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Abstract 

This paper conducts an explorative analysis of the UK’s nanotechnology research collaboration 

network to understand the contributions of the different institutions in the development and 

generation of knowledge. Framed in the National Innovation System (NIS) and the Triple Helix 

(TH) model literature, this paper makes use of social network analysis (SNA) tools to identify the 

role and involvement of different institutional actors in the interactions and collaborations within 

the nanotechnology network. Building on the traditional university–industry–government three-

helix interaction model, our paper includes two extra dimensions in the model to account for the 

increase in international collaboration and the increasingly important role of non-profit 

organizations (NPOs) in knowledge generation. In this way, our paper responds to recent calls to 

adapt the traditional NIS models to reflect the new realities of scientific collaboration.   
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1. INTRODUCTION  

The generation and application of new knowledge are primary drivers of economic 

growth (Ribeiro-Soriano et al., 2019). The collaboration between different entities and actors 

has increasingly become an important mode of knowledge generation across different science-

based disciplines (Wuchty et al., 2007). The OECD (2018a) has pointed out that the extent and 

intensity of industry and science links are essential contributors of high innovation performance 

at all levels of the economy (i.e. firm, industry and country levels). 

The innovation systems literature has examined the dynamics of the interactions and 

technology-driven collaborations between these different economic actors (e.g. universities, 

governments, industry, users or suppliers). The National Innovation System (NIS) literature 

underscores the importance of interactions between different actors in the economy (firms, 

universities and government) for innovation success (Freeman et al., 1987; Lundvall, 1992; 

2007). A popular lens to examine the structure of the NIS is the Triple Helix (TH) framework 

(Etzkowitz and Leydesdorff, 2000; Leydesdorff and Meyer, 2006), which depicts the relations 

among universities (U), firms (I) and government (G). The TH model enables the study of both 

bilateral and trilateral interactions between different spheres (universities, industry and 

government) in an innovation system (Etzkowitz and Leydesdorff, 2000; Park and Leydesdorff, 

2010). The relevance of the TH model has been reflected in the academic literature, with an 

increasing number of papers employing the TH framework to examine the patterns of 

interactions between different institutional actors (e.g. Guerrero and Urbano, 2017; Zhang et 

al., 2019). 

However, as recently pointed out in the literature, by including only UIG actors, the 

traditional TH model fails to portray the full NIS, and thus misses out many collaborations (e.g. 

Hoglund and Linton, 2018; Lew et al., 2018; Zhang et al., 2019). In particular, the traditional 

TH model fails to reflect two important forces that are shaping the current knowledge economy, 

namely globalization and social movements. First, the increasing permeability of geographical 

borders has promoted the mobility and circulation of people, knowledge and capital, allowing 

the internationalization of R&D and increasing the interrelation of innovation processes that are 

geographically distant (Binz and Truffer, 2017). Second, the emergence of the organized civil 

society and of non-profit organizations as manifestations of broader social movements has 

significantly transformed the economic landscape, contributing extensively to the areas of 

environmental protection, human rights or science (Campbell, 2007; Kourula, 2010). Thus, 

recognizing the complexity of the NIS, and following recent calls for extensions of the TH 
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model (e.g. Leydesdorff, 2012; Zhang et al., 2019), this paper proposes a five-helix model in 

which international and non-profit organizations (NPOs) are included as additional helices to 

the traditional TH model. Our research question evaluates the importance of NPOs and 

international institutions in the NIS and explores the interaction of these two actors with the 

traditional UIG actors. 

Our paper explores this question using social network analysis (SNA), a popular tool to 

analyse the structural nature and patterns of NIS (Borgatti and Halgin, 2011; Newman, 2001). 

SNA encompasses different measures that allow the exploration of the interaction from a macro 

level, i.e. the structure and dynamics of a particular system, and the interactions at a micro level, 

i.e. observing the particular characteristics of an individual. As compared with other 

methodologies, SNA enables the analysis of complex relations between different actors that can 

be used for discriminating structures in systems based on the relation of the systems’ actors 

rather than the attributes of the individual actors (Guan and Zhao, 2013; Sena et al., 2019). 

To illustrate the interest of studying an enlarged TH model, we conduct an exploratory 

analysis of the UK nanotechnology NIS. The first part of our analysis consists of examining the 

UK nanotechnology scientific network to understand its structure and identify the main 

institutional actors taking part in the production of knowledge and their level of importance. 

The second part of our analysis shows, using the modified TH model, the interactions between 

the different actors that justify the need for their inclusion. 

Our empirical set-up is the UK’s nanotechnology research collaboration network. 

Nanotechnology is considered as a key emerging technology (OECD, 2018b) with multiple 

applications in different technological domains, such as biotechnology and pharmacy, advanced 

materials and electronics (US National Nanotechnology Initiative, 2020). Nanotechnology has 

the potential to significantly improve advanced materials and manufacturing techniques, which 

are crucial for the competitiveness of national industries, and it is expected to be one of the 

major future technologies as its applications are regarded as involving radical innovation 

(Kostoff et al., 2007; Lavie and Drori, 2012; US National Nanotechnology Initiative, 2020). 

Because of potential applications to other fields and benefits to society, the development of 

nanotechnology has received attention from governments and policymakers, which have 

fostered its progress with different programmes. 

Nanotechnology is an emerging science-driven industry in which collaboration is key 

for knowledge creation (Lavie and Drori, 2012; Thursby and Thursby, 2011). As compared 

with consolidated industries, where inter-firm alliances are the main form of collaboration, 

emerging science-driven industries have a locus of knowledge in universities and are 
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characterized by the collaboration of teams of scientists (Darby and Zucker, 2005; Lavie and 

Drori, 2012; Thursby and Thursby, 2011). Thus, our study uses co-authorship information on 

scientific publications, which allows the exploitation of the multimodal structure of publication 

data. Scientific publications are established indicators of knowledge generation, which contain 

information on the innovation process and the intensity of collaboration between different 

actors (Graf and Kalthaus, 2018). Moreover, publications are widely used in the Triple Helix 

literature as indicators of collaboration in the knowledge generation process (e.g. Guan and 

Zhao, 2013; Leydesdorff and Sun, 2009; Park and Leydesdorff, 2010; Zhang et al., 2019). 

