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Abstract—Deep convoloutional networks have been widely
deployed in modern cyber-physical systems performing different
visual classification tasks. As the fog and edge devices have
different computing capacity and perform different sub-tasks,
models trained for one device may not be deployable on another.
Knowledge distillation technique can effectively compress well
trained convolutional neural networks (CNN) into light-weight
models suitable to different devices. However, due to privacy
issue and transmission cost, manually annotated data for training
the deep learning models are usually gradually collected and
archived in different sites. Simply training a model on powerful
cloud servers and compressing them for particular edge devices
failed to use the distributed data stored at different sites.
This offline training approach is also inefficient to deal with
new data collected from the edge devices. To overcome these
obstacles, we propose the heterogeneous brain storming (HBS)
method for object recognition tasks in real-world IoT scenarios.
Our method enables flexible bidirectional federated learning of
heterogeneous models trained on distributed datasets with a
new “brain storming” mechanism and optimizable temperature
parameters. In our comparison experiments, this heterogeneous
brain storming method outperformed multiple state-of-the-art
single-model compression methods, as well as the newest multi-
network knowledge distillation methods with both homogeneous
and heterogeneous classifiers. The ablation experiment results
proved that the trainable temperature parameter into the conven-
tional knowledge distillation loss can effectively ease the learning
process of student networks in different methods. To the best of
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our knowledge, this is the first IoT-oriented method that allows
asynchronous bidirectional heterogeneous knowledge distillation
in deep networks.

Index Terms—Internet of Things, Deep Learning, Knowledge
Distillation, Heterogeneous Classifiers, Online Learning.

I. INTRODUCTION

Deep learning has achieved tremendous successes in a wide
range of visual applications [1]. Effective training of deep
neural networks (DNN) often requires powerful computing
hardware, availability of massive training data, and optimal
hyper-parametric setups. These prerequisites limited the appli-
cability of experimentally verified DNNs when being deployed
into industrial internet of things (IoT). This work aims to
overcome these difficulties when solving image classification
tasks. Figure 1 shows a conceptual demonstration of an
example IoT system with these practical limitations.

Fig. 1: General framework of the proposed online knowledge distilla-
tion solutions in fog-based IoT: A large neural network that perform
the complete classification task is trained in the cloud server. A fog
server can train a light-weight model based on its computing power
to perform a subtask. Each fog device stores its private datasets for
the corresponding subtask (classifying a subset of the all categories).

First, most deep learning models with reported state-of-
the-arts performance are often trained on devices with suf-
ficient computing power, such as a GPU-based cloud server.
As shown in figure 1, adopting these pretrained models on
fog/edge devices with diverse capacities requires to compress
a large network into various light-weight models optimal for
different devices, for example, deploying an face recognition
model initialized on a GPU server to security cameras at
different sites. Knowledge distillation [2] (KD) has been one
of the most popular paradigms for robust and efficient model
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(a) cloud-to-fog distillation (b) fog-to-cloud distillation

Fig. 2: The two distillation process: (a) The heterogeneous fog networks are generated by the cloud-to-fog distillation process, with the data
stored on server side. After the networks are further trained with the private data stored at each sites, they are delivered back to server for
a fog-to-cloud distillation as in (b).

compression. The core idea of the original KD is to teach
a student model using a soft categorical labels produced by
a “temperature” hyperparameter, T . Softened labels revealed
more information in the training dataset while reduce the
difficulty of learning from hard one-hot labels for a smaller
student model. However, the value of T has to be manually
picked for different distillation tasks and methods. This is
often impractical in an IoT that connect numerous fog and
edge devices, and a new training strategy that can dynamically
adjust the temperature to a specific scenario is required. In this
paper, we reformulated the original KD softmax function for
a temperature that is dynamically adjustable during training.

Second, the customized DNNs running on different edge
devices may performing different classification tasks with
overlapped or unoverlapped categorizations of data (see fig-
ure 1). For example, in a smart home system, an outdoor
surveillance device may be trained to recognize vehicles while
ignoring the foods which is picked by an indoor camera, yet
both may recognize human-beings. Here we assume that the
edge devices are grouped and managed by fog servers locally
available at different sites, and each fog device is capable of
training a light-weight fog network its own private data. In
more extreme cases, different fog networks can be targeting at
completely different sets of categories. This requires to distill
the knowledge of a large teacher network trained on the cloud
server to multiple heterogeneous fog models. In this work, we
define this process as “cloud-to-fog” distillation (figure 2a) and
propose a new single-teacher-multi-student learning procedure
to generate a set of optimal heterogeneous classifiers. The
distributed fog models are then further trained for specific
classification tasks on the edge devices. The proposed single
teacher distillation method is evaluated in both heterogeneous
and homogeneous distillation experiments, and outperformed
most state-of-the-art baselines.

Another limitation of a real-world IoT application is, as
shown in figure 1, the training data collected at one site are
often unavailable to others due to privacy and legal issues, for
example, data collected by smart home systems from different
sites. To enable supervision with all training data distributed
and online update of all networks, we introduce a “brain
storming” mechanism that simultaneously ensemble the fog
models and perform a “fog-to-cloud” distillation to update
weights of the large cloud network as shown in figure 2b.
To further merge the gap between the theoretically designed

deep learning models to practical IoT applications, we design
the complete life cycle of the online knowledge distillation
in edge cloud industrial IoT. Experiment results show that the
proposed multi-teacher distillation methods achieved better re-
sults than state-of-the-art multi-network ensemble algorithms.
It also show better robustness with an online learning setup.

