we have studied the dynamics and mathematical modelling of biological

neurons. The biological neuron model we chose to work with is the Hindmarsh-Rose neu-

ronal model. We will briefly state the main conclusions of our research and the proposed

future work.

6.1 Conclusions

We started our work by studying the spike-bursting behaviour of the Hindmarsh-Rose

model which is exhibited for specific initial conditions and parameter values. Then, we

used linear stability analysis to determine the stability of its equilibrium points. We com-

puted the Lyapunov exponents LEs of the model using two different integration schemes,

the Runge-Kutta (RK4) and Euler’s forward method. We used in the computation of LEs

same parameter values, initial conditions, time interval and time-step to compare the exe-

cution time and accuracy for both methods. The code for the Euler’s forward method was

much faster than the one using the RK4 method for the same time-step yielding similar

numerical results.

Since the small-world configuration represents an attractive model for the organisation

of brain networks, we coupled the HR system to create an undirected brain dynamical

network (BDN) of Nn neurons connected simultaneously by electrical (linear coupling)

and chemical (nonlinear coupling) synapses. First, we used the coupled HR system with

the same parameter values and slightly different initial conditions to study the dynamics

of elementary examples of three and four neurons and plotted the Lyapunov exponents of

both examples. The behaviour of the LEs was not clear in the transient period, however

after that, the largest Lyapunov exponent λ1 started to converge to a positive value and
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represented the maximal Lyapunov exponent (MLE) for each neuron.

Then, we studied the upper bound Ic for the mutual information rate (MIR), the syn-

chronisation measure ρ (order parameter) and the two largest Lyapunov exponents λ1 and

λ2 and their dependence on the values of electrical and chemical couplings. We analysed

the dynamics of neurons in two elementary examples of 3 neurons through the parameter

space plots. The first example connected simultaneously by one undirected chemical and

two undirected electrical links and the second by one undirected electrical and two undi-

rected chemical links. We plotted the upper bound Ic, order parameter ρ and two largest

Lyapunov exponents λ1 and λ2 versus the chemical coupling gn and electrical coupling gl.

To further examine the dynamics of the system, we selected different values for electrical

and chemical couplings for both examples and plotted the trajectories for all neurons at

each value. The resulting dynamics indicates that the two types of coupling produce dif-

ferent patterns of dynamics. Even for small number of neurons, it has been shown that

dynamics depends on the number of neurons and the type of coupling strength between

them.

We computed the Kolmogorov-Sinai entropy HKS for a network of 4 neurons con-

nected simultaneously by two undirected electrical links and two undirected chemical

links for a coupled Hindmarsh-Rose system. We obtained different entropies with the

use of different values for both the chemical and electrical couplings. If the entropy of

the system is positive, the dynamics of the system is chaotic and if it is close to zero,

the trajectory of the system converges to one of the fixed points and loses energy. Then,

we used the Kolmogorov-Sinai entropy as the evolutionary rule for a coupled Hindmarsh-

Rose system to evolve a network of 6 clusters of 10 neurons each. Neurons in each cluster

are connected only by electrical links and their connections form a small-world network.

The six clusters connect to each other by chemical link only, where each link connects

with two neurons in different clusters. We ran six realisations of the code evolving 6 net-

works of coupled HR system with different pairs of chemical and electrical couplings to

compare between the combined effect of chemical and electrical couplings with the two

concepts, the information flow capacity Ic = λ1−λ2 and HKS in evolving the BDNs and

show results that brain networks might evolve based on the principle of the maximisation

of their entropies.
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6.2 Future work

The work in this thesis can be extended in two possible directions. First, one can

explore further the potentials of the Hindmarh-Rose model. Fractional-order dynamics

of excitable systems can be described as a memory dependent phenomenon and can pro-

duce diverse oscillatory patterns for certain types of neuron models. Many single neu-

ron models are analysed by using fractional-order dynamics such as Hodgkin-Huxley,