This paper provides important insights for scholars and policymakers alike. First, our 

paper contributes to the existing NIS literature by highlighting the increasing complexity of the 

NIS and by including two additional dimensions to the traditional TH model. The inclusion of 

these two dimensions provides a better and more comprehensive tool to understand the 

interaction of the different actors forming the NIS. Second, by examining the structure of the 

network and the role of the different institutional actors in it, we are able to uncover the main 

strengths and weaknesses of the emerging innovation system in nanotech. 

2. LITERATURE REVIEW 

Networks of scientific collaboration 

Knowledge generation is a cumulative and interactive process, in which the interactions 

and connections between different actors are key for the exchange and diffusion of knowledge 

(Powell et al., 1996). The collaboration between different entities and actors has increasingly 

become an important mode of knowledge generation across different science-based disciplines 

(Wuchty et al., 2007). External links that provide access to knowledge are crucial for the 

innovative performance of firms. This is particularly true in high-tech sectors, in which the 

complex and fast-evolving knowledge bases impede individual entities to keep up with the 

technological developments (Cantner and Rake, 2014). This rise in collaboration has been 

facilitated by the increasing specialization and division of labour arising from the cumulative 

and dispersed nature of knowledge (Graf and Kalthaus, 2018; Fleming and Sorenson, 2004). 

Collaboration is also a means for different actors (such as academia, public research institutes 

and corporations) to pool, interchange and develop ideas, knowledge and other resources, and 

to reduce technological, market, financial and operational risks (Cantner and Rake, 2014; 

Powell et al., 1996).  

Previous research has noted the relevance of collaboration for knowledge creation, 

pointing out that innovation output resulting from this collaboration tends to be more valuable 
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than that generated in isolation (Wuchty et al., 2007). This is because innovation is a process 

of recombination in which firms can benefit from the input gained through interactions with 

partners in the form of knowledge spillovers (Fleming and Sorenson, 2004). A fruitful 

collaboration that has gained a lot of attention is that of universities and businesses. For 

instance, previous studies have explored how top universities (Stanford University, the MIT 

and the University of Cambridge) have contributed to the growth of high-tech economies 

throughout the different interactions (i.e. providing well-educated graduates, engaging in joint 

research or conducting commissioned research and consultancy work for firms) with the 

industry (Christopherson et al., 2008). 

Traditionally, collaboration was understood and explored in the framework of strategic 

alliances, in which trust, similarity of partners and governance were key elements in successful 

collaborations (e.g. Dyer and Singh, 1998; Gulati, 1995). However, more recent research noted 

that the type of collaboration that promotes knowledge generation is to a large extent 

determined by the level of maturity of the industry (Lavie and Drori, 2012). In emerging 

industries, an alliance perspective is more relevant in knowledge application contexts, while 

knowledge generation is more associated with universities (Lavie and Drori, 2012). For 

example, in the area of nanotechnology, an emerging science-driven industry, knowledge 

creation is driven by the collaboration between teams of university scientists rather than inter-

firm alliances (Lavie and Drori, 2012). The aggregate structure of these collaborations and 

interactions can be analysed in so-called knowledge networks (Graf and Kalthaus, 2018). 

Knowledge networks are best represented by co-authorship networks, where institutions such 

as academia, public research institutes and corporations are connected to each other by joint 

publications (Graf and Kalthaus, 2018). Co-authorship represents an explicit product of 

scientific collaboration and a particular type of network of scientific collaboration for 

knowledge generation (Knights and Scarbrough, 2010). Publications have been reported to be 

the dominant channel of knowledge flows across actors (Nelson, 2009).1 Scientific publications 

are a key channel for knowledge diffusion and exchange in industries like nanotechnology that 

take advantage of basic science and research conducted by universities (Lavie and Drori, 2012). 

While in universities and public research organizations publications are a common output, 

corporations might be less likely to publish as doing so will imply openly sharing knowledge 

(Nelson, 2009). Nevertheless, in emerging industries firms engage in significant publishing 

activities since the need to be embedded in inter-organizational sharing networks outweighs the 

 
1 Previous studies have suggested that patents and patent citations may fail to capture both inventive and 

innovative activities (Brouwer and Kleinknecht, 1999; Nelson, 2009). 
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disadvantages of revealing important information to competitors (Nelson, 2009; Powell et al., 

1996). For instance, for nanotechnology, Darby and Zucker (2005) indicate that large 

corporations encourage their scientists to publish, while Li et al. (2015) also note an active 

participation of SMEs in publication activities.  

The National Innovation System and the Triple Helix model 

The innovation systems literature has examined the dynamics of these interactions and 

scientific collaborations among different economic actors (e.g. universities, governments, 

industry, users or suppliers). The NIS is the network of institutions, both in the private and 

public sector, with the aim of interacting, importing, modifying and diffusing new technologies 

(Freeman, 1987, p.1). It understands innovation as a sophisticated and complex process in 

which different elements of the system, e.g. corporations, end-users, universities or public 

research institutes, are linked to each other, enabling the sharing of knowledge and the mutual 

support for innovation activities (Lundvall, 1992). The NIS is composed of the linkages and 

flow of information among the different actors of the system in relation to the generation of 

ideas and the innovation process (Lundvall, 2007).  

The importance of NISs as engines for innovation has been highlighted in the literature, 

in particular with reference to emerging technologies and innovations (Nelson, 1993; Lundvall, 

2007), and has been addressed by different governmental policies that have aimed at connecting 

different actors of the economy. For instance, governmental policies are increasingly aimed at 

engaging universities with the corporate sector, which is believed to promote economic growth 

and innovation (Christopherson et al., 2008). Successful examples of these policies are “Silicon 

Valley” and “Route 128” in the US, or the “Cambridge phenomenon” in the UK. Similarly, 

scholars have emphasized the role of universities as sources of new knowledge, with particular 

relevance in the fields of science and technology (Etzkowitz and Leydesdorff, 2000), which has 

generated links with the industry (Rothaermel and Thursby, 2005). 

The structure of the NIS can be examined through the TH framework (Etzkowitz and 

Leydesdorff, 2000; Leydesdorff and Meyer, 2006), which depicts the relations between 

universities (U), firms (I) and government (G). In the TH context, the interactions in the UIG 

network build a knowledge infrastructure that represents the core of knowledge-based 

innovation with knowledge circulating among the three actors, fostering the creation of new 

technologies and knowledge-based innovations (Park and Leydesdorff, 2010).  