To sum up, there are three main limitations of applying
deep learning models to a real-world cyber-physical system:
diverse computing power, heterogeneous tasks, and decen-
tralized storage and acquisition of training data. We model
the practical image classification in cyber-physical IoT as an
online learning problem of multiple heterogeneous classifiers,
and solve it through a bidirectional online knowledge distilla-
tion between the cloud and fog models. We name the proposed
online knowledge distillation method as heterogeneous brain
storming (HBS). Contributions are summarized as follows:

1) We propose the HBS online knowledge distillation
method, which include a “cloud-to-fog” and a “fog-
to-cloud” processes. HBS enables a complete online
learning life cycle for IoT applications.

2) We convert the traditional temperature hyperparameter
to a trainable parameter. Comparison experiments have
verified that this parameter can dynamically adjust the
softness of label during training. We also perform the
experiment, for the first time, to find optimal temperature
for different networks, tasks and methods.

3) We design a brain storming mechanism in the fog-to-
cloud process to simultaneously unify and distill the
knowledge from independent heterogeneous classifiers
back to the cloud server, and we introduce a new
combination of feature and logit distillation losses that
achieved outstanding performance in both heterogeneous
and homogeneous distillation tasks.

II. RELATED WORK

A. Knowledge Distillation

The idea of compressing ensemble models was first intro-
duced by [3]. Then [4] showed that information within one
network can be transferred to a shallower one. The core idea of
distilling the knowledge of a teacher network using soft labels
was proposed by [2]. The soft labels are generated with logits
distribution of the teacher smoothed by a temperature hyper-
parameter (equation (5)). This provides extra supervision for
the student network to learn the generalizability of the teacher
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(a) cloud-to-fog distillation (b) fog-to-cloud distillation

Fig. 3: Training of the heterogeneous brain storming method: (a) the cloud-to-fog distillation and (b) the fog-to-cloud distillation. (best
viewed in color)

network [5], thus achieve better performance than training
directly from the hard labels. Distillation process then can be
implemented as minimization of the KL-divergence or mutual
information between the teacher and student logits distribu-
tions. Extensions of the original KD idea have been proposed
to improve the teaching strategy. For example, self-distillation
methods [6][7] [8] and deep mutual learning (DML) train a
student network that has a similar architecture with the teacher
to ease the feature alignment in the latent space. Another type
of methods learn an alternative representation from the teacher
network. These models distill the feature representations from
the intermediate layers [9][10][11][12][13], or learn model the
cross-layer [14] or inter-sample correlations [15] [16]. Most
state-of-the-art methods are either unable to perform distilla-
tion between networks with very different architectures [6][7]
[8][14], or suffers a significant performance drop as proved in
[16]. The contrastive representation distillation (CRD) method
[16] overcame this obstacle, but it has not been tested in cross-
task distillation. Furthermore, all methods work with the logit-
based KD losses [2] fix the temperature T to an empirically
selected value. As a result, when training multiple students
with diverse architectures, this T is impossible to be optimal
for all the students.

B. Multi-teacher Knowledge Distillation

The key ability of the fog-to-cloud process is unifying the
distributed heterogeneous knowledge from multiple teachers.
A variety of multi-network distillation methods have been
proposed in the past two years. However, most of them re-
quires the networks share the same architecture or performing
the same classification task [8][17][18]. Or the teachers are
modeled as different branches in a large network, which is
difficult to be applied to IoT [5][19][20]. The BAM model
[8], can perform “multiÑsingle” distillation tasks, but places
limitation on network structures. Similar limits can be found
in recent classifier amalgamation works 1. A few recent works
[21][22][23] has been proposed to unifying heterogeneous
teacher classifiers. Without a predefined dustbin class, [23]
requires overlapped classes of objects recognized by teacher
models, otherwise the model failed to find an optimal feature

1A detailed comparison at https://github.com/zju-vipa/KamalEngine

alignments. Both [22] and [23] learns to extract common fea-
ture representation using additional knowledge amalgamation
networks. This caused extra use of memory as the number of
teachers increasing. Our HBS method removed these limits.

C. Data-free Knowledge Distillation

To deal with inaccessible private training data, data-free
knowledge distillation methods have been proposed. Early
model compression methods directly merge similar neurons
in the same layers [24]. The general strategy used in modern
data-free distillation algorithms is to generate surrogate data
based on the teacher network for the training of the student
network. Lopez et al. [25] generates the surrogate data using
statistical metadata of the activation in the teacher network.
Nayak et al. [26] propose to generate training data for student
using data impressions by modeling the softmax space using
Dirichlet distribution. Recently proposed methods directly
generate synthesized training data for the student network
using adversarial learning [27][28][29][30] or deepdream data
propagation [31][32]. Although these algorithms can train
the student networks without any available training data of
the teacher, none has reported performance comparable to
supervised methods. We consider a more common situation
in real-world cyber-physical systems where the training data
are stored on multiple devices.