Fitzhugh-Nagumo and Hindmarsh-Rose models [142]. On the other hand, time delays

are common in all biological processes. They affect the generation, transmission and pro-

cessing of information among different components of a living system [134]. Information

time delays between neurons have many sources, such as the limited speed of transmitting

action potential through the axon, different types of synapses (chemical, electrical), the

release of neurotransmitter and the condition of myelin sheaths [125]. In recent years, the

stability analysis of neural models with time delays has received considerable attention

[121]. Thus, one can consider studying the dynamics of two models: the fractional-order

Hindmarsh-Rose model and the time-delay Hindmarsh-Rose model.

The second direction will be the study of two interesting single neuron models, namely

the simple model of spiking neurons and the adaptive exponential integrate-and-fire model.

Accurate, simple and versatile single neuron models are required for the simulations of

large spiking neuron networks [40, 144]. We can use the models to construct different

sizes of networks of spiking neurons capable of exhibiting collective dynamics. Then,

one can evolve the resulting networks by using Kolmogorov-Sinai entropy HKS as an

evolutionary rule to compare the results with our work on coupled Hindmarsh-Rose sys-

tem. We will discuss these models briefly next.

• The fractional-order Hindmarsh-Rose model.

Fractional calculus is a generalisation of integer-order calculus. The integer-order

dynamical models depend on the immediate previous response. Whereas, the fractional-

order derivative depends on all the previous responses, so it has a memory effect

[142]. We can obtain the fractional-order Hindmarsh-Rose system by replacing

its integer-order derivatives in (3.6.1) by fractional-order Caputo-type derivatives

[114]. The Caputo fractional-order derivative of order q of the continuous function
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f(t) is defined by

Dq
t f(t) =

1

Γ(n− q)

∫ t

0

f (n)(s)

(t− s)q−n+1
ds, (6.2.1)

where n is the first integer larger than q (i.e. n − 1 ≤ q < n) and Γ(.) the

gamma function [111, 114]. Using the Caputo definition, the HR neuronal model

of fractional-order derivative is as follows

Dqx = y − ax3 + bx2 − z + Iext,

Dqy = c− dx2 − y,

Dqz = r[s(x− x◦)− z],

(6.2.2)

where x(t) is the membrane potential, y(t) the spiking variable and z(t) the burst-

ing variable. a, b, c, d, s, r, x◦ and Iext are system parameters. Iext mimics the mem-

brane input current for biological neurons. The integer-order HR neuronal model

refers to the case of order q = 1 [111, 114]. The generalization of this integer-

order model can provide a wide range of neuronal responses (regular spiking (RS),

fast-spiking (FS), bursting, etc.). The models of dynamical equations using frac-

tional derivatives proved to be more accurate in the mathematical modelling of

real-world phenomena [114]. Still, it is not completely understood to what ex-

tent the fractional-order dynamics may reproduce the firing properties of excitable

systems [142].

• The time-delay Hindmarsh-Rose model.

Time delays are usually overlooked in mathematical models, presumably to reduce

their complexity. However, neglecting time delay effects in mathematical models

has led to discrepancies between theoretical and experimental findings [134]. In the

Hindmarsh-Rose neuron model, a time delay can exist when the slow oscillation

of z drives the fast subsystem (x, y). To make the single Hindmarsh-Rose neuron

model (3.6.1) more realistic, time delays should be included in the slow oscillation
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state of z, as in the following model [121]:

dx

dt
= y − ax3 + bx2 − z(t− τ) + Iext,

dy

dt
= c− dx2 − y,

dz

dt
= r[s(x− x◦)− z],

(6.2.3)

where τ > 0 represents the time delay. One can analyse the chaotic behaviours of

the HR neuron either by increasing or fixing the external current and varying the

time delay. The increase in external current causes the excitable HR neuron to ex-

hibit periodic or chaotic bursting/spiking behaviours. Using fixed external current

and varying the time delay can also affect the stability of the HR neuron. Further-

more, the effects of time delays along with system parameters can be investigated

in a coupled HR system [121, 125].