Etzkowitz and Leydesdorff (2000) classified the interactions of UIG actors into three 

configurations, as shown in Figure 1. The first institutional arrangement, the etatistic model or 
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Triple Helix I, is a top-down approach to innovation, whereby the government oversees 

universities and industry and directs the relations between them. In this set-up, the lack of 

bottom-up initiatives makes it difficult to stimulate innovation at universities and industries 

(Park and Leydesdorff, 2010). This model is typical of the former Soviet Union, some European 

countries such as France, and countries in Latin America. The second configuration is the 

laissez-faire model or Triple Helix II, where the three actors are clearly split from one another 

with strong boundaries and highly limited relations. In this set-up, the industry has the leading 

role in the generation of innovations, with government and universities having secondary roles. 

This model is characteristic of the US or the Swedish economy (Park and Leydesdorff, 2010). 

Finally, the Triple Helix III model is an interactive configuration, with dynamic interactions 

between the three actors and overlapping institutional spheres. This kind of set-up leads to the 

emergence of hybrid organizations, such as incubators, university spin-offs or strategic 

alliances, at the interfaces (Park and Leydesdorff, 2010). This type of model has been shown to 

lead to the most desirable outcomes in terms of knowledge production and generation, and it 

has been encouraged by governments with the implementation of policies that range from 

financial assistance to the introduction of specific laws such as the Bayh-Dole Act in the USA 

(Park and Leydesdorff, 2010).  

Previous studies have used the TH framework to explore a wide array of questions 

ranging from the interaction of the different actors to the application of the TH model to regional 

setups, comparisons across countries and the performance of the NIS. For example, some 

studies explore the UIG interactions from the viewpoint of universities to determine the role of 

UIG contexts in determining the performance of the third role of universities (Kapetaniou and 

Lee, 2017) and the role of universities in knowledge exchanges in UIG interactions (Chen and 

Lin, 2017). Other studies have focused on the outcomes of TH interactions; for instance, on the 

success of Israeli high-tech clusters (Wonglimpiyarat, 2016), on the overall performance of 

national research in South Korea (Park and Leydesdorff, 2010), on the emergence of regional 

entrepreneurial ecosystems (Brem and Radziwon, 2017) or on the scientific performance of 

research institutes in China (Zhang et al., 2019). Another strand of literature has explored the 

nature of UIG interactions, looking, for instance, at synergies in different geographical, 

technological and organizational levels (Leydesdorff and Porto-Gomez, 2019), or the R&D 

network interactions in Korea (Kwon et al., 2012; Lee and Kim, 2016). Some authors have also 

applied the TH model to regional contexts in order to understand the role of the different actors 

as well as the UIG interactions in, for example, Wales (Pugh, 2017) or southeast Norway 

(Elvekrok et al., 2018).  
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An extension of the TH model: international and NPO actors 

Recent studies have highlighted the need for an extension of the TH model to include 

additional dimensions (Leydesdorff, 2012). As a consequence, several studies have moved 

towards Quadruple and Quintuple Helix models that embed different dimensions of the NIS, 

such as citizens and stakeholders (Hoglund and Linton, 2018; McAdam and Debackere, 2018), 

the environment (Carayannis et al., 2018; Gouvea et al., 2013) or international institutions 

(Kwon et al., 2012; Leydesdorff and Sun, 2009; Lew et al., 2018). Our research question 

evaluates the importance of international institutions and NPOs in the NIS and explores the 

interaction of these two actors with the traditional UIG actors. 

The increasing permeability of geographical borders has promoted the mobility and 

circulation of people, knowledge and capital, allowing the internationalization of R&D and 

increasing the interrelation of innovation across countries (Binz and Truffer, 2017). 

International collaboration has attracted particular attention in the last few years due to the 

spectacular rise in the number of such collaborations (Wagner et al., 2019). Pushed by the 

increase in global competition and the fast pace of technological changes, international R&D 

collaboration has become a critical way for countries and individual organizations to foster and 

maintain innovation competitiveness (Chen and Lin, 2017). Previous literature has linked 

higher citations, higher output and elite scholars with international collaborations (Wagner et 

al., 2019). In the context of the TH model, existing studies incorporating international actors as 

a fourth helix have found that international collaboration has had a substantial effect on the 

dynamics of interaction between the traditional UIG actors. For example, Leydesdorff and Sun 

(2009) find the international dimension to be a source of synergy, but also a source of 

uncoupling in the UIG interactions of Canada and Japan. For Italy (in the region of Trentino), 

Lew et al. (2018) find that international connections play a key role in the acquisition of 

knowledge and resultant innovations by the local industry. Finally, Kwon et al. (2012) find that 

R&D bilateral international collaborations between universities and industry increased in 

Korea, but at the expense of the created synergies not being harvested at national level.  

The emergence of the organized civil society and of non-profit organizations, as 

manifestations of broader social movements, has transformed the economic landscape. NPOs 

were born as a response to government and market failures in the provision of public goods 

(Steinberg, 2006). NPOs represent a central part of the social context of modern economies due 

to their engagement in large-scale social issues (Zimmermann, 2002) and their key role in the 

delivery of services to society (Al-Tabbaa et al., 2019). NPOs operate in a wide range of fields 

such as education, health, culture, science or environment (Doh and Teegen, 2002). In the 
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business and economics literature, NPOs are considered as one of the key actors in the global 

economy, together with corporations and governments (Kourula, 2010).  

