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Abstract 

Dynamic contrast enhanced (DCE) cardiac magnetic resonance imaging (MRI) is 

well-established as a non-invasive method for qualitatively detecting obstructive 

coronary artery disease (CAD) which can impair myocardial blood flow and may 

result in myocardial infarction. Mathematical modelling of cardiac DCE-MRI data 

can provide quantitative assessment of myocardial blood flow. Quantitative 

assessment of myocardial blood flow may have merit in further stratification of 

patients with obstructive CAD and to improve the diagnosis and prognostication of 

the disease in the clinical setting. This thesis investigates the development of a 

quantitative analysis protocol for cardiac DCE-MRI data.     

In the first study presented in this thesis, Fermi and distributed parameter (DP) 

modelling are compared in single bolus versus dual bolus analysis. For model-based 

myocardial blood flow quantification, the convolution of a model with the arterial 

input function (i.e. contrast agent concentration-time curve extracted from the left 

ventricular cavity) is fitted to the tissue contrast agent concentration-time curve. In 

contrast to dual bolus DCE-MRI protocols, single bolus protocols reduce patient 

discomfort and acquisition protocol duration/complexity but, are prone to arterial 

input function saturation caused in the left ventricular cavity by the high 

concentration of contrast agent during bolus passage. Saturation effects can degrade 

the accuracy of quantification using Fermi modelling. The analysis presented in this 

study showed that DP modelling is less dependent on arterial input function 

saturation than Fermi modelling in eight healthy volunteers. In a pilot cohort of five 
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patients, DP modelling detected for the first time reduced myocardial blood flow in 

all stenotic vessels versus standard clinical assessments.  

In the second study, it was investigated whether first-pass DP modelling can give 

accurate myocardial blood flow, against ideal values generated by numerical 

simulations. Unlike Fermi modelling which is convolved with only the first-pass 

range of the arterial input function, DP modelling is convolved with the entire 

contrast agent concentration-time course. In noisy and/or dual bolus data, it can be 

particularly challenging to identify the end point of the first-pass in the arterial input 

function. This study demonstrated that contrary to Fermi modelling, myocardial 

blood flow analysis using DP modelling does not depend on the number of time 

points used for fitting. Furthermore, this data suggests that DP modelling can reduce 

the quantitative variability caused by subjectivity in selection of the first-pass range 

in cardiac MR data.  This in turn may help to facilitate the development of more 

automated software algorithms for myocardial blood flow quantification.  

In the third study, Fermi and DP modelling were compared against invasive clinical 

assessments and visual MR estimates, to assess their diagnostic ability in detecting 

obstructive CAD. A single bolus DCE-MRI protocol was implemented in twenty-

four patients. In per vessel analysis, DP modelling reached superior sensitivity and 

negative predictive value in detecting obstructive CAD compared to Fermi modelling 

and visual estimates. In per patient analysis, DP modelling reached the highest 

sensitivity and negative predictive value in detecting obstructive CAD.  

These studies show that DP modelling analysis of cardiac single bolus DCE-MRI 

data can provide important functional information and can establish haemodynamic 
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biomarkers to non-invasively improve the diagnosis and prognostication of 

obstructive CAD.  
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Lay summary  

The heart, the blood and the blood vessels are the main components of the 

cardiovascular system. The cardiovascular system allows blood to circulate and 

transport oxygen, vital nutrients, carbon dioxide, hormones and blood cells around 

the body. The blood flows across the cardiovascular system and modulates body 

temperature, helps to fight diseases, provides nourishment to all organs and tissues 

and maintains life.  

The heart is a hollow muscular organ that pumps blood throughout the 

cardiovascular system by rhythmic contraction and dilation. The myocardium is the 

heart muscle which contains cardiomyocytes, the cells that cause the heart to contract 

and pump blood into the circulation. The myocardium is supplied with blood flow 

through a very dense network of small blood vessels called the coronary circulation 

to allow it to function. In patients with coronary artery disease, stenotic lesions may 

develop in these coronary vessels. If they grow further, these stenotic lesions may 

narrow the inside of coronary vessels and can restrict blood flow to the heart, 

limiting the ability of the heart to function correctly. This is called obstructive 

coronary artery disease which may cause irreversible damage to the myocardium and 

can lead to death.  

This work used magnetic resonance imaging to generate cardiac data from healthy 

volunteers and patients with coronary artery disease. Magnetic resonance imaging is 

a medical imaging technique that uses magnetic fields and electromagnetic (radio) 

waves to acquire images from the body, without the need of radiation exposure. It is 
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possible to acquire magnetic resonance images for investigating both cardiac 

anatomy (structure) as well as function.  

During the magnetic resonance image acquisition, a contrast agent was injected in 

the cardiovascular system of all subjects. The contrast agent focally brightens 

myocardial tissue areas in magnetic resonance images when it passes through the 

heart. Successive images were acquired rapidly to track the passage of the contrast 

agent across different myocardial areas. At the final stage of our method 

development, two mathematical models (called 1) Fermi and 2) distributed parameter 

modelling) and computer programming were used to analyse the magnetic resonance 

images in order to quantify myocardial blood flow. Mathematical models can 

potentially describe the passage of the contrast agent through the heart and can be 

used for myocardial blood flow quantification.  

In the first study, cardiac magnetic resonance images were acquired from eight 

healthy volunteers using a technique called dual bolus imaging. Unlike the more 

commonly used single bolus imaging technique, dual bolus imaging eliminates 

technical problems that can degrade the accuracy of Fermi modelling for calculation 

of myocardial blood flow, but increase patient discomfort and complexity in image 

acquisition and analysis. It was investigated whether either of the mathematical 

models applied can give accurate measurements of myocardial blood flow from the 

single bolus components of the dual bolus protocol. The author confirmed what other 

groups have shown, that Fermi modelling values were prone to technical problems in 

single bolus data. Also, the author demonstrated that distributed parameter modelling 

was less dependent to technical problems in single bolus data. Single bolus values 



11 
 

were compared against values obtained for dual bolus analysis (which was used as a 

reference standard for performing comparisons). 

In the second study, computer simulations were used which gave access to “ideal” 

(simulated) data with known myocardial blood flow values to investigate further the 

distributed parameter model analysis. It was shown that distributed parameter 

modelling can reliably give measurements of myocardial blood flow when only part 

of the data will be used for analysis (this is called the first-pass of the data).  

In the third study, both mathematical models were implemented in a cohort of twenty 

four patients with coronary artery disease. Visual assessment from experienced 

clinicians is currently the standard clinical method for assessing obstructive coronary 

artery disease from cardiac magnetic resonance images in clinical environments. Our 

model analysis and visual assessments were compared against invasive methods 

(which currently are the reference standards for detecting obstructive coronary artery 

disease) acquired in these subjects. Invasive methods involve the introduction of tiny 

instruments inside the coronary vessels to detect stenotic lesions. It was showed that 

mathematical model analysis of magnetic resonance imaging data can potentially 

improve the detection and diagnosis of obstructive coronary artery disease compared 

to visual assessments. It was also demonstrated that distributed parameter modelling 

may be able to more accurately detect more vessels with obstructive coronary artery 

disease against invasive methods, compared to Fermi modelling.    
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1. Introduction 

This thesis describes development of a cardiac perfusion analysis protocol, through 

the application of mathematical modelling of dynamic contrast enhanced magnetic 

resonance imaging (DCE-MRI) data. Visual assessment by radiologist or trained 

observer is currently the noninvasive reference standard for the detection of 

perfusion abnormalities in obstructive coronary artery disease (CAD) from cardiac 

DCE-MRI data. Quantitative assessments of myocardial perfusion have the potential 

to objectively improve the diagnosis and enhance the stratification of patients with 

obstructive CAD, as well as streamline and speed up analysis of myocardial 

perfusion MRI data.    

This work focused on developing and interpreting myocardial perfusion analysis 

from cardiac DCE-MRI data using two mathematical modelling approaches: a Fermi 

and a distributed parameter model. At the time of writing this thesis, Fermi 

modelling was the most popular and well-published approach used to estimate 

myocardial blood flow during the first-pass of gadolinium-based contrast agents. 

Distributed parameter modelling had recently been introduced as a new approach for 

cardiac data (see reference 66, chapters 3, 5 and 6) and in addition to myocardial 

blood flow, it can be used to calculate other potentially physiologically relevant 

microvascular characteristics. To structure the steps followed for development of this 

cardiac perfusion analysis protocol, three main aims have been addressed in chapters 

5, 6 and 7 in which model application was assessed using data from healthy 

volunteers (and a pilot cohort of five patients), and simulated data and clinical data 
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from patients with known or suspected CAD, respectively. The structure of the thesis 

is presented in the next paragraphs.  

Chapter 2 describes theory of the basic topics of this thesis. It details CAD and 

provides fundamental theory of MR and computed tomography (CT) imaging, 

implemented to generate healthy volunteer and patient data used for analysis in this 

work.  

Chapter 3 details a review of previously published methods and provides context for 

the information contained in the result chapters 5, 6 and 7. Chapter 3 focuses on the 

use of quantitative myocardial blood flow analysis methods in cardiac DCE-MRI. It 

also reviews work utilising CT angiography and examining qualitative and 

quantitative analysis of cardiac CT perfusion imaging. Additionally, it introduces 

previous work with reference to invasive methods, the current clinical standards for 

assessing CAD.  

Chapter 4 details methods developed, validated and used in the studies presented in 

chapters 5, 6 and 7. These studies combine material which has been or will be 

published in international scientific journals and conference proceedings.  

Chapter 5 is in the form of peer-reviewed journal publication and addresses the first 

aim of this work, to investigate the application of Fermi and distributed parameter 

modelling in single and dual bolus DCE-MRI protocols using data from healthy 

volunteers. The sensitivity of Fermi and distributed parameter modelling in detecting 

reduced myocardial blood flow in stenotic vessel territories was also examined, using 

data from a pilot cohort of five patients.  
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Chapter 6 addresses the second aim of this thesis, to investigate further the 

distributed parameter model using simulated data. In particular, it was examined 

whether first-pass distributed parameter modelling can give accurate estimates of 

blood flow and of microvascular characteristics, compared to ideal values from 

numerical simulations.  

Chapter 7 investigates the third aim of this thesis, to assess the diagnostic accuracy of 

Fermi and distributed parameter modelling at the setting of detection of obstructive 

CAD, against invasive clinical assessments acquired in twenty four patients. 

Quantitative assessments using both models were also compared against visual 

assessments from MR and CT data, acquired at the same patient cohort.     

This work gave access to quantitative assessment of cardiac perfusion using healthy 

volunteer and simulated data, whilst provided the opportunity to assess the clinical 

value of coronary haemodynamic analysis in data of patients with CAD. Finally, 

chapter 8 summarises the results and conclusions and provides suggestions for 

further work.  
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2. Background theory 

Summary 

This chapter introduces fundamental theory of the basic subjects of this thesis. It 

presents a description of coronary artery disease [4]. It also provides relevant 

background theory of magnetic resonance [7-9] and computed tomography imaging 

[17-20] which were implemented to generate healthy volunteers’ and patients’ data, 

used for analysis in this thesis. For additional information with respect to the above 

concepts, the reader can consult references [1-22]. Images derived from handbooks 

or papers are accordingly referenced. Images with no references have been designed 

by the author.    

2.1 Coronary artery disease 

Cardiovascular diseases are the main cause of mortality worldwide. In Europe, 

cardiovascular diseases account for over 4.35 million deaths each year. According to 

European cardiovascular disease statistics, coronary artery disease is the most 

prevalent cause of death in Europe, being responsible for approximately 1.92 million 

deaths each year, nearly half of all deaths from cardiovascular diseases [1].  

Atherosclerosis is the main cause of coronary artery disease. Atherosclerotic lesions 

are asymmetric focal plaques which develop at the innermost layer of the artery, the 

intima. The term “atherosclerosis” derives from the Ancient Greek word “atheroma” 

which means encysted tumor and “sclerosis” which means hardening, and describes 

the reduction of the elasticity of the arteries due to the presence of atheromatous 

plaque. One of the currently prevailing theories was first introduced by Russell Ross 
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and John Glomset in 1973, suggesting that atherosclerosis develops as an 

inflammatory-proliferative response to repetitive injury of the arterial endothelium 

[2, 3]. The endothelium is the essence of vasa vasorum in the adventitia. Hence, the 

response to injury theory considers pathogenesis in the entire vascular wall [4].  

Although physical forces can be responsible for injury, one other main mode of 

injury is biochemical in nature. Hypertension, hypercholesterolemia, diabetes 

mellitus, smoking, and age lead to increased vascular oxidative stress and are all 

important risk factors for the development of coronary artery disease. Oxidative 

stress activates molecular processes which lead to the development of atherosclerotic 

plaques in the coronary walls. Following initiation, coronary artery disease 

progresses to a complicated disease [4]. 

Recent studies have shown that non-invasive techniques for the detection and 

monitoring of myocardial ischaemia can potentially improve the diagnosis and the 

assessment of prognosis of coronary artery disease [5, 6]. Magnetic resonance and 

computed tomography imaging have been widely used in the clinical setting to detect 

and assess coronary artery disease, providing different but also similar advantages 

and perspectives. The background theory of these techniques will be discussed in the 

next paragraphs.  

 

 

 

 



23 
 

2.2 Magnetic resonance imaging 

2.2.1 Basic principles of MRI acquisition 

MRI recruits three different types of magnetic fields: a) the main magnetic field of 

the scanner Bo, b) the radiofrequency pulses and c) the gradients. In respect of 

radiofrequency pulses, three of their basic functions will be described in this chapter: 

exciting, inverting and refocusing magnetisation. With reference to MR gradients, 

their applications for spatial localisation of the receiving signal will be thoroughly 

discussed in this chapter.  

To probe the human body using MRI, the magnetic behaviour of the hydrogen 

nucleus is monitored. The main reason is that human body consists of millions of 

hydrogen atoms found in tissues, organs and fat. Each hydrogen atom is a single 

positively charged proton. The nuclear spin or nuclear spin angular momentum is an 

intrinsic property of an atom according to which the nucleus can be considered to 

rotate about an axis at a constant rate or velocity.  

A basic principle of Maxwell’s electromagnetism theory states that a moving charge 

(i.e. the rotational motion of the positively charged nucleus) creates an associated 

magnetic field. Thus, each nucleus has a local magnetic field called the magnetic 

moment which is orientated parallel to the axis of rotation (Figure 2-1).  
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Figure 2-1) (a) The rotation of a positively charged nucleus producing a local magnetic field 

(magnetic moment) is shown. (b) Randomly orientated magnetic moments of individual 

protons in the absence of an external magnetic field. Their net magnetisation vector sum is 0. 

In the absence of an external magnetic field, the spin vectors of the protons are 

randomly oriented in all directions such that their magnetisation vector sum is zero. 

When a tissue of interest is placed inside a magnetic field Bo, all the individual 

protons start to precess about the magnetic field. By convention, the axis of the main 

magnetic field in Cartesian coordinates is the z-axis. The rate of precession is 

proportional to the strength of B0 and can be expressed by equation 2-1 which can be 

derived by using both classical and quantum mechanics theory (Larmor equation) [7, 

8]: 

                                                        oo B                                                       (2-1) 

where ωο is the Larmor frequency measured in MHz, γ is the gyromagnetic ratio 

which is constant for each nucleus measured in sec
-1

Tesla (T)
 -1 

and B0 is the 

magnetic field strength in T.  

In the presence of B0, the alignment of protons with the magnetic field can be 

described using two eigenstates. In one energy eigenstate, the protons are aligned in 

the parallel direction to the main magnetic field (z direction) whilst in the second 
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eigenstate, the protons are aligned in the anti-parallel direction (-z direction). The 

anti-parallel eigenstate requires slightly more energy than the parallel one. A proton 

selects one of the two eigenstates depending on its integral energy. For a large 

sample of protons within a tissue, this is described by the Boltzmann distribution:  

                                                       
TK

down

up Be
N

N 







                                            (2-2) 

where Δε is the energy difference between the two states (equal to 

), h is the Planck’s constant (equal to 6.63 x 10
-34

 m
2
 kg / s), KB 

is the Boltzmann constant (equal to 1.39 x 10
-23

 J / K) and T is the temperature (K). 

In the presence of B0, the parallel orientation is of lower energy and its configuration 

contains more protons than the anti-parallel orientation. This unequal number of 

protons in each energy level means that the vector sum of spins will be nonzero, 

pointing parallel to B0. The tissue will therefore become magnetised with a value M0, 

known as the net magnetisation, which is aligned with B0.  

It is important to note that the possible states of proton alignment are in fact weighted 

sums of the eigenstates, which indicates that there are many more states available to 

the protons than only parallel, or anti-parallel. In other words, the above eigenstates 

have elements of magnetisation perpendicular to the magnetic field, in addition to 

longitudinal components. Thus, the energy eigenstates form a so-called basis for all 

possible states.  

MRI is essentially based on the manipulation of the net magnetisation M0 using 

radiofrequency pulses which are electromagnetic fields oscillating at 

oBh   2/
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radiofrequencies. In other words, radiofrequency pulses are in the form of 

electromagnetic energy containing a variety of frequencies spread over a narrow 

bandwidth. The orientation of the radiofrequency pulses is perpendicular to B0, 

creating an effective magnetic field indicated as B1. Following radiofrequency pulse 

emission, protons absorb part of the energy corresponding to Larmor frequency. This 

causes the net magnetisation M0 to rotate about B1 (Figure 2-2). All radiofrequency 

pulses used to tip the M0 in the transverse plane are called excitation pulses.  

Absorption of this radiofrequency energy leads to transitions between the two energy 

eigenstates with protons from the low energy state being excited to the high energy 

state whilst protons from the high energy state are stimulated to the low energy state. 

There is an equal probability for each type of transition. When the radiofrequency 

pulse has enough amplitude and duration, the absorbed energy tilts the M0 to rotate 

completely into the transverse plane, known as a 90
o
 pulse.  

          

 

 

 

Figure 2-2) (a) At equilibrium, M0 is parallel to B0. As the 90
o
 excitation radiofrequency 

pulse is applied, M0 is tilted to rotate in a spiral path to end up perpendicular with B0. (b) M0 

start to precess about B1 (MRI: From picture to proton, 2006).   

Similarly, if the amplitude of the radiofrequency pulse is further increased, M0 can be 

tilted to the –z axis direction in which all the protons in the low energy state invert to 
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the high energy state and vice versa. At this stage, the system is considered to be 

inverted and the radiofrequency pulse is known as an inversion pulse or 180
o
 pulse. 

The amount of the resulting rotation through application of a radiofrequency pulse of 

M0 is called the flip angle. Modifying the strength and duration of B1, it is possible to 

create different flip angles.  

The application of a radiofrequency pulse brings all spins into phase coherence 

meaning that at each energy eigenstate, spins simultaneously point to the same 

direction during their precession. After the radiofrequency pulse is switched off, 

local inhomogeneities in B0 and small differences in the precessional frequencies of 

different protons cause protons to start dephasing with respect to each other. The net 

magnetisation gradually returns back to equilibrium through mechanisms known as 

T1 and T2 relaxation which will be discussed in subsection 2.2.3. These protons can 

be made to induce a voltage in a receiver coil, this signal being known as the free 

induction decay [7, 8].  

Receiver coils are used for better signal reception. Surface receiver coils are often 

used, which are placed on and around the surface of a patient. Array coil systems are 

collections of small surface coils whose signal can both be combined as well as can 

be fed into independent receiver circuitries (outputs). Phased array coils are groups 

of usually overlapping coils linked into a common receiver circuitry [7, 8]. More 

details about phased array coils and their application in cardiac MR imaging will be 

given in section 4.2 (chapter 4).  

The actual MRI signal derives from echoes created when radiofrequency pulses are 

used to rephase the protons (Figure 2-3). There are two major types of echoes, spin 
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and gradient echoes (subsection 2.2.4). The echoes are received by the MR signal 

detector (i.e. receiver coil) and are mathematically processed to form the image. 

 

  

 

 

 

 

 

Figure 2-3) The following can be viewed if the observer is placed in the rotating frame of 

reference (the frame rotation matches the Larmor frequency). 1. Spin-echo (a) Protons 

dephasing and rephasing. Net magnetization M0 (shown as the thick blue arrow) before the 

application of radiofrequency pulse, aligned along the longitudinal z-direction parallel to B0. 

(b) M0 is tilted along the transverse x-y orientation after the application of a 90
o
 excitation 

radiofrequency pulse. (c) Protons lose phase coherence and start to dephase. (d) After the 

application of a 180
o 

refocusing pulse and subsequent time, protons rephase and create a 

spin-echo. 2. Gradient echo (e) Immediately after a 90
o 

pulse, all spins are in phase. (f) 

Application of a gradient will increase the precession frequency of some spins whilst reduce 

it in others. (g) Application of a gradient of different polarity at time T causes the spins to 

refocus. (h) Spins eventually return back into their initial state and at subsequent time, create 

a gradient-echo.     
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2.2.2. MR signal detection  

The echoes (MR signals) are spatially localized using gradients. These gradients are 

small magnetic fields superimposed on the main magnetic field B0, causing linear 

magnetic field variations which can be mathematically described: 

                                                                                                  (2-3) 

where Bi is the magnetic field at location ri and GT is the total gradient amplitude 

mathematically represented as a tensor. The gradients produce linear magnetic field 

perturbations primarily along one main direction hence, GT can also be reduced to a 

vector representation [8, 9].  

The exact frequency that a proton experiences in the presence of a magnetic field 

gradient can be given by adapting the Larmor equation: 

                                                                                               (2-4) 

where ωi and G are the proton frequency and a vector representing the gradient 

amplitude at position ri respectively. Three magnetic field gradients are used to 

localise the MR signal. Each gradient is commonly assigned to perform one of the 

three main functionalities with respect to MR signal localisation: slice selection, 

frequency encoding or readout and phase encoding [8, 9].  

A slice selective gradient GSS is a magnetic field gradient which limits a narrow 

range of radiofrequencies centred about the Larmor frequency during excitation 

(Figure 2-4) and determines the slice orientation, thickness and position. The 

resonance (Larmor) frequency ωo used to generate the MR signal varies with position 

iTi rGBB  0

 ii rGB  0
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along the gradient direction. As shown, the transmitted gradient causes proton 

excitation only at and to a close proximity to the region which satisfies the resonant 

condition.  

 

 

 

 

 

 

Figure 2-4) The slice selective gradient is presented. The radiofrequency bandwidth is 

centred about the Larmor frequency. Only protons inside the radiofrequency bandwidth are 

excited. The thickness of the slice relates to the gradient strength and the radiofrequency 

bandwidth range (MRI: From Picture to Proton, 2006).  

To change the position of the slice, it is possible to move electronically the region 

satisfying the resonance condition. To manipulate the slice thickness, changes in the 

amplitude and the strength of the gradient can be applied. In particular, a thinner 

slice can be either derived by narrowing the frequency bandwidth (the frequency 

zone satisfying the resonance condition) or by increasing the strength of the gradient. 

To modify the slice orientation, a different slice selective gradient direction can be 

selected. For example, assuming the same Cartesian coordinates for the 

magnetisation, the gradients and the scanner, if the slice selective gradient is 

implemented along the z-axis direction, the excited protons will form a slice along 



31 
 

the transverse plane, creating a transverse slice. Similarly, a sagittal slice can be 

formed using a slice selective gradient along the x-axis, whilst a coronal slice can be 

created using a gradient along the y-axis.  

The two visual dimensions of the image are created using the frequency encoding (or 

readout) and phase encoding gradients, GRO and GPE respectively. During the 

production of an echo, a readout gradient is applied perpendicular to the slice 

direction causing the protons to precess at different frequencies depending on their 

position according to equation 2-4. The spatial resolution in the frequency encoding 

(or readout) direction expressed as the voxel size (VOX) depends on two user 

defined parameters, the field of view (FOV) and the number of sample points (N) in 

the readout direction: 

                                               VOXRO=FOVRO/NRO                                                                       (2-5) 

with units mm/voxel (where RO represents the readout direction). For a given 

bandwidth of frequencies, it is possible to reduce the field of view increasing the 

amplitude of the readout gradient and vice versa [8]. 

The phase encoding gradient is used to form the third dimension of an MR image and 

is applied perpendicular to the previous two gradients. Before the application of a 

phase encoding gradient, the protons within the slice precess about the Larmor 

frequency. In the presence of the phase encoding gradient, the precessional frequency 

increases or decreases depending on a proton’s position. When the gradient is 

switched off, the protons return back to the original precession frequency however, 

keeping their phase difference compared to their previous state. This means that 

protons precede or follow their previous precession. As in the case of the readout 
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gradient, the phase difference depends on the magnitude and duration of the gradient 

as well as the proton position (described by equation 2-4) [8].  

 

 

 

 

 

 

Figure 2-5) (a) Frequency encoding gradient. After excitation, all protons within the excited 

(slice) volume precess at the same frequency. When GRO is applied, it causes a variation in 

the frequencies of the protons. The frequency of precession for each proton depends upon its 

position (according to equation 2-4). (b) Phase encoding gradient. Similarly to the concept of 

the frequency encoding gradient, before the application of GPE, all protons precess at the 

same frequency. Following application of GPE, a proton increases or decreases its 

precessional frequency depending upon its position (equation 2-4). As shown, a proton 

located in y2=0 experiences no effect from GPE. However, a proton located at y3 precesses 

faster during the application of GPE. When GPE is switched off, the proton precesses at its 

original frequency but is now ahead (phase shift φ3) of the reference frequency (shown here 

with the dashed line). A phase shift has been induced in the proton by GPE. In the same way, 

a proton located at y1, decreases its frequency during the application of GPE. Thus, after GPE 

is turned off, it precesses at its original frequency but is now behind (phase shift φ1) the 

reference frequency (MRI: Basic pulse principles and applications, 2010).         

 

GRO 

GPE 

a b 
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Figure 2-6) One of the visualised directions in all MR images is the readout direction. The 

other is the phase encoding direction as shown.  

The MR information is completed once the slice excitation and signal detection is 

repeated multiple times, each one using different amplitude of the phase encoding 

gradient. Each value of phase encoding can be considered as a template 

corresponding to a specific ‘spatial frequency’. One phase encoding gradient is 

required for every line of data (i.e. 256 phase encoding gradients for a 256 voxel 

image in the phase encoding direction). The spatial resolution is again expressed as 

the voxel size: 

                                                 VOXPE=FOVPE/NPE                                                                       (2-6) 

The gradient-induced changes from both GRO and GPE are applied to the echo and are 

received by the receiver coils. The echoes are then saved in a raw data matrix 

commonly referred to as k-space so that each phase encoding step is a line of k-space 

(Figure 2-7).   
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The most common and dominant method to fill k-space is the row-by-row Cartesian 

method, although other types such as spiral and radially oriented k-space trajectory 

techniques are rapidly developing [7, 8]. The row-by-row Cartesian method provides 

a better basis to describe k-space filling whilst has also been implemented to acquire 

data for this thesis. This method will be discussed in the following paragraphs.  