III. DISTILLATION IN FOG-BASED IOT

We define the training of multiple networks in visual IoT
as an decentralized learning problem. As shown in figure 1,
let tfiuMi“1 be a set of deep convolutional neural networks
(DCNN) to be deployed to different edge devices managed by
M sites. The network fi can be trained or finetuned with its
own private dataset Di to predict the label y P Ci of a input
image x, where the set Ci is the object categories targeted
by the network fi. Specifically, q “ fipxq is the predicted
probability vector output by network fi. On a cloud server with
sufficient computing power, a large network fclo is trained with
the cloud-side dataset Dclo to predict a label y P Cclo, where
Cclo “

ŤM
i“1 Ci “ tc1, c2, ¨ ¨ ¨ , cKu represents all categories

of objects classified by all edge devices, in total of K classes.
Note that all the networks tfiu can have different architecture
and might be trained for heterogeneous subtasks ,i.e., Ci ‰ Cj
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or even |Ci| ‰ |Cj | for i ‰ j. For a input x not in the target
categories Ci, i.e., x R Ci, we let the network fi classify it into
a dustbin class belongs to C´i. Let Ki the size of set Ci (Ki “

|Ci|), each fog network fi performs a Ki`1-way classification
subtask 2. The purpose of distillation in fog-based IoT is to
realize online update of tfiu and fclo using tDiu and Dclo

without transferring these data between devices.

A. Classification and conventional distillation losses

A classifier fi, parameterized by θi is typically trained
by minimizing the cross-entropy loss between the predicted
probability vector qi and the ground-truth one-hot label y
encoded in one-hot representation, arg min´

ř

y log qi,ck .
With the dustbin classes C´i, the classification loss can be
defined as:

Lclai “ ´
ÿ

yjPCi

yj log qi,ck ´
ÿ

yjRCi

yj log qipy P C´iq, (1)

where qi,ck is the short hand of the probability qipy “

ck, ck P Ciq for brevity. For convenient computation of the
losses between two heterogeneous classifiers, we estimate a
homogeneous probability vector q̄i, so that:

q̄ipy “ ckq “

#

qipy “ ck, ck P Ciq ck P Ci
qipy P C´1q{|C´i| ck P C´i

, (2)

where Lclai can be rewritten as:

Lclai “ ´
ÿ

yjPCclo

yj log q̄ipy “ ckq. (3)

Similarly, the traditional knowledge distillation is achieved
by minimizing the cross-entropy loss between the probability
distributions predicted by a well trained teacher network and a
student network. For example, when distilling the knowledge
of the trained fclo to a fi, the distillation loss is:

Ldisi “ ´
ÿ

ckPCi

qclo,ck log qi,ck ´

¨

˝

ÿ

ckPC´i

qclo,ck

˛

‚log qi,C´i

“ ´
ÿ

ckPCclo

qclo,ck log q̄i,ck

,

(4)

where qclopck P C´iq is estimated by the sum of the dustbin
probabilities. As discussed in [21], grouping classes in C´i
into a single dustbin classes imposes design constraint on
fi. We argue that the presence of dustbin facilitates efficient
implementation of the distillation loss function. It is also
critical for gaining optimal alignments of the distributions qi
and qclo given by fi and fclo, especially when Ci

Ş

Ck “ H
when i ‰ k. For a network f , q is estimated as:

q py “ ckq “
exp pzk{T q

ř

l exp pzl{T q
, (5)

where zk “ fpx; θq is logits of class ck output by f .
The temperature hyperparameter, T , controls the softness of
the predicted labels. Larger T results in flatter probability
distributions.

2We call the K-way classification performed by the cloud network fclo
the “full classification task”, where K “ |Cclo|.

B. Training heterogeneous models in IoT

Our approach to tackle the online training of the hetero-
geneous networks with distributed private data involves four
steps: (i) pretraining the cloud network fclo using dataset Dclo,
and (ii) distilling the knowledge of fclo to the set of fog
networks tfiuMi“1. After (iii) deploying and finetuning tfiu on
the fog devices, (iv) collect them back to the cloud and distill
the updated knowledge back to fclo. This process is repeated in
the visual IoT system especially when new training data added
to any of the cloud and fog devices. Step (i) and (iii) can be
done following conventional network training and finetuning
procedure and will not be discussed in this paper. Our method
focus on the critical step (ii) which use a large well trained
network to teach a group of heterogeneous classifiers, and step
(iv) which distills the knowledge from these classifiers back to
a single network. Details of these two steps are presented in
Section IV and V. We name these two steps as Cloud-to-fog
distillation and fog-to-cloud distillation that can be separately
evaluated by independent experiments. Details of these two
steps are shown in figure 3.

IV. CLOUD-TO-FOG DISTILLATION

A. Trainable temperature T

The temperature T in equation (5) plays an important role in
knowledge distillation. Previous methods manually pick it as
an hyperparameter. It has been shown that models with differ-
ent architecture have different optimal T s, for example smaller
student networks should learn from flatter teacher distributions
given by larger T [2]. As the cloud-to-fog distillation aims
to produce multiple heterogeneous models simultaneously, it
is difficult to select optimal T for each network. To enable
automatic optimization of temperature, we modify equation
(5):

q “
exp pexppβqzkq

ř

l exp pexppβzqlq
, (6)

where q̄ is estimated using equation (2), β is a trainable
parameter so that T “ expp´βq, β P r´8,`8s and T ą 0.
In the backpropagation process, gradients of the cross-entropy
losses Lcla and Ldis shown in equation (1) and (4) can be
easily computed.