NPOs are essentially different from government and businesses in their innovation-

related characteristics (Fyvie and Ager, 1999). Firstly, NPOs deviate from businesses in their 

concerns and objectives as well as the values and culture by which they operate (Doh and 

Teegen, 2002). As compared with businesses, the vision of NPOs is not based on financial 

targets for the organization but rather on the mission of the organization itself (Doh and Teegen, 

2002). While businesses are profit-centric and competitive-driven and conduct innovation as a 

way to access higher revenues for firms, NPOs are socially driven, participative and 

cooperative, and profit is not an incentive to conduct innovation (Al-Tabbaa et al., 2019; Fyvie 

and Ager, 1999). Secondly, while governments are characterized by centralization, bureaucracy 

and control, NPOs are characterized by flexibility and non-hierarchical values and relationships 

that affect the way in which innovation is conducted (Edwards and Hulme, 1994). NPOs also 

differ from governmental bureaucracies in that the purpose of NPOs has to be embraced by 

contributors/supporters and does not need to be debated and established through the collective 

political process (Doh and Teegen, 2002). From a stakeholder theory perspective, NPOs are 

considered discretionary stakeholders, with the attribute of legitimacy but without power or 

attention over businesses, as compared with the high levels of power and attention represented 

by governments (Holmes and Smart, 2009).2 

Previous studies in the public administration literature have also explored and 

acknowledged the collaboration between NPOs and governments or corporations (Furneaux 

and Ryan, 2014; Salomon and Toepler, 2015). In this regard, while previous studies have 

recognized the role of NPOs as actors of the NIS (Holmes and Smart, 2009), no studies have 

included NPOs as formal actors in the TH model. NPOs have been acknowledged as actors in 

R&D networks in a few works, such as Wen and Kobayashi (2001) or, more recently, Lew et 

al. (2018), and as contributors to innovation (Zimmermann, 2002). The contribution of NPOs 

to R&D and innovation has been widely praised in the pharmaceutical industry, where NPOs 

have been pioneers in the research of gene therapies and rare diseases (Jarosławski and Toumi, 

2019). For-profit firms lack the commercial incentives to develop and research treatments for 

 
2 As noted by the John Hopkins Comparative Nonprofit Sector Project, in western economies there is a 

significant financial tie between governments and NPOs as public funding represents a significant source of NPOs’ 

budgets. However, these monetary contributions have not been found to be detrimental to the independence of 

NPOs (AbouAssi and Bies, 2018), with previous studies not finding an effect of this resource dependence on 

NPOs’ missions or goals (Fraussen, 2014; Verschuere and De Corte, 2014). 
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rare diseases (i.e. diseases that affect small portions of the population) as the R&D investment 

is high but the potential profits are low due to the limited number of potential users (Jarosławski 

and Toumi, 2019).  

3. DATA AND METHODOLOGY  

Context: the UK nanotechnology sector 

Broadly speaking, nanotechnology is the set of technologies that enables the 

manipulation, study or exploitation of very small (typically less than 100 nanometres) structures 

and systems as well as the incorporation of these structures into applications (OECD, 2018b). 

Nanotechnology is considered a key emerging technology (OECD, 2018b) with multiple 

applications in different technological domains, such as biotechnology and pharmacy, advanced 

materials and electronics, which has a wide range of applications, such as new cancer therapies, 

improving the efficiency of fuel production, detecting biohazards or improving the 

transportation infrastructure (Alencar et al., 2007; US National Nanotechnology Initiative, 

2020). Nanotechnology has the potential to significantly improve advanced materials and 

manufacturing techniques, which are crucial for the competitiveness of national industries, and 

it is expected to be one of the major future technologies as its applications are regarded as 

involving radical innovation (Kostoff et al., 2007; US National Nanotechnology Initiative, 

2020). The global market for nanotechnology has been growing in the last couple of years at a 

rate of almost 20% annually, with an estimated market of over USD 90 billion in 2019 

(European Commission, 2018).  

Because of potential applications to other fields and benefits to society, the development 

of nanotechnology has received attention from governments and policymakers, which have 

fostered its progress with different programmes (Lavie and Drori, 2012). Since 2000, 

governments around the world have invested over USD 67 billion in nanotechnology, and it is 

estimated that in 2015 the investment (including also private investment) reached a quarter of 

a trillion (European Commission, 2013). For instance, the EU highlights nanotechnology as one 

of the four key enabling technologies (KETs), essential to the competitiveness and new market 

expansion of EU industries, and supports and prioritizes the development of nanotechnologies 

in the Horizon 2020 framework (European Commission, 2018). As an enabling technology, 

nanotechnology is relevant to different pillars of the EU’s Horizon 2020 programme (H2020) 

and helps to address some of the EU’s key societal challenges, such as medical needs of an 

ageing population, more efficient use of resources and development of renewable energies 

(European Commission, 2018). Nanotechnology projects represent about 8.8% of H2020 
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programmes, which are mostly dominated by universities (44% of projects), governmental 

research institutes (30%) and industry (23%) (European Commission, 2018).  

In this context, the UK stands out as a leading European power in terms of research and 

development of nanotechnology (Goves, 2013; Munari and Toschi, 2011). The UK possesses a 

large base of firms dedicated to nanotechnology, having the second-largest number of 

nanotechnology firms in Europe after Germany (Materials UK, 2010). Companies such as 2-

DTech, BREC Solutions, Efficiency Technologies, Graphitene and Phase Focus are at the 

forefront of nanotechnology production. The UK has shown a strong patenting and publication 

record in the field of nanotechnology, leading the EU rankings with Germany, as well as being 

among the top world nations after China, the US, South Korea and Japan. While the US and 

China alone produce 50% of all publications in nanotechnology, the UK follows closely behind 

South Korea (8.1%), Germany (7.6%) and Japan (7.4%) with 5.1% of total publications in 

nanotechnology (Web of Science, 2019).  

Data 

For our empirical analysis, we make use of data in publications in the field of 

nanotechnology extracted from the Web of Science databases (Web of Science, 2019). We 

measure collaboration with co-authorship networks at the organizational level, i.e. we evaluate 

the meso-structure of scientific collaboration networks (Graf and Kalthaus, 2018). As indicated 

in the literature review, while there are different products of collaboration, scientific 

publications are the best indicator of collaboration in the knowledge generation process of 

emerging industries such as nanotech. In the context of the Triple Helix model, co-authored 

publications have been widely used and validated as a proxy for the dynamics of collaboration 

(e.g. Guan and Zhao, 2013; Leydesdorff and Sun, 2009; Park and Leydesdorff, 2010; Zhang, 

2019).  