According to the row-by-row Cartesian method, the cells of k-space (shown in 

Figure 2-7.a) are commonly displayed on rectangular grid with axes kx and ky. These 

k-axes represent spatial frequencies in the x- and y- directions and therefore, 

individual (kx, ky) points do not directly correspond to individual (x, y) pixels in the 

image. However, there is a direct one-to-one relationship between points in k-space 

and gradient strength [7, 8].  

Thanks to the application of frequency and phase encoding gradients (Figure 2-5) the 

phase of the signal of a given spin, depends upon its location. If the signal is sampled 

at time t after turning the frequency encoding (x direction in Figure 2-6) gradient, the 

phase induced at the spins at location x by the readout gradient alone will be: 

                                                  xtGtt xo   )(                                              (2-7) 

The phase induced on spins by the phase encoding (y direction in Figure 2-6) 

gradient alone, at location y, will be:  

                                                  yGtt yo  )(                                              (2-8) 

Hence the total phase shift for a voxel at location (x, y) will be:   

                                             yGxtGtt yxo  )(                                       (2-9) 



35 
 

Because the signal emitted by a small voxel at location (x, y) is proportional to the 

number of spins at that location and will have phase given by equation 2-9, the signal 

S (x, y, t) from a voxel at (x, y) is proportional to: 

                            )exp(),(),,(  yGixtGitiyxtyxS yxo                     (2-10) 

where ρ(x, y) is the spin density function which will be displayed as a gray scale MR 

image at end of the MR signal detection and processing procedure. The receiver coil 

equally sums contributions from all locations, so that the signal detected is the sum 

of these contributions: 

                                   dxdyeyxtS
yGixtGiti yxo







 ),()(                          (2-11) 

The Larmor frequency can be (and in fact is) neglected by the detection hardware 

and thus, can be moved out of the integral: 

                                    dxdyeyxtS
yGixtGi yx







 ),()(                              (2-12) 

This integral is over the spatial frequencies and it is useful to define )( tGk xx  and 

)( tGk yy  where k represents the spatial frequency measured in cycles/m. k 

relates to the wavelength by the formula /1k .  

                                         dxdyeyxtS
yikxik yx




 ),()(                                  (2-13) 
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Assuming that x and kx (as well as y and ky) are conjugate variables, equation 2-13 

represents a 2D Fourier integral. To solve for ρ (x, y), the inverse Fourier transform 

of the detected signal is needed: 

                     yx
yikxik

yxyx dkdkekkSkkSFTyx yx


  ),()],([),( 1              (2-14) 

To summarise, the value of kxy determines the spatial periodicity of each frequency 

sample that contributes to that time point of the signal. The signal is therefore 

sampled not as a function of time, but as a function of k (the difference between k 

and t is the scale factor γG). Each point in k-space matrix is represented by a 

complex number which is the magnitude of the amplitude and phase of the signal for 

that sample point. The image (gray value for each voxel) is finally calculated by 

measuring ρ(x, y) through the implementation of inverse Fourier transform [9]. 

By convention, rows near the centre of k-space correspond to low order phase 

encoding steps, whilst rows near the top and bottom are defined to correspond to 

higher order phase encoding steps. Image data acquired with the maximum phase 

encoding gradient +GPE, will be saved along the rightmost margin in k-space. Image 

data acquired with the phase encoding gradient equal to zero, will be saved along the 

central vertical axis in k-space. k-space values near the edges of the k-space matrix 

define spatial resolution in the image whilst those near the centre determine shape 

and contrast in the image. Because echo amplitudes are higher at the low order phase 

encoding steps due to the fact that there is less gradient induced dephasing, the 

values of k-space will be greater near the centre of the matrix [7-9].  
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Figure 2-7) k-space representation. (a) k-space matrix is a raw data matrix having the same 

number of rows (number of readout or frequency encoding steps defined as NRO) and 

columns (number of phase encoding steps defined as NPE) as (b) the final image. (c) k-space 

filling for different (reverse linear) phase encoding steps. k-space and corresponding images 

showing: (d) image reconstruction using all spatial frequencies, (e) using only low spatial 

frequencies from the centre of k-space and (f) using only high spatial frequencies from the 

edges of k-space.       

a) b) 

c) 

e) f) 

kx 

ky 

d) 

 NRO columns  NRO columns  

 NPE rows   NPE rows  
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The row-by-row Cartesian method involves different profile orders which determine 

the way of k-space filling. One of the standard ways of k-space filling is to acquire 

one k-space line after the other, from the bottom of k-space to the top (linear phase 

encoding). The reverse order is to perform the same process but from the top to 

bottom (reverse-linear phase encoding). Centric k-space filling is also often involved 

in the row-by-row Cartesian method, in which the middle line of k-space (ko) is 

acquired first and then the k-space filling continues towards the top and the bottom 

[7-9]. Centric phase encoding k-space filling was used in order to acquire myocardial 

perfusion MR imaging data for this thesis (see 2.2.7 and 4.5 for further discussion in 

centric phase encoding).  

2.2.3 T1 and T2 mechanisms of relaxation 

After each excitation pulse is applied and switched off, the protons re-emit the 

absorbed energy and start to relax back to equilibrium through T1 and T2 relaxation.  

T1 relaxation is also known as longitudinal relaxation time or spin-lattice relaxation 

time. Following an excitation pulse, it is the time required for the z component of the 

net magnetisation Mo to return back to 63% of its original value. During T1 

relaxation, protons interact with their surrounding tissues. The absorbed energy is 

transferred from the excited protons (spin) to their surroundings (lattice). Although 

both mechanisms occur simultaneously, T1 relaxation is much slower process than T2 

relaxation. 

After the excitation pulse is applied, more protons precess in the high energy state 

which is thermodynamically stable and thus, it requires energy to stimulate the 

transition back to the low energy state. The required energy is found in the presence 
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of molecular motion (such as rotation or vibration) within the surrounding tissues, 

experiencing a relatively broad range of intrinsic frequencies. The closer these 

intrinsic frequencies to Larmor frequency ωo, the more efficiently this energy 

transfer occurs and the shorter T1 relaxation becomes. In different tissues, the nature 

and concentration of proteins and metal ions vary. Hence, T1 relaxation is 

characteristic for each tissue. Unlike T2, T1 relaxation is field-dependent. This means 

that at higher B0, fewer molecules within tissues can reach ωo leading to longer T1 

relaxation [7, 8]. 

T2 relaxation is also known as transverse or spin-spin relaxation time and is the time 

required for the transverse component of M0 to decay to 37% of its initial value. 

After an excitation pulse, protons start to dephase due to small differences in their 

precessional frequencies in the magnetic field. Protons precess and move in random 

directions inside the tissue volume. When two protons approach each other, each one 

of them experiences a slightly higher or lower magnetic field depending on whether 

the magnetic moment of the other proton adds or subtracts from the main magnetic 

field. The protons modify their precessional frequencies to match this slightly 

different local field and start to dephase. After protons recede, they return back to 

Larmor frequency but the phase difference in precession is maintained. Each proton 

interacts with thousands of other protons resulting in gradually bigger differences 

between the phase angles and this occurs until the vector sum of the magnetic 

moments decays down to zero. T2 relaxation is a quick mechanism occurring in 

hundreds of milliseconds.  

T2
*
 relaxation is also often defined as the process by which the transverse 

magnetisation is gradually lost due to magnetic field inhomogeneities. As mentioned, 



40 
 

perfectly homogeneous main magnetic fields are practically never possible. 

Inhomogeneities in the main magnetic field may be the result of intrinsic defects of 

the magnet or of susceptibility induced field distortions produced by the tissue or 

other materials placed in (and interacting with) the field. These inhomogeneities 

cause transverse magnetisation decays known as T2
*
 relaxation mechanisms which 

are equal or (more commonly) faster, than would be predicted by T2 mechanisms [7, 

8]. T2
*
 relaxation can be mathematically described as:  

                                                      
inTTT 222

11

*

1
                                               (2-15) 

Where 1/T2in is the relaxation rate due to field inhomogeneities (ΔΒi) across a voxel 

and is equal to γΔΒi.     

 

 

 

 

 

 

Figure 2-8) Longitudinal (T1) and transverse (T2) relaxation time illustrated. Although they 

occur simultaneously, T1 is much slower than T2 (MRI: Basic pulse principles and 

applications, 2010).  
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An important versatility of MRI is that the MR signal can be made sensitive to 

different relaxation mechanisms. For example, the MR signal can be made sensitive 

to T1 or T2 relaxation times, creating images known as T1- or T2-weighted 

respectively. In these images, the image contrast between a region of interest and its 

surroundings depends on the relative relaxation times (T1, T2 or T2*) which have 

been selected to either emphasize differences in tissue structures or in tissue 

functions. Similarly, the MR signal can be made sensitive to the relative number of 

protons in each tissue leading to the formation of data known as proton density (PD)-

weighted images [7, 8].     

2.2.4 Basic MR pulse sequences 

The combination of radiofrequency pulses, gradients, data sampling periods and the 

timing selected between each one of these parameters used to create the image is 

called the pulse sequence. The spin and gradient echo techniques are the major 

methods used to create echoes (MR signals) and their pulse sequence characteristics 

are described here.  

In the spin echo case, the pulse sequence starts with a 90
o 

excitation pulse and spins 

are left to dephase for a selected time interval. During dephasing, spins experiencing 

lower magnetic fields precess slower and those experiencing higher magnetic fields 

precess faster, compared to their precessional frequency before dephasing started. 

Then a 180
o
 pulse is applied, exciting the low energy spins to the high energy state 

(now start to rotate clockwise) and stimulating the high energy spins to the low 

energy state (start to rotate anti-clockwise). After a time equal to the time interval 

between the intial 90
o
 and 180

o
 pulse, all spins are brought back into phase coherence 
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and a spin echo is formed. Gradient pulses of opposite polarity in the readout and 

slice selection directions are also combined to refocus the protons (see Figure 2-9).  

In a spin echo sequence, the repetition time (TR) is the time elapsed between 

consecutive excitation pulses for the same slice. The echo time (TE) is the time from 

the excitation pulse to the maximum peak of the spin echo. A representation of a 

timing diagram with respect to a standard spin echo pulse sequence is illustrated in 

Figure 2-9.  

Both spin and gradient echo sequences can potentially be used to generate T1, T2 and 

proton density weighted images by modifying the TR, TE and flip angle. Standard 

spin echo sequences are basically used to form T1-weighted images when combined 

with relatively short TR and TE. In clinical practice, additional MR information is 

required and spin echo sequences often use subsequent 180
o
 refocusing pulses to 

acquire multiple echoes. For example, standard multi-echo sequences apply 

successive 180
o
 refocusing pulses to produce spin echoes using a single phase 

encoding gradient for each excitation pulse. Multi-echo sequences are applied to 

generate proton density weighted images using short TE as well as T2-weighted 

images using long TE in combination with a long TR to allow relatively full T1 

relaxation. Another type of spin-echo sequences, are the echo-train spin echo 

sequences. The echo-train length represents the number of 180
o
 refocusing pulses 

applied after an excitation pulse. Although this is very similar to the standard multi-

echo sequences, it uses multiple 180
o
 refocusing pulses in combination with a 

different phase encoding gradient (for each refocusing pulse) to acquire multiple 

lines of k-space and accelerate imaging. The echo-train spin echo pulse sequences 
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are generally used to produce T2-weighted images which can be efficiently achieved 

by using a long TR and a modest echo train length [7, 8].  

Figure 2-9) A standard spin echo sequence is shown. A single echo is produced at time TE 

after the excitation pulse and localised by a slice selective gradient (GSS), a readout gradient 

(GRO) and a single phase encoding gradient (GPE).  

In gradient echo sequences, the echo signal is generated through gradient reversal. 

As mentioned in subsection 2.2.1, the implementation of a negative gradient causes 

proton dephasing. The application of a subsequent gradient of equal amplitude and 

duration but of different polarity (positive) induces proton rephasing and creates an 

echo. The mechanism is analogous to the one described in spin echo rephasing 

process. The main difference is that in gradient echo sequences, the protons rephase 

due to their interaction with gradients rather than with refocusing pulses. All gradient 

echo pulse sequences use excitation pulses less than 90
o
, which by convention are 

described as radiofrequency pulses with flip angle denoted by alpha (α) and 
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implement reversal gradients in at least two directions to produce the echo signal: the 

slice selective and the readout directions.  

Here, the repetition time TR, is the time between successive α pulses and the echo 

time TE, is the time between the α pulse and the echo produced (Figure 2-10). There 

are two main categories of gradient echo sequences: a) spoiled gradient echo and b) 

refocused or steady state gradient echo techniques. Spoiled gradient echo techniques 

were used for the production of T1 weighted images for this thesis and these will be 

discussed in the following paragraphs.  

In spoiled gradient echo sequences, the radiofrequency pulse applied at the start of 

each TR creates a transverse component of net magnetisation which decays due to 

T2* relaxation caused by local field inhomogeneities. Because TR is generally short 

in gradient-echo imaging, there will always be some residual transverse 

magnetisation before the application of the next α pulse. Spoiling gradients and/or 

radiofrequency pulses applied with randomised phase, can fully dephase the 

transverse magnetisation (through T2 relaxation) and feed the longitudinal 

magnetisation recovery (T1 relaxation). As a result, each one of the applied flip 

angles acts only on the longitudinal magnetisation. This allows the longitudinal 

magnetisation to settle into a steady state after a number of successive α pulses, the 

magnitude of which increases as the flip angle decreases. An increased magnitude for 

the longitudinal magnetisation steady state is important for T1 weighted imaging.  

To acquire T1-weighted images in spoiled gradient echo, short TR and TE combined 

with large excitation α pulses are used. However, for a given ratio of TR/T1 there is 

an optimal flip angle (known as Ernst angle) which leads to the highest signal. This 
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optimal flip angle is small for a short TR which is generally used in gradient echo 

sequences. Ultrafast spoiled gradient echo techniques overcome this limitation using 

a preparation pulse (typically 90
o
 or 180

o
 although much more complicated schemes 

are available) and small flip angles to produce T1-weighted images.  

 

 

 

 

 

 

 

 

Figure 2-10) Following an α pulse, an echo is formed after the application of a phase offset 

to each successive flip angle (i.e. same flip angle but in a different direction) and/ or a 

negative (-) and a positive (+) gradient in the readout direction (GRO). The two gradients are 

of the same magnitude but of different polarity.  

Gradient echo sequences can achieve rapid acquisitions and can enable more slices to 

be acquired within the same TR than spin echo sequences. This is the reason why 

gradient echo sequences are more commonly used in cardiac MR imaging which 

needs to be rapid in order to overcome the cardiac movement, whilst also needs to be 

acquired within a breath-hold duration. Characteristic example applications are in 

+/- phase change 
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perfusion imaging and in angiography in which T1-weighted images can be acquired 

in less than a second. This allows accurate detection of a contrast agent bolus arrival 

and passage through a tissue of interest as will be discussed in the following 

subsections [7, 8].  

2.2.5 Contrast agents 

T1 relaxation time is characteristic for each tissue. Shortening of the T1 relaxation 

time in a region of interest can increase the signal intensity in T1-weighted images. 

T1 relaxation time can be shortened by using exogenous contrast agents.  

The most common application of exogenous contrast agents in cardiovascular 

imaging are gadolinium-based contrast agents. These are administered as salt 

complexes of gadolinium either with chelating agents such as diethylene-triamine-

penta-acetic acid or with dihydroxy-hydroxymethylpropyltetraazacyclododecane-

triacetic acid. The gadolinium ion is strongly paramagnetic as it contains 7 unpaired 

electrons and it is surrounded by the chelating agent which is important to reduce the 

toxicity of the contrast agent. After intravenous injection, the gadolinium agent 

interacts with water molecules found close to the contrast agent complex and 

shortens their T1 relaxation time. In T1 weighted images, this can be mathematically 

described as:  

                                                ][
)0(

1

)(

1
1

11

Gdr
TtT

                                            (2-16) 

where T1(t) is the relaxation time during contrast enhancement and T1(0) is the native 

relaxation time of the tissue in the absence of gadolinium, r1 is the relaxivity 

measured in L mmol 
-1

 s
-1

 and [Gd] is the gadolinium concentration. This 
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relationship describes T1 relaxation time shortening as gadolinium concentration 

increases. The linearity of this relationship has been validated in phantoms [10] and 

in rat myocardium [11].  

2.2.6 T1 mapping  

MRI can assess cardiac function and directly detect structural changes within the 

tissues. Healthy tissues have different T1 relaxation rates compared to pathological 

tissues. T1 mapping is the measurement of T1 relaxation time of tissues in order to 

achieve tissue characterisation and quantification. T1 mapping has been used in a 

variety of clinical applications. In clinical practice, T1 mapping needs to be accurate, 

robust and rapid. There are several methods which have been used to measure T1 

relaxation rate in tissues. Here, the a) most conventional and b) one of the most 

innovative methods for T1 mapping will be described.  

The most conventional method for measuring T1 is the spin echo inversion recovery 

technique. In a spin echo inversion recovery experiment, the net magnetization 

vector M0 is tipped through the application of a 180
0 

inversion pulse, so that the 

longitudinal (net) magnetization vector has an initial value of –M0. The net 

magnetization vector starts to recover towards its equilibrium value M0. Then at the 

inversion time TI, a second radiofrequency pulse of 90
0 

is sent which tips the 

magnetization vector into the transverse plane and the magnetization signal can be 

sampled through the application of field gradients. The value of the transverse 

magnetization gives the signal intensity of the image (which is analogous to the 

longitudinal component of the net magnetization) [7, 8].  
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This magnetisation equation which mathematically describes a standard spin echo 

sequence is: 

                       (2-17) 

where M (t) is the magnetisation detected in the transverse plane at each inversion 

time (TI), M0 is the net magnetisation at equilibrium, TR is the repetition time, TE is 

the echo time and λ is the inversion efficiency (λ=1 if the inversion pulse is perfect). 

During a spin echo, it is assumed that TE<<T2 and TR>>T1 and the second and third 

exponential parameters are equal to 0 and 1 respectively and can be neglected [7, 8].  

To derive accurate T1 measurements, at least 6 to 10 90
o 

saturation pulses have to be 

applied after an inversion pulse. Before the application of each saturation pulse, it is 

necessary to allow for full magnetisation recovery. Full magnetisation recovery 

might require a relaxation period of up to 4 to 5 times the duration of the T1 

relaxation in question. Thus, although spin echo inversion recovery technique is 

considered the gold standard for measuring T1, it is time-consuming and not practical 

to be included in clinical protocols [7].    

One of the most innovative and now widely used rapid clinical T1 mapping 

techniques is the modified Look-Locker inversion recovery (MOLLI) method [12]. 

The standard technique was first described by Look and Locker [13] and is a 

multipoint approach which samples the relaxation curve multiple times after an 

initial preparation pulse [12]. The MOLLI approach introduces two major 

developments to the standard Look and Locker technique: a) uses electrocardiogram 

(ECG)-gated image acquisition at end-diastole and b) merges images from three 
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consecutive inversion recovery experiments into one data set. The accuracy of 

MOLLI technique has been validated in gel phantoms using a wide range of heart 

rates derived from simulated ECG signals [12]. The MOLLI pulse sequence scheme 

is illustrated in Figure 2-11. 

The signal intensity equation for the MOLLI technique is:  

                                                                                     (2-18)                                                       

where and . The derivation 

of equation 2-18 is mathematically described in the Appendix (Appendix 1).   A, B 

and may be obtained by a three parameter fit. T1 can be calculated from the 

resulting parameters by applying the equation 2-19 [14]:  

                                                                                              

(2-19) 

With the application of MOLLI technique, native T1 mapping of the myocardium in 

the absence of contrast enhancement was made possible. The estimation of contrast 

agent concentration-time curves is an essential step prior to the implementation of 

mathematical modelling for myocardial blood flow quantification. Native T1 

relaxation times of the blood pool and myocardial tissue are needed in order to 

estimate contrast agent concentration curves (using equation 2-16, see further 

description in subsection 3.1.1). 
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Figure 2-11) MOLLI pulse sequence scheme is shown. Each vertical bar represents one 

image acquisition. Three sets of Look-Locker (LL) experiments are performed successively 

(LL1 = three images, LL2 = three images, LL3 = five images) with increasing inversion time 

within one breath-hold’s time. To select end-diastole, images were acquired using a specific 

trigger delay (TD). For T1 calculation, images are regrouped for post-processing according to 

their effective inversion time (Messroghli et al, Magn Reson Med, 2004). 

2.2.7 Myocardial perfusion imaging  

Myocardial perfusion imaging is often used as a method to estimate myocardial 

blood flow [15]. It is based on measuring the delivery of contrast agent to the 

myocardium (following a bolus injection). Dynamic contrast enhanced-MRI (DCE-

MRI) has been widely used for myocardial perfusion imaging and commonly 

involves the injection of a gadolinium-based contrast agent. Following a bolus 

injection, the acquisition of dynamic images is performed either at diastole or systole 

using ECG-gating. The signal intensity is enhanced by the contrast agent which 

shortens the T1 relaxation time and results in a brighter signal using a T1-weighted 
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imaging pulse sequence (see Figure 4-9 in chapter 4). This allows for qualitative 

assessment of myocardial perfusion: myocardial regions with lower regional blood 

flow appear hypointense. Mathematical modelling of myocardial perfusion imaging 

data allows quantitative assessment of blood flow in ml/min/ml of tissue. This is 

possible through the mathematical analysis of the dynamics of the myocardial signal 

intensity measurement as a function of time (see subsections 3.1.3 and 3.1.4). 

Myocardial perfusion reserve can also be estimated from the ratio of myocardial 

blood flow at hyperaemia (stress) to myocardial blood flow at rest. Hyperaemia is 

induced using vasodilation agents such as adenosine or dipyridamole. Vasodilators 

increase the blood flow in normal vessels whilst the haemodynamic response to 

vasodilators is reduced in stenotic vessels [15].    

For myocardial perfusion imaging there are some imaging requirements which need 

to be met. For quantitative perfusion, the left ventricle and myocardial tissue signal 

need to be sampled in every heartbeat. The spatial resolution must be adequate (<3 

mm in plane) to allow detection of subendocardial ischaemia and to assess 

transmural extent of perfusion defects. A full coverage of the heart is required to 

cover at least 16 segments of the myocardium which can be achieved by using a 

minimum of 3 slices (see Figure 4-8 in chapter 4) [16]. Furthermore, a quantifiable 

relationship between signal intensity and contrast agent concentration is needed to 

quantify perfusion (see subsection 4.5). The image quality must be sufficient and free 

of artifacts to provide contrast between normal and ischaemic regions for qualitative 

perfusion assessments (see Figure 4-9) [15]. 

A saturation recovery preparation (Figure 2-12) is the most commonly implemented 

method for T1-weighted perfusion imaging and can be used with various methods for 
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image readout. In saturation recovery preparation schemes, there is a trigger delay 

(TD) between the radiofrequency preparation pulse and the initiation of image 

acquisition. The signal intensity is determined by the delay to the centre of k-space. 

This is often referred to as the inversion time (TI) and is commonly in the beginning 

of the readout in centric phase encode ordering (note: TD and TI is the same for 

centric phase encode ordering but different for linear phase encode ordering, see 

subsection 4.5 for further discussion in centric phase encode ordering) [15]. The fast 

low angle shot (FLASH) MRI is a spoiled gradient echo technique which combines a 

low-flip angle radiofrequency excitation with a rapid repetition of the basic 

sequence. This allows for rapid dynamic image acquisition.  

 

    

 

 

 

Figure 2-12) A multislice saturation recovery FLASH scheme. TI is the inversion time which 

is the time between the saturation pulse and the centre of the readout (centre of k-space), 

Tslice is the time per slice and Timage is the time for image readout (adapted by Kellman et al, J 

Cardiovasc Magn Reson, 2007).  
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2.3 Computed tomography  

2.3.1 Basic principles of CT acquisition 

The basic principle of CT acquisition is based on X-ray radiation. X-ray radiation is  

generated by the deceleration of fast electrons entering a solid metal anode. The 

electrons are emitted from a filament (cathode) which is heated to overcome the 

binding energy of the electrons to the metal of the filament. The deceleration of the 

electrons results from the interaction with the atomic nucleus and the orbital 

electrons in the anode. As explained in classical electrodynamics, acceleration and 

deceleration of charged particles induces an electric dipole and electromagnetic 

waves (photons) are radiated. Several photons can emerge throughout the complete 

deceleration process of a single electron. These electromagnetic waves have a range 

of wavelengths (between 10
-8

 and 10
-13

 m). The radiation energy depends on the 

electron velocity v, which in turn, depends on the acceleration voltage Va, between 

cathode and anode. The electron velocity can be determined by the law of 

conservation of energy:  

                                                                                                    (2-20) 

where me is the mass of the electron (9.1 *10
-31

 kg) and e is the electron charge 

(1.6*10
-19

 C) [17].   

X-ray radiation is capable of matter penetration during which the radiation intensity 

(which is proportional to the number of photons) decreases exponentially while 

passing through an object along the incident direction. The reason for this 

exponential reduction in photon numbers (attenuation) is that each photon is 
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individually removed from the incident beam due to scattering and absorption 

mechanisms. CT imaging is based on photon-tissue interactions which lead to 

attenuation of x-ray radiation. The attenuation can be measured by advanced 

detectors incorporated in the CT scanner [17, 18].  

After passing a distance Δη through an object, the radiation intensity can be 

determined by: 

                                                                      (2-21) 

where μ is the attenuation coefficient. Reordering equation (2-21) and taking the 

limit for Δη tending to 0, leads to the differential equation:  

                                                                                                 (2-22) 

 

 

 

 

Figure 2-13) A mathematical approximation of monochromatic x-ray attenuation. An object 

of thickness Δη with a constant attenuation coefficient μ is assumed. Equal parts of the same 

absorbing medium attenuate equal fractions of the x-ray radiation (Computed Tomography: 

From photon statistics to modern cone-beam, 2008).  

Reordering and integrating both sides of equation 2-22 leads to:  

                                                                                                     (2-23)  
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With exponentiation and under the initial condition that I(0)=I0 :  

                                                                                                    (2-24)  

However, the attenuation coefficient depends on the properties of the penetrated 

material (tissue). Thus, there is a spatially varying attenuation that needs to be 

considered and the intensity after a running length s, can be given by:  

                                                                                            (2-25) 

The attenuation of x-rays is well understood and can be modelled by using equation 

2-25. The benefit of CT imaging is that high values of the attenuation coefficient μ 

are due to a high density or high atomic number of the medium. This means that the 

grey values of the CT images are a direct physical representation of the tissue 

properties [17].    