• The simple model of spiking neurons.

The simple model of spiking neurons is a mathematical model developed by Eugene

Izhikevich in 2003 [109]. The model has the biological plausibility of Hodgkin-

Huxley-type dynamics combined with the computational efficiency of the integrate-

and-fire model [109]. We can simulate only a handful of neurons in real time with

the use of Hodgkin-Huxley-type models due to its complexity. Whereas, integrate-

and-fire models are computationally effective, but much simpler and incapable of

producing rich spiking and bursting dynamics exhibited by many types of neurons

[109]. We chose the simple model of spiking neurons model because it is relatively

simple and can fire spiking patterns that resemble those of biological neurons. Also,

we can use the model to simulate large-size networks of spiking neurons [143]. In

addition, the mathematical model computation can be done in Matlab as we did

with the Hindmarsh-Rose model.

The model consists of two coupled nonlinear first order ordinary differential equa-
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tions [109, 143], given by

V̇ = 0.04V 2 + 5V + 140− U + I,

U̇ = a(bV − U),

If V ≥ 30 mV, then

V = c,

U = U + d,

(6.2.4)

where V represents the membrane potential of the neuron and U the recovery vari-

able. The injected currents are delivered through the variable I . The parameter a

gives the decay rate of the spike, smaller a values result in slower recovery. The

parameter b gives the sensitivity of the spike. c represents the after-spike reset

value of the membrane potential V and d the after-spike reset of the recovery vari-

able U . Different values of the parameters result in various intrinsic firing patterns

[109, 143]. For a single neuron, different choices of functions are more preferable

such as the function (0.04v2 + 4.1v + 108) with b = −0.1 being a better choice for

regular spiking neurons.

• The adaptive exponential integrate-and-fire model.

An exponential model combined with an adaptation variable is called the adaptive

exponential integrate-and-fire (AdEx) model which was developed by Brette and

Gerstner in 2005 [24]. AdEx is a simple model described by only two differential

equations and a reset condition [93, 144]:

C
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − VT

∆T

)
+ I − w,

τw
dw

dt
= a(V − EL)− w,

If V > 0 mV, then

V → Vr,

w → wr = w + b,

(6.2.5)

where V is the membrane potential, w the adaptation current and I the injected

current. The model has nine parameters required to define the evolution of the

membrane potential V and the adaptation current w [144]. C is the membrane ca-
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pacitance, gL the leak capacitance, EL the leak reversal potential, ∆L the threshold

slope factor, VT the effective threshold potential. The rest of the parameters are

bifurcation parameters, a the adaptation coupling parameter, τw the adaptation time

constant, b the spike triggered adaptation and Vr the reset potential. The AdEx

model is capable of producing multiple firing patterns corresponding to different

parameter values [144].

Another interesting approach in studying brain dynamical networks is the study of the

entropy-based metrics in functional magnetic resonance imaging (fMRI) and electroen-

cephalogram (EEG) (section 5.2). The relations between EEG time series and the func-

tioning of the vast number of neurons within the human brain was first analysed by Nor-

bert Wiener in 1948 [199]. Since entropy is a measure of irregularity or randomness in a

signal, EEG recordings can be used for quantifying, in a statistical sense, the amount of

uncertainty or randomness in the signal, which is also roughly equivalent to the amount of

information contained in it [56]. In recent years, the concept of entropy-derived measures

has been widely used in studying brain complexity and analysing physiological signals in

biological systems. Numerous entropy algorithms have been developed to quantify differ-

ent aspects of the complexity of physiological signals such as sample entropy (SampEn),

Shannon permutation entropy (SPE), distribution entropy (DistEn) and approximate en-

tropy (ApEn) which are based on the estimation of the Kolmogorov-Sinai entropy from a

time series [56, 140].
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