B. Empirical risk

For each fog network, minimizing the cross-entropy loss
Ldisi leads to larger temperature. To balance this effect,
we propose to add another softmax cross-entropy loss to
compute the empirical risk. With a batch of input images
X “ tx1,x2, ¨ ¨ ¨ ,xBu, we calculate logits similarity between
the outputs of a student fi and a teacher fj as:

Spfi, fjq “ softmaxJ
ˆ

fi pxlq

Ti

˙

softmax

ˆ

fjpxkq

Ti

˙

,

(7)
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where fpxq represents logits output by a normalization layer
of the network. The empirical risk loss is then computed as:

LERi “
ÿ

pxl,xkq„Pbatch

yl“yk,l‰k

´ log
S pfi, fiq

S pfi, fiq `
ř

yl‰yk
Spfi, fiq

`
ÿ

pxl,xkq„Pbatch
yl“yk

´ log
S pfi, fcloq

S pfi, fcloq `
ř

yl‰yk
Spfi, fcloq

.

(8)

The first term in equation (8) measures the internal empirical
risk of the student network fi, and the second term measures
the cross-model risk between fi and fclo. The empirical risk
loss is closely related to the contrastive loss used in [16] and
the validation empirical loss in [18]. However, the contrastive
loss [16] requires to re-index the training dataset and [18] just
measure the internal empirical risk using the logits. We use the
batch data distribution and the softmax output of the networks
without prior knowledge of the dataset size.

Follow our setup, the empirical risk loss can be efficiently
computed. Let Y “ ty1,y2, ¨ ¨ ¨ ,yBu the one-hot ground
truths labels of the input batch. We define a positive-pair in-
dication matrix G “ YJY, where for a positive pair of input
pxl,xkq, Glk “ 1 otherwise Glk “ 0. In the meantime, for
two networks fi and fj we define the model covariance matrix
Fij “ softmaxJpfipXq{TiqsoftmaxpfjpXq{Tiq. Then the
sum of negative pairs

ř

yl‰yk
Spfi, fjq can be computed as:

SNi,j “ }p1´Gq d Fij}1, (9)

where } ¨ }1 represents the first-order norm. Similarity,
ř

yl‰yk
Spfi, fiq can be computed as:

SNi,i “ }p1´Gq d Fii}1. (10)

As SNi,i and SNi,j are computed for each negative pairs,
equation (8) can be rewritten as:

LERi “
ÿ

pxl,xkq„Pbatch

yl“yk,l‰k

´ log
S pfi, fiq

S pfi, fiq ` SNi,i

`
ÿ

pxl,xkq„Pbatch
yl“yk

´ log
S pfi, fcloq

S pfi, fcloq ` SNi,clo
.

(11)

The temperature Ti for the fog network fi is trained by
minimizing the logit distillation loss:

LLDi
“ Lclai ` λ1Ldisi ` λ2LERi

. (12)

In our experiments, we empirically set λ1 “ λ2 “ 1. Note
that as different fog networks may group different subsets of
C into the dustbin, F are for fog networks are calculated based
on the estimated probability q̄ given in equation (2).

C. Feature distillation loss

Heterogeneous distillation with distributed data involves
training models with different lengths of logit features. How-
ever, computing the covariance matrix Fii provide a nonpara-
metric way to encode relational knowledge structure into fea-
ture spaces with the same dimensions. We use a batch sample

similarity loss similar to [18] by building up a similarity matrix
A P RBˆB for each fi:

Ai “ softmaxJpfipXqqsoftmaxpfipXqq. (13)

Unlike the method used in [18] where the logits zi “ fipxq
is normalized by a restricted RELU function. Here we use a
normal softmax to rescale the logits to get rid of the affection
of the changing temperature Ti. Note that computation of Ai

is different from Fii as no temperature T and no adjustment of
the feature matrix fpXq are involved. Because the covariance
matrix Ai is a symmetric positive definite (SPD) matrix lying
on a Riemannian SPD manifold, the feature distillation loss is
then computed in the log-Euclidean space [18]:

LFDi
“ } logpAcloq ´ logpAiq}

2
F . (14)

Details about derivation of the log-Euclidean space similarity
loss can be found in [33]. The parameters θi of the student
network fi is optimized by minimizing the cloud-to-fog loss:

LCF “ LLDi
` λfLFDi

, (15)

where λf is empirically set to 0.1.

D. Training procedure

In the training phase, optimization of the temperature pa-
rameter Ti and the network weights θi are separated learning
rate. Specifically, in each iteration, θi is optimized subject to
arg minθi LCF pfi, fclo; θiq for one epoch, then Ti is updated
based on arg minTi

LLDi
pfi, fclo;Tiq. During this process,

each fog networks can be either updated simultaneously with
sufficient computing power on the cloud server. However, they
can be trained asynchronously through a group-by-group ap-
proach. This can be seen as sampling a subset from tfiu

M
i“1 in

each training iteration. In this work, we focus on simultaneous
training of fog networks, and leave the asynchronous training
for the future work. A brief description of this cloud-to-fog
training process is presented by algorithm 1.