2.3.2 CT signal detection    

To calculate the spatial distribution of the attenuation coefficient μ(x, y), the 

projection modelled by (2-25) has to be reversed. For each projection angle, the x-

rays are attenuated at different extents depending on the local properties and 

morphologies of the tissues under examination. These local attenuations are 

measured using detector arrays. However, to acquire distinct tissue structures from a 

three-dimensional object, the implementation of advanced mathematical techniques 

is required. In Figure 2-14, the history of the three generations of CT scanners and 

the corresponding advances in CT technology is illustrated [17].  
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Figure 2-14) a) The first generation of CT scanners used a pencil beam geometry and a 

single detector. The above configuration is rotated through different projection angles γ 

(through 180
0
). Each point inside the field of view needs to be irradiated from all different 

positions. b) The second generation CT scanners used x-ray sources with fan-beam 

geometry, combined with a short detector array. The configuration in b needs also to be 

rotated since the fan angle is about 10
0
. c) The third generation of CT scanners uses fan angle 

of about 40
0
-60

0
 whilst the detection array consists of up to 1000 detector elements. The 

entire field of view can be measured simultaneously and the acquisition time has been 

considerably reduced (Computed Tomography: From photon statistics to modern cone-beam, 

2008).  

To determine the distribution of attenuation coefficients, it is important to irradiate 

the object from all directions (through a projection angle interval of at least 180
0
). 

For simplification, a coordinate system (ξ, η) is defined which rotates together with 

the source of x-rays and the detector. In Figure 2-15, pγ (ξ) represents the attenuation 

profile of the x-ray beam versus the coordinate ξ of the detector array, for a particular 

projection angle γ. When the attenuation profiles are plotted over all projection 

angles γ, a sinusoidal arrangement of the attenuation is obtained. The representation 

of these attenuation profiles in two dimension defines the set of raw data, known as 

Radon space. The spatial distribution of the attenuation coefficients within a 

sampling unit must then be estimated and reconstructed from the sequence of all 

measured attenuation profiles (pγ1 (ξ), pγ2 (ξ), pγ3 (ξ),..,pγn (ξ)) [17, 18].   

a) b) c) 
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Figure 2-15) Rotating frame (ξ, η) compared to the fixed frame (x, y) is shown. pγ (ξ) 

represents the attenuation profile of the x-ray beam versus the coordinate ξ of the detector 

array, for the particular projection angle γ (Computed Tomography: From photon statistics to 

modern cone-beam, 2008).  

The spatial distribution of the attenuation coefficients within a selected slice of the 

patient has to be reconstructed from the set of the parallel attenuation profiles p(ξ). 

One of the most time-efficient mathematical methods to solve the so called inverse 

problem and efficiently achieve image reconstruction is the Fourier slice theorem. 

The Fourier slice theorem can be accomplished in three basic steps. The first step is 

the calculation of the Fourier transform pγ(q) of the Radon space data pγ(ξ): 

                                                                               (2-26) 

However, Radon space data and their Fourier transforms are given in polar 

coordinates, (ξ, γ) and (q, γ) respectively. The second step is to induce a change in 

the coordinates of the Fourier transformed data, from polar to Cartesian coordinates. 

 
 depqp iq2)()( 





 



58 
 

To calculate the Cartesian coordinates (u, ν) from the polar coordinates (q, γ), the 

following set of equations is used: 

                                                                                    (2-27)  

Using the set of equations 2-27, it is possible to calculate F(u, v) which is the two 

dimensional Fourier spectrum.  Finally, the third step is to calculate the inverse 

Fourier transform of F(u, v) leading to the calculation of f(x, y), which is the spatial 

distribution of the attenuation coefficients within a given slice of the patient [17, 18]. 

The implementation of the third step provides the CT image in which the spatial 

distribution of attenuation coefficients is provided in the (x, y) plane within a slice of 

the patient.  

2.3.3 CT angiography and perfusion  

The new generation of multidetector computed tomography (MDCT) scanners have 

enabled the implementation of coronary CT angiography and perfusion within one 

cardiac imaging protocol (for example images see chapter 7, Figure 7-1). In clinical 

practice, the main advantage of MDCT scanners is the reduction in scan time and 

radiation dose, whilst allowing the detection of highly defined anatomical details of 

coronary arteries reducing respiratory motion and arrhythmias artifacts [19, 20]. 

Furthermore, the application of MDCT scanners introduced a different approach to 

image analysis in which the operator can reconstruct and navigate planar images 

through the use of dedicated software tools [20].  

CT angiography is a rapidly evolving technique in the field of cardiac imaging. It has 

the potential to detect anatomically significant coronary artery disease with high 

),cos( qu ).sin( qv
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sensitivity and negative predictive value when compared with invasive coronary 

angiography (which is considered the current gold standard for assessing luminal 

stenosis). Compared to invasive coronary angiography, the diagnostic procedure 

using CT angiography benefits from multiple views of the coronary artery tree. 

When iodine-based contrast agents are introduced intravenously into the circulatory 

system, they are capable of increasing the x-ray attenuation of the blood making it 

possible to visualise the blood pool within vessels and cardiac chambers. Using 

MDCT imaging and after the injection of an iodine-based contrast agent bolus, the 

whole cardiac volume can be obtained within one cardiac cycle, provided the heart 

rate is low enough (see use of beta blockers in CT imaging for reducing heart rate in 

section 4.9). Sections of the coronary arteries can be retrospectively reconstructed 

using dedicated software tools. For example, unlike in invasive coronary 

angiography, cross-sectional views of the vessels can be obtained from data acquired 

using MDCT. Thus, an important step for angiographic analysis using MDCT data is 

to analyse reconstructed images from different phases of the cardiac cycle in order to 

assess where the contrast enhancement is optimum for visualising (even subtle areas 

of) the coronary artery tree, and where motion artifacts are eliminated or reduced 

[20].   

A systematic analysis of CT angiographic data involves a) examination of the 

anatomical distribution of coronary arteries aiming to identify normal variants or 

congenital abnormalities, b) detection and localisation of coronary artery lesions, c) 

careful exclusion of sections or interposed structures creating image artifacts, d) 

evaluate the morphology and composition of the lesion and e) perform qualitative 
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and quantitative assessment of the luminal stenosis. Moreover, calcified coronary 

plaques can be detected and assessed using CT angiography [20].  

CT angiography alone has a limited ability to determine the physiologic functional 

significance of coronary stenoses compared to other non-invasive methods involving 

myocardial perfusion imaging. After contrast agent injection (the same bolus 

injection used for CT angiography), MDCT images may provide qualitative or semi-

quantitative information about myocardial perfusion. Short axis views of the left 

ventricle and myocardium can be reconstructed from the MDCT data (see description 

and images of short axis view in sections 4.2 and 4.9) and the presence of a 

myocardial perfusion defect can be detected from a ‘snapshot’ (or static) image 

during the arterial phase of contrast enhancement. Both animal [21] and clinical 

studies [22] have shown that in CT images, the signal intensity of myocardial areas 

corresponding to infarcted myocardium can be significantly reduced compared to 

areas with non-infarcted myocardium.  

Unlike in MR perfusion imaging, dynamic acquisition of CT perfusion images using 

ECG-gating is restricted due to radiation exposure limitations. Most clinical CT 

perfusion protocols are limited to acquire a snapshot image at the peak of contrast 

enhancement both during vasodilator-induced stress and at rest. Absolute myocardial 

blood flow quantification from snapshot perfusion data is therefore not possible. 

Analysis of these static CT perfusion images using dedicated software can provide 

semi-quantitative information of myocardial perfusion. Some early dynamic CT 

perfusion acquisition protocols have been introduced (with limited cardiac coverage) 

and absolute myocardial blood flow quantification has been made possible. The 
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concepts of snapshot and dynamic CT perfusion acquisition and analysis in literature 

will be further discussed in chapter 3.  
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3. Literature review 

Summary 

This chapter presents a review of previously published methods for quantitative 

myocardial blood flow analysis in cardiac MR perfusion imaging. It also introduces 

previous work utilising CT angiography and recent publications for qualitative 

analysis of cardiac CT perfusion images as well as for semi- and absolute 

quantification of myocardial blood flow in CT perfusion imaging. Moreover, it 

presents previous work in the literature with reference to invasive methods which are 

the current clinical standards for assessing coronary artery disease. These topics are 

important to provide context for the information contained in the result chapters 5-7.  

3.1 MRI cardiac perfusion   

3.1.1 Contrast agent concentration 

The quantitative assessment of myocardial blood flow can provide important 

functional information for the detection and assessment of coronary artery disease. 

Assessment of blood flow with MRI using this methodology (see dynamic contrast 

enhanced-MRI, subsection 2.2.7) is based on measuring the rate at which the contrast 

agent arrives in the tissue of interest, in this case the myocardium. As described in 

subsection 2.2.5, the most commonly used contrast agents in DCE-MRI are 

gadolinium-based contrast agents. The concentration of gadolinium in the 

myocardium can be indirectly detected by the change in signal intensity in a T1 

weighted image (as described in chapter 2, equation 2-16). The signal intensity 

extracted from the myocardium and blood pool is converted to tissue gadolinium 
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concentration curves using equation 2-16 [23]. This equation states that change in R1 

(=1/T1) in a homogeneous voxel, is directly proportional to the gadolinium 

concentration. In this equation, the proportionality constant is the T1 relaxivity of 

gadolinium (r1). This conversion to gadolinium concentration aims to minimise the 

influence of signal saturation effects that can be present in the myocardial tissue and 

blood pool signal and which can significantly affect blood flow quantification [24].  

For low gadolinium concentrations and/ or low T1 sensitivity (or low T1 weighting, 

see subsection 3.1.5) sequences, the signal enhancement is approximately 

proportional to gadolinium concentration [15]. However, in clinical practice, to reach 

sufficient contrast-to-noise ratio in the myocardium, imaging protocols use 

combinations of high gadolinium concentrations and high T1 sensitivity sequences 

(strong T1 weighting) [15, 24]. This often leads to a non-linear dependence of signal 

enhancement on gadolinium concentration in both the myocardium and the blood 

pool, known as signal saturation [24]. Signal saturation can become pronounced at 

higher gadolinium concentrations (commonly found in blood pool from which the 

arterial input function is extracted) and can lead to concentration underestimation. 

Methods to correct for this phenomenon will be discussed thoroughly later in this 

chapter. 

As mentioned (chapter 2, subsection 2.2.6), T1 mapping is important to calculate 

native T1 relaxation time of the tissue of interest, in the absence of contrast 

enhancement. Depending on the selected pulse sequence used for perfusion imaging, 

a signal intensity equation is needed to derive the T1 relaxation time from the 

observed changes in signal intensity during contrast enhancement of the myocardial 

tissue and blood pool. For the saturation recovery prepared single-shot gradient echo 
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pulse sequence which is used on the Siemens Verio MRI system in Edinburgh for the 

work presented in this thesis, the signal intensity and R1 are related by the following 

equation [25]:  

                                                             (3-1)                                                                                                                                             

where SI is the equilibrium signal intensity, Ψ is a calibration constant dependent on 

instrument conditions such as the receiver gain, proton density and the flip angle α. 

PD is the pre-pulse delay which is the time between saturation pulse and the central 

line of k-space, n is the number of applied pulses of flip angle α, 

and . TR is the time interval per phase encoding step (between 

repetitions of the α-radiofrequency pulses) and R1 is the relaxation rate. Ψ is assumed 

to be constant throughout the dynamic perfusion image acquisition and can initially 

be calculated from equation 3-1 using native T1 and signal intensities derived from 

regions of interest (i.e. arterial input function, myocardial segments) in the absence 

of contrast enhancement. R1(t) at time t of contrast enhancement can then be 

calculated from equation 3-1, using Ψ and signal intensity values extracted from the 

same region of interest in each of the dynamic perfusion images. Contrast agent 

concentration-time curves can be calculated using equation 2-16. The mathematical 

process leading to equation 3-1 is presented in the Appendix (Appendix 2).  

The above method for converting signal intensity time curves into contrast agent 

concentration time curves was first described by Larsson et al [25], was further 

validated by Fritz-Hansen et al [26, 27] and has been used in a variety of myocardial 

perfusion studies [24-31].  
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3.1.2 Quantitative analysis in MRI  

There are two main approaches which can be used for myocardial blood flow 

quantification from the DCE-MRI (perfusion) data. These approaches can be 

classified into two main categories, the first is the model independent and the second 

is model based [24].  

3.1.3 Model independent analysis 

Model-independent approaches are fundamentally based on the central volume 

principle which was first described by Zierler et al [32, 33]. This is based on the 

principle introduced by Eugen Fick which states that the rate at which a substance 

aggregates in a tissue of interest can be given by the concentration difference of the 

contrast agent entering and leaving the region multiplied by the flow rate (F). This 

can be mathematically described as [24, 32, 33]: 

                                                  

                                      (3-2)     

where cin, cout are the contrast agent concentrations at the inlet and outlet of the 

region respectively, q(t) is the mass of the contrast agent and dq(t)/dt  is its rate of 

change in time (t). This is a statement of mass balance which describes that the 

amount of contrast agent which has entered the tissue of interest and has not yet 

exited, has remained in the region of interest.  

Based on the above mass balance principle, equation 3-2 (in its integral form) can be 

rewritten in the form of a convolution integral which relates the amount of the 

contrast agent in the region q(t) with its arterial input:           

dttdqccF inout /)()( 
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                                            (3-3) 

R represents the tissue impulse response if an impulse input of contrast agent is 

applied at the region input, such as a Dirac-delta input function (δ(t)). The theory of 

convolution and tissue impulse response is further described in the Appendix 

(Appendix 3). With such an impulse input cin(t)=δ(t) at time t=0, there can be no 

contrast agent leaving the tissue. Thus, it can be shown that for t=0, R(t)=F which 

means that the initial amplitude of the tissue impulse response is equal to the blood 

flow entering the region of interest [24]. This essentially summarizes the central 

volume principle described by Zierler [32, 33].   

Based on the central volume principle, it is possible to quantify the blood flow from 

the initial amplitude of the tissue impulse response given that q(t) and cin(t) are 

measured quantities (they correspond to the measured contrast agent concentration 

time curves derived from the tissue and the blood pool respectively). The process of 

extracting the tissue impulse response R(t) from the contrast agent concentration time 

curves derived from the tissue q(t) and the blood pool cin(t), is called deconvolution 

analysis as it reverses the convolution operation (equation 3-3) [24, Appendix 3].  

However, this is a mathematically unstable approach for calculating the tissue 

impulse response from q(t) and cin(t). These instabilities in the calculation of the 

tissue impulse response are inherent to the nature of the deconvolution problem [24]. 

Jerosch-Herold developed a model independent deconvolution approach which 

improved the numerical stability and imposed some smoothness constraints on the 
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solution [34]. This method is based on the idea that the tissue impulse response R(t) 

can be represented as a sum of piece-wise smooth B-spline functions:  

                                                                                              (3-4)                                                                                                                    

Parameterising the tissue impulse function R(t) with B-spline functions and using 

least square minimization and Tikhonov regularization [35], it is possible to arrive at 

a solution for R(t):  

                                                               (3-5) 

where λ is the regularization parameter, represents the convolution process, 

denotes the temporal difference operator and represents the Euclidean norm. The 

above method has been used in a variety of studies for myocardial blood flow 

quantification [34, 36-38]. Similar approaches using B-spline polynomial functions 

in order to stabilize the solution of the tissue impulse response can also be found in 

pharmacokinetic analysis for several applications [39]. Other mathematical 

approaches for accurately and robustly resolving the instability of the tissue impulse 

response have also been suggested as potential solutions. Characteristic examples are 

a) the exponential basis deconvolution [40] and b) the autoregressive moving average 

(ARMA) models [41-43]. Nevertheless, these models have not been fully explored 

and validated by other groups in the field.   

All of these methods essentially focus on measurement of the initial amplitude of the 

tissue impulse response from which the blood flow can be quantified. A number of 
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smoothness constraints and assumptions need to be imposed for accurately 

measuring the specifics of the tissue impulse response. The main limitation of these 

model-independent approaches is that they focus only on the calculation of 

myocardial blood flow, whilst they lack any interpretation of other microvascular 

characteristics such as the intravascular space or the permeability surface area 

product which may be very physiologically (or at least functionally) relevant. To 

calculate additional microvascular characteristics which can help to obtain a more 

complete interpretation of the coronary haemodynamics, a model (-based analysis) 

needs to be specified [24].    

3.1.4 Model based analysis 

In model-based approaches, a physiologically-specific model is used to describe the 

passage of the contrast agent through the tissue of interest. The first studies which 

implemented model-based approaches for quantitative analysis of DCE-MRI data 

aimed to assess the blood-brain barrier permeability [44-46]. A comparison between 

some of these specific model approaches [47] provided a consensus standardising 

measured quantities and symbols [48], and set the basis for quantitative analysis of 

DCE-MRI data that were used in numerous (mainly) oncological studies to assess 

response to treatment [49,50].  

For quantitative analysis of cardiac perfusion data, Larsson et al introduced a tracer 

kinetics analysis to assess myocardial perfusion from DCE-MRI data [25]. This 

method focused on the quantification of K
trans

, a parameter
 

which reflects a 

combination of myocardial blood flow and permeability surface area product [25, 48, 

50]. This is based on the idea that the transport of the contrast agent across the 
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membrane of the capillary walls can be described by a first order differential 

equation [51]:  

                                              

                                (3-6) 

                                               

                                   (3-7) 

where K
trans

 represents the kinetic rate constant of contrast agent flow from the 

intravascular into the extravascular-extracellular space, kep denotes the kinetic rate 

constant of contrast agent flow from the extravascular-extracellular space into the 

intravascular space and q(t) and cin(t) are the measured contrast agent concentration 

time curves derived from the tissue and the blood pool respectively. Equation 3-7 is 

the analytical solution of equation 3-6 in which the tissue contrast agent 

concentration q(t) is represented by the convolution of the contrast agent 

concentration derived from the blood pool cin(t) with the system impulse response 

function R(t) (=
tktrans epeK


 ). This model approach has been implemented by 

others [37, 48]. Although the calculation of K
trans

 can reflect the haemodynamic state 

of coronary arteries and its physiological interpretation reflects a combination of 

myocardial blood flow and permeability surface area product [48, 50], this early 

stage analysis did not provide absolute quantification of myocardial blood flow.  
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In the concept of tracer kinetics analysis, Axel described for the first time a 

parametric representation of the tissue impulse response for the analysis of brain 

perfusion studies by CT, known as the Fermi function [24, 52]. The Fermi function 

was chosen based on the idea that its shape resembles the expected shape of a tissue 

impulse response for an intravascular contrast agent. Its mathematical equation is 

given here: 

                                                                                       (3-8) 

where the parameter t represents time, and το defines the width of the initial plateau 

of the tissue impulse response before it decays mono-exponentially at a rate given by 

the parameter k. The central volume principle is also applied in model-based 

deconvolution approaches such as Fermi modelling, according to which the initial 

amplitude (for t=0) of the tissue impulse response R(t) corresponds to the blood flow 

[24, 50, 52]. Fermi models have been applied in a variety of myocardial perfusion 

studies in healthy subjects [24, 28, 29, 31, 37, 43, 53-57], in patients [58, 59], in 

canines [30, 56] and in hardware phantoms [43, 60].  

In 1953, Sangren and Sheppard developed a mathematical analysis to describe the 

exchange of a labelled substance between the intravascular and the extravascular-

extracellular space [61], known as distributed parameter model. The distributed 

parameter model was applied by Goresky et al [62] and was further validated in 

outflow data from the isolated liver [50, 63] and in canine coronary circulation [64], 

by the same group. To derive the model equation, the distributed parameter model 

can be considered as a sequence of infinitesimal two-compartmental exchange 

models [50].  
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Figure 3-1) Left panel: Two compartment exchange model which assumes that the 

extravascular-extracellular space (ve) and the intravascular plasma space (vp) are both 

compartments. In each of these compartments, the contrast agent concentration is assumed to 

be homogeneous. Right panel: The distributed parameter model can be considered as a 

sequence of infinitesimal two compartment exchange models. The contrast agent 

concentrations in each of these compartments depend on the position x along the capillary 

direction. 

 

The tissue contrast agent concentration within each compartment of the intravascular 

space is , whilst the outflux from the intravascular into the 

extravascular-extracellular space through the wall is 
 
and the local 

flux from the extravascular-extracellular space back into the intravascular space is

LdxPStxce /),(  . The parameters cp, vp, ce, PS, dx and L represent the intravascular 

plasma concentration, the intravascular plasma space, the extravascular-extracellular 

concentration, the permeability surface area product, the width of the infinitesimal 

compartment and the full length of the vessel tube respectively [50]. When all the 

expressions of fluxes and concentrations are inserted and for dx 0, the following 

partial differential equation can be produced [50, 64]:                                               
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                                        (3-9)  

where Fp denotes the intravascular plasma flow. Equation 3-9 does not allow axial 

transport of the contrast agent within the extravascular-extracellular space whilst all 

the contrast agent concentrations depend on the position x. The distributed parameter 

model has an analytical solution both in the time and in the Laplace domain. By 

fitting the Laplace domain model equation, it is possible to avoid the discontinuities 

of the time step-function that can be present when fitting the distributed parameter 

model in the time domain [65, 66]. The Laplace domain model equation has been 

used for myocardial blood flow analysis in this thesis and it is provided here [50, 66]: 

                                                          (3-10) 

where and is the frequency variable in the Fourier transformed data 

[65, 66]. Using the distributed parameter model, it is possible to also calculate other 

parameters apart from blood flow such as the intravascular space, extravascular-

extracellular space, volume of distribution (the fraction of tissue that is accessible to 

the contrast agent, equals the sum of the intravascular space and extravascular-

extracellular space), permeability surface area product (measures the rate at which 

contrast agent particles leak out of the plasma) and extraction fraction (defined as the 

fraction of the contrast agent particles that is extracted into the interstitium) [50]. 

Broadbent et al have recently applied distributed parameter modelling in cardiac MR 

perfusion data for absolute myocardial blood flow quantification. In addition to 

blood flow estimation, their data analysis also demonstrated that the coronary wall 
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offers a barrier to contrast agent transport from the intravascular into the 

extravascular space [66].  

3.1.5 Arterial input function  

As mentioned in subsections 3.1.3 and 3.1.4, methods for quantifying myocardial 

blood flow use the arterial input function as reference, which is the contrast agent 

concentration derived from the blood pool [24, 50]. It has been shown that any 

underestimation of the arterial input function leads to systematic overestimation of 

myocardial blood flow [24]. 

The high concentration of (gadolinium-based) contrast agents during bolus passage, 

leads to significant signal saturation which causes concentration underestimation in 

the left ventricular cavity that cannot be corrected with the mathematical conversion 

of signal intensity curves into gadolinium concentration curves (equations 2-16 and 

3-1). As gadolinium concentration increases, this concentration underestimation 

becomes even more pronounced [24].  

To overcome this limitation, some possible solutions that have been used in previous 

studies are summarized here. First is the use of lower gadolinium dosages (0.025-

0.050 mmol/kg at 1.5 T, 0.025-0.040 mmol/kg at 3T) [24, 67, 68]. This results in a 

lower peak of contrast enhancement in the blood pool which is less susceptible to 

signal saturation effects. Although this approach can almost always be implemented 

in healthy volunteers, it may not be feasible in patients with impaired cardiac 

function. In these patients, the gadolinium bolus passage might undergo slow 

dispersion which would lead to reduced signal to noise ratio in the MR perfusion 

images. A sufficient signal-to-noise ratio is required for clinicians to discriminate 
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normal from hypoperfused myocardium. When myocardial blood flow quantification 

is involved, the contrast agent dose needs to be reduced to minimize signal saturation 

effects which may compromise image quality [24, 67, 68]. It is important to consider 

that when even higher doses (such as 0.10 mmol/kg at 1.5 and 3T) are used to 

improve image quality, signal saturation effects can be substantial and it is possible 

to underestimate myocardial contrast agent concentration [67, 68].  

Another approach is to implement dual contrast sequences [69-71]. For each cardiac 

cycle, this involves the acquisition of a low resolution and weakly T1-weighted short 

axis view image with a short saturation-recovery time to measure the arterial input 

function and eliminate signal saturation; followed by a standard high resolution (and 

more strongly T1-weighted) short axis view with a long saturation recovery time to 

increase the signal to noise ratio in the myocardium. For the low resolution image, 

fewer phase-encoding steps are implemented between the magnetization preparation 

and the readout of central phase-encodings. This allows for a shorter delay after 

magnetization preparation (i.e. saturation or inversion pulse). At higher 

concentrations, the short delay can improve the linearity of the signal intensity versus 

R1 (=1/T1) relationship described in equation 2-16 [24].  

Furthermore, another approach to correct the signal saturation in the blood pool is 

through post-processing using calibration curves [72-74]. Calibration curves can be 

generated with numerical simulations, pre-contrast T1 measurements and for specific 

sequence parameters [24]. To date, both dual contrast and the calculation of 

calibration curve techniques has not been extensively implemented and validated in 

cardiac perfusion imaging in the clinical setting.  
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The most well established method for correcting signal saturation in the blood pool is 

the implementation of dual bolus imaging [24, 30, 31, 54, 55, 58, 59, 67, 75]. Dual 

bolus imaging involves the injection of a low dose contrast agent bolus (pre-bolus) to 

extract the contrast agent concentration-time curve from the blood pool, followed by 

a higher dose bolus to extract the myocardial contrast agent concentration time 

curves. With the pre-bolus injection, signal saturation leading to gadolinium 

underestimation can be avoided, whilst the higher (main) bolus follow-up injection 

provides adequate signal-to-noise ratio in the myocardial tissue. These two boluses 

are injected in a pre-determined ratio of gadolinium-based contrast agent dose (e.g. 

1:5, 1:10), which is used to scale up the arterial input function from the low dose data 

to the equivalent concentration in the main bolus data [24, 30]. It has been shown 

that compared to single bolus imaging in which Fermi modelling derived myocardial 

blood flow is systematically overestimated, dual bolus imaging eliminates signal 

saturation and improves myocardial blood flow measurements [31, 75]. Dual bolus 

imaging protocols eliminate arterial input function saturation but are more 

complicated both in terms of practical implementation at the point of image 

acquisition, as well as in post-processing, compared to single bolus protocols [24, 

76].  
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3.2 Previous work in CT  

3.2.1 Computed tomography angiography  

Recent studies using MDCT scanners have demonstrated that non-invasive CT 

coronary angiography has the potential to exclude significant coronary artery disease 

[77-79] and to provide prognostic information in patients with suspected coronary 

artery disease [80-83]. Using modern imaging technology, CT coronary angiography 

(CTCA) can reach excellent sensitivity in detecting significant coronary artery 

disease [84, 85]. 

However, the specificity of these modern techniques is relatively reduced due to their 

tendency to overestimate heavily calcified lesions [84, 86]. Moreover, some studies 

have shown that CT coronary angiography is a poor predictor of reversible 

myocardial ischaemia [87-89] and that functional information is needed, particularly 

in patients with moderate to severe coronary artery disease [90].  

To overcome these limitations of CTCA alone, additional information on the 

physiological significance of coronary artery stenosis is needed from CT scanning. 

Cardiac CT perfusion imaging may provide additional physiological information and 

has the potential to improve the diagnostic accuracy of CT angiography for the 

detection of coronary stenoses, albeit at the cost of additional ionizing radiation 

exposures [90]. 

The high radiation doses involved in cardiac CT angiography imaging have raised 

serious concerns in literature, as the risks of radiation-induced malignancy are not 

negligible [91, 92]. Methods to minimize the radiation dose in cardiac CT 

angiography protocols have been proposed, such as using prospective ECG-
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triggering with which it is possible to image only specific parts of the cardiac cycle 

[91, 93].  