We identify the relevant publications for the construction of the network using the Web 

of Science categorization by selecting journal articles in English that belong to the category 

“Nanoscience & Nanotechnology”. Our search is limited to the period 1977–2018, and to those 

papers for which at least one of the affiliations of the authors is in the UK. This provides a total 

of 19,437 publications. This data was processed and manually checked to identify basic 

information such as journal, publication date, keywords and research areas, authors’ affiliations 

and type of organization (university, government, industry, NPOs and foreign institutions), 

citations and usage count. We removed those publications for which it was not possible to 

obtain data on the affiliation for at least one of the authors, with a resulting sample of 17,868 
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publications, which corresponds to 2,823 different institutions and 47,522 authors (see Table 1 

for a full description). The number of publications is unevenly distributed throughout the period 

of interest. As shown in Figure 2, the number of publications in the field of nanotechnology 

increased exponentially since the early 2000s, with the number of publications per year 

doubling every five years to reach over 1,900 in 2018.   

Methodology 

To understand the interactions between different actors in the NIS, we rely on social 

network analysis and the extended TH model.  

Social network analysis 

Social network analysis (SNA) has been particularly popular among economics and 

management scholars to study collaboration networks, knowledge spillovers or the 

development of technologies (Arranz et al., 2020). SNA is an excellent tool for understanding 

and disentangling the complex relations between different economic actors as it allows the 

distinguishing of structures in the NIS according to the relations between the system’s 

components, rather than the attributes of individual cases (Newman, 2001; Guan and Zhao, 

2013). A network analysis approach can help with understanding the evolution of the 

interactions and relations that make up the NIS (Sena et al., 2019). Modelling the interactions 

of UIG, foreign and NPO actors as a complex network allows the examination of NIS properties 

and the assessment of the effect of those interactions on the overall performance of the NIS and 

the performance of individual actors within it (Sena et al., 2019). Moreover, SNA understands 

observed structures and attributes of the networks as pathways for information exchange and 

partnership development, which is of interest to researchers studying the interactions of the NIS 

(Sena et al., 2019).  

A network can be defined as a set of nodes connected by a set of links (Borgatti and 

Halgin, 2011). For the NIS network, the nodes are the different institutions (UIG, foreign and 

NPOs) undertaking research and publishing papers, and the links are formed through the co-

authorship of papers, so that two institutions are connected if their researchers have published 

a paper together.  

For each year in our dataset, we construct a matrix in which we record all the possible 

co-authorship relations between all the institutions in our dataset. The adjacency matrix (A) 

records the existence of a co-authorship relation between a pair of institutions; for a given entry 

aij of the adjacency matrix A, aij=1 if institution i and institution j have published a paper 

together in a particular year t, and aij=0 otherwise (Newman, 2001; Jackson, 2008). Thus, our 
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network data consists of a sequence of Nt×Nt adjacency matrices, for t=1977, …, 2018. The 

construction of the network, as well as the obtaining of indicators both at the network and node 

levels, is done with the software environment for statistical computing R, and in particular with 

the aid of the igraph library. 

We analyse the network at two levels: first, at the aggregate level, where the aim is to 

characterize the overall network, paying special attention to the structure of the network, and 

second, at the node level, where the position of each institution in the network is studied, with 

centrality measures being the core of the analysis. 

At the aggregate level, we explore the following measures: network density, graph 

centrality, network diameter, average path length, cliquishness and clustering coefficient. 

Network density quantifies the proportion of all possible connections that the network contains. 

It is the ratio between the actual number of links of the network and the total possible number 

of links, and it is calculated as the sum of all non-zero entries in the adjacency matrix divided 

by the total number of entries, n(n-1) (Newman, 2001).  

Graph centrality indicates the extent to which the nodes in a network are close together 

(Freeman et al., 1979). It depicts the relative dominance of a node in the network by considering 

the magnitude to which the centrality of the most central point exceeds that of the other nodes 

in the network (Freeman et al., 1979). The perfect centralized network, often referred to as 

“star”, has only a single node as a receiver/sender of information from/to the rest of the nodes 

in the network. This single node is connected to every other node in the network and acts as the 

intermediary between all the nodes, which are only connected to it and to no other node 

(Freeman et al., 1979). The centrality of a network, based on node degree, is defined in Freeman 

et al. (1979): 

�� = ∑ [����∗	 − �����	]���
�� − 3� + 2  

 

Where ����∗	 is the largest value of degree centrality, �����	 is the degree centrality 

of node i, and n is the number of nodes in the network.  

The distance between two nodes is the number of links in the shortest path (also known 

as geodesic path) between them (Jackson, 2008). The distance between a pair of institutions in 

the nanotechnology network is of interest as it determines the speed and costs of information 

and knowledge diffusion. Two of the main indicators of distance are the diameter and the 

average path length. The diameter of a network is the largest distance between any two nodes 
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(Jackson, 2008). The average path length or characteristic path length is the average over the 

shortest paths between all pairs of vertices (Jackson, 2008). 

To understand the level of integration of the different institutions in the network, we 

employ the number of cliques and clustering coefficient measures. A clique is a subset of a 

network where every possible pair in the subset is connected by a link, meaning every node is 

connected to every other node via a direct connection (Jackson, 2008). The clustering 

coefficient or transitivity measures the probability that adjacent vertices of a node are connected 

(Newman, 2001). Newman (2001) calculates the clustering coefficient as the ratio of triples that 

form a triangle to the number of triples in the network. The clustering coefficient counts the 

number of institutions that share the same third-party institutions as co-authors. 

At the node level, we study degree, betweenness, closeness and eigenvector centrality.  

Degree centrality assesses the number of links that each node has. It provides a measure of how 

connected a network is. Freeman et al. (1979) proposes a normalized measure of degree 

centrality, in which the node degree of each institution is divided by the theoretical maximum 

of links.  

Betweenness centrality measures how important a node is in terms of connecting other 

nodes (Jackson, 2008). It is measured as the number of geodesic or shortest paths that go 

through a particular node computed in its normalized form, i.e. with a score in the range of [0,1] 

(Freeman et al., 1979):  

��� ���	 = 2�����	
�� − 3� + 2 

where n represents the number of links in the network and �����	 is the sum of all partial 

betweenness of a particular node ��. Note that when �� is the only geodesic path connecting 

two nodes, the score  �����	 is increased by 1, while if there are alternative geodesic paths, the 

score grows proportionately to the number of times that �� is part of the alternative shortest 

paths (Freeman et al., 1979). From an information flow perspective, betweenness can be 

interpreted as measuring the potential a node has to control an information flow; for example, 

in the case of a star network, the central node, which connects every node in the network with 

others, has a relative betweenness value of 1, while the rest of the points have a score of 0.  