V. BRAIN STROMING: FOG-TO-CLOUD DISTILLATION

As shown in figure, for a fog network with specific ar-
chitecture and subtask, the pretained temperature Ti will
converge at the end of the cloud-to-fog training. In the fog-
to-cloud process, we fix this optimal T̂i for each fi. Inverse
to the cloud-to-fog distillation, the fog-to-cloud learning is a
multi-teacher-single-student process. As described above, the
networks tfiuMi“1 distributed and finetuned at corresponding
fog devices, are then used for updating the large cloud network
fclo. Although the finetuning process running on each fog
sites can be relatively short, the fog networks suffer higher
risk of overfitting. To reduce this risk and effectively update
the networks, we design a brain storming mechanism using
aggregated empirical risk and mixture of logits distillation loss.
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Algorithm 1: Minibatch cloud-to-fog training
Input: Well trained cloud network fclo parameterized by

θclo; Batch size B; Maximum number of epochs
Emax.

Output: Fog networks tfiuMi“1 trained on cloud server.
Data: Cloud Dataset Dclo.

1 Initialize: For networks tfiuMi“1 with parameters tθiuMi“1

and temperature parameters tTiuMi“1.
/* tθiu

M
i“1 and tTiu

M
i“1 randomly initialized or

pretrained on fog devices */

2 while epoch number ď E AND not converged do
3 for iteration number ď |Dclo|{E do
4 Randomly sample a minibatch from Dclo;
5 Compute LCF using equation (15);
6 foreach fog network fi do Compute ∇θifi;
7 Update tθiuMi“1 using t∇θifiu

M
i“1;

8 for iteration number ď |Dclo|{E do
9 Randomly sample a minibatch from Dclo;

10 Compute LCF using equation (15);
11 foreach fog network fi do Compute ∇Tifi;
12 Update tTiuMi“1 using t∇Ti

fiu
M
i“1;

13 epoch number + 1.

A. Mixture similarity distances

With finetuned tfiu acting as teachers, a natural approach
to train fclo is learning from a mixture of qi in the form of
weighted sum. However, this may lead to a over-smoothed
belief distribution due to the bias between the fog networks.
To address this issue, we adopt the idea of [18] to compute a
weighted sum of the feature distance losses

LFDclo
“

M
ÿ

i“1

aiLFDi
pfi, fclo; θcloq (16)

where ai is the weight of different feature similarity losses
and is dynamically updated during training. The weight is
constrained so that

řM
i“1 ai “ 1 and ai ě 0. This can be

simply satisfied by ai “ |ãi|{}ã} where ã is the vector of all
unconstrained ais.

B. Aggregated empirical risk

In this multi-teacher brain storming process, the aggregated
empirical risk loss is computed as:

LERclo
“

ÿ

pxl,xkq„Pbatch

yl“yk,l‰k

´ log
S pfclo, fcloq

S pfclo, fcloq ` SNi,i

`
ÿ

pxl,xkq„Pbatch
yl“yk

ÿ

i

´ log
S pfi, fcloq

S pfi, fcloq ` SNi,clo

`
ÿ

pxl,xkq„Pbatch
yl“yk

ÿ

i,j
i‰j

´ log
S pfi, fjq

S pfi, fjq ` SNi,i
.

(17)

Optimization of the weight vector a can be then expressed as:

minimize
a

LERclo

subject to
M
ÿ

i“1

ai “ 1, ai ě 0.

As shown in equation (17), in the brain storming process, mix-
ture of the feature losses are not only dependent on the mutual
information between each fog networks. Iterative computing
LERclo

as in the cloud-to-fog process is expensive and slow.
We compute this using a efficient matrices manipulation based
way similar to equation (7) and (13). It can be show that with
sufficient GPU memory LERclo

can be efficiently computed.

C. Brain Storm Training

To sum up, the loss function used for updating the cloud
network in the fog-to-cloud training process is a combination
of the classification loss and the feature similarity loss:

LFC “ Lclaclo ` λFDLFDclo
` λERLERclo

, (18)

where λFD “ λER “ 0.1.
To learn the weight vector a for the fog networks, that

can minimizing the aggregated empirical risk LERclo
, we use

a training procedure similar to [18]. The difference is that
we optimize the student network parameter by minimizing
LFCclo

pfclo, tfiu; θcloq while [18] only uses LFD.
At each iteration of gradient descent, we simulate

one step of the cloud network logit features zclo “

fclopxq parameterized by taiu
M
i“1 using gradients of

LFCclo
pzclo, tfiu

M
i“1; taiu

M
i“1q:

z1clo “ zclo ´ α
BLFCclo

`

zclo, tfiu
M
i“1; taiu

M
i“1

˘

Bzclo
, (19)

where z1clo is the simulated updated logits and α is the step
size. Then the gradient of updating taiuMi“1 is computed as:

a1i “ ai ´ γ
BLERclo

pzclo, tfiu
M
i“1q

Bai
, (20)

where a1i is the updated weight for fi and γ is the learning rate.
Note that the updated logit feature zclo is related to taiuMi“1

as the gradient computed shown in equation (19) contains ai.
Minimizing LERclo

enables dynamic adaption of the weights
assigned to the fog networks. At the beginning of training, ai
is initialized as 1{M . Procedure of updating the cloud network
fclo is similar to the training of the cloud-to-fog distillation
process with temperature Ti. In each epoch, taiuMi“1 is first
updated as shown by equation (19) and (20), then θclo is
updated by minimizing LFCpfclo, tfiu

M
i“1q.