3.2.2 Computed tomography perfusion   

CT angiography and perfusion may be performed in one examination to acquire both 

anatomical and functional information on modern, advanced wide detector CT 

systems. Despite the introduction of some early dynamic CT perfusion protocols in 

animal and human studies, the vast majority of CT perfusion imaging applications in 

the clinical setting is still limited to a ‘snapshot’ acquisition at the peak of contrast 

enhancement, in order to limit the overall radiation dose exposure which would be 

unacceptable in a truly “dynamic” CT perfusion examination. 

Several studies have been published which have focused in evaluating myocardial 

perfusion using modern techniques in MDCT scanners. In general, ‘spiral’ CT image 

acquisition involves transport of a patient at a constant speed through the gantry, 

whilst spiral (also known as ‘helical’) CT data are simultaneously and continuously 

acquired over multiple gantry rotations [94]. With the standard spiral acquisition 

mode of conventional (i.e. with narrower detector arrays) MDCT scanners, it is 

feasible to image only an early phase of first pass contrast enhancement [95]. This 

has allowed semi-quantification measurements of myocardial perfusion such as 

regional signal density ratio (i.e. myocardial signal density/ left ventricular signal 

density) [95] and the generation of qualitative perfusion maps [96], in canines. Kido 

et al have reported the use of conventional 16-slice MDCT scanners for non-ECG 

gated dynamic perfusion image acquisition in human subjects [97]. Nevertheless, this 
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protocol was unable to cover the entire left ventricle at each dynamic image 

acquisition.  

Recent studies in human subjects using new generation wide detector MDCT 

scanners (such as 64-, 256- and 320- slice systems), have shown that the diagnostic 

accuracy of CT angiography for the detection of significant coronary artery disease 

can be improved, when combined with snapshot CT perfusion imaging [90, 98]. 

Snapshot perfusion images can be acquired both under vasodilator-induced stress and 

at rest. These studies showed that CT perfusion imaging can detect transmural 

differences in myocardial perfusion, which can be quantified as the transmural 

perfusion ratio (i.e. subendocardial/subepicardial attenuation density) [90]. In a case 

study using a 320-slice MDCT scanner, perfusion defects have been accurately 

detected, as compared with invasive coronary angiography, with the application of a 

low radiation dose (snapshot) perfusion acquisition protocol [99].  

Wide detector MDCT scanners can potentially provide improved temporal resolution 

together with high spatial resolution whilst can allow full cardiac coverage using 

lower radiation doses [100]. With the use of modern acquisition techniques in these 

new generation scanners, it is possible to dynamically visualize different phases of 

first pass myocardial contrast agent kinetics, which are needed for absolute 

myocardial blood flow measurements [100]. Using a 64-slice MDCT scanner, 

dynamic CT perfusion images have been acquired in canines, which allowed 

absolute myocardial blood flow quantification using two-compartmental modelling 

[101].  
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Dual energy MDCT imaging has also been used to generate perfusion-maps from 

snapshot images at the peak of contrast enhancement using relatively low radiation 

doses in patients with suspected coronary artery disease [102, 103]. The operation of 

dual energy MDCT scanners is based on the application of two simultaneous x-ray 

sources with different photon energy which can acquire two data sets with different 

attenuation levels. Images acquired at two different attenuation levels can then be 

processed with specific software applications and differences in tissue composition 

can be emphasized [104].  

With the application of dual energy MDCT scanners, the acquisition of dynamic 

ECG-triggered myocardial perfusion images in patients with known or suspected 

coronary artery disease was made possible [105, 106]. However, these dynamic 

perfusion protocols were still unable to cover the entire left ventricle [84, 105, 106]. 

Model-independent deconvolution analysis of these dynamic CT perfusion data 

provided absolute myocardial blood flow values in the myocardial areas which were 

imaged [105, 106]. For the specific model-independent analysis, a mathematical 

procedure was applied to limit the deleterious effects of noise which would otherwise 

cause serious problems for the calculation of myocardial blood flow [107,108]. The 

above method has provided accurate myocardial blood flow measurements when 

compared with invasive coronary angiography outcomes from patients with 

suspected coronary artery disease [105]. 
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3.3 Invasive methods 

Invasive coronary angiography involves injection of a radiocontrast agent through 

coronary catheterization whilst an x-ray camera dynamically images the contrast 

enhancement of the coronary tree from multiple angles [109].  

Studies have previously shown that the extent and severity of myocardial ischemia 

are determinant risk factors for patients with coronary artery disease and thus, 

ischaemia reduction is currently considered as an important therapeutic goal [109-

112].  It has been demonstrated that revascularization of stenotic coronary arteries 

can improve patient outcome and functional status, whilst it can reduce the long-term 

risk of major cardiovascular events [112-114]. On the other hand, the benefits of 

revascularization in stenotic lesions not associated with ischaemia, is less clear [112-

116]. It has been shown that compared to drug therapy, revascularization does not 

reduce major cardiovascular events in non-ischaemic coronary lesions [115,116]. In 

patients with multivessel disease, it is often not feasible to accurately determine 

which lesions are associated with reversible myocardial ischaemia [117]. Clinically, 

coronary lesions with a diameter stenosis of ≥50% on invasive coronary angiography 

are often considered for revascularization [115]. Although invasive coronary 

angiography is often inaccurate in predicting which lesions are causing myocardial 

ischaemia and may result in underestimation or overestimation of lesion severity 

[109], is still the standard technique for decision making about revascularization in 

patients with coronary artery disease [118, 119].     

Fractional flow reserve is an index of the physiological significance of a coronary 

stenosis [109]. It is defined at the ratio between distal coronary pressure and aortic 
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pressure (which is the reference standard), both measured during vasodilator-induced 

hyperaemia [109]. Fractional flow reserve can be measured during invasive coronary 

angiography, by calculating the ratio of distal coronary pressure using a coronary 

pressure guide-wire, to aortic pressure using simultaneously a guide catheter [109, 

117]. Fractional flow reserve in a normal coronary artery equals 1.0, whilst a value of 

0.80 or less detects physiologically significant lesions (i.e. coronary stenoses causing 

ischaemia) with an accuracy of more than 90% [109, 120-121].  

It has been shown that when patients with multivessel coronary artery disease 

undergo revascularization after fractional flow reserve and invasive coronary 

angiography guidance, there is a significant reduction in major cardiovascular events 

at 1 year, compared to revascularization guided by angiography alone [109]. 

Furthermore, invasive coronary angiography is not accurate in detecting 

physiological significance of coronary stenoses in 50-70 % and in 70-90 % diameter 

stenoses in patients with multivessel disease, as compared to fractional flow reserve 

[117]. In patients with stable coronary artery disease and at least one vessel with a 

fractional flow reserve of 0.80 or less, fractional flow reserve-guided 

revascularization plus the best available drug therapy as compared with medical 

therapy alone, decreased the rate of urgent revascularization [122]. In addition, 

among patients with non-significant stenoses identified using fractional flow reserve, 

the best available drug treatment alone led to excellent clinical outcomes, indicating 

that drug therapy can be the best treatment for non-ischaemic coronary arteries [122]. 
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4. Description and validation of methods used in subsequent 

chapters 

Summary 

This chapter details image acquisition methods that were used to generate healthy 

volunteer and patient data. It describes post-processing and image analysis methods 

that were developed to analyse myocardial blood flow from MR data. Moreover, it 

presents experiments and measurements performed by the author to validate image 

analysis methods that are presented throughout the next chapters. The MR methods 

and validation measurements are presented in chronological sequence of application.  

This chapter presents the validation experiment to assess the MOLLI technique, the 

MR image acquisition protocol and cardiac contouring. It describes development and 

validation of the Matlab software developed for extracting signal intensities and 

validation of a saturation recovery FLASH equation. It also details arterial input 

function extraction, validation of algorithm for converting signal intensity curves into 

gadolinium concentration curves and optimization procedure of the dual bolus 

imaging protocol. In the last subsection, it also provides information about the CT 

image acquisition protocol.         

4.1 Validation of MOLLI technique 

In chapter 2, the MOLLI technique was introduced which at the time of writing this 

thesis is the most widely used clinical T1 mapping technique [12]. In addition, it was 

discussed that although the conventional spin echo inversion recovery technique is 

time-consuming and impractical to be included in clinical protocols, it is the gold 
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standard technique for measuring T1 relaxation times [7, 8]. It was also described that 

prior to myocardial MR perfusion data acquisition (from which myocardial blood 

flow quantification may be possible), T1 mapping can confirm measurements of 

native (intrinsic) T1 relaxation times of myocardial tissues and blood pools [12] and 

may therefore improve gadolinium concentration measurements (through equation 2-

16) for myocardial blood flow quantification. 

Before applying MOLLI in a healthy volunteer and patient cohort, it was important 

to validate its accuracy versus the conventional spin echo inversion recovery 

technique. For this purpose, an experiment was designed and performed using 9 pre-

existing phantoms with different gadolinium concentrations. The gadolinium 

concentration of individual phantoms increases, starting from the lowest 

concentration in phantom 1 up to the highest concentration in phantom 9 (see Table 

4-1).   

All phantoms were imaged using spin echo inversion recovery and MOLLI 

techniques. For spin echo inversion recovery and MOLLI imaging techniques and for 

all 9 phantoms, 6 and 11 images (Figure 4-1) were generated respectively, each of 

which corresponded to a different inversion time, as described in chapter 2. The 

inversion times for the spin echo inversion recovery experiment were (TI=50, 200, 

800, 1200, 2000, 3500 ms) and for the MOLLI experiment were (TI=105, 185, 265, 

1121, 1185, 1265, 2121, 2201, 2265, 3281 and 4281 ms).  

The overall acquisition time was approximately 51 minutes and 16 seconds for the 

spin echo inversion recovery and MOLLI experiments, respectively. For spin echo 

inversion recovery the acquisition parameters were repetition time/ echo time 4000 
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ms/30 ms, flip angle 90
o
, slice thickness 5 mm, matrix size 256 x 256 and FoV 200 

mm x 200 mm, number of phase encoding steps 128. For MOLLI, the acquisition 

parameters were repetition time (between successive α pulses)/ echo time 2.50 

ms/1.09 ms, flip angle 35
o
, slice thickness 5 mm, matrix size 102 x 128 and FoV 159 

mm x 200 mm, number of phase encoding steps 102. The MOLLI experiment was 

performed using non-ECG gated acquisition (ECG gating was disconnected) 

therefore, MOLLI dependence on heart rate differences was not investigated. 

 

 

 

 

 

 

Figure 4-1) Example image of all 9 phantoms acquired using MOLLI and TI=2121 ms, 

visualised using MATLAB. From phantoms 1 to 9, the gadolinium concentration was 

gradually increased (see Table 4-1). A region of interested is shown in phantom 1, from 

which the signal intensity was extracted.  

 

Matlab codes were created to draw regions of interest and extract signal intensity 

values for each phantom. Signal intensity values were extracted from each phantom 

across all images (each image generated using a different inversion time) for both 
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experiments. Signal intensity is proportional to longitudinal magnetization recovery 

(see Figure 2-8), for a given inversion time. By extracting signal intensities from 

each phantom across all images, it was possible to generate signal intensity versus 

inversion time curves (for each phantom).  

Matlab codes were developed to perform optimal fitting and quantification of T1 

relaxation times. To calculate the T1 relaxation time of each phantom, model 

equations (2-17) and (2-18) were fitted to spin echo inversion recovery- and MOLLI-

derived signal intensity versus inversion time curves, respectively. Two-parameter 

((M0, T1), see equation 2-17) and three-parameter ((A, B, T1
*
), see equation 2-18) 

nonlinear curve fitting was used to calculate T1 relaxation times from spin echo 

inversion recovery- and MOLLI-derived signal intensity versus inversion time 

curves, respectively. In the MOLLI experiment, T1
 
can be calculated from A, B and 

T1
* 

using equation (2-19). Unlike in the spin echo inversion recovery case, in the 

MOLLI sequence the inversion pulses are imperfect and therefore, λ is not 

considered to be equal to 1 (the mathematical derivation is analytically explained in 

the Appendix 1).  

There was an excellent agreement between spin echo inversion recovery- and 

MOLLI-derived T1 relaxation times. Linear regression analysis (Figure 4-2) 

indicated significantly strong correlation between T1 relaxation times derived using 

the two different experimental processes (R
2
~1). Values are summarised in Table 4-

1. Example images of model fitting in signal intensity versus inversion time curves 

generated using spin echo inversion recovery (Figure 4-3) and MOLLI (Figure 4-4) 

techniques are presented. All modelling curves reached an optimum fit (r
2
>0.99). 
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Table 4-1) Table with T1 relaxation times for all 9 phantoms, calculated using spin echo 

inversion recovery (SEIR) and MOLLI experiments. Gd: Gadolinium.  

Gd concentrations and T1 relaxation times (ms) of phantoms 

Phantoms Gd 

concentrations 

(mM) 

SEIR 

experiment 

MOLLI 

experiment 

1 0.07 1669 1699 

2 0.09 1481 1511 

3 0.10 1298 1320 

4 0.13 1114 1154 

5 0.16 950 990 

6 0.21 775 803 

7 0.35 499 520 

8 0.67 278 293 

9 1.35 143 139 
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Figure 4-2) Linear regression analysis of T1 relaxation times calculated using spin echo 

inversion recovery (SEIR) and MOLLI techniques.  
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Figure 4-3) Spin echo inversion recovery experiment. Red curve: experimental curve for 

phantom 5 showing signal intensities (with standard deviations) versus inversion times. Blue 

curve: Model (equation 2-17) fit from which M0 and T1 relaxation time were calculated.  

Figure 4-4) MOLLI experiment. Red curve: experimental curve for phantom 5 showing 

signal intensities (with standard deviations) versus inversion times. Blue curve: Model 

(equation 2-18) fit from which A, B, T1
*
 and T1 relaxation time were calculated. 
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The accuracy of the MOLLI technique has been validated versus conventional spin 

echo inversion recovery experiments in phantoms [123]. MOLLI application was 

used in all subjects in subsequent volunteer and patient data presented in this thesis 

before the implementation of perfusion imaging, to measure native T1 relaxation time 

in the absence of contrast enhancement. Native T1 relaxation time of the myocardium 

and blood pool is needed to mathematically convert signal intensity curves into 

gadolinium concentration curves, which is a necessary step towards absolute 

myocardial blood flow quantification and will be further discussed later in this 

chapter.  

4.2 MR Image acquisition 

Two of the major challenges in cardiac MR imaging are the elimination of a) cardiac 

and b) respiratory motion artifacts, which are created due to cardiac (cardiac cycle) 

and lung (respiratory cycle) motion, respectively. Cardiac motion artifacts are 

controlled by synchronizing imaging to the subject’s electrocardiogram (ECG). 

Using ECG-gating, image acquisition can be performed at the same point in the 

cardiac cycle, commonly during the diastolic phase because cardiac motion is 

reducing compared to the systolic phase. 

The ECG QRS complex is the central and most obvious part of ECG tracing and 

corresponds to the depolarization of the left and right ventricles of the human heart. 

The components of the QRS signal are identified in each of the three standard limb 

leads (i.e. electrodes) shown in Figure 4-5. To efficiently perform ECG-gated MR 

imaging, the ECG electrodes are placed relatively close together to minimize the 

differential voltage being induced in the ECG leads from the magnetohydrodynamic 
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effect, gradients and RF pulses, which can contaminate the ECG signal. For the 

implementation of ECG-gating MRI, the R wave of the ECG signal is used as a 

reference point and data acquisition is initiated following a given delay after the R 

wave [7, 8].  

Breath-held acquisitions help to reduce respiratory motion artifacts. Most commonly, 

respiratory motion may create structured image artefacts (commonly referred to as 

ghosts) in the phase encoding direction [43]. Breath-held acquisition is a standard 

approach for dynamic MR perfusion imaging in which, patients are asked to hold 

their breaths during image acquisition (provided that the length of breath-hold is 

compatible with the patient’s clinical state) [29, 53, 67].  

All subjects provided written informed consent before MR imaging. Further details 

about the study population, exclusion criteria and ethical approval for MR imaging 

will be presented in chapter 5 and 7. Before patients entered the MR scanner room 

for imaging, 12-lead ECG electrodes were placed on subjects to confirm suitability 

for cardiac stressing. These electrodes were then removed and the patient moved to 

the scanner room. MRI-compatible ECG electrodes were then applied which were 

used for MRI-gating. Subjects were prepared and cannulated in the right and left arm 

by radiographers for intravenous injections of contrast agent (gadolinium-based, 

Gadovist, Bayer Healthcare) and vasodilator agent (adenosine, Adenoscan, Sanofi 

Aventis), respectively. For reliable and reproducible intravenous injection of 

contrast, an automated infusion pump was used (Medrad Spectris Solaris, Medrad, 

Indianola, USA) and contrast agent was injected followed by 20 ml of saline flush, 

both at a rate of 4ml/s (see more details about the contrast agent dosages and 

adenosine infusion protocol in chapter 5).  
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A 3T Verio system (Siemens AG, Healthcare Sector, Erlangen, Germany) was used. 

Subjects were positioned supine with a 32-channel (phased array) cardiac coil placed 

over the chest (with a 16-element anterior section and a 16-element posterior element 

section, Siemens AG, Healthcare Sector, Erlangen, Germany). A schematic 

configuration of the MR system is shown in Figure 4-6.  

 

 

 

 

 

 

Figure 4-5) a) A typical ECG signal showing a P wave, a QRS complex and a T wave. b) 

MRI-compatible ECG electrodes used for MRI-gating.  

 

 

 

 

 

b) a) b) 
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Figure 4-6) Configuration of the 3T MR system and the 32-channel (phased array) cardiac 

coil placed over the chest.  
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Before the application of perfusion imaging, standard pilot images and cardiac views 

were achieved using breath-held acquisitions. Pilot images were obtained in sagittal, 

coronal and axial views by turboflash sequences (0.14 seconds / image). Sixteen 

slices on the axial plane were obtained by using Half Fourier Acquisition Single shot 

Turbo spin Echo (HASTE) sequences. True Fast Imaging with Steady State 

Precession (TrueFISP) sequence was then performed, using a mixture of T1 and T2 

weighted imaging. TrueFISP technique provided two-, four-chamber and short axis 

cardiac view images (see Figure 4-7) with optimum contrast to noise ratio (repetition 

time (between successive α pulses): 3.00 ms, echo time: 1.51 ms, voxel size or in 

plane resolution: 1.8 mm x 1.3 mm x 6 mm and slice thickness: 6 mm). TrueFISP 

sequences can give high spatial resolution images with optimum contrast between 

soft tissues [124, 125]. During TrueFisp acquisition, ECG gating was used to acquire 

25 short axis view images (known as cine-images) per heartbeat, across 7 heartbeats. 

On average, 175 cardiac views were acquired with high temporal resolution (of about 

30 ms) across different slices of the heart.  
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Figure 4-7) a) HASTE images (on the axial plane). Along the long axis of the heart, it was 

possible to select the exact position for two-chamber view imaging, with the use of the MR 

system software. b) Two-chamber cardiac views were acquired (TrueFISP technique). The 

exact position for the acquisition of four-chamber views could be again selected through the 

MR system software. c) Four-chamber views were acquired (TrueFISP). It was then possible 

to choose the exact height at which the short axis views would be acquired. d) Short axis 

view scan, the images had optimum spatial resolution and the anatomy of the heart could be 

clearly visualised (e.g. papillary muscles inside the left ventricle which is located at the right 

part of the image-red arrow). 

a) b) 

c) d) 
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Native (intrinsic) T1 relaxation time of myocardial tissues and blood pools were 

measured in the absence of contrast agent enhancement, using a MOLLI protocol 

(Siemens AG, Healthcare Sector, Erlangen, Germany). MOLLI was performed 

before myocardial perfusion imaging.  

Prior to perfusion imaging, administration of adenosine was started. Subjects were 

checked for symptoms and changes in blood pressure by a qualified cardiology 

registrar. At the 3
rd

 minute of adenosine injection, subjects were considered to have 

reached maximal vasodilation. Contrast agent was then administered and stress 

perfusion imaging was initiated using a FLASH technique in combination with 

parallel imaging (GRAPPA with accelerator factor of R = 3) [126, 127]. Parallel 

imaging is a robust method for accelerating MR data acquisition. The basic concept 

of parallel imaging is that it works by acquiring a reduced amount of k-space data 

and requires the use of multi-channel (phased array) receiver coils. Parallel imaging 

works by combining spatial information from each element of the (phased array) 

receiver coil. This can possibly result in image aliasing which can be avoided by 

using post-processing techniques and by considering the contribution of local 

sensitivities of each element in the phased array coil [128]. The same procedure but 

without adenosine injection was repeated for rest perfusion imaging. Rest imaging 

was performed 15 min after the adenosine-stress scan, to allow clearance of residual 

contrast agent. Pulse sequence details for the FLASH sequence will be described in 

chapter 5. 

During the application of the perfusion sequence, four ECG-gated images were 

acquired at each RR interval: three short axis views across three mid-ventricular 

slices of the heart (from basis to the apex) and one long axis view. All cardiac views 



97 
 

were selected based on the 16-segment American Heart Association (AHA) model 

[16]. Figure 4-8 shows the position of all four perfusion imaging views. According to 

the AHA model, the myocardium in the left ventricle can be divided into 16 

segments. Each of these myocardial segments is assigned to one of the three main 

epicardial artery territories.   

 

 

 

 

 

 

Figure 4-8) ECG-gating for dynamic perfusion acquisition. a) Using a specific time delay 

after the R peak (illustrated with the red box), b) three short axis views (from base to the 

apex of the left ventricle) and one long axis view could be acquired at diastole. Dynamic 

acquisition was possible during a breath-hold (to minimize respiratory motion artifacts) for 

50 time points (i.e. sequential RR intervals), to track the delivery of the contrast agent 

through the cardiac chambers (adapted from Cerqueira et al, 2002). 
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Figure 4-9) Four short axis view perfusion images are shown in different phases of contrast 

enhancement. a) Baseline (also known as pre-contrast) images before contrast arrive into the 

right atrium and ventricle. b) Contrast bolus arrival in the right ventricle. c) Contrast bolus 

passes into the lungs (through the pulmonary circulation) and then contrast enhancement in 

the left ventricle can be observed. d) Contrast bolus is passing from the left ventricle into the 

myocardium through the coronary arteries. Contrast enhancement in the myocardium is 

shown. 

a) b) 

c) d) 
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In the framework of developing a robust protocol for myocardial blood flow 

quantification in Clinical Research Imaging Centre of the University of Edinburgh, 

the author led development of a dual bolus perfusion imaging protocol. The above 

described MR sequences have been implemented using both conventional single and 

dual bolus imaging. Single bolus imaging involves two contrast agent injections (one 

at stress and one at rest), whilst dual bolus involves four. In dual bolus imaging, an 

additional pre-bolus infusion was administered both at stress and rest, to allow dual 

bolus blood flow quantification to be applied without the risk of signal saturation in 

the arterial input function. Further details about dual bolus imaging and whether it 

can determine the accuracy of blood flow quantifications are described in chapter 5.  

4.3 Cardiac contouring and segmentation 

ECG-gating and breath-held acquisitions (in TrueFisp images-Figure 4-7, perfusion 

imaging-Figure 4-9, MOLLI-Figure 4-10) aim to eliminate motion artifacts in MR 

images. However, MR images often need to be corrected for remaining artifacts due 

to cardiac and/ or respiratory motion. This can typically be the case in longer breath-

hold acquisitions such as in MR perfusion imaging that can take commonly up to 45-

60 seconds, and can therefore be subject to motion artifacts due to changes in ECG 

(causing blurring artefacts) and/or respiratory motion (causing more structured 

ghosting artefacts). These artifacts can commonly lead to contamination of 

myocardial tissue areas (see Figure 4-11) [129] which in turn may affect myocardial 

blood flow quantification [29].  

In some perfusion images, a dark rim artifact can be observed during gadolinium 

enhancement (Figure 4-11). This dark rim artifact it is believed to be either due to 
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susceptibility effects (derived from rapid changes in the magnetic field during 

gadolinium enhancement), or motion, or limited spatial resolution, or a combination 

of these [130].  

In a previous study, it has been demonstrated that the application of post-processing 

algorithms for automatic image registration, can facilitate myocardial contouring and 

segmentation (by reducing motion artifacts) and can improve the accuracy of 

myocardial blood flow quantification [131]. Image registration involves 

transformation of images or sets of images into one coordinate system. A reference 

image is chosen and the other images are spatially registered to align with the 

reference image, using different post-processing techniques. The benefit of image 

registration in myocardial perfusion imaging data is that it may further allow 

application of automatic or semi-automatic approaches for myocardial contouring 

and segmentation. Although few software applications have been designed and 

provided with free access, cardiac perfusion protocols currently lack a validated post-

processing tool for automatic image registration. For this reason, the author 

performed manual contouring to correct motion artifacts created due to cardiac 

displacements between sequential perfusion images.  

For this thesis, the first post-processing step was to manually draw myocardial 

regions of interest (which will be used for myocardial blood flow analysis later). For 

this purpose, a dedicated commercial software package has been used (QMass, 

Medis, The Netherlands). With this software tool, it is possible to visualize MR 

images and manually draw endocardial and epicardial contours in T1 maps (i.e. 

image providing tissue T1 relaxation time values calculated using MOLLI, Figure 4-
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10) and perfusion images. This software tool provides the opportunity to segment the 

myocardium of the left ventricle according to the 16-segment AHA model [16].  

The main disadvantage of manual segmentation is that it can be time-consuming. The 

duration for manual contouring and segmentation of a full perfusion data set can be 

between 45 min-1.5 hours, depending on the quality of the data (i.e. whether they 

have been contaminated by cardiac, respiratory motion and dark rim artifacts) and 

the experience of the user. The alternative to manual contouring can be automatic 

contouring. However, at the time of analyzing cardiac MR results and writing this 

thesis, there was no software available to the author that could provide reliable 

automatic contouring.   