Closeness centrality measures how easily a node can reach others (Jackson, 2008). It is 

defined as the sum of distances from that node to all other nodes in the network, where the 

distance is measured as the number of links contained in the shortest path (Freeman et al., 1979); 

in other words, it measures the number of steps required to reach every other node. The concept 

of closeness is related to the cost efficiency and time incurred in the transmissions of 
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information, where it can be interpreted as the expected time until the arrival of a particular 

piece of information that is flowing in the network (Newman, 2001). In this context, a node is 

considered as central if all of its shortest paths to every other node in the network are minimal 

so that it will tend to receive the information sooner than other nodes with lower scores 

(Sabidussi, 1966). Therefore, closeness is measured as the inverse of the sum of all geodesic 

distances from a particular node to all of the other nodes; a node is considered to be central if 

the score in closeness is high. Beauchamp (1965) refined this measure by normalizing 

Sabidussi’s index: 

�′����	 = � − 1
∑ ����, ��	���

 

where n is the number of nodes in the network, and ∑ ����, ��	���  is the number of links in the 

geodesics connecting node �� and ��.  

Finally, eigenvector centrality determines the centrality of a node in the network by 

exploring how important, central and/or influential the node’s neighbours are. It is calculated 

with the values of the first eigenvector of the network’s adjacency matrix. The values in the 

eigenvector are extracted from the centrality of the nodes to which a particular institution is 

connected to, that is, the centrality of a node is proportional to the sum of the centralities of the 

nodes it is linked to. Bonacich (1972) defines eigenvector centrality as the sum of the centrality 

of its neighbours: 

��� �!	 = " !�#�# #
�!	 

where Ce denotes the eigenvector centrality associated with a network g, and � is a 

proportionality factor. Eigenvector centrality identifies as central nodes those which are 

connected to many nodes, which are in turn also connected to many others.  

4. ANALYSIS 

In this section, we explore the main characteristics of the networks formed by co-

authorship of nanotechnology scientific papers and discuss the flows of information across 

different actors in the NIS.  

Network aggregate level 

The measures discussed below investigate the network from a macro level, describing 

its broad properties and structure.  

We begin the analysis by looking at the evolution of the number of nodes and links of 

the UK nanotechnology co-publication network. It is worth noting that for the early years of 
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our data (ca. 1977–1995), there are gaps in the network. This is because during those years there 

were no co-authored publications, which indicates the infancy of the nanotechnology field in 

those years. The network connections and number of publications take off from 1995 onwards. 

Taken as a whole, our network is one large component.3  

Similar to the above-mentioned growth in the number of papers, our data also displays 

an exponential growth in the number of institutions publishing in the field of nanotechnology 

(with a total of 2,823 different institutions in the period of interest). While universities are 

responsible for the bulk of scientific output, from the 2000s onwards the industry, government 

and NPOs start to take part in nanotechnology research (Figure 3). Non-university institutions 

display similar levels of participation and similar evolution trends. Regarding the number of 

links, measured in co-authored papers, the growth in the number of collaborations also displays 

an exponential pattern. On average, two-thirds of these links are collaborations with foreign 

institutions (Figure 4).4  

Figure 5 shows the evolution of graph centrality and network density. In the early years 

of our sample, there are very few connections and published papers in nanotechnology, which 

results in very erratic behaviour and few points in both series. From 1995 onwards, the graph 

centrality indicator shows an upward trend, reaching the value 0.5 in the last year of the series. 

As for the network density indicator, we can observe that already from the late 1980s it follows 

a decreasing path, getting very close to zero in the contemporary years.  

To evaluate the level of connection between institutions in our network, we explore the 

diameter and the average path length. Figure 6 shows that both the diameter and the average 

path length of the network have increased over time. Until the mid-1990s, the network was 

relatively small, in the sense that in a maximum of two steps, any node was connected to any 

other node. From the mid-1990s onwards, with the boom in the number of publications and the 

increase in participation of different institutions both nationally and internationally, the network 

has considerably expanded, to double the scores in average path length and diameter.  

To examine the level of integration in the network we measure the clustering coefficient. 

As shown in Figure 7, the clustering coefficient decreases with time, reaching the range of 0.15 

in the 2010s. As a consequence of the growth in the number of network participants, the clique 

number shows an upward trend. While it displays a spike in 2017, in the later years of the series, 

the clique number is around 10 to 20. This means that about 10–20 actors in the network are 

 
3 We dropped 11 institutions that were not connected to the main component and that were only appearing in the 

early years of our database in small separated components.  
4 For a breakdown of the type of international institutions, please see Table A1 in the Appendix.  
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connected to each other directly, out of over 1,000 different institutions taking part in the 

network in the later years.  

Network node level 

The measures discussed in this subsection investigate the network from a micro level, 

allowing us to compare different nodes and types of institutions and to examine the relation of 

a particular node with the overall network. As explained in the methodology section, we focus 

on different dimensions of centrality. Since at the node level there is a high variation when 

considering the network in each year separately, we aggregate the network over time blocks.5 

Figures A1 to A4 in the appendix show the aggregate and average level of degree, betweenness, 

closeness and eigenvector centrality, respectively. These figures show that UK universities are 

the largest contributor to the total sum of the different normalized centrality measures. At 

national level, government, corporations and NPOs contribute at comparable levels to the total 

sum of degree, betweenness and eigenvector centrality, while corporations are ahead of 

government and NPOs in contributing to aggregate closeness centrality. These results are also 

reflected in Table A2 in the appendix, which provides a ranking of the top ten institutions in 

terms of the different dimensions of centrality. Not surprisingly, we found top UK universities 

among the most central institutions.  

Interaction of NIS institutions 

As explained above, we find that the largest portion of scientific articles is generated by 

universities. Thus, we first focus on the number of links which involve a UK-based university. 

Figure 8 illustrates that a large fraction of the total links involving universities is due to 

collaborations with non-UK institutions. This fraction appears to be much larger than the 

number of links within UK universities, even though both graphs show a clear upward trend.  

While the total number of links between universities, government, corporations and 

NPOs is considerably smaller than the number of links within UK universities, Figure 9 shows 

that collaborations with the government, the industry and NPOs are roughly of equal importance 

for universities. Again, all three graphs appear to follow an upward trajectory over time, with a 

particularly strong increase starting approximately in 1995 for University–Industry and 

University–Government interactions and about ten years later for University–NPO interactions 

within the UK. 