After the fog-to-cloud distillation, the cloud-to-fog process
is performed again with smaller learning rate. Different from
the process shown in section IV, at this time we use LERclo

as empirical risk rather than LERi shown in equation (12).
Specifically, LCF “

ř

Lclai ` λ1
ř

Ldisi ` λ2LERclo
`

λfLFDi
.
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VI. EXPERIMENTS AND RESULTS

A. Experiment Design and Implementation

We performed three comparison experiments and an ab-
lation study to evaluate the cloud-to-fog and fog-to-cloud
distillation separately, then the whole HBS framework as
a continuous online training method. The first experiment
compares the HBS model to multiple SOTA methods in single-
to-single distillation task with heterogeneous classifiers (Com-
parison 1). Experiment Comparison 2 looks at the core task of
the fog-to-cloud distillation: unifying multiple heterogeneous
teacher models to train one high-capacity student model.
The bidirectional distillation processes are jointly evaluated
in Comparison 3 with distributed data. We investigated the
temperature parameter T across different architecture, tasks
and methods in an ablation experiment.

We use CIFAR-100 datasets for all comparison experiments.
We use a variety of popular backbone models with differ-
ent depths, widths and parameter sizes, including: ResNet,
VGG, Wide ResNet (WRN), ShuffleNetV1, ShuffleNetV2.
For WRN, WRN-d-w represnets depth and width factors. To
simulate a IoT environment, we train and test the cloud and fog
networks on a nVidia Tesla P40 GPU with 24G memory as the
simulated cloud server and a P100 GPU with 16 GPU as the
fog device. We implemented the HBS framework in Python
using Pytorch1.3. All methods evaluated in our experiments
use stochastic gradient descent (SGD) as optimization. We
initialize the learning rate as 0.05, and decay it by 0.1 every
30 epochs after the first 150 epochs until the 240th epoch.
In all comparison experiments, we compute top-1 accuracies
of different distillation objectives. For clear presentation of
multiple fog networks, we use 3 heterogeneous fog networks
for the experiments Comparison 2 and Comparison 3. When
setting the batch size to 64, the peak of GPU memory used
in the training phase is less than 3.5 GB. This means much
more fog networks can be trained simultaneously for datasets
which are similar to CIFAR-100.

B. Comparison 1: HBS cloud-to-fog vs. modern supervised
knowledge distillation methods

The first experiment assess the ability of our HBS cloud-
to-fog method in single-teacher knowledge distillation training
both homogeneous and heterogeneous student models. We use
Resnet110, Resnet32X4, Resnet50, WRN-40-2, and VGG13 as
teacher networks trained for full classification task on CIFAR-
100. For each teacher model, we testing its performance on
knowledge distillation to a smaller light-weight student with
similar and different architectures. For example, compression
Resnet32X4 to Resnet8X4 and to ShuffleNetv2. This compar-
ison provides a insight into the effectiveness of our new dis-
tillation losses and the flexibility of our method when applied
to different tasks. We selected 8 SOTA methods as baselines
for the conventional full-category knowledge distillation task,
and compare 8 of them for the partial-category classification
task. The involved methods include: Knowledge Distillation
(KD) [2], FitNet [9], Attention Transfer (AT)[10], Similarity-
Preserving Knowledge Distillation (SP) [34], Correlation Con-
gruence (CC) [15], Variational information distillation (VID)

[35], Relational Knowledge Distillation (RKD) [11], and Con-
trastive Representational Distillation (CRD) [16].

Table I shows the Top-1 accuracy of the fog networks
obtained as student using all the baselines mentioned above,
classifying a randomly sampled subset of CIFAR100 classes
(average on 20,50,70 classes). The student networks are
generated by learning from teachers that performing full-
range classification. Most baselines obtained high accuracy
compared to a student network that is trained from scratch.
When performing cross-architecture distillation, several failed
to beat the indepedently trained student. It is clear that, for
example, compressing a Resnet50 to a ShuffleNetV2 is more
difficult than obtaining a Resnet32. Our method outperformed
almost all the compared baselines, except in the “WRN-4-
2 to ShuffleNetV1” task where CRD achieved better results.
Surprisingly, the conventional logit distillation method (KD)
performed better than most of recently proposed baselines. It
is evident that the HBS model, with help of the new distillation
losses, are more suitable for partial knowledge distillation in
real-world IoT scenarios.

C. Comparison 2: HBS fog-to-cloud vs. state-of-the-art multi-
teacher distillation methods

To test the ability of our HBS model dealing with ho-
mogeneous classifiers, we selected four state-of-the-art multi-
teacher distillation methods, including: DML [17], CL-ILR
[20], ONE [5], and OKDDip [19]. We use a single pretained
network as the “baseline” providing a lower bound of clas-
sification accuracy. For a fair comparison, implementation of
these methods were forked and modified from OKDDip code3.
Note that for CL-ILR and ONE, the 3 teachers are unified
as different branches on a higher capacity student model. In
this case we follow the setup in [19] where the fog networks
share the first few blocks and branched by the last block. The
backbone architectures used in this experiment include: WRN-
20-8, Resnet32, VGG16 and Resnet110. Table II shows the
Top-1 accuracy of the cloud network obtained as the student
during the fog-to-cloud distillation process. All the compared
group distillation methods gained close performance in most
cases. The branch based methods got higher accuracy with
Resnet110. With shallower models, network based methods
perform better. The HBS model performed slightly better than
the state-of-the-art methods when dealing with homogeneous
classifiers with VGG16 and Resnet architectures, except for
WRN-20-8, where our method obtained almost the same per-
formance with OKDDip. Based on our discussion in Section
III, dealing with homogeneous classifiers means C´i “ H

for networks, and qipy P C´iq “ 0. As a result, our cloud
feature distance loss LFDclo

is similar with OKDDip loss.
However, OKDDip uses a simplified self-attention module for
each involved network to compute the weighted mean of all
output distributions. This requires extra trainable parameters
for better learning capacity. Rather than directly combine the
output distributions, our HBS model assigns weights to feature
distance losses LFDi , and adds the aggregated empirical risk
loss without extra parameters. As a result, even though HBS