 

 

 

 

 

 

 

Figure 4-10) Short axis view T1 map generated using MOLLI. Signal intensity in each pixel 

corresponds to a tissue T1 relaxation time.  
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Biglands et al, have demonstrated that conservative contour drawing (both 

endocardial and epicardial contours remaining in the myocardium), can result in 

more accurate myocardial blood flow values using Fermi modelling, than when 

generous contouring was used [29]. Conservative contouring was applied to exclude 

cardiac, respiratory motion and dark rim artifacts (Figure 4-11). Following this 

criterion, manual contouring and segmentation in QMass can be summarized in the 

following three steps: a) initially, endocardial and epicardial conservative contouring 

in T1 maps and in all dynamic images across all three short axis view slices of 

perfusion data sets were drawn. b) An image was chosen to set the starting point in 

the conjunction of left and right ventricles and myocardial segmentation (16 

segments across three slices [16]) can then be automatically adjusted by the software 

across all images of the same slice and c) save myocardial contours and segments (in 

a txt file).   
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Figure 4-11) Endocardial (red) and epicardial (green) contours are presented in a perfusion 

image of a healthy volunteer during peak contrast enhancement. The blue cross indicates the 

starting point from which myocardial segmentation can be adjusted. Basal and mid-

ventricular slices of the myocardium were automatically divided into 6 equal segments 

(apical slice was divided in 4 equal segments). a) Generous contouring: myocardial areas are 

exposed to contamination from blood pool signal (red arrows), dark rim artifacts (blue 

arrow) and contamination from the surrounding tissues (green arrows). b) Conservative 

contouring was performed to avoid contamination of myocardial areas from the left ventricle 

blood pool signal (red arrows), dark rim artifacts (blue arrow) and contamination from the 

surrounding tissues (green arrows). Contrast in the images has been adjusted to highlight 

artifacts which are not always distinctive but can affect quantification [131].  
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4.4 Development and validation of Matlab software  

The second post-processing step was to extract the average signal intensity per 

myocardial segment. Although it is possible to extract signal intensity values for each 

myocardial segment across all perfusion images and T1 maps using QMass software, 

it was necessary to develop a method for extracting accurate signal intensity values 

in Matlab whose operation could be controlled and validated. This involved 

replicating the QMass-selected cardiac contours and segmentation in Matlab. 

Through this programming process the author had the opportunity a) to be trained in 

Matlab environment, which is a necessary tool for post-processing biomedical data 

and b) to develop customised in-house software with which all the operations and 

calculations could be validated and checked. This process is based on the method 

described first by von Land et al [132], detailed in the thesis of van der Geest [133] 

and it is summarized in basic steps (see Appendix 4).   

The accuracy of the aforementioned Matlab method for replicating myocardial 

contouring and segmentation was validated using perfusion data at stress from 4 

healthy volunteers that have been previously scanned at the Clinical Research 

Imaging Center of the University of Edinburgh. The gadolinium dose used for 

perfusion imaging in these 4 healthy subjects was 0.025 mmol/kg.  

Signal intensities per myocardial segment across two short axis view slices were 

extracted using both QMass and Matlab. A paired t-test showed no difference 

between dynamic signal intensity curves extracted using Matlab against dynamic 

signal intensity curves extracted using QMass, in a per myocardial segment 
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comparison (for all myocardial segments P<0.00001). A characteristic example 

image is shown in Figure 4-12. 

 

 

  

 

 

 

 

Figure 4-12) Dynamic signal intensity curves across all 50 time points for the same 

myocardial segment. Signal intensity values extracted using Matlab (magenta line) and 

signal intensity values extracted using QMass (blue line) are illustrated. A paired t-test 

showed no difference between myocardial segments for all 4 healthy volunteers.  
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4.5 Validation of saturation recovery FLASH equation 

Using Qmass and Matlab post-processing, one signal intensity curve was extracted 

per myocardial segment across all dynamic perfusion images. For each subject, 50 

dynamic perfusion images were acquired across three mid-ventricular short axis view 

slices both at stress and at rest and were used for myocardial blood flow analysis. As 

described in chapter 3, a necessary step prior to myocardial blood flow quantification 

is to convert signal intensity curves (i.e. one curve corresponds to a specific 

myocardial segment) into contrast agent concentration curves (equations 2-16 and 3-

1).  

Having calculated native (tissue) T1 relaxation time with the MOLLI technique and 

using a literature value for gadolinium relaxivity at 3T (r1=4.5 L · mmol
-1

 · s-1
) [10], 

the only unknown term in equation 2-16 is the tissue T1 relaxation time during 

contrast enhancement. As described, for the saturation recovery prepared single-shot 

gradient echo pulse sequence, the signal intensity and R1 are related using equation 

3-1 [25]:  

                                         

All terms in equation 3-1 have been previously explained in chapter 3. The pre-pulse 

delay (PD in equation 3-1) used for perfusion imaging was 100 ms. PD is the time 

between the saturation pulse and the central line of k-space. Figure 4-13 shows 

magnetisation recovery (following the application of a saturation pulse) interrupted 

by consecutive flip angles represented here as α1, α2, α3...αn. Using a FLASH 
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perfusion sequence, each α (flip angle) pulse fills a line in k-space in the phase 

encoding direction.  

  

 

 

 

 

Figure 4-13) FLASH saturation recovery prepared single-shot gradient echo pulse sequence. 

Consecutive α pulses, PD and αk=0 are shown (note: for centric phase encoding αk=0=α1). This 

scheme is repeated within each RR interval at each dynamic perfusion image acquisition. 

During an RR interval, all lines of k-space are acquired for each (dynamic) perfusion image.  

 

Hence, αk=0 fills the center of k-space in which the low spatial frequency information 

is saved. The low spatial frequency information saved around the center of k-space 

approximates to the majority of the contrast information in the MR image. This 

means that for a given PD and for centric k-space ordering applied for perfusion 

imaging in this thesis, n=1 and equation 3-1 is simplified to: 

                                                                                          (4-1) 

From which Ψ can be calculated in the absence of contrast enhancement as it is the 

only unknown parameter.  
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After acquiring a MR signal, this is saved in k-space and is then mathematically 

processed to derive the MR image. A standard way of k-space filling is one 

horizontal line after the other, starting from the middle line of k-space (k0) first and 

then going towards the top and the bottom of k-space. This is called centric k-space 

ordering. Centric profile orders are formed in such a way, so that the central line of 

k-space (k0) is the first line acquired (also known as centric low-high: 0, +1,-1,+2,-

2…n number of phase encoding steps).     

 

  

 

 

 

 

Figure 4-14) Centric k-space ordering. 

To validate the accuracy of equation 4-1, an experiment was performed using the 9 

phantoms that were previously presented in subsection 4.2. Perfusion imaging was 

implemented in all 9 phantoms. T1 relaxation time values of individual phantoms 

have been calculated in subsection 4.2. Signal intensities (SI) were extracted from 

each phantom using Matlab (Figure 4-15, experimental value). Ψ was calculated by 

applying equation 4-1 and by using experimental signal intensity value and MOLLI-

derived T1 relaxation time value for phantom 1 (see Table 4-1). Subsequently, T1 

kx 
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relaxation time values for each phantom (Table 4-1) were used in equation 4-1 to 

measure signal intensity values (Figure 4-15). 

 

Figure 4-15) Signal intensities (SI) derived using Matlab (experimental mean values with 

standard deviations, blue curve) and calculated values estimated using equation 4-1 (red).  

There was an excellent agreement between experimental and calculated values with 

linear regression analysis (Figure 4-16) showing strong correlation (R
2
~1). 

Following the above validation, equation 4-1 was used in all subjects to calculate Ψ 

per myocardial segment before contrast enhancement (using known signal intensity 

and T1 values). Equation 4-1 was then used to calculate T1 relaxation times per 

myocardial segment during contrast enhancement. Ψ is assumed to be constant 

throughout myocardial perfusion image acquisition. Finally, equation 2-16 was used 

to measure gadolinium concentration per myocardial segment, during contrast 

enhancement. 
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Figure 4-16) Linear regression analysis of signal intensity (SI) values are shown. 

Experimental SI (with standard deviations) on the y axis and calculated SI on the x axis 

measured using equation 4-1. 
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4.6 Arterial input function extraction 

The signal intensity of the arterial input function was extracted by using a Matlab 

program from which it was possible to create a 9x9 pixel grid of a selected area 

within the left ventricle cavity. 81 signal intensity curves could be generated in total 

(1 signal intensity curve for each pixel). The pixel grid is illustrated in Figure 4-17.  

In that way, it was possible to exclude areas of the left ventricle in which the signal 

intensity of the AIF was decreased by the presence of papillary muscles and/or 

endocardial walls. Furthermore, it was possible to exclude pixels with noisy baseline 

signal which commonly led to overestimation or underestimation of the peak of the 

arterial input function. An overestimated or underestimated peak could be compared 

against groups of pixels with similar peaks that were finally selected and averaged to 

a single arterial input function curve. All AIF curves were extracted from the basal 

slice [24, 29].  

Signal intensity curves were extracted from a selected area (which is part of the 9x9 

pixel grid) and are converted into gadolinium concentration curves using equations 

2-16 and 4-1. A gadolinium concentration curve/per pixel was measured and an 

average gadolinium concentration curve was then calculated and used for myocardial 

blood flow analysis. 
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Figure 4-17) a) Left ventricle with selected area is shown from which b) a 9x9 pixel grid is 

extracted. Black frame surrounds all pixels from which signal intensity curves are extracted 

and converted into gadolinium concentration curves which are averaged and used for 

myocardial blood flow analysis.  
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4.7 Validation of conversion algorithm 

In this subsection, the accuracy of equations 2-16 and 4-1 in converting signal 

intensity curves into gadolinium concentration curves has been validated. This 

validation was performed using actual peak arterial input function gadolinium 

concentrations as a reference standard to simulate a range of peak arterial input 

function gadolinium concentrations in phantoms. The basic steps for this validation 

process are described here. 

1) Implementing the method described in subsection 4.6, arterial input function 

concentrations were measured from single bolus perfusion data at stress in 4 healthy 

volunteers (previously used for comparing QMass versus Matlab signal intensity 

curves). The peak gadolinium concentration value of each arterial input function was 

extracted. Peak values are presented in Table 4-2.  

Table 4-2) Peak arterial input function concentrations for 4 healthy volunteers. AIF: Arterial 

input function. 1 mM=10
-6

 mol/ml.  

Healthy volunteers Concentration at the 

peak of AIF (mM) 

1 2.2 

2 2.0 

3 5.0 

4 4.0 
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As mentioned in the subsection 4.4, the gadolinium dose used in these 4 healthy 

volunteers was lower (0.025mmol/kg) compared to chapters 5 and 7, in which the 

gadolinium dose in healthy volunteers (0.03 mmol/kg) and patients (0.05 mmol/kg) 

respectively, was increased for allowing both visual and quantitative assessments. 

Note that the gadolinium doses were carefully adapted to be as low as possible for 

minimising arterial input function saturation effects at 3T, this will be further 

described in chapters 5 and 7. 

2) 11 phantoms were prepared with known gadolinium concentrations. For phantom 

preparation, a commercial gadolinium solution (Gadovist, Bayer Healthcare) was 

used which contains 1.0 mmol/ml of gadolinium, 11 tubes of 50 ml each filled with 

distilled water. Each phantom simulated a different peak arterial input function 

concentration. For this experiment, phantoms included lower and higher gadolinium 

concentration values than expected actual arterial input function concentration values 

(Table 4-2), to examine the accuracy of the conversion algorithm in a range of 

gadolinium concentrations. The volumes of Gadovist solution that were used to 

simulate different peak arterial input function gadolinium concentrations were 

calculated by cross-multiplying for ml/ 50 ml tube volumes and are presented in 

Table 4-3.  

3) T1 mapping was performed in all phantoms using spin echo inversion recovery 

technique.  

4) Perfusion imaging was performed in all phantoms (see pulse sequence details in 

chapter 5). 
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5) Signal intensities were extracted using Matlab and T1 quantification was 

performed (equation 2-17).  

6) Ψ parameter was calculated using signal intensity and T1 relaxation time values of 

phantom 1 in equation 4-1. T1 relaxation times were then calculated for all phantoms 

using again equation 4-1. Equation 2-16 was finally used to calculate gadolinium 

concentration values. 

Table 4-3) Range of peak arterial input function concentration simulations and 

corresponding volumes of Gadovist solution in ml/ 50 ml is presented.  

Phantom Concentration 

at the peak 

(mM).  

Volume of 

gadolinium 

(ml/50ml) 

1 0.5  25·10-3 

2 1.0  50·10-3 

3 1.5  75·10-3 

4 2.0  100·10-3 

5 2.5 125·10-3 

6 3.0 150·10-3 

7 4.0 200·10-3 

8 5.0 250·10-3 

9 6.5 325·10-3 

10 7.5 375·10-3 

11 10.0 500·10-3 
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Signal intensity values versus actual gadolinium concentrations in all phantoms are 

shown in Figure 4-18. Non-linearity is induced after phantom 4 (corresponds to a 

simulated peak concentration of 2 mM).  

The conversion of signal intensities into gadolinium concentrations using equations 

2-16 and 4-1 showed very good agreement with actual gadolinium concentration 

values (Figure 4-20) [26]. This conversion algorithm was accurate for phantoms 1-8 

but as gadolinium concentration increases in phantoms 9-11, signal saturation 

becomes more pronounced and gadolinium concentration is underestimated.  

 

 

 

 

 

 

 

Figure 4-18) Signal intensity values (a.u.) (with standard deviations) versus actual Gd 

concentration (mM). Non-linearity is induced in phantoms 5-11, whilst a plateau is observed 

at higher concentrations (phantoms 7-11). Gd: gadolinium.  
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Figure 4-19) T1 relaxation times (ms) and standard deviations versus actual Gd 

concentrations (mM). Exponential decay of T1 relaxation time as gadolinium concentration 

is increasing is shown. Gd: gadolinium. 
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Figure 4-20) Calculated (standard deviations) versus actual Gd concentration (mM). Gd: 

gadolinium. 

 

As shown in Table 4-2, for gadolinium doses equal to 0.025 mmol/kg at 3T, the peak 

of the arterial input function gadolinium concentration was commonly in the range of 

about 2.0-5.0 mM. Based on this validation experiment, the conversion algorithm can 

give accurate gadolinium concentration values in the range of 0.5-5.0 mM. Although 

the number of healthy volunteers is small, this can possibly indicate that with the use 

of the above gadolinium dose (in 3T), underestimation of the arterial input function 

gadolinium concentration can be avoided, perhaps allowing accurate myocardial 

blood flow measurements.  

The conversion algorithm has not been validated in the range 5.0-6.5 mM and 6.5-7.5 

mM. However, this validation experiment demonstrates that the conversion 

algorithm can underestimate gadolinium concentration for higher arterial input 
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function peaks (e.g. phantoms 9-11), perhaps corresponding to higher gadolinium 

doses. In the clinical setting, higher gadolinium doses may need to be used in order 

to increase signal to noise ratio and visualize subtle myocardial areas and/ or 

myocardial infarction [24, 67]. When myocardial blood flow quantification is 

involved in higher gadolinium doses, a method to correct for arterial input function 

underestimation at the peak of contrast enhancement can be the use of dual bolus 

protocols.     

4.8 Optimization of dual bolus protocol 

As described, the dual bolus imaging technique involves the injection of an 

additional pre-bolus infusion. Pre-bolus is injected to allow dual bolus modelling to 

be applied without the risk of signal saturation in the arterial input function. This can 

be particularly useful when higher gadolinium-based contrast agent concentrations 

are involved.  

For this thesis, a dual bolus protocol was optimized and implemented in healthy 

subjects. The two boluses were injected in a pre-determined concentration ratio (pre-

bolus:main bolus, 1:5) with the pre-bolus diluted using 0.9% saline. A pair of 

syringes was used in the infusion pump (Medrad, Bayer, Germany), with syringe A 

injecting gadolinium boluses and syringe B containing 40-50 ml of 0.9% saline. 

After diluted pre-bolus is injected from syringe A, the tube is flushed with 20 ml of 

saline using syringe B. A small syringe which is connected with a three way 

stopcock is then used to refill the empty syringe A with the standard main 

gadolinium bolus. Main bolus is injected from syringe A and the tube is again 
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flushed with 20 ml of saline using syringe B. Further details about specific contrast 

agent doses will be discussed in chapter 5.  

After stress perfusion imaging, the pair of syringes used for pre- and main bolus 

injections at stress, were replaced by a new pair of syringes. The pair of syringes was 

replaced because otherwise, residual gadolinium from main bolus injections at stress 

was likely to contaminate pre-bolus injections at rest, if the same syringe would be 

used for both stress and rest imaging.  

 

 

 

 

 

 

Figure 4-21) Dual bolus injection scheme. 

 

 

 

 

 

 

Syringe A 

Syringe B 

3 way 

stopcock 

Tube connected with patient’s arm 

Small 

syringe 



121 
 

4.9 CT image acquisition  

As in MR image acquisition, written informed consent was given from all subjects 

before MDCT imaging. ECG was acquired and heart rate and blood pressure were 

checked. As mentioned, after the injection of iodine-based contrast agent bolus, the 

whole cardiac volume can be obtained within one cardiac cycle provided the heart 

rate is low enough. If the resting heart rate was > 65 beats per minute, beta blockers 

were administered to reduce heart rate [90]. Right and left antecubital veins were 

cannulated for the administration of iodinated contrast and adenosine respectively.  

Patients were placed supine in a 320-slice MDCT scanner (Aquilion ONE, Toshiba 

Medical Systems). After acquisition of scout images, computed tomography 

coronary angiography and rest perfusion imaging were acquired simultaneously. 

Angiographic data were reconstructed at diastole (phase 60% to 70%).  

20 minutes after rest imaging, adenosine infusion was initiated with continuous ECG 

monitoring. After 4 minutes of adenosine infusion, iodinated contrast (iomeprol, 

400mg iodine/ml, Iomeron 400, Bracco, UK) was intravenously injected at a rate of 

5 ml/s, followed by 30 ml of 0.9% saline. The iodinated contrast was administered 

based on body mass index (BMI) (i.e. <30 kg/m
2
, 50 ml; >30 kg/m

2
, 60 ml; >40 

kg/m
2
, 70 ml). The tube current and voltage were selected automatically based on the 

BMI and an ECG-gated snapshot image was acquired at end diastole. Real-time 

bolus tracking was implemented using a region of interest in the descending aorta 

and a fixed time delay (began 5 seconds after contrast administration was initiated). 

Stress MDCT perfusion imaging was acquired in the next one to two heart-beats after 

a threshold of 300 HU was achieved in the descending aorta [98]. Stress images were 
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reconstructed on the short axis at end diastole (phase 70% to 100%) according to the 

AHA model [16]. 

 

   

 

 

 

        Figure 4-22) Patient being placed supine in Aquilion ONE CT scanner.  
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5. Measurement of myocardial blood flow by magnetic 

resonance perfusion imaging. Comparison of distributed 

parameter and Fermi models with single and dual bolus. 

Introductory summary 

This chapter describes a comparison between Fermi and distributed parameter 

modelling in single versus dual bolus analysis. Particularly, it assessed whether 

distributed parameter modelling might be less dependent on arterial input function 

saturation than Fermi modelling in healthy volunteers. The accuracy of each model 

in detecting reduced myocardial blood flow in stenotic vessels versus gold-standard 

invasive methods has also been examined in five patients with suspected coronary 

artery disease.  This work has been previously published in the Journal of 

Cardiovascular Magnetic Resonance (Papanastasiou et al JCMR). 

5.1 Background 

Mathematical modelling of cardiac magnetic resonance perfusion imaging has the 

potential to allow quantitative assessment of myocardial blood flow [134, 135]. 

Establishing absolute quantification of blood flow could have clinical benefits since 

it may lead to an improvement in the diagnosis and prognostication of patients with 

coronary artery disease [24, 50, 136, 137].  

Myocardial blood flow quantification using model-dependent analysis is based on 

fitting the convolution of a model with the arterial input function to the tissue 

contrast agent concentration-time curve. The model describes the passage of a 

contrast agent through the myocardium whilst the arterial input function is the 
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observed contrast agent concentration-time curve derived from the blood pool. [24]. 

Fermi deconvolution modelling is a popular approach used to estimate myocardial 

blood flow during the first-pass of gadolinium-based extracellular contrast agents 

(CA) [24, 28, 29]. It is an empirical-mathematical model, which is convolved with 

the first-pass of the arterial input function [24]. The distributed parameter model 

assumes that the extravascular-extracellular space exchanges CA with nearby regions 

in the intravascular space, restricting axial transport of CA inside the extravascular-

extracellular space [50]. In addition to myocardial blood flow, this model can also be 

used to calculate other microvascular characteristics including intravascular space, 

extravascular-extracellular space, permeability surface area product, extraction 

fraction and volume of distribution [66]. 

The high concentration of CA during bolus passage leads to signal saturation and 

causes concentration underestimation in the left ventricular cavity [69] (which is 

used to generate an arterial input function for model deconvolution analysis).  This 

can degrade the accuracy and reproducibility of myocardial blood flow quantification 

using Fermi modelling, leading to systematic myocardial blood flow overestimation 

[24]. The dual bolus acquisition technique can eliminate signal saturation allowing 

more reliable quantification of myocardial blood flow in first-pass magnetic 

resonance perfusion imaging. In the dual bolus technique, an initial injection of 

dilute CA is used to acquire a non-saturated arterial input function before the main 

CA bolus. This is commonly referred to as the “pre-bolus” [30, 31]. However, 

compared to single bolus protocols [24, 28, 29, 66, 134, 135], dual bolus imaging 

protocols are characterized by increased complexity both in image acquisition and 

data analysis [24, 30, 31, 69]. 
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In the present study, single and dual bolus estimates of myocardial blood flow in 

healthy volunteers using both distributed parameter and Fermi models were 

compared. It was also assessed whether these models can reliably detect areas with 

reduced myocardial blood flow compared to a clinical gold standard of invasive 

coronary angiography and fractional flow reserve in patients with coronary artery 

disease.    

5.2 Methods 

5.2.1 Study population 

Eight healthy volunteers with no previous history of cardiovascular or renal disease, 

diabetes mellitus, asthma or any other clinically significant illness and five patients 

with suspected coronary artery disease were recruited into the study. Exclusion 

criteria included severely compromised renal function (estimated glomerular 

filtration rate <30 ml/min) and contraindications to magnetic resonance imaging. The 

study was performed with the approval of the local research ethics committee, in 

accordance with the Declaration of Helsinki and with the written informed consent of 

all subjects. Prior to magnetic resonance perfusion imaging, all subjects were asked 

to refrain from caffeine for 12 hours. 

5.2.2 Image acquisition 

All data were acquired using a 3T Verio system (Siemens AG, Healthcare Sector, 

Erlangen, Germany). Standard cardiac imaging planes and a short axis stack of left 

ventricular cine data were acquired using routine steady state free precession 

(TrueFISP) acquisitions. Native T1 relaxation rates (i.e. in the absence of CA) were 

calculated using the modified Look-Locker inversion (MOLLI) recovery technique 
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[138]. Stress imaging was performed by intravenous infusion of 140 μg/kg/min of 

adenosine (Adenoscan, Sanofi Aventis). Fifty dynamic perfusion images were 

obtained at diastole across three short-axis view slices: basal, mid-ventricular and 

apical slices according to the standard 16-segment heart model [16]. Perfusion 

images were acquired using a turbo-fast low angle shot (FLASH) saturation recovery 

prepared single-shot gradient echo pulse sequence (repetition time/ echo time 2.20 

ms/1.07 ms, flip angle 12
o
, slice thickness 8 mm, preparation pulse delay (PD) to 

central line of k-space 100 ms, matrix size 192 x 108 and FoV 330 mm x 440 mm). 

With the application of GRAPPA (accelerator factor of 3) and partial Fourier 

acquisition of 0.75, each dynamic frame consisted of 48-phase encoded lines. All 

magnetic resonance imaging data were acquired using electrocardiogram gating.  

5.2.3 Contrast agent bolus administration 

In single bolus imaging, 0.05 mmol/kg of CA (Gadovist, Bayer Healthcare) was 

injected intravenously after 4 min of adenosine infusion, followed by 20 ml of 0.9% 

saline (Medrad Spectris Solaris, Medrad, USA) at 4 ml/s [24]. All patients with 

coronary artery disease were imaged using the single bolus protocol.  

In the healthy volunteer cohort, an additional pre-bolus infusion was administered to 

allow dual bolus modelling to be applied without the risk of signal saturation in the 

arterial input function.  In this dual bolus protocol, the two boluses were injected in a 

pre-determined concentration ratio (pre-bolus:main bolus, 1:5) with the pre-bolus 

diluted using 0.9% saline. After 3.5 min of adenosine infusion, the pre-bolus of 0.006 

mmol/kg CA was injected and adenosine was continued until the main bolus of 0.03 

mmol/kg had also been administered. The pre-bolus allows determination of the 
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arterial input function whilst the main bolus allows measurement of myocardial CA 

concentration curves [76]. To allow clearance of residual CA, the rest perfusion 

imaging was performed 15 min after the adenosine-stress scan with the same 

acquisition protocol in all subjects [24, 28, 29, 76]. 

5.2.4 Invasive coronary angiography and fractional flow reserve 

All five patients underwent invasive coronary angiography at the Royal Infirmary of 

Edinburgh. Fractional flow reserve was assessed for major epicardial vessels and 

defined as the ratio between distal coronary pressure and aortic pressure measured 

simultaneously at maximal adenosine-induced (intravenous 140μg/kg/min) 

hyperaemia [109, 117]. Haemodynamically significant coronary artery disease was 

defined as luminal stenosis ≥70% on invasive coronary angiography, or fractional 

flow reserve <0.80 and luminal stenosis ≥50 %. Outcomes from the three main 

coronary vessels were classified into 3 groups: Group 1, no or minor coronary artery 

disease with luminal stenosis <50%; Group 2, non-obstructive coronary artery 

disease with luminal stenosis ≥50% and fractional flow reserve >0.80; and Group 3, 

obstructive coronary artery disease with luminal stenosis of ≥70% alone, or luminal 

stenosis ≥50% and fractional flow reserve ≤0.80 [109, 117]. 

5.2.5 Cardiac contouring 

Endocardial and epicardial contours were manually defined on the short axis 

magnetic resonance perfusion imaging data using dedicated cardiac image analysis 

software (QMass, Medis, The Netherlands) to generate a standardised 16-segment 

model of the heart [16]. Myocardial blood flow analysis was performed per 

myocardial segment. The signal intensity of the arterial input function was extracted 
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from the left ventricular cavity excluding papillary muscles using customised in-

house software created in Matlab (MathWorks Inc., Natick, MA) [139].  

All arterial input function curves were extracted from the basal slice [24, 29]. In 

single bolus analysis, the arterial input function was extracted from the standard 

(main bolus) CA dose component. For the dual bolus analysis in healthy subjects, the 

pre-bolus arterial input function was scaled and used for deconvolution analysis [24, 

30, 76].  

5.2.6 Image processing  

To correct for signal saturation, myocardial and arterial input function signal 

intensity-time curves were converted to CA concentration-time curves using the 

method of Larsson et al [25], as described previously [24, 26-31, 66] (see subsection 

3.1.1). This method is based on the assumption that in a region of interest, the 

longitudinal relaxation rate R1 (1/T1) changes linearly as a function of contrast agent 

concentration influx c(t) at time t multiplied by its relaxivity r1, according to equation 

2-16:      

                                                                                            

where T1(0) is the native longitudinal relaxation rate and T1(t) is the longitudinal 

relaxation rate at time t of contrast enhancement. By substituting

, equation (2-16) can be re-written as: 
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In the above set of equations, R1(t) is unknown and can be calculated by adapting the 

MR signal equation for the saturation recovery prepared single-shot FLASH 

sequence (equation 3-1) [24, 25, 29]: 

                                                                                                     

where R1(t) at time t of contrast enhancement can be calculated as previously 

described (subsection 3.1.1). CA concentration-time curves were then calculated 

using equation (5-1).   