 
5 We analyse the network in six blocks as follows: 1977–1988, 1994–1998, 1999–2003, 2004–2008, 2009–2013 

and 2014–2018.  
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Figure 10 illustrates the overall number of links between UK universities and NPOs by 

considering not only collaborations with national but also international NPOs. As is evident 

from the graph, collaborations with international NPOs are of much higher importance to UK 

universities in comparison with collaborations with national NPOs. Moreover, this gap seems 

to be widening over time, as the number of links between domestic universities and foreign 

NPOs increases much faster than the corresponding number of links within the UK. 

Figure 11 shows the evolution of the number of links between domestic government 

and corporations and foreign institutes over time. While the total number of links between these 

players stays far behind the number of collaborations between domestic universities and foreign 

institutes, the graphs nevertheless show an upward trend with accelerating growth rates towards 

the end of the time frame considered here. Comparing Figures 9 and 11 further shows that the 

volume of collaborations with foreign institutes is of a similar size to the number of 

collaborations with domestic universities, both for the UK government and UK corporations. 

5. DISCUSSION 

The nanotechnology network of R&D collaboration in the UK has grown substantially 

since its first publications in the 1970s. This has been reflected in an exponential increase in the 

number of papers as well as nodes and links, which have grown proportionally in number.  

Overall, these measures indicate that the nanotechnology network has evolved from a 

small core of institutions to a much larger network that includes distant and not-well-connected 

collaborators. This was supported by the increasing trajectory of the diameter, cliquishness and 

the average path length, and the decrease in the network density and clustering over time. Our 

analysis also suggests that the UK nanotechnology network has grown in such a way that there 

is a core of institutions that are well connected to each other but that at the same time are 

connected to distant collaborators. As a whole, these measures depict the nanotechnology 

network as one with a low level of engagement of nodes and a low level of cohesion and 

integration of the network. In terms of knowledge diffusion and access to information, our 

analysis suggests that the increase in complexity and in the number of participants in the 

nanotechnology network has come hand in hand with a polarization of the access to information 

and knowledge contained in the network. The current structure of the network particularly 

benefits institutions at the core of it (i.e. those with higher node centrality measures) in terms 

of access to information and knowledge. As explained by Graf and Kalthaus (2018), this kind 

of structure fosters “national champions”.  
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These results contrast with previous studies at both the macro level, such as international 

collaboration between countries (e.g. Graf and Kalthaus, 2018) and at the micro level, such as 

co-authorships at the researcher level (Knights and Scarborough, 2010), which display a much 

higher level of connection and cohesion in the networks of scientific collaboration. There might 

be several explanations for this disparity. First, as pointed out by Borgatti and Halgin (2011), 

organizations display a recurrent behaviour in establishing partnerships, so that organizations 

are more reluctant to collaborate with others outside their current core of partners, thus 

explaining the isolation of more peripheral nodes. Second, a possible reason for this disparity 

in findings might be partly explained by the design of our study which focused only on UK 

institutions, favouring a core-periphery structure.  

At the node level, our paper finds, not surprisingly, that universities are at a central 

position in the nanotechnology network. Across the four measures of centrality (degree, 

betweenness, closeness and eigenvector centrality), we consistently find that universities have 

the highest centrality score. The central position held by universities provides them with a very 

fast connection to other institutions in the NIS as well as with access to a larger amount of and 

more diverse information (Borgatti and Halgin, 2011; Gulati, 1995). All in all, our node-level 

analysis confirms previous literature that points to universities as important engines of 

knowledge generation (Ardito et al., 2019), and highlights the research mission of universities 

(Kapetaniou and Lee, 2017).  

Regarding the interaction between different NIS actors, we find that universities mostly 

collaborate with other universities, which reinforces their predominance in the core of the 

network. Moreover, while having many foreign collaborators, our analysis shows that the 

frequency of interaction with these foreign actors is rather low (Borgatti and Halgin, 2011).  

As compared with intra-university connections, the interactions of universities with 

other NIS actors is not very pronounced. Universities have similar levels of interaction with 

industry and government. While these interactions validate the traditional TH model, our 

analysis also finds a growth in the importance of NPOs as actors of the NIS, especially from 

2010 onwards. Interestingly, while the role of UK NPOs is not very prominent (yet) in the NIS, 

we find that UK universities profusely interact with foreign NPOs to the point that these 

interactions are much greater than the combined number of interactions with UK industry and 

government actors. This finding is in line with recent research in the biotech and pharmaceutical 

areas, where NPOs are being praised for their contribution to innovation and knowledge 

generation (Jarosławski and Toumi, 2019; Lew et al., 2018).  
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Supporting previous studies that highlight the importance of the foreign actor as pivotal 

in the NIS (Lew et al., 2018; Wagner et al., 2019), our analysis reveals a high level of bilateral 

interactions between foreign actors and UK government, and foreign actors and UK industry. 

These interactions are comparable to the UI and UG interactions, and in the most recent years 

higher. Our study thus corroborates recent work in the TH literature that has included extra 

helices (such as the international or stakeholders dimension) in the model (e.g. Hoglund and 

Linton, 2018; Lew et al., 2018), or that more generally has acknowledged the increasing 

diversity of the NIS and the necessity to reflect this in the number of helices (Leydesdorff, 

2012).  

6. CONCLUSION  

This study has explored the evolution of the UK’s nanotechnology scientific 

collaboration network since its inception in the 1970s taking an NIS and SNA approach. We 

find that the network has grown larger and wider over the years. Our analysis reveals that 

universities are behind the large bulk of research in nanotechnology and that they are also the 

main actors at the centre of the network, with other players such as government or industries 

having a peripheral position. Our research has implications for academics and policymakers 

alike.  

The implications for academia are twofold. First, our study stresses the dynamic nature 

of innovation systems, in which the ever-changing interactions between actors and the entry of 

new actors facilitate the generation of new knowledge. Moreover, it highlights the importance 

of revisiting and adapting the existing lenses of analysis. Our paper engages in current 

conversations of the NIS literature (e.g. Hoglund and Linton, 2018; Leydesdorff, 2012; Lew et 

al., 2018) regarding the necessity to revisit the NIS paradigm that, as shown in this paper, falls 

short in capturing the complexity that the innovation systems have grown to. Second, this paper 

enriches recent literature on the extended TH model by confirming international actors as key 

collaborators of the NIS and by unveiling NPOs as emerging actors of it. While NPOs have 

been largely neglected by current TH literature, our aggregate-level and individual-level 

network indicators suggest that NPOs played a similar role as government and industry in recent 

years. Therefore, our paper suggests that these two extra dimensions to the traditional TH model 

are helpful for a better understanding of the interactions and the interrelations in the NIS.  