3https://github.com/DefangChen/OKDDip-AAAI2020
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Teacher WRN-40-2 Resnet50 Resnet110 Resnet32X4 VGG13
Student WRN-40-1 ShuffleNetV1 Resnet32 MobileNetV2 Resnet32 VGG8 Resnet8x4 ShuffleNetV2 VGG8 MobileNetV2

Teacher 75.61 75.61 79.34 79.34 74.31 74.31 79.42 79.42 72.34 72.34
Student 75.56 72.9 66.4 73.44 71.09 73.56 72.11 73.91 72.52 67.16

KD 73.91 74.13 68.35 75.81 73.67 73.91 76.01 76.55 74.86 69.73
FitNet 75.86 75.12 65.69 73.99 71.02 73.96 75.56 74.44 74.01 67.14

AT 76.06 75.22 61.18 74.04 73.01 75.01 73.12 74.63 73.68 61.45
SP 75.31 76.22 69.98 75.54 73.01 74.83 75.84 76.69 75.1 69.96
CC 76.61 74.85 68.43 72.45 71.06 72.18 72.29 74.92 72.91 67.71
VID 76.81 75.94 70.05 73.31 72.19 74.91 75.85 75.68 73.43 67.97
RKD 76.35 76.21 66.42 74.02 71.92 73.03 74.91 75.77 73.82 66.71
CRD 77.68 77.99 71.62 76.81 73.66 75.87 77.83 78.29 76.06 72.04

HBS 78.21 78.02 72.4 76.95 73.98 76.01 77.87 78.91 76.59 72.32

TABLE I: Test accuracy(%) of student (fog) networks on classifying part of CIFAR100 categories (50 classes). 8 state-of-the-art distillation
methods are compared to our HBS cloud-to-fog methods. Average over 5 runs.

Student Baseline DML CL-ILR ONE OKDDip HBS

WRN-20-8 76.50 78.79 78.56 77.81 79.37 79.34
VGG16 72.81 73.67 73.38 73.37 74.12 74.77

Resnet32 71.24 73.53 72.56 73.50 74.60 74.81
Rsnet110 74.88 76.50 77.44 77.34 77.90 78.09

TABLE II: Test accuracy(%) of cloud (student) networks on classify-
ing all test images in CIFAR100. Results of 4 multi-teacher distilla-
tion methods are compared to our HBS fog-to-cloud distillation. The
baseline is a single network trained solely with hard labels. Mean
and standard deviation of the results are obtained over 5 runs.

is not designed specifically for homogeneous multi-network
distillation, it can archived comparable performance with less
parameters.

To perform joint distillation for heterogeneous classifiers,
we prepared two different tasks with 3 pretrained teachers:
Resnet8X4, Vgg8 and WRN-40-1. We chose two architectures
for the single student: Resnet32X4 and Resnet50. In the first
task, each teacher classify 75 classes of CIFAR100 data so that
each pair of teachers share some overlapped classes. In the
second task, the Vgg8 and WRN-40-1 teachers each classify
40 classes, and shared 10 overlapped classes. The Resnet32
teacher classify 30 classes of images, without any overlapping
with the targets of the other two teachers. The two baselines
we used that can deal with heterogeneous teachers with totally
different architectures are: common feature learning (CFL)
[23] model and the Unifying Heterogeneous Classifiers (UHC)
[21] model. Both models can also used for homogeneous clas-
sifiers, but in our experiments they did not generate impressive
results in the homogeneous experiment shown above. We re-
implemented the best performed UHC entropy-based loss by
removing the dustbin class from the classifiers, then added the
same label balancing and regularization operations. The CFL
implementation was forked from KAmalEngine 4.

As shown in table III, when unifying the three teachers with
overlapping predicted classes, the three compared methods
have close performance. HBS shows slightly better results
than other two methods for Resnet32X4 and Resnet50, and
obtained 0.3% less accuracy compared to CFL for the WRN-
40-2 student. However, with a class-independent teacher, per-

4https://github.com/zju-vipa/KamalEngine

Task Task1: Overlapping Classes Task2: With Unoverlapped Classes
Student WRN R32X4 R50 WRN R32X4 R50

CFL 73.18 76.84 76.78 73.07 74.65 74.96
UHC 73.97 76.81 76.23 70.05 72.40 72.83
HBS 74.61 76.83 77.91 74.74 76.62 77.09

TABLE III: Test accuracy(%) of cloud (student) networks on clas-
sifying all test images in CIFAR100. Results of 2 multi-teacher
distillation methods are compared to our HBS fog-to-cloud distil-
lation. Three backbone networks were tested: WRN-40-2 (WRN),
Resnet32X4 (R32X4) and Resnet50 (R50).

formance of UHC drops over 4% in some cases. Accuracy
of CFL were also slightly reduced. Our HBS model shows
the best stability, and even got better accuracy for WRN-40-
2 compared to its performance in the “Overlapping Classes”
task. Without a “dustbin” class, it is difficult to find an optimal
alignment between the heterogeneous distributions obtained
from multiple networks which are trained for completely
different classes. This is one reason why HBS model shows
advanced performance in the “Unoverlapped classes” task.