5.2.7 Model equations 

The model equations used for data fitting are summarized in Table 5-1. These 

equations represent the tissue impulse response R(t) the shape of which is determined 

by the fitted parameters [24]. To quantify myocardial blood flow and other 

parameters generated by the Fermi and distributed parameter models, model-

constrained deconvolution was used [24, 29, 66]. The Fermi model was fitted in the 

time domain whilst the distributed parameter model was fitted in the Laplace domain 

in order to avoid discontinuities of the time step-function that can be present when 

fitting the distributed parameter model in the time domain [65, 66].  

The convolution of the Fermi function with the first-pass of the arterial input 

function was fitted, setting the end-point at the CA concentration minimum before 

the recirculation component begins (this range varies from patient to patient but is 

commonly in the range between 20-35 dynamic frames). The convolution of the 

distributed parameter function with the entire CA concentration time course of the 

arterial input function (i.e. 50 dynamic frames per slice) was fitted. 
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Table 5-1) Model equations. Fitted parameters for distributed parameter: myocardial blood 

flow, T is mean overall transit time, Tc is mean capillary transit time, Te is mean interstitial 

(i.e. extravascular-extracellular) transit time. Where and f is the frequency 

variable in the Fourier transformed data. Fitted parameters for Fermi: myocardial blood flow, 

τ0 characterized the width of the shoulder of the Fermi function and k determined the decay 

rate of R(t) due to contrast agent wash-out. t is the time variable. DP: distributed parameter 

model, MBF: myocardial blood flow.  

  

To further investigate the behaviour of distributed parameter modelling in single and 

dual bolus analysis, the convolution of the distributed parameter model with the first-

pass of the arterial input function (using the same number of time points as in Fermi 

modelling) was also fitted. All additional microvascular parameters were calculated 

using the relationships described in Table 5-2 [50, 66].  
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Table 5-2) Microvascular characteristics were calculated by incorporating the fitted 

parameters of the distributed parameter model into the following relationships (see reference 

[50]). Myocardial plasma flow (MPF) was used to calculate extravascular-extracellular space 

(ve), distribution volume (vd), permeability surface area product (PS) and extraction fraction 

(E) and myocardial blood flow (MBF) to calculate intravascular space (vb). Hematocrit: hct. 

 

 

 

 

 

 

 

 

 

 

A haematocrit value of 0.45 was assumed in order to convert myocardial blood flow 

into plasma flow which was used to calculate permeability surface area product, 

extraction fraction, extravascular-extracellular space and volume of distribution. 

Both models were fitted using a constrained nonlinear optimization (fmincon) in 

Matlab [140]. Myocardial perfusion reserve (myocardial blood flow at stress/ 

myocardial blood flow at rest) was calculated for all healthy volunteer data. 
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Consistent with previous cardiac perfusion studies, vessel territories in patients with 

hyperaemic myocardial blood flow values less than 2.5 ml/min/ml of tissue were 

considered as regions with reduced myocardial blood flow [136, 137]. 

5.2.8 Statistical analysis 

The R software was used for statistical analysis (R Foundation for statistical 

computing, Vienna, Austria). Identification of any systematic bias between dual 

bolus and single bolus modelling estimates was performed using Bland Altman plots 

for both models. Statistical differences were investigated between Fermi and 

distributed parameter modelling, between distributed parameter and first-pass 

distributed parameter modelling, between stress and rest modelling values as well as 

between dual and single bolus analysis by implementing a paired t-test. A Welch two 

sample t-test was used to investigate statistical differences in myocardial blood flow 

values between the different groups (Groups 1-3) classified at the time of invasive 

coronary angiography. Homogeneity of variances was verified using a Fisher’s F-

test. Comparison of mean myocardial blood flow and physiological parameters 

estimates in vessel territories of patients versus overall mean values in healthy 

volunteers was investigated using one sample t-test. Statistical significance was 

defined as two-sided P value<0.05. 
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5.3 Results 

The distributed parameter model was fitted in eight healthy volunteers and five 

patients with coronary artery disease. Example images are shown in Figures 5-1 and 

5-2. 416 CA concentration-time curves were generated from 13 subjects (16 

myocardial segments per subject both at stress and rest). Distributed parameter 

model fits were successful in 398 CA concentration-time curves and non-convergent 

(when estimates of the capillary transit time were lower than the minimum sampling 

period of the data [66]) in 7 myocardial segments of one volunteer at stress, in 5 

myocardial segments of one volunteer at rest and in 6 segments of one patient at 

stress. The Fermi model successfully fitted all CA concentration-time courses.  

5.3.1 Comparison of Fermi and distributed parameter models in healthy volunteers 

Initially, the Fermi and distributed parameter models were fitted to CA 

concentration-time curves for the healthy volunteer population using arterial input 

functions derived from the main bolus data. Examples of Fermi and distributed 

parameter model fits at rest and stress are presented in Figure 5-3. Examples of pre-

bolus and main bolus arterial input functions are shown in Figure 5-4. Fermi-derived 

myocardial blood flow values were higher than distributed parameter-derived 

myocardial blood flow values for both stress and rest (P=0.0005 and P=0.007 

respectively, Table 5-3).   

Subsequently, the Fermi and distributed parameter models were fitted for the healthy 

volunteer population, using scaled arterial input functions from their pre-bolus data. 

Fermi-derived myocardial blood flow values were again higher than distributed 
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parameter-derived myocardial blood flow values for both stress and rest (P=0.03 and 

P=0.003 respectively, Table 5-3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1) Mid-ventricular dynamic cardiac perfusion images are shown from a healthy 

volunteer. Dynamic perfusion image (a) before contrast enhancement, (b) contrast 

enhancement in the right ventricle, (c) peak contrast enhancement in myocardial tissue and 

(d) post (wash out) contrast enhancement in myocardial tissue.   

 

c) 

a) b) 

d) 
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Figure 5-2) Mid-ventricular dynamic cardiac perfusion images are illustrated from a patient 

with a perfusion abnormality in the infero-septal and inferior myocardial regions (white 

arrows). Dynamic perfusion image (a) before contrast enhancement, (b) contrast 

enhancement in the right ventricle, (c) peak contrast enhancement in myocardial tissue and 

(d) post (wash out) contrast enhancement in myocardial tissue.   

 

a) b) 

c) d) 



136 
 

Mean distributed parameter model-derived myocardial blood flow at stress was not 

different in dual bolus compared to single bolus analysis (P=0.22) whilst mean Fermi 

model-derived myocardial blood flow at stress was higher in single bolus versus dual 

bolus analysis (P<0.0001, Table 5-3).  

Systematic bias of the above comparisons was investigated using Bland Altman 

method (Figure 5-5). The average bias was computed as the blood flow values at 

stress determined in dual bolus minus the relative values determined in the single 

bolus analysis. For the Fermi model, the average bias was -1.00 ml/min/ml with 95% 

confidence intervals [-1.58, -0.42 ml/min/ml] and for the distributed parameter 

model, the average bias value was -0.38 ml/min/ml with 95% confidence intervals [-

1.30, 0.53 ml/min/ml].  

Mean Fermi and distributed parameter-derived myocardial blood flow at rest did not 

significantly change between single and dual bolus analysis (P=0.07 for both). The 

additional distributed parameter estimates were not significantly different in single 

bolus compared to dual bolus analysis (see values in Table 5-4). 

Mean myocardial blood flow was higher during hyperaemia in all healthy volunteers 

for distributed parameter-dual bolus (P<0.0001), Fermi-dual bolus (P<0.0001), 

distributed parameter-single bolus (P<0.0001), and Fermi-single bolus analysis 

(P<0.0001). Mean myocardial perfusion reserve values were mean (SD): 2.59 (0.37) 

for distributed parameter-dual bolus, 2.42 (0.30) for distributed parameter-single 

bolus, 2.51 (0.48) for Fermi-dual bolus and 2.96 (0.34) for Fermi-single bolus 

analysis. 
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Figure 5-3) Examples of Fermi and distributed parameter model fits at rest (a, b) and at stress 

(c, d) from the same volunteer (dual bolus analysis). Fermi (e) and distributed parameter (f) 

model fits during hyperemia of a pathological myocardial segment (single bolus analysis). 

DP: distributed parameter model, Gd: gadolinium. 

 

 



138 
 

 

 

Figure 5-4) Scaled pre-bolus arterial input function versus standard arterial input function 

from the same examination. In volunteer 1 (a) and volunteer 2 (b) scaled pre-bolus (blue) 

arterial input function and main bolus arterial input function (red) are shown. Gd: 

gadolinium. 

To investigate the lack of dependence of the distributed parameter model to arterial 

input function saturation observed in single bolus data, first-pass distributed 

parameter modelling was also performed. There was no difference between 

distributed parameter and first-pass distributed parameter myocardial blood flow 

values (P=0.17 in dual bolus, P=0.79 in single bolus analysis, Table 5-3). No 

difference was observed in first-pass distributed parameter-derived myocardial blood 

flow values between single and dual bolus analysis, for both stress (P=0.31) and rest 

(P=0.16) (Table 5-3).  
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Table 5-3) Healthy volunteer mean (SD) myocardial blood flow values calculated using dual 

and single bolus analysis. Statistical differences between single and dual bolus analysis are 

indicated with *. DP: distributed parameter model.  

 

 

 

 

 

 

 

 

 

 

Modelling values/ 

Method 

    Fermi 

 

Dual bolus 

    Fermi 

 

Single bolus 

       DP  

   

 Dual bolus 

       DP  

  

 Single bolus 

DP-First-pass  

 

 Dual bolus 

DP-First-pass  

   

 Single bolus 

Myocardial blood flow- 

Stress (ml/min/ml) 

3.57 (0.59)* 4.57 (0.62)*  3.16 (0.71)  3.45 (0.48)  3.39 (0.56)  3.47 (0.50) 

Myocardial blood flow- 

Rest (ml/min/ml) 

1.48 (0.40) 1.57 (0.33)  1.23 (0.26)  1.46 (0.29)  1.18 (0.26)  1.34 (0.31) 
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Table 5-4) Mean microvascular characteristics (SD) estimates for healthy volunteers and for 

all 3 invasive coronary angiography/fractional flow reserve Groups. Notations as in Tables 

5-1 and 5-2.  

 

 

 

 

 

 

        DP  

  Dual bolus 

       DP  

 Single bolus 

DP-First-pass  

  Dual bolus 

DP-First-pass  

 Single bolus 

Group 1 Group 2 Group 3 

PS-Stress (ml/min/ml)  0.98 (0.32)  1.09 (0.21)   1.09 (0.33)  1.21 (0.24)   0.95 (0.18)  0.61 (0.20)  0.50 (0.20) 

PS-Rest (ml/min/ml)  0.56 (0.15)  0.62 (0.14)  0.57 (0.12)  0.64 (0.13) 0.53 (0.10) 0.58 (0.10) 0.59 (0.14) 

E-Stress (%)  0.45 (0.04)  0.45 (0.03)  0.46 (0.09)  0.48 (0.03)  0.47 (0.04) 0.50 (0.05) 0.52 (0.06) 

E-Rest (%)  0.56 (0.04)  0.54 (0.03)   0.58 (0.01)  0.58 (0.02)  0.58 (0.02) 0.52 (0.04) 0.53 (0.05) 

vb-Stress (%)   0.08 (0.02)   0.09 (0.02)  0.07 (0.02)   0.07 (0.02)  0.07 (0.01) 0.07 (0.03) 0.05 (0.03) 

vb-Rest (%)  0.04 (0.01)   0.04 (0.01)  0.03 (0.01)   0.03 (0.01)   0.03 (0.01) 0.04 (0.02) 0.04 (0.02) 

ve-Stress (%)  0.17 (0.05)  0.20 (0.04)  0.15 (0.06)  0.16 (0.03)  0.19 (0.03) 0.20 (0.07) 0.18 (0.06) 

ve-Rest (%)  0.17 (0.06)   0.20 (0.05) 0.15 (0.04)   0.16 (0.04) 0.17 (0.04) 0.21 (0.04) 0.23 (0.05) 

vd-Stress (%)   0.22 (0.03)   0.25 (0.03)  0.16 (0.04)   0.18 (0.04)  0.21 (0.04) 0.24 (0.05) 0.21 (0.05) 

vd-Rest (%)  0.20 (0.04)    0.23 (0.02)  0.15 (0.04)   0.17 (0.04)  0.19 (0.04) 0.22 (0.05) 0.20 (0.05) 
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Figure 5-5) Bland Altman plots of a) dual bolus (DB)-distributed parameter (DP) versus 

single bolus (SB)-DP myocardial blood flow (MBF) values and b) DB-Fermi versus SB-

Fermi MBF values in healthy volunteers.  
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5.3.2 Distributed parameter and Fermi analysis in patients with coronary artery 

disease 

Invasive coronary angiography and fractional flow reserve identified 7 vessels with 

obstructive lesions (Group 3), 5 vessels with non-obstructive lesions (Group 2) and 3 

vessels with no or minor coronary artery disease (Group 1).   

Mean myocardial blood flow values were calculated in vessel territories of the three 

main coronary arteries for each patient using both models (Table 5-5, Figure 5-3e 

and 5-2f). The Fermi and distributed parameter models correctly identified reduced 

myocardial blood flow in 6 and 7 of the 7 vessels in Group 3 respectively. In 

addition, the Fermi and distributed parameter models correctly identified reduced 

myocardial blood flow in 3 and 5 of the 5 vessels in Group 2 respectively. Both 

models estimated myocardial blood flow within normal range in Group 1. A 

difference was observed in myocardial blood flow at stress and in myocardial 

perfusion reserve between Group 1 versus Groups 2 and 3 for both models (Figure 5-

6, Table 5-5).  

Mean physiological parameter values were also calculated using distributed 

parameter modelling in all vessel territories for all patients (see Table 5-4). 
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Figure 5-6) Mean Fermi-MBF (a), distributed parameter-MBF (b), Fermi-MPR (c), 

distributed parameter MPR (d) versus ICA/FFR classification. MBF: myocardial blood flow, 

MPR: myocardial perfusion reserve, ICA: invasive coronary angiography, FFR: fractional 

flow reserve. 
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Table 5-5) ICA/FFR classification and mean MBF (SD) at stress measured in ml/min/ml per 

vessel territories of the three main coronary arteries. LAD, LCX and RCA: left anterior 

descending, left circumflex and right coronary artery respectively. Vessels with reduced 

myocardial blood flow are indicated with *. Notations as in Table 5-1 and Figure 5-6. 

 

 

 ICA/FFR DP-MBF Fermi-MBF DP-MPR Fermi-MPR 

Patient 1 LAD      3 0.82 (0.28)* 1.68 (0.60)* 0.88 (0.29)  1.54 (0.47) 

LCX      3 0.94 (0.20)* 1.99 (0.41)* 0.91 (0.16)  1.73 (0.44) 

RCA      2 0.84 (0.17)* 1.77 (0.79)* 0.91 (0.24)  1.77 (0.44) 

Patient 2 LAD      2 1.99 (0.30)* 3.37 (0.49) 1.68 (0.37)  2.15 (0.49) 

LCX      2 1.98 (0.27)* 2.61 (0.41) 1.26 (0.30)   1.87 (0.80) 

RCA      3 1.27 (0.27)* 1.80 (0.81)* 0.86 (0.30)  1.08 (0.33) 

Patient 3 LAD      2 1.20 (0.10)* 1.19 (0.34)* 0.71 (0.11) 0.78 (0.44) 

LCX      3 1.34 (0.13)* 1.84 (1.11)* 0.65 (0.30) 0.96 (0.26) 

RCA      2 1.58 (0.31)* 1.18 (0.16)* 0.81 (0.20) 0.70 (0.12) 

Patient 4 LAD      3 1.99 (0.31)* 3.02 (0.64)  1.21 (0.31) 1.22 (0.23) 

LCX      3 1.61 (0.73)* 1.98 (0.58)*  0.90 (0.35) 1.05 (0.34) 

RCA      3 0.75 (0.29)* 1.00 (0.44)*  0.58 (0.23) 0.65 (0.24) 

Patient 5 LAD      1 2.86 (0.59) 3.26 (0.88)  3.26 (0.40) 3.37 (0.50) 

LCX      1 2.54 (0.24) 2.79 (0.30)  3.01 (0.60) 2.91 (0.34) 

RCA      1 2.60 (0.36) 2.88 (0.33)  2.68 (0.35) 3.04 (0.85) 
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5.4 Discussion 

Single versus dual bolus estimates of myocardial blood flow in healthy volunteers 

using both Fermi and one-barrier, two-region distributed parameter models were 

compared. No difference was demonstrated in myocardial blood flow estimates using 

the distributed parameter model, between single and dual bolus analysis. In 

agreement with previous work, it was demonstrated an increase in stress myocardial 

blood flow estimates with application of Fermi modelling using single bolus data 

analysis, compared to dual bolus data analysis.  For the first time, the distributed 

parameter model has been successfully fitted in patients with coronary artery disease.  

5.4.1 Model comparison in healthy volunteers 

Using the distributed parameter model, 96% of the data (398 in 416 CA 

concentration-time courses) were successfully fitted. Model comparison in eight 

healthy volunteers suggested that single bolus analysis of the distributed parameter 

model shows no statistically significant difference compared to dual bolus analysis, 

indicating that this model may be less dependent on arterial input function saturation 

than the Fermi model. Furthermore, distributed parameter modelling using the first-

pass only, showed no statistically significant difference between single bolus and 

dual bolus analysis. This shows that the lack of dependence on single or dual bolus in 

the distributed parameter model using the full curve is not due to the increased 

number of time points used for fitting, compared to the first-pass Fermi model. Dual 

bolus [30, 31, 54, 76] and dual sequence [69, 72] (which includes a low resolution 

dynamic acquisition of the left ventricle to eliminate arterial input function 

saturation), are the most widely suggested techniques to solve the issue of arterial 
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input function saturation. However, both of these techniques involve increased 

complexity in image acquisition and data analysis that have led to ongoing debate 

regarding whether either method might replace standard single bolus protocols for 

perfusion imaging and myocardial blood flow quantification. Whilst single bolus 

protocols are prone to arterial input function saturation, they are still widely used in 

clinical imaging and are suitable for qualitative assessment of myocardial perfusion. 

This work suggests that peak arterial input function saturation may not be such a 

dominant factor when quantifying myocardial blood flow in distributed parameter 

modelling compared with Fermi modelling.  

It is important to consider that these non-statistically significant differences between 

single and dual bolus analysis for distributed parameter and first-pass distributed 

parameter modelling, can possibly be explained due to the mathematical architecture 

of its formula and number of fitted parameters (Table 5-1, four fitted parameters in 

the exponent for distributed parameter modelling, versus three for Fermi modelling). 

Further investigation is required to explore whether any influences due to arterial 

input function saturation effects in single bolus analysis can also affect/distribute 

across any of the other fitted parameters (apart from blood flow): i.e. either the mean 

capillary transit time, and/or the mean overall transit time, and/ or the mean 

interstitial transit time. Assessment of this interpretation may explain why distributed 

parameter modelling-derived myocardial blood flow measurements may be less 

dependent on saturation effects in single bolus, compared to dual bolus analysis.  

Calculated values for myocardial blood flow and microvascular characteristic 

parameters generally agree with a previous study that was the first to introduce the 

one-barrier, two-region distributed parameter model in cardiac data [66]. Broadbent 
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et al fitted a distributed parameter model in data acquired using a different protocol: 

short-axis view of the entire myocardial area across one mid-ventricular slice 

acquired in systole at 1.5 T. The distributed parameter model was here applied using 

a 16-segment heart model across three mid-ventricular slices acquired in diastole at 

3T.  

5.4.2 The impact of contrast agent dose 

The dependence of Fermi and distributed parameter modelling in the presence of 

arterial input function saturation in single bolus data, was validated using a relatively 

low CA dose (0.03 mmol/kg) for this healthy volunteer cohort. The administration of 

the specific CA dose has possibly caused limited arterial input function saturation at 

the peak of contrast enhancement [24, 69] (as shown in Figure 5-4), compared to 

higher CA doses. This study demonstrates that Fermi modelling is still sensitive to 

any arterial input function saturation present in our single bolus data. In contrast, 

distributed parameter modelling is less dependent on any arterial input function 

saturation present in our data. Any increases in CA dose (at 3T), can increase the 

degree of arterial input function saturation in single bolus data of healthy volunteers, 

which would necessitate a de novo validation of distributed parameter modelling in 

single against dual bolus analysis.  

5.4.3 Distributed parameter and Fermi analysis in patients 

The distributed parameter model was capable of detecting reduced myocardial blood 

flow in patients with non-obstructive and obstructive coronary artery disease (Groups 

2 and 3 respectively). Distributed parameter modelling correctly identified all 7 

obstructive lesions and all 5 non-obstructive lesions.  Fermi modelling correctly 
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identified 6 out of 7 obstructive lesions and 3 out of 5 non-obstructive lesions.  Both 

models showed decreased myocardial blood flow values as a function of luminal 

stenosis severity against invasive coronary angiography and fractional flow reserve 

classification (Figure 5-6).    

5.4.4 Study limitations 

The number of subjects included in this study is small. However, this is the first 

study demonstrating that a one-barrier, two-region distributed parameter model 

approach may be less dependent on arterial input function saturation than Fermi 

modelling. Distributed parameter modelling needs to be applied in larger patient 

cohorts to further validate its diagnostic accuracy. The behaviour of distributed 

parameter modelling in higher CA doses has not been validated. To reduce patient 

discomfort during administration of adenosine, dual bolus stress-rest protocol was 

not implemented in the patient cohort. As such, it was impossible to validate any 

systematic errors that may have contaminated myocardial blood flow quantifications 

in patients, due to arterial input function saturation. To overcome this limitation and 

to complement the above model comparison, the ability of both models in detecting 

reduced myocardial blood flow in stenotic vessels versus current invasive gold 

standard methods was further assessed. The CA dose used in patients was higher 

than in healthy volunteers to increase the signal-to-noise ratio due to an assumed 

reduction in blood flow in our patient cohort as compared to our healthy volunteer 

cohort. Although this higher dose in patients has possibly caused some myocardial 

blood flow overestimations in Fermi modelling (Table 5-5, in two epicardial vessels 

in patient 2, and one epicardial vessel in patient 4), the distributed parameter 

modelling showed excellent accuracy in detecting reduced haemodynamics at stress 
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in all stenotic vessels compared to our invasive gold standard. The vessels with non-

obstructive disease (Group 2) were all from patients who also had one or two other 

vessels with obstructive disease (Group 3). The coincidental effect of microvascular 

dysfunction could therefore explain the low myocardial blood flow measurements in 

Group 2. The vessels identified with no or minor coronary artery disease (Group 1) 

were all from the same patient, which may have affected the validity of the statistical 

comparisons in the above per vessel analysis. This may indicate that it can also be 

clinically important to investigate haemodynamic differences in both a per vessel and 

per patient basis for robust patient stratification, which is further described in chapter 

7.  
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5.5 Conclusions 

A one-barrier, two-region distributed parameter model was implemented in healthy 

volunteers and patients with coronary artery disease. Distributed parameter-derived 

myocardial blood flow did not significantly change when a single bolus arterial input 

function was used compared to the dual bolus case. Fermi modelling of the same data 

demonstrated significant overestimations in myocardial blood flow in single bolus 

compared to dual bolus analysis. This suggests that the distributed parameter model 

might be less dependent on arterial input function saturation than Fermi modelling. 

These findings suggest that following assessment of the impact of contrast agent 

dose, distributed parameter modelling may allow the application of single bolus 

imaging in the clinical setting.  

The distributed parameter model detected reduced myocardial blood flow in all 7 

vessels with obstructive lesions and in all 5 vessels with non-obstructive lesions as 

determined by invasive coronary angiography and fractional flow reserve 

classification in a pilot cohort of five patients with coronary artery disease. 

Summary 

This chapter described a comparison of single bolus versus dual bolus values which 

suggested that distributed parameter modelling is less dependent on arterial input 

function saturation than Fermi modelling. Distributed parameter modelling showed 

excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels 

versus invasive methods.  

In this chapter, no difference was observed between distributed parameter and first-

pass distributed parameter modelling, both in single and dual bolus analysis. The 
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next chapter investigates a thorough comparison between distributed parameter and 

first-pass-distributed parameter modelling values against ideal values from synthetic 

data.  
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6. Assessing the accuracy and reproducibility of distributed 

parameter and first-pass distributed parameter modelling using 

numerical simulations.  

Introductory summary 

This chapter investigates the accuracy and reproducibility of distributed parameter 

and first-pass distributed parameter modelling using simulated data. Particularly, this 

chapter examines whether first-pass distributed parameter modelling can give 

accurate myocardial blood flow and microvascular characteristic values, against ideal 

values generated by numerical simulations.  

6.1 Background 

Fermi modelling has been used in numerous studies involving myocardial blood flow 

quantification from first-pass MR data [24-26, 30, 31, 37, 43, 53, 54, 56, 58-60, 66, 

73, 75, 141]. Myocardial blood flow analysis in these studies was based on the 

assumption that the first-pass of an extravascular-extracellular contrast agent bolus is 

the phase of contrast enhancement most sensitive to changes in blood flow. Changes 

in blood flow can be induced either from pharmacological intervention, exercise or 

disease and can be made apparent in contrast agent concentration-time curves (see 

Figure 5-3) [24, 54]. According to this assumption, mathematical analysis of the 

first-pass phase of contrast agent concentration-time curves is able to detect changes 

in myocardial blood flow, induced from the aforementioned factors.   

The Fermi model is convolved with the first-pass of the arterial input function and 

can be used to quantify myocardial blood flow as long as measurements do not 
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exceed the first-pass of the blood pool [24]. Numerical simulations have shown that 

if the end point for myocardial blood flow analysis, is set at the contrast agent 

concentration minimum between the first-pass and recirculation peak (see Figure 6-

1), first-pass perfusion modelling using the Fermi function can give accurate 

estimates of myocardial blood flow as compared with ideal values generated using 

simulated data [28]. These simulated data were generated using an axially distributed 

model of blood-tissue exchange with multiple parallel flow pathways [24, 28]. These 

pathways were composed of small vessels in series (each pathway composed of a 

small vessel) involving axially distributed capillary blood-tissue exchange [28]. Any 

extensions of this time range due to errors in the precise selection of the first-pass 

range can result in systematic underestimations [24], or overestimations [37] of 

Fermi-derived myocardial blood flow values.  

In contrast to Fermi modelling, distributed parameter (DP) modelling is convolved 

with the entire contrast agent concentration-time course of the arterial input function 

(see chapter 5 and Figure 6-1) [50, 66]. In chapter 5, to further investigate the 

behaviour of DP modelling in single and dual bolus analysis, the convolution of the 

DP model with the first-pass of the arterial input function was fitted to tissue contrast 

agent concentration-time data, using the same number of time points as in Fermi 

modelling. This was referred to as first-pass DP modelling. Using MR perfusion data 

from eight healthy volunteers, it was demonstrated that there was no significant 

difference between DP- and first-pass DP-derived myocardial blood flow values. 