   From the point of view of policymakers, our paper flags the growing disequilibrium 

in the NIS, where universities bear the weight of generating knowledge while industry and 

government have a residual role. If, as pointed out by the OECD (2018a), the industry–science 
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links are a key contributor to innovation performance, we suggest UK policymakers revisit their 

existing policies to foster increased interaction between UIG and to promote the role of industry 

and governments in the generation of innovations. Moreover, given the increasing importance 

of NPOs as institutional actors of the NIS, the UK government should closely follow the 

developments in the upcoming years and plan accordingly. Governments should make sure 

there is no competition with NPOs (see the literature on public provision of services, e.g. Coule 

and Patmore, 2013), but rather synergies that foster the interactions within the NIS. 

From an international lens, our paper also suggests that the current idea of an innovation 

system coordinated at the national level might be outdated as foreign institutions are 

increasingly having a prominent role in the national innovation system. Based on our analysis, 

we recommend policymakers set an agenda to secure integration in international research 

networks and to make sure the UK is embedded in those networks (Graf and Kalthaus, 2018). 

What is more, linking with recent discussion post-Brexit (Wilsdon, 2020), we suggest that UK 

policymakers should undertake a dual approach in which they nurture the already existing 

informal relations with EU NIS actors and actively engage with European institutions to explore 

new formal collaborations between the UK NIS and the EU NIS, exploiting the existing 

informal links (Fernandez-Esquinas et al., 2016).  

As a final note, we would like to point out some of the limitations of this study and some 

possible future avenues of research. Our study only observes collaboration based on co-

authorships. While being a well-established indicator of scientific collaboration, it requires 

institutions to actually produce a scientific article as an output for their collaboration. This 

conceptualization might be missing collaborations in terms of co-patenting and alliances or 

R&D projects, where no paper is generated. Future research might want to consolidate 

collaborations at the co-publication level with that of co-patenting or R&D projects/alliances. 

Additionally, our study has focused on the UK, but it would be interesting to include other 

countries and provide a comparative analysis of the structure of NISs across different countries.  
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TABLES 

Table 1. Description of the sample. 

Number of documents 17,868 

Period 1973 - 2018 

Number of institutions 2,823 

Number of Authors 47,522 

Documents per Author 0.376 

Authors per Document 2.66 

Co-Authors per Documents 5.92 

Collaboration Index 2.7 

Average citations per documents 32.73 
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FIGURES 

Figure 1. UIG interactions. 
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Figure 2. Evolution number of papers.  
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Figure 3. Evolution number of network participants (number of nodes). 

 

Figure 4. Evolution number of network collaborations (links). 
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Figure 5. Evolution of density and graph centrality. 

 

Figure 6. Evolution of network diameter and average path length. 
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Figure 7.  Evolution of cliquishness and clustering coefficient. 
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Figure 8.  Evolution number of links within UK Universities and between UK Universities 

and Foreign Institutes. 

 

Figure 9.  Evolution number of links between Universities, Industry and NPOs within the 

UK. 
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Figure 10.  Evolution number of links between UK Universities and domestic and Foreign 

NPOS. 

 

Figure 11.  Evolution number of links between UK Government, UK Corporations and 

Foreign institutes. 
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APPENDIX 

Tables  

 

Table A1. Decomposition of international actors by type of institution. 

 

 
% Universities % Government % Industry % NPO 

1977-1988 55.6 22.2 11.1 11.1 

1994-1998 66 12.9 10.2 10.9 

1999-2003 73 11.6 9.4 6 

2004-2008 75.4 9.3 7.4 7.8 

2009-2013 71.7 11 8.6 8.6 

2014-2018 72.1 11.7 6.8 9.5 

Table A2. Top 20 institutions in terms of centrality. 

  

 Degree centrality 
Betweenness 

centrality 

Eigenvector 

centrality 
Closeness centrality 

1 
University of 

Cambridge 
1.5 

University of 

Cambridge 
0.23 

University of 

Cambridge 
1 

University of 

Cambridge 
0.59 

2 
University of 

Oxford 
0.98 

University of 

Oxford 
0.13 

University of 

Oxford 
0.79 

University of 

Oxford 
0.56 

3 
Imperial 

College 
0.88 

Imperial 

College 
0.13 

Imperial 

College 
0.72 

Imperial 

College 
0.56 

4 
University of 

London 
0.76 

University of 

London 
0.11 

University of 

London 
0.56 

University of 

London 
0.56 

5 
University 

Manchester 
0.56 

University 

Manchester 
0.08 

University of 

California 
0.46 

University 

Manchester 
0.54 

6 
University of 

Southampton 
0.47 

University of 

Birmingham 
0.05 

University of 

Southampton 
0.43 

University of 

Birmingham 
0.53 

7 
University of 

California 
0.44 

University of 

Southampton 
0.04 

University 

Manchester 
0.38 

University of 

Southampton 
0.53 

8 
University of 

Birmingham 
0.39 

University of 

Nottingham 
0.04 

US 

Department 

of Energy 

0.34 
University of 

California 
0.52 

9 
University of 

Nottingham 
0.34 

University of 

Sheffield 
0.04 

Max Planck 

Institute 
0.29 

University of 

Nottingham 
0.52 

10 

Chinese 

Academy of 

Sciences 

0.31 
University of 

Leeds 
0.04 

Chinese 

Academy of 

Sciences 

0.28 
University of 

Sheffield 
0.52 
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Figures 

 

Figure A1. Evolution of degree centrality: aggregate (left) and average (right). 

 
 

 

 

 

Figure A2  Evolution of betweenness centrality: aggregate (left) and average (right). 
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Figure A3.  Evolution of closeness centrality: aggregate (left) and average (right). 

 
 

Figure A4.  Evolution of eigenvector centrality: aggregate (left) and average (right). 

 
 

 