D. Comparison 3: Online training

Follow the experiment above, we use 70% of the CIFAR100
training data as the cloud dataset, Dclo, and split the rest data
following the setup of Comparison 2: split them into three
fog datasets (D1,D2,D3) for the 3 heterogeneous teachers.
For convenient computation, the data belongs to overlapped
classes are shared by the teachers. Following the steps listed
in section III-B. A Resnet32X4 cloud network and the three
fog networks were then trained only with Dclo. Then the fog
networks were separately finetuned with D1,D2, and D3 using
an early stop setup. Till now, the whole CIFAR100 training
set used up. We then perform the fog-to-cloud distillation as
shown in Comparison 2 using the finetuned fog networks. The
cloud network trained by 70% training data provide a lower
bound that can verify the applicability to the distributed data
storage in IoT, as its performance should not drop after the
fog-to-cloud distillation.

Table IV shows the top-1 test accuracy obtained from
our online training procedure. As there are less training
data available to the cloud network, its performance dropped
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and suffer from more severe overfitting compared to being
trained with the full dataset. Note that the fog networks
here are generated through distillation with a less accurate
cloud network compared to Comparison2, the finetuned fog
networks also performed worse. When all the fog networks
have overlapped classes, CFL and UHC methods only lead to
tiny improvements on the final cloud network. In other cases,
they didn’t show advantages of group distillation. The BHS
model shows 2% higher accuracy while a fully trained cloud
net is only 1.2% better. When dealing with unoverlapped fog
networks, only our HBS model improved the initially trained
cloud network.

E. Ablation: Trainable T

As the temperature hyperparameter T control the smooth-
ness of the original KD loss Ldis, it can be applied to all
the compared methods in the Comparison 1 experiment. We
first test the effect of the trainable T against using a fixed T.
We perform this test on our HBS and other 5 single-teacher
distillation methods: CRD, Attention, FitNet, VID, and the
original KD algorithm 5. The training curves obtained with and
without the trainable T are presented in figure 4. It can be seen
that using the trainable temperature hyperparameter increased
accuracy of HBS by about 1%, and slightly enhanced the
performance of FitNet, VID and CRD. The Attention transfer
method has better performance with a fixed T as it focuses on
transfering attention features in both shallow and deep layers.

Fig. 4: Evolution of top-5 test accuracy during training. Our HBS
and other 5 single-teacher baselines were compared with trainable
and fixed temperature hyperparameters. Experiments are performed
on full CIFAR-100 dataset.

As discussed earlier in this paper, all previous works
uses an empirically fixed temperature hyperparameter without
considering the network architectures, task complexities and

5For Attention Transfer and VID methods, we added the Ldis to as a
weighted term in the total loss, follow the setup of [16]. Other methods we
use the setups from the original papers.

Task Overlapping Classes With Unoverlapped Classes
Cloud Net (70% train) 73.30
Cloud Net (100% train) 75.61

CFL 73.29 73.07
UHC 73.75 70.05
HBS 74.66 74.58

TABLE IV: Top-1 accuracy(%) of cloud (student) networks on
classifying all test images in CIFAR100.

Fixed T Trainable T

KD 92.52 92.75
FitNet 93.23 93.38
VID 92.71 92.99

Attention 93.11 92.98
CRD 93.33 93.76

HBS (ours) 93.40 94.23

TABLE V: Top-5 accuracy(%) of single-teacher distillation per-
formed by HBS and other 5 baselines on full CIFAR-100 dataset.

specific knowledge distillation algorithms. Based on above
ablation experiment, we perform a further step to find the
optimal T values for different distillation methods, teacher
and student architectures, and different classification tasks. The
evolution of T in the training process are shown in figure 5.
It clearly shows that the optimal T value is only affected by
the network structure and specific combination of losses in
different methods. Teacher architecture and specific task have
negligible effects. Generally, network with less parameters
requires larger T . This is consistent with [2], and also verified
the effects of using the trainable temperature.

VII. CONCLUSION

We propose an novel knowledge distillation method for
object recognition in real-world IoT scencarios. Our method
enables flexible bidirectional online training of heterogeneous
models distributed datasets with a new “brain storming” mech-
anism and optimizable temperature parameters. In our compar-
ison experiments, this heterogeneous brain storming method
were compared to multiple state-of-the-art single-model com-
pression methods, as well as the newest heterogeneous and
homogeneous multi-teacher knowledge distillation methods.
Our methods outperformed the state-of-the-art methods in
both conventional and heterogeneous tasks. Further analysis
of the ablation experiment results shows that introducing
the trainable temperature parameters into the conventional
knowledge distillation loss can effectively ease the learning
process of student networks in different methods.

(a) (b)

(c) (d)

Fig. 5: Evolution of the trainable temperature T with different (a)
tasks, (b) student architectures, (c) methods, and (d) teachers.
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