In some cases, it can be particularly challenging to identify the end point of the first-

pass in the arterial input function. Characteristic examples are a) when the 

concentration minimum is not clearly visible due to noise effects and b) in dual bolus 
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First-pass range of AIF 

Entire course of AIF 

imaging, in which the bolus dispersion of a scaled pre-bolus arterial input function 

can be different compared to a standard main bolus arterial input function (see Figure 

6-2).  

 

   

 

 

 

 

 

 

Figure 6-1) Arterial input function used to generate simulated data. First-pass and entire 

course of the contrast agent bolus in the blood pool is shown (AIF). Solid line: AIF (arterial 

input function), solid line with circles: simulated tissue curve.  
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Although it is known that any time extensions of the first-pass time range can 

influence Fermi modelling results, it is still unknown whether any differences in the 

time range selected for analysis can affect DP modelling results. In the present study, 

it was investigated whether DP modelling and first-pass DP modelling can give 

accurate estimates of blood flow and of microvascular characteristics, compared to 

ideal values from numerical simulations. 

 

 

 

 

 

 

 

Figure 6-2) Scaled pre-bolus arterial input function (blue) and standard main bolus arterial 

input function (red). A difference in contrast agent bolus dispersion is apparent. This can 

influence the reproducibility of myocardial blood flow analysis as the selection of the end 

point of the first-pass range becomes subjective. Does the end point in the scaled pre-bolus 

or in the standard main bolus arterial input function define the first-pass range? Also, note 

that the end point of the first-pass is not obvious in the case of the scaled arterial input 

function due to substantial noise effects.  
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6.2 Methods 

6.2.1 Simulations 

Simulated data with known blood flow values were generated in Matlab (MathWorks 

Inc., Natick, MA). Simulated contrast agent concentration curves were produced 

using the DP model (see Table 5-1 for DP equation). The DP function was convolved 

with the entire contrast agent concentration-time course of the arterial input function 

in the Laplace domain [50, 66]. An optimum arterial input function was chosen from 

the main bolus data of a healthy volunteer (from healthy volunteer data, see Figure 6-

1). The fitted parameters Tc, Te and T (see Table 5.1) ranged from 0.8 to 2.5 sec, 

from 4.5 to 11.5 sec and from 5.5 to 15 sec respectively, to simulate a series of 

myocardial blood flow values between 1.0 and 5.0 ml/min/ml of tissue. These model 

parameters were chosen to mimic a physiologically realistic range according to 

previously published values [28]. In accordance with this physiologically realistic 

range, any increase in blood flow values implies decreases in Tc, Te and T. Ideal 

blood flow and microvascular characteristic parameter values (see Table 6-1 and 6-2) 

were calculated based on the DP model parameters, according to the relationships 

presented in Table 5-2.  

The above process was repeated for two types of tissue concentration-time curves: 

for a set of curves with a first-pass to recirculation peak ratio of a) 1.5 and of b) 1.4. 

The former type of curves feature lower recirculation peaks compared to the latter 

type of curves. Peak ratios were defined as the first-pass peak divided by the 

recirculation peak. Curves with a first-pass to recirculation peak ratios of 

approximately 1.5 were commonly found in the in-vivo MR perfusion data generated 
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for this thesis. Curves with peak ratios of approximately 1.4 were less common in 

actual MR perfusion data but were occasionally observed for lower to average blood 

flow values range (i.e. between 1.5-3.0 ml/min/ml) (see Results section 6.3, for 

Figures illustrating these first-pass to recirculation peak ratios). Both sets of curves 

were generated by appropriately adjusting Tc, Te and T. For example, decreasing Tc 

whilst maintaining Te and T constant, leads to a reduction in the recirculation peak 

and thus, to a higher first-pass to recirculation peak ratio. In contrast, decreasing Te 

whilst maintaining Tc and T constant, leads to an increase in the recirculation peak 

and to a lower first-pass to recirculation peak ratio. 

Two Rician noise levels were added to the arterial input function and simulated 

curves (Figure 6-3). The range of noise level was chosen so that the contrast to noise 

ratio (CNR) was either 40 (noise level 1) or 10 (noise level 2), which correspond to 

the highest and lowest CNRs observed in actual MR perfusion data, respectively. 

CNR is defined as the ratio of the signal change from baseline to peak of contrast 

enhancement, divided by the standard deviation of the signal intensity curves in the 

absence of contrast [28, 43]. CNR levels were calculated for myocardial tissue 

simulated curves and the same noise levels were added in the arterial input function.  

For DP and first-pass DP modelling, the convolution of the DP model with the entire 

(50 dynamic frames) and the first-pass (here 25 dynamic frames) of the arterial input 

function respectively, were fitted to the simulated curves. According to the 

aforementioned CNRs, noise levels 1 and 2 were added to the arterial input function 

and simulated curves. DP and first-pass DP modelling was repeated.   
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Figure 6-3) (a) Arterial input function without noise (blue line), with noise level 1 (red 

dashed line) and noise level 2 (green dashed-dot line). (b) Simulated curves without noise 

(blue line), with noise level 1 (red dashed line) and noise level 2 (green dashed-dot line). A 

time delay has been used between curves for clarity.   

 

a) 

b) 
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6.2.2 Statistical analysis 

Statistical analysis was performed with a paired-test to investigate differences 

between DP and first-pass DP modelling values against ideal blood flow and 

microvascular characteristic parameter values across all simulated curves, with and 

without noise. Statistical significance was defined as two-sided P value<0.05. 

Table 6-1) Ideal values for set of tissue concentration-time curves with first-pass to 

recirculation peak ratio of 1.5. F: blood flow, PS: permeability surface area product, E: 

extraction fraction, vb=intravascular space, ve=extravascular-extracellular space, vd=volume 

distribution.  

 

 

 

 

 

 

 

 

 

 

Ideal F 

(ml/min/ml) 

Ideal PS 

(ml/min/ml) 

Ideal E 

(%) 

Ideal vb 

      (%) 

Ideal ve 

(%) 

Ideal vd 

     (%) 

1 0.62 0.44 0.03 0.07 0.09 

1.5 0.63 0.45 0.04 0.08 0.10 

2 0.65 0.45 0.04 0.08 0.10 

2.5 0.81 0.45 0.05 0.10 0.13 

3 0.97 0.45 0.06 0.12 0.15 

3.5 1.14 0.45 0.07 0.14 0.18 

4 1.30 0.45 0.08 0.16 0.20 

4.5 1.46 0.45 0.09 0.18 0.23 

5 1.62 0.45 0.10 0.20 0.25 
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Table 6-2) Ideal values for set of curves with first-pass to recirculation peak ratio of 1.4. 

Notations as in Table 6-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal F 

(ml/min/ml) 

Ideal PS 

(ml/min/ml) 

Ideal E 

(%) 

Ideal vb 

     (%) 

Ideal ve 

(%) 

Ideal vd 

     (%) 

1 0.65 0.44 0.07 0.15 0.20 

1.5 0.67 0.45 0.07 0.14 0.19 

2 0.70 0.47 0.08 0.15 0.20 

2.5 0.83 0.45 0.09 0.18 0.23 

3 1.00 0.45 0.07 0.17 0.21 

3.5 1.12 0.44 0.08 0.19 0.23 

4 1.22 0.43 0.09 0.20 0.25 

4.5 1.38 0.43 0.09 0.17 0.22 

5 1.91 0.50 0.10 0.23 0.28 
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6.3 Results 

Initially, DP and first-pass DP modelling were implemented in the set of curves with 

a first-pass to recirculation peak ratio of 1.5. In the data that were free from noise, no 

significant differences were observed in DP- and first-pass DP-derived values versus 

ideal values for the following parameters: myocardial blood flow, permeability 

surface area product, extraction fraction and intravascular space (Table 6-3).  

Similarly, no significant differences were detected in DP- and first-pass DP-derived 

values versus ideal values for the same parameters, when noise level 1 and noise 

level 2 were added in the arterial input function and simulated curves (Tables 6-3).  

Significant reductions were observed between first-pass DP-derived values and ideal 

values only for extravascular-extracellular space and for distribution volume, which 

were consistent between subjects and were present in both data free of noise and data 

with added noise (Table 6-3, Figure 6-4).   

Subsequently, DP and first-pass DP modelling were applied in the set of curves with 

first-pass to recirculation peak ratio of 1.4. No significant differences were identified 

in DP- and first-pass DP-derived values against ideal values for myocardial blood 

flow and for all microvascular characteristics (Tables 6-4).  

There were again no significant differences in DP- and first-pass DP-derived values 

versus ideal values for all parameters, when noise level 1 and noise level 2 were 

added in the arterial input function and simulated curves (Tables 6-4). Example 

images of DP and first-pass DP fits in simulated curves are shown in Figures 6-5 and 

6-6.  
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Table 6-3) P values from paired t-test comparisons between DP- and first pass DP-derived 

results versus actual values. Comparisons are shown in curves with first pass to recirculation 

peak ratio of 1.5. Mod: Modelling, F: flow (ml/min/ml), PS: permeability surface area 

product (ml/min/ml), E: extraction fraction (%), vb: intravascular space (%), ve: extravascular 

extracellular space (%), vd: distribution volume (%), N0: without noise, N1: noise level 1, N2: 

noise level 2, FPDP: first pass distributed parameter modelling. Statistically significant 

differences are indicated with *. 

 

 

 

 

 

 

 

 

 

 

 

 

 Actual 

 F 

 Mod 

F 

Actual  

PS 

Mod  

PS 

Actual  

E 

Mod 

E 

Actual  

vb 

Mod   

vb 

Actual  

ve 

Mod   

ve 

Actual  

vd 

Mod   

vd 

DP N0/1.5 0.747 0.83 0.08 0.36 0.90 0.90 

DP N1/1.5 0.06 0.08 0.59 0.90 0.36 0.17 

DP N2/1.5 0.08 0.60 0.90 0.90 0.36 0.08 

FPDP N0/1.5 0.06 0.10 0.08 0.89 0.005* 0.005* 

FPDP N1/1.5 0.11 0.95 0.11 0.90 0.000001* 0.000006* 

FPDP N2/1.5 0.08 0.68 0.17 0.90 0.000001* 0.00002* 
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Table 6-4) P values from paired t-test comparisons between DP- and first pass DP-derived 

results versus actual values. Comparisons are shown in curves with first pass to recirculation 

peak ratio of 1.4. Notations as in Table 6-3.  

 

 

 

 

 

 

 

 

 

 

 

 Actual 

 F 
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Actual  

PS 

Mod   

PS 

Actual  

E 

Mod   

E 

Actual  

vb 

Mod   

vb 

Actual  

ve 

Mod   

ve 

Actual  

vd 

Mod  

vd 

DP N0/1.4 0.29 0.08 0.07 0.36 0.17 0.90 

DP N1/1.4 0.26 0.10 0.06 0.90 0.60 0.08 

DP N2/1.4 0.08 0.08 0.08 0.36 0.60 0.90 

FPDP N0/1.4 0.06 0.36 0.28 0.90 0.10 0.53 

FPDP N1/1.4 0.48 0.88 0.55 0.74 0.39 0.53 

FPDP N2/1.4 0.08 0.66 0.90 0.90 0.25 0.08 
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Figure 6-4) Visual representation of linear regression analysis showing ideal values versus 

first-pass distributed parameter modelling-derived values for myocardial blood flow (MBF, 

blue diamond), permeability surface area product (PS, green diamond), extravascular-

extracellular space (ve, blue circles) and volume of distribution (vd, green circles). Black 

dashed line shows perfect relationship between y and x axis data (i.e. ideal values=measured 

values) for comparison. First-pass distributed parameter modelling-derived values for ve and 

vd were consistently underestimated as compared to ideal values.  
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Figure 6-5) Example images of DP and first-pass DP modelling in simulated curves with 

first-pass to recirculation peak ratio of 1.5. Dashed black and blue lines indicate the height of 

the first-pass peak and of the recirculation peak, respectively. Simulated curves with no noise 

(a, b), with noise level 1 (c, d) and noise level 2 (e, f).  
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Figure 6-6) Example images of DP and first-pass DP modelling in simulated curves with 

first-pass to recirculation peak ratio of 1.4. Dashed black lines show the height of the first-

pass peak whilst the dashed blue lines indicate the height of the recirculation peak. Simulated 

curves with no noise (a, b), with noise level 1 (c, d) and noise level 2 (e, f).  
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6.4 Discussion 

6.4.1 Assessment of DP and first-pass DP modelling 

Using numerical simulations, it was demonstrated that there is no significant 

difference in a) DP-derived and in b) first-pass DP-derived values versus ideal blood 

flow values from simulated data (Tables 6-3 and 6-4). It was also demonstrated that 

there were no significant differences in c) DP-derived and in d) first-pass DP-derived 

values against ideal microvascular characteristic values for myocardial blood flow, 

permeability surface area product, extraction fraction and intravascular space (Tables 

6-3 and 6-4). Moreover, these results were independent of whether the recirculation 

peak is lower or higher (first-pass to recirculation peak of 1.5 and 1.4, respectively) 

compared to the first-pass peak.  

With the use of numerical simulations, it has previously been shown that if the time 

frame selected for Fermi modelling analysis will be extended beyond the first-pass 

range, blood flow estimates can be significantly underestimated [24, 28]. Another 

study using 20 healthy subjects, demonstrated that Fermi modelling derived-blood 

flow estimates were significantly higher (approximately 25% on average) when all 

the acquired data were used for blood flow analysis versus when only the first-pass 

of contrast enhancement was analyzed. The perfusion acquisition time in this study 

was approximately one minute [37].  

Performing numerical simulations, the current study demonstrated that DP modelling 

can be implemented for myocardial blood flow quantification independently of the 

number of time points used for fitting, provided that a time range that includes at 

least the first-pass in the blood pool is chosen for the analysis. As discussed in 
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chapter 5, the first-pass range typically varies from subject to subject in in-vivo data 

but was commonly in the range between 20-35 dynamic frames in the perfusion data 

that were generated for this thesis. Determining the lack of dependence of DP 

modelling on the number of time points used for fitting, is important for assessment 

of the DP model’s potential for myocardial blood flow analysis of clinical MR data, 

in which the length of the first-pass range can differ between single [28, 29, 34, 53, 

66] and dual bolus [54-56] imaging protocols (described also in subsection 6.1 and 

illustrated in Figure 6-2). Both single and dual bolus protocols have been widely 

used for cardiac MR perfusion imaging [24]. Recently, dual bolus protocols were 

applied in patient cohorts in order to eliminate signal saturation at the peak of the 

arterial input function, for myocardial blood flow quantification [58, 59]. This raises 

again the question as to whether the first-pass range can be defined from the main 

bolus or the scaled pre-bolus arterial input function when one is analysing dual bolus 

data. Such a modelling approach, showing lack of dependence on the time range 

selected for analysis (provided that a time range that includes at least the first-pass in 

the blood pool is chosen for the analysis), can therefore reduce the subjectivity for 

the selection of the first-pass range in cardiac MR data. Furthermore, such a 

modelling approach could potentiallyu facilitate automatic software algorithms for 

myocardial blood flow quantification [56].  

These results agree with the assumption that the first-pass range of MR data is likely 

to be the phase of contrast enhancement most sensitive to changes in blood flow [24, 

54]. To date, only the Fermi model has been used to measure myocardial blood flow 

estimates from the first-pass of MR data, as described previously [24, 54]. Using 

numerical simulations it was shown here that although DP modelling is ideally 
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implemented using the full curve in order to calculate both myocardial blood flow 

and microvascular characteristics, first-pass DP modelling can be as accurate as DP 

modelling, for myocardial blood flow quantification.  

When the recirculation peak was higher (first-pass to recirculation peak of 1.4) 

compared to the first-pass peak, there were no significant differences in c) DP-

derived and in d) first-pass DP-derived values against ideal microvascular 

characteristic values for all parameters. Significant differences between first-pass 

DP-derived and ideal values for extravascular-extracellular space and for distribution 

volume were observed, but only for the set of curves with first-pass to recirculation 

peak ratio of 1.5 (Table 6.3). As mentioned, tissue curves with first-pass to 

recirculation peak ratio of 1.5 were common in MR perfusion data of healthy 

volunteers generated for this thesis. Furthermore, both the extravascular-extracellular 

space and distribution volume were lower when first-pass DP modelling was 

implemented in MR data from eight healthy volunteers, compared to DP modelling 

analysis (chapter 5, Table 5-4). The fact that there are no significant differences 

between first-pass DP modelling and ideal values for blood flow and intravascular 

space in these curves, leads to the following concluding points (A and B, see next 

page) that can be derived from the microvascular characteristic relationships, 

presented in Table 5-2.  
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A. No significant differences between first-pass DP-derived and ideal values for 

intravascular space, means that the fitted parameters a) MBF (myocardial blood flow, 

see Table 5-1) and b) Tc (mean capillary transit time) remained unchanged:  

                                                           

where vb is intravascular space.  

B. Considering unchanged values for blood flow and Tc, significant reductions 

observed in first-pass DP-derived extravascular-extracellular space and distribution 

volume versus ideal values, were caused by decreases in fitted parameter T (mean 

overall transit time, see Table 5-2) according to:  

                                                        

                                                           

where ve is extravascular-extracellular space, vd is distribution volume and MPF is 

myocardial plasma flow. Plasma flow and blood flow are interrelated through: 

                                                      

where hct is an assumed value for haematocrit (=0.45).  

Consequently, the only parameter being influenced in first-pass DP modelling for the 

set of curves with first-pass to recirculation peak ratio of 1.5, was the fitted 

parameter T. Differences in the profile of the simulated curves between curves with 

first-pass to recirculation peak ratio of 1.5 and of 1.4, can possibly explain these 

reductions in T. Simulated curves with lower recirculation peak (peak ratio 1.5) have 

a steeper downslope during the wash out of the contrast agent (Figure 6-5), compared 

cb TMBFv 

 ce TTMPFv 

TMPFvd 

 hctMBFMPF  1
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to simulated curves with higher recirculation peak (peak ratio of 1.4) which form a 

gradual downslope (Figure 6-6). In the former case, a rapid downslope may 

correspond to a faster wash out of contrast agent particles, which in turn may result 

in a lower value for T. The physiological definition of T is the mean time elapsed for 

contrast agent particles to enter and leave a myocardial segment [50].  

In agreement with the above interpretation (point B), reductions in the fitted 

parameter Te (note that the fitted parameter Te is only used for the calculation of the 

permeability surface area product, PS) can possibly explain why the PS did not 

significantly change when the first-pass DP modelling was used. 

These findings indicate that as the number of the time frame (used for model fitting) 

reduces, DP modelling may become over-parameterised because the contribution of 

ve on the curve may decrease. Thus, ve may not be possible to be estimated with 

precision. In that case, the application of the plug flow uptake model (50) may 

become appropriate. The tissue impulse response of the plug flow uptake model in 

the Laplace domain is: 

                                               
s

e
E

s

e
sR

TcsTcs 





1

)(  

where and f is the frequency variable in the Fourier transformed data. 

Fitted parameters for the plug flow uptake model: myocardial blood flow, mean 

capillary transit time Tc and extraction fraction E. It is important to note that the 

application of the plug flow uptake model would provide a practical mean to 

determine whether ve is measurable as the time frame reduces, since it would not fit 

fis  2
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data where the no-efflux (back-diffusion from the extravascular-extracellular into the 

intravascular space) assumption is invalid (50). 

This study assessed whether DP modelling and first-pass DP modelling can give 

accurate estimates of blood flow and of microvascular characteristics, compared to 

ideal values from numerical simulations. Thus, it was not in the objectives of this 

study to further assess which may be the minimum time frame required for DP 

analysis to accurately calculate extravascular-extracellular space and distribution 

volume in curves with first-pass to recirculation peak ratio of 1.5.  This analysis can 

possibly suggest that for the precise calculation of microvascular characteristics, DP 

modelling may need to be extended beyond the first-pass range of the contrast agent 

bolus in the blood pool.   

6.4.2 Study limitations 

This study did not investigate independent pharmacokinetic model approaches for 

generating simulated data [28, 43], in order to compare against DP and Fermi 

modelling results. Despite the fact that such independent pharmacokinetic model 

approaches can be based upon theoretical assumptions of tracer kinetics analysis [28, 

43], their accuracy in generating realistic simulated data has not been assessed versus 

simulated blood flow data from flow phantoms [43], or against results from 

microsphere techniques in animal models [28]. Independently of this, the above 

analysis aimed to assess whether first-pass DP modelling can give accurate estimates 

of blood flow and of microvascular characteristics, versus simulated data generated 

by convolving the DP model with the entire arterial input function curve.  
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Simulated data generated using the DP model were created using an optimum arterial 

input function from a healthy subject. This arterial input function curve was derived 

from dynamic perfusion data acquired using specific image acquisition parameters, 

presented in subsection 5.2.2. Thus, it has not been assessed whether first-pass DP 

modelling analysis can give accurate estimates of blood flow and of microvascular 

characteristics against simulated data generated using other combinations of 

scanners/image acquisition protocols which would possibly cause differences in 

temporal resolution and signal to noise ratio, compared to the data acquired for this 

thesis.    
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6.5 Conclusions 

First-pass DP-derived myocardial blood flow was not significantly different 

compared to ideal values from numerical simulations. These results demonstrate that 

unlike Fermi modelling, myocardial blood flow analysis using DP modelling does 

not depend on the number of time points used for fitting.  

DP modelling can be an appropriate approach for quantitatively analysing 

myocardial blood flow from the first-pass of MR data. For the precise calculation of 

the extravascular-extarcellular space and distribution volume parameters, DP 

modelling may need to be convolved with the entire arterial input function curve. 

Summary 

This chapter described a comparison of DP modelling and first-pass DP modelling-

derived blood flow and microvascular characteristic values against ideal values from 

numerical simulations. First-pass DP modelling-derived blood flow values were not 

different compared to ideal values. This comparison may suggest that DP modelling 

can reduce the sensitivity in selection of the first-pass range used in other 

quantitative modelling of cardiac perfusion MR data.  This may help to facilitate 

development of more reliable automated software algorithms for myocardial blood 

flow quantification in the clinical setting.  Sensitivity to accurate selection of first-

pass range currently limits many algorithms to require manual input for this process.  

The next chapter investigates a model comparison between Fermi and DP modelling 

using a cohort of 24 patients with known or suspected coronary artery disease with a 

single bolus perfusion imaging protocol. The diagnostic ability of both modelling 

approaches is assessed in per vessel and per patient basis.  
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7. Quantitative assessment of myocardial blood flow in 

coronary artery disease by magnetic resonance: a comparison 

with invasive methods and visual assessment from MR and CT.  

Introductory summary 

The primary objective of this chapter describes an assessment of quantitative MR 

analysis against invasive clinical assessment. Fermi and distributed parameter 

modelling were compared against invasive coronary angiography and fractional flow 

reserve outcomes, to assess their diagnostic ability in detecting obstructive coronary 

artery disease. In addition, the diagnostic accuracy of visual estimates from MR and 

CT imaging in detecting obstructive coronary artery disease was also assessed 

against invasive methods. Visual assessment is the current noninvasive reference 

standard for the detection of coronary artery disease from clinical MR and CT data. 

Finally, the diagnostic accuracy between quantitative MR analysis (using both 

models) and visual estimates from MR and CT imaging were compared, for the 

detection of coronary artery disease.  

7.1 Background 

Magnetic resonance (MR) perfusion imaging is a promising technique for the non-

invasive assessment of coronary artery disease [135, 142]. Clinically, the current 

standard method of assessment of MR perfusion imaged is based on visual estimates 

of the images, or in some studies a semi-quantitative assessment of perfusion index 

has been used [143, 144]. Visual assessments rely on the presence of myocardial 

areas with normal perfusion for direct comparison. Visual estimates are particularly 
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difficult in multi-vessel disease where there may be minimal areas of normal 

perfusion to compare against, or in cases of severe left ventricular impairment [59] in 

which slow bolus dispersion may lead to homogenously low contrast enhancement in 

the myocardium . Mathematical modelling of perfusion imaging data allows absolute 

quantification of myocardial blood flow and may be particularly useful in multi-

vessel disease. By quantifying perfusion, it also has the potential to minimize 

interobserver variability and to improve the diagnosis and prognostication of 

coronary artery disease [24, 59, 137]. 

As described in previous chapters (chapters 5 and 6), Fermi deconvolution modelling 

is an empirical-mathematical model used to estimate myocardial blood flow from 

MR perfusion imaging data during first-pass of gadolinium-based extracellular 

contrast agents [28, 29]. Distributed parameter deconvolution modelling is based 

upon physiological principles of tracer kinetics analysis and it can provide 

myocardial blood flow quantification and additional information about coronary 

vascularity and permeability [50, 66]. This includes estimates of intravascular space, 

extravascular-extracellular space, permeability surface area product, extraction 

fraction and volume of distribution.  

Recent advances in multi-detector computed tomography (MDCT) have enhanced its 

role beyond the assessment of coronary artery stenosis [84, 90, 95, 98-101]. The 

major strength of CT coronary angiography has been shown to be the high sensitivity 

and negative predictive value in identifying and excluding obstructive coronary 

artery disease, respectively [16, 79, 84, 85, 90, 145]. However, in the context of 

obstructive coronary artery disease, the main disadvantage of CT angiography is its 
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reduced specificity, due to its inclination to overestimate heavily calcified lesions 

[84, 86].  

A further step towards accurate detection of functionally significant stenotic lesions 

using CT is the implementation of myocardial perfusion imaging. CT myocardial 

perfusion imaging is additive to CT angiography whilst it is useful in the evaluation 

of patients with coronary artery stents [146, 147]. The latest generation of 320-slice 

MDCT scanners, is capable of improved spatial resolution and image quality at lower 

radiation doses. Despite this, the main limitation to the dynamic investigation of 

cardiac perfusion with CT, is still the radiation exposure [84, 90, 95, 98-101, 148, 

149]. Thus, the functional significance of coronary atherosclerosis may only 

currently be assessed using MDCT “snapshot” (or static) perfusion techniques [84, 

90, 148-150]. The main challenge in snapshot MDCT imaging is that variability in 

heart rate under stress and rest conditions means that care must be taken to select the 

optimum timing for static image acquisition at the peak of contrast enhancement (in 

the myocardial tissue). If static images are obtained before or after the peak of 

contrast enhancement, assessment of relative hypo-enhancement in myocardial 

perfusion defect areas becomes challenging, either due to microvascular recirculation 

or due to venous drainage [150].   

The objective of this chapter was two-fold. To investigate whether Fermi or 

distributed parameter modelling may be more accurate in detecting reduced 

myocardial blood flow in obstructive coronary artery disease versus the current 

invasive clinical standard assessment of invasive coronary angiography and 

fractional flow reserve. Also, the diagnostic accuracy of Fermi and distributed 

parameter modelling in detecting obstructive coronary artery disease was compared 
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against the current clinical standard of visual estimate analysis of MR and CT 

perfusion imaging.  

7.2 Methods 

7.2.1 Study population and design 

Twenty four patients with history of stable angina and with known or suspected 

coronary artery disease were recruited for MR perfusion imaging. All patients 

received MDCT ‘snapshot’ perfusion imaging within 30 days prior to MR perfusion 

imaging. Exclusion criteria for all subjects included history of severely compromised 

renal function (glomelural filtration rate ≤ 30 ml/min), pregnancy and 

contraindications to MR imaging or to iodinated contrast agent [151]. The study was 

performed with the approval of the institutional research ethics committee, in 

accordance with the Declaration of Helsinki and with the written informed consent of 

all subjects. All subjects were instructed to abstain from caffeine for 12 hours before 

MR and CT imaging. All patients underwent invasive coronary angiography and 

fractional flow reserve measurement.  

7.2.2 Cardiac magnetic resonance imaging 

As described in chapter 5, MR perfusion imaging data were acquired using a 3T 

Verio system (Siemens AG, Healthcare Sector, Erlangen, Germany) and a 32-

channel coil. Standard cardiac imaging planes and a short axis stack of left 

ventricular cine data were acquired using routine steady state free precession 

(TrueFISP) acquisitions (subsection 4.2 and 5.2.2). The modified Look-Locker 

inversion (MOLLI) recovery technique was again used to calculate native T1 

relaxation rates (subsections 2.2.6, 4.1 and 5.2.2) [12, 138]. Stress imaging was 
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performed by intravenously administering 140 μg/kg/min of adenosine for 4 minutes 

(Adenoscan, Sanofi Aventis). Fifty dynamic perfusion images were obtained at 

diastole across three short-axis view slices, covering 16 of the standard myocardial 

segments [16], using a turbo-fast low angle shot (FLASH) saturation recovery 

prepared single-shot gradient echo pulse sequence, as described in subsection 5.2.2.  

A single bolus protocol was implemented in all subjects using 0.05 mmol/kg of a 

gadolinium-based contrast agent (Gadovist, Bayer Healthcare) injected at 4 ml/s. To 

allow clearance of residual contrast agent, rest perfusion imaging was performed 15 

min after the adenosine-stress scan with the same acquisition protocol in all subjects 

[24, 28, 29, 76, 141]. 

7.2.3 Cardiac multi-detector computed tomography imaging 

Prior to CT imaging, blood pressure and heart rate were monitored. Patients with 

resting heart rate above 60 beats/ min received heart rate-limiting medication either 

with intravenous infusion of metoprolol (2.5-50 mg) or with oral/ intravenous 

administration of verapamil (80 mg oral or 2.5-5 mg intravenous). Administration of 

rate-limiting medication occurred to improve image quality by reducing exposure to 

motion artifacts, which may affect image acquisition at higher heart rates [151].  

Patients were placed supine in a 320-slice multidetector scanner (Aquilion One, 

Toshiba Medical Systems, Tustin, CA, USA). As in MR perfusion imaging, two 

intravenous lines (one for contrast delivery and one for adenosine infusion) were 

inserted in each patient.  

Scout images were acquired to allow scan positioning corresponding to the minimum 

detector range [150]. Following the acquisition of scout images, patients underwent 
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prospective electrocardiogram-gated (iodine-based) contrast enhanced CT 

angiography at rest (using iomeprol, 400 mg iodine/ml, Iomeron 400, Bracco, UK), 

with half-segment reconstruction and a 0.35 ms rotation time [99, 150, 151]. As 

mentioned in the subsection 4.9, the iodinated contrast was administered based on 

body mass index (BMI) (i.e. <30 kg/m
2
, 50 ml; >30 kg/m

2
, 60 ml; >40 kg/m

2
, 70 ml). 

Tube voltage was selected based on body mass index whilst tube current was 

selected automatically based on scout image attenuation. Bolus tracking triggered the 

scan following a predetermined trigger delay, immediately after blood in the aorta 

reached 300 HU [150, 151]. A narrow window for acquisition was selected to reduce 

radiation exposure. A high tube current was applied for a narrow temporal window 

around end diastole in an attempt to optimally acquire detailed anatomical images 

with high spatial resolution. A low tube current was implemented for the rest of the 

cardiac cycle to obtain complementary functional (perfusion) information. A 

subsequent iodine-based contrast bolus injection was injected after 4 min of 

adenosine infusion (at a rate of 140 μg/kg/min, Adenoscan, Sanofi Aventis) and 

prospective ECG-gated images were again acquired at end diastole during stress, 

implementing the same image acquisition parameters.  

For patients with a heart rate below 65 beats/ min, CT images were acquired using an 

acquisition window of 70-80% of the cardiac cycle (i.e. interval between two QRS 

complexes). For patients with a heart rate above 65 beats/ min, the acquisition 

window was widened (30-80%) to ensure image acquisition at end diastole.  

Images were reconstructed using an iterative reconstruction algorithm (AIDR3D) and 

by processing the phase with the least cardiac motion for both CT angiograms and 

perfusion images [151]. CT angiograms were reconstructed with a slice thickness of 
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0.5 mm, whilst short axis view planes of (rest and stress) perfusion images were 

reconstructed with a slice thickness of 3 mm.  

7.2.4 Invasive coronary angiography and fractional flow reserve 

All patients underwent invasive coronary angiography and fractional flow reserve at 

the Royal Infirmary of Edinburgh. Fractional flow reserve was assessed for major 

epicardial vessels and defined as the ratio between distal coronary pressure and aortic 

pressure measured simultaneously at maximal adenosine-induced (intravenous 

140μg/kg/min) hyperaemia [109, 117]. Epicardial vessels were classified as positive 

for obstructive coronary artery disease as previously described in subsection 5.2.4.  

Haemodynamically significant (obstructive) coronary artery disease was defined as 

luminal stenosis ≥70% on invasive coronary angiography, or fractional flow reserve 

<0.80 and luminal stenosis ≥50 %. Outcomes from the three main coronary vessels 

were classified into 2 groups: Group 1, (no, minor or non)-obstructive coronary 

artery disease with luminal stenosis <50% or with luminal stenosis ≥50% and 

fractional flow reserve>0.80; Group 2, obstructive coronary artery disease with 

luminal stenosis of ≥70% alone, or luminal stenosis ≥50% and fractional flow 

reserve ≤0.80 [109, 117]. 

7.2.5 Visual analysis 

MR perfusion images were analyzed by 2 blinded experienced observers. CT 

angiograms and static CT perfusion images were visually assessed by 3 and 2 

experienced blinded observers, respectively. The MR perfusion scans were classified 

as positive for obstructive coronary artery disease in the presence of a stress-induced 

perfusion defect which was transmural and/or involved ≥ 1 myocardial segment [58] 
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and the CT perfusion scans classified as positive in the presence of a stress-induced 

perfusion defect involving ≥ 1 myocardial segment [98].  

7.2.6 Quantitative MR analysis 

Endocardial and epicardial MR contours were outlined using dedicated cardiac 

image analysis software (QMass, Medis, The Netherlands) to generate a standardized 

16-segment model of the heart [16]. Quantification of myocardial blood flow was 

performed using customised in-house software developed in Matlab (MathWorks 

Inc., Natick, MA), as previously described in subsections 5.2.5-5.2.7. Myocardial 

and arterial input function signal intensity-time curves were converted to gadolinium 

concentration-time curves using the method of Larsson et al [24-29]. Model-

dependent deconvolution analysis was implemented to measure myocardial blood 

flow using a) Fermi and b) 1-barrier 2-region distributed parameter functions. In 

distributed parameter modelling, additional microvascular characteristics were 

calculated using equations described in Table 5-2. Myocardial perfusion reserve was 

calculated by dividing the hyperemic myocardial blood flow by the resting flow. The 

mean myocardial perfusion reserve of the two lowest scoring myocardial segments 

for each perfusion territory was also calculated for each vessel territory and its 

accuracy in detecting obstructive coronary artery disease was examined [58, 59].      

7.2.7 Statistical analysis 

The R software was used for statistical analysis (R Foundation for statistical 

computing, Vienna, Austria). Receiver-operating characteristic (ROC) analysis was 

used to determine threshold values and positive likelihood ratios for absolute 

myocardial blood flow at stress, myocardial perfusion reserve and myocardial 
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perfusion reserve of the two lowest scoring segments with the greatest sensitivity and 

specificity to detect obstructive coronary artery disease (Groups 2 versus Group 1). 

The maximal Youden Index was used to determine the optimal threshold values. The 

area under the curve was calculated using trapezoidal numerical integration.  

An interobserver reliability analysis was performed for visual estimates using Cohen 

kappa statistic. Statistical differences in myocardial blood flow values and in 

myocardial perfusion ratios between patient Groups (Group 2 against Group 1), were 

investigated implementing a Welch two sample t-test. Statistical significance was 

defined as two-sided P value<0.05. 
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7.3 Results 

7.3.1. Study population  

Table 7-1 shows baseline characteristics of the study participants. Twenty four 

patients received MR perfusion imaging and CT perfusion imaging and angiography. 

MR perfusion images were not considered diagnostic in two patients due to low 

contrast to noise ratio. Thus, epicardial vessels from twenty two patients were 

visually assessed, corresponding to sixty six epicardial vessels available for visual 

MR analysis. Quantitative MR analysis and visual CT analysis were performed in all 

twenty four patients, corresponding to seventy two epicardial vessels.  

All patients underwent invasive coronary angiography and fractional flow reserve 

assessment. Sixteen patients (67%) had at least 1 territory classified in Group 2. Ten 

had 1-vessel disease, two had 2-vessel disease and four had 3-vessel disease. 

Example images of MR perfusion imaging, CT perfusion imaging and angiography 

and invasive coronary angiography are shown in Figure 7-1.   

7.3.2 Visual MR analysis versus invasive methods  

The interobserver reliability was kappa=0.81 (95% CI: 0.69 to 0.89). In per vessel 

analysis, vessel classification occurred as described in subsection 7.2.4. In per patient 

analysis, patients with all vessel territories identified with (no, minor or non)-

obstructive coronary artery disease were classified in Group 1, whilst patients with at 

least one vessel detected with obstructive coronary artery disease, were classified in 

Group 2. Based on these criteria (that were applied throughout this study), diagnostic 

accuracy (i.e. sensitivity, specificity, positive predictive value and negative 
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predictive value) in per vessel and per patient visual MR analysis against invasive 

methods, are presented in Table 7-2. 

 

 

 

 

 

 

 

 

 

Figure 7-1) Images from the same patient. Upper panel: Computed tomography coronary 

angiography (A and B) and invasive coronary angiography (C) images showing stenoses in 

the left anterior descending, first diagonal (yellow arrows) and left circumflex arteries (gray 

arrow). Middle panel: Computed tomography myocardial perfusion imaging during 

adenosine stress. Short-axis views of the left ventricle during adenosine stress showing hypo-

enhancement corresponding to perfusion defects in the territory of the left anterior 

descending artery (yellow arrows) and left circumflex artery (gray arrows). Lower panel: 

Magnetic resonance myocardial perfusion imaging during adenosine stress. Short-axis views 

at 3 mid-ventricular slices over the left ventricle are presented with perfusion defects that 

correlate to the computed tomography images. (Adapted from Williams et al, J Cardiovasc 

Comput Tomogr, 2013).  
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Table 7-1) Baseline characteristics of study participants (parentheses show %).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Data (n=24) 

Age (yrs)       63 ± 7 

 

Male       20 (83) 

BMI       29 ± 5 

Hypertension       13 (54) 

Hct     0.43 ± 0.02 

Diabetes  

Type 1 

Type 2 

  

        0 (0) 

       3 (13)                                      

Angina       23 (96) 

NSTEMI         4 (17) 

STEMI        3 (13) 

PVD         0 (0) 

CVD         2 (8) 

Smoking 

Current  

Previous 

 

       6 (25) 

     15 (63)   

PCI       4 (17) 

Medication 

Statin 

Beta-blocker 

 

     21 (88) 

     20 (83) 

Angiographic data (per vessel) 

Group 1  

Group 2 

 

      46 (64)      

      26 (36) 
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Abbreviations for Table 7-1: Body mass index (BMI), Haematocrit (Hct), non-ST segment 

elevation myocardial infarction (NSTEMI, see subsection 4.2 and Figure 4-5 for QRS 

complex signal), ST segment elevation myocardial infarction (STEMI), peripheral vascular 

disease (PVD), cardiovascular disease (CVD), percutaneous coronary intervention (PCI). 

  

Table 7-2) Diagnostic accuracy (i.e. sensitivity, specificity, PPV, NPV) (95% CI) of visual 

MR estimates is shown. PPV: positive predictive value and NPV: negative predictive value, 

are presented in per vessel and per patient basis.  

 

 

 

 

 

 

 

 

 

 

 

 

Visual 

estimates from 

MR 

Per vessel Per patient 

Sensitivity 0.73 (0.50 to 0.88) 0.79 (0.49 to 0.94) 

Specificity 0.80 (0.64 to 0.89) 0.88 (0.47 to 0.99) 

PPV 0.64 (0.43 to 0.81) 0.92 (0.60 to 0.99) 

NPV 0.85 (0.70 to 0.94) 0.70 (0.35 to 0.92) 
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7.3.3 Quantitative MR analysis versus invasive methods  

Initially, quantitative myocardial blood flow analysis was performed on a per vessel 

basis. ROC analysis was implemented to determine threshold values for absolute 

myocardial blood flow at stress, myocardial perfusion reserve and mean myocardial 

perfusion reserve of the two lowest scoring segments, with the greatest sensitivity 

and specificity to detect obstructive coronary artery disease. Threshold values are 

presented in Table 7-3.  

Table 7-3) Threshold values for all haemodynamic parameters calculated with Fermi and 

distributed parameter (DP) modelling, in per vessel and per patient basis. Thresholds for 

myocardial blood flow were measured in ml/min/ml. MBF: myocardial blood flow, DP: 

distributed parameter, MPR: myocardial perfusion reserve, MPR2: mean myocardial 

perfusion reserve of the two lowest scoring segments. 

 

 

 

 

 

 

 

 

 

 

Haemodynamic parameter-

Model 

Per vessel Per patient 

MBF Fermi (ml/min/ml) 2.6 3.0 

MBF DP (ml/min/ml) 1.7 2.1 

MPR Fermi 2.1 2.5 

MPR DP 1.4 1.9 

MPR2 Fermi 1.8 2 

MPR2 DP 1.2 1.4 
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Mean values for all Fermi- and distributed parameter modelling-derived 

haemodynamic parameters, for both Groups 1 and 2, are presented in Table 7-4. 

Significant differences in haemodynamic parameter values between Groups 1 and 2 

for both Fermi and distributed parameter modelling are shown in Table 7-4. Mean 

values and haemodynamic thresholds are illustrated in Figures 7-2 to 7-7.  

Diagnostic accuracy (sensitivity, specificity, positive predictive value and negative 

predictive value) for Fermi- and distributed parameter modelling-derived 

haemodynamic parameters calculated on ROC analysis, are presented in Table 7-5. 

Areas under the curve and positive likelihood ratios for Fermi- and distributed 

parameter modelling-derived haemodynamic parameters are presented in Tables 7-6 

and 7-7, respectively. ROC analysis graphs are illustrated in Figures 7-8 to 7-10.  

Significant differences were observed in all distributed parameter modelling-derived 

microvascular characteristics, between Groups 1 and 2 (P< 0.01). 
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Table 7-4) Mean (SD) values for Fermi- and distributed parameter modelling-derived 

haemodynamic parameters, for Groups 1 and 2 are presented. Also, significant differences 

between Group 1 and Group 2 in per vessel and per patient based analysis are shown. P 

values for distributed parameter modelling were consistently higher compared to Fermi 

modelling in both per vessel and pet patient based analysis. Notations as in Table 7-3.    

 

 

 

 

 

 

 

Haemodynamic 

parameter- 

Model 

Per vessel Per patient Per vessel Per patient 

Group 1 Group 2 Group 1 Group 2 Group 1 vs Group 2 Group 1 vs Group 2 

MBF Fermi (ml/min/ml) 2.54  (0.95) 1.95 (0.64) 3.13 (0.64) 1.93 (0.72) 0.0026 0.000000002 

MBF DP (ml/min/ml) 2.03 (0.70) 1.36 (0.39) 2.52 (0.39) 1.42 (0.47) <0.0001 <0.000000001 

MPR Fermi 2.20 (0.83) 1.54 (0.57) 2.72 (0.63) 1.59 (0.59) 0.0002  0.0000000001 

MPR DP 1.80 (0.69) 1.12 (0.38) 2.27 (0.59) 1.20 (0.38) <0.0001 <0.0000000001 

MPR2 Fermi 1.87 (0.78) 1.10 (0.48) 2.31 (0.68) 1.23 (0.53) 0.000001  0.0000000002 

MPR2 DP 1.55 (0.63) 0.86 (0.31) 1.98 (0.54) 0.96 (0.31) <0.000001  0.0000000001 
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Figure 7-2) Fermi modelling-derived mean myocardial blood flow (MBF) values and 

haemodynamic threshold calculated on ROC analysis, for identifying obstructive vessels (per 

vessel analysis).  

 

 

 

 

 

 

Figure 7-3) Distributed parameter modelling-derived mean myocardial blood flow (MBF) 

values and haemodynamic threshold calculated on ROC analysis, for identifying obstructive 

vessels (per vessel analysis). 
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Figure 7-4) Illustrations of Fermi modelling-derived mean myocardial perfusion reserve 

(MPR) values and haemodynamic threshold, between Groups 1 and 2. 

 

 

 

 

 

 

Figure 7-5) Graphic representation of distributed parameter modelling-derived mean 

myocardial perfusion reserve (MPR) values and haemodynamic threshold, between Groups 1 

and 2. 
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Figure 7-6) Mean myocardial perfusion reserve of the two lowest scoring segments (MPR2) 

calculated using Fermi modelling and haemodynamic threshold, between Groups 1 and 2. 

 

 

 

 

 

 

 

Figure 7-7) Graphic representation of mean myocardial perfusion reserve of the two lowest 

scoring segments (MPR2) calculated using distributed parameter modelling and 

haemodynamic threshold, between Groups 1 and 2. 
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Figure 7-8) ROC graph demonstrating sensitivity and specificity of quantitative MR analysis 

by absolute myocardial blood flow at stress (MBF, per vessel analysis). 

 

 

 

 

 

 

 

 

Figure 7-9) ROC graph showing sensitivity and specificity of quantitative MR analysis by 

myocardial perfusion reserve (MPR, per vessel analysis). 
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Figure 7-10) ROC graph illustrating sensitivity and specificity of mean myocardial perfusion 

reserve of the two lowest scoring segments (MPR2, per vessel analysis). 

 

 

 

 

 

 

 

 

 



198 
 

Table 7-5) Diagnostic accuracy (95% CI) of Fermi- and DP modelling-derived 

haemodynamic parameters, in detecting obstructive coronary artery disease, is shown (per 

vessel analysis). Notations as in Tables 7-2 and 7-3.   

 

 

 

 

 

 

 

 

 

 

Haemodynamic 

parameter-Model 

Sensitivity Specificity PPV NPV 

Fermi-MBF 0.85 (0.76 to 0.94) 0.54 (0.43 to 0.65) 0.51 (0.39 to 0.63) 0.86 (0.74 to 0.98) 

DP-MBF 0.89 (0.79 to 0.99) 0.63 (0.52 to 0.74) 0.58 (0.48 to 0.68) 0.91 (0.84 to 0.98) 

Fermi-MPR 0.69 (0.50 to 0.88) 0.54 (0.40 to 0.68) 0.46 (0.32 to 0.60) 0.76 (0.62 to 0.90) 

DP-MPR 0.85 (0.72 to 0.98) 0.61 (0.48 to 0.74) 0.55 (0.43 to 0.67) 0.88 (0.76 to 1.00) 

Fermi-MPR2 0.73 (0.58 to 0.88) 0.65 (0.51 to 0.79) 0.54 (0.40 to 0.68) 0.81 (0.68 to 0.94) 

DP-MPR2 0.77 (0.62 to 0.92) 0.70 (0.56 to 0.84) 0.58 (0.46 to 0.70) 0.84 (0.75 to 0.94) 
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Table 7-6) AUC (95% CI) from ROC analysis in per vessel and per patient basis are shown. 

AUC: Areas under the curve, rest of notations as in Table 7-3.  

AUC Per vessel Per patient 

MBF Fermi 0.68 (0.55, 0.80) 0.86 (0.77, 0.94) 

MBF DP 0.76 (0.65, 0.87) 0.97 (0.92, 1.00) 

MPR Fermi 0.69 (0.56, 0.81) 0.85 (0.75, 0.94) 

MPR DP 0.79 (0.68, 0.89) 0.94 (0.87, 1.00) 

MPR2 Fermi 0.77 (0.66, 0.88) 0.88 (0.80, 0.96) 

MPR2 DP 0.82 (0.72, 0.92) 0.96 (0.91, 1.00) 
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Table 7-7) Positive likelihood ratios in per vessel and per patient analysis are demonstrated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Per vessel Per patient 

MBF Fermi 2.65 (1.65 to 4.27) 2.50 (1.01 to 6.17) 

MBF DP 3.13 (1.94 to 5.06) 7.50 (1.19 to 40.11) 

MPR Fermi 1.86 (1.27 to 2.71) 2.50 (1.01 to 6.17) 

MPR DP 3.54 (2.06 to 6.08) 7.50 (1.19 to 41.11) 

MPR2 Fermi 2.16 (1.46 to 3.21) 2.33 (0.94 to 5.82) 

MPR2 DP 3.00 (1.84 to 4.88) 3.25 (0.96 to 11.04) 
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Subsequently, quantitative myocardial blood flow analysis was performed in per 

patient basis. As discussed in subsection 7.3.2, in per patient based analysis, 

haemodynamic parameters are used to attempt to identify reduced myocardial blood 

flow in patients with at least one vessel detected with obstructive coronary artery 

disease (which were here classified in Group 2) against patients with all vessel 

territories identified with (no, minor or non)-obstructive coronary artery disease 

(which were classified in Group 1). Threshold values calculated on ROC analysis are 

presented in Table 7-3.  

Distributed parameter modelling-derived myocardial blood flow and myocardial 

perfusion reserve detected reduced myocardial blood flow in 47 and 46 of the 48 

vessel territories of patients with at least one vessel territory classified in Group 2 (3 

territories/patient, 16 patients), respectively. Fermi modelling-derived myocardial 

blood flow and myocardial perfusion reserve both detected reduced myocardial 

blood flow in 42 of the 48 vessel territories of patients with at least one vessel 

territory classified in Group 2.   

Mean values for all haemodynamic parameter-model combinations, for both Groups 

1 and 2, are presented in Table 7-4. Significant differences in haemodynamic 

parameter values between Group 1 and Group 2, for both Fermi and distributed 

parameter modelling in per patient based analysis, are presented in Table 7-4. Mean 

values and haemodynamic thresholds and illustrated in Figures 7-11 to 7-16.  
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Figure 7-11) Visual representation of Fermi modelling-derived mean myocardial blood flow 

(MBF) values and haemodynamic threshold, between Groups 1 and 2 (per patient analysis).  

 

 

 

 

 

 

 

 

Figure 7-12) Representation of distributed parameter modelling-derived mean myocardial 

blood flow (MBF) values and haemodynamic threshold, between Groups 1 and 2.  
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Figure 7-13) Mean myocardial perfusion reserve (MPR) calculated using Fermi modelling 

and haemodynamic, between Groups 1 and 2.    

 

 

 

 

 

 

 

Figure 7-14) Mean myocardial perfusion reserve (MPR) calculated using distributed 

parameter modelling and haemodynamic threshold on ROC analysis.  
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Figure 7-15) Mean myocardial perfusion reserve of the two lowest scoring segments (MPR2) 

calculated using Fermi modelling and haemodynamic threshold on ROC analysis.  

 

 

 

 

 

 

 

Figure 7-16) Mean myocardial perfusion reserve of the two lowest scoring segments (MPR2) 

calculated using distributed parameter modelling and haemodynamic threshold, between 

Groups 1 and 2. 
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Diagnostic accuracy for Fermi- and distributed parameter modelling-derived 

haemodynamic parameters calculated on ROC analysis in per patient basis, are 

presented in Table 7-8. Areas under the curve and positive likelihood ratios for 

Fermi- and distributed parameter modelling-derived haemodynamic parameters are 

presented in tables 7-6 and 7-7, respectively. ROC analysis graphs are presented in 

Figures 7-17 to 7-19. 

 

 

 

 

 

 

 

Figure 7-17) ROC graph illustrating sensitivity and specificity of quantitative MR analysis 

by absolute myocardial blood flow at stress (MBF, per patient analysis). 
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Figure 7-18) ROC analysis demonstrating sensitivity and specificity of quantitative MR 

analysis by myocardial perfusion reserve (MPR, per patient analysis). 

 

 

 

 

 

 

 

Figure 7-19) ROC analysis showing mean myocardial perfusion reserve of the 2 lowest 

scoring segments (MPR2, per patient analysis).  
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Table 7-8) Diagnostic accuracy (95% CI) of Fermi- and DP modelling-derived 

haemodynamic parameters, in detecting obstructive coronary artery disease, is shown (per 

patient analysis). Notations as in Tables 7-2 and 7-3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Haemodynamic 

parameter-Model 

Sensitivity Specificity PPV NPV 

Fermi-MBF 0.78 (0.66 to 0.90) 0.88 (0.76 to 1.00) 0.93 (0.86 to 1.00) 0.66 (0.55 to 0.77) 

DP-MBF 0.96 (0.91 to 1.00) 0.92 (0.85 to 0.99) 0.96 (0.91 to 1.00) 0.92 (0.84 to 1.00) 

Fermi-MPR 0.69 (0.55 to 0.83) 0.83 (0.70 to 0.96) 0.90 (0.80 to 1.00) 0.58 (0.46 to 0.70) 

DP-MPR 0.88 (0.76 to 1.00) 0.88 (0.78 to 0.98) 0.94 (0.88 to 1.00) 0.78 (0.66 to 0.90) 

Fermi-MPR2 0.80 (0.66 to 0.94) 0.79 (0.62 to 0.94) 0.89 (0.78 to 1.00) 0.66 (0.55 to 0.77) 

DP-MPR2 0.92 (0.86 to 0.98) 0.83 (0.74 to 0.92) 0.92 (0.86 to 0.98) 0.83 (0.73 to 0.93) 
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7.3.4 Visual CT analysis versus invasive methods 

The interobserver reliability was kappa=0.80 (95% CI: 0.68 to 0.92) and kappa=0.78 

(95% CI: 0.66 to 0.90) for CT angiography and CT perfusion, respectively. The 

sensitivity, specificity, positive predictive value and negative predictive value of 

visual estimates from CT angiography, CT perfusion and combined CT 

angiography/perfusion in detecting a stenosis causing a perfusion deficit are 

presented in Tables 7-9 and 7-10, for per vessel based and per patient based analysis, 

respectively.  

Table 7-9) Diagnostic accuracy for visual estimates (95% CI) from CT angiography, CT 

perfusion and CT angiography/perfusion for per vessel territory based analysis. 

 

 

 

 

Table 7-10) Diagnostic accuracy for visual estimates (95% CI) from CT angiography, CT 

perfusion and CT angiography/perfusion for per patient based analysis. 

 

 

 

 

 

 

Visual 

estimates 

from CT/ 

Parameter 

CTA CTP CTA/CTP 

Sensitivity 0.77 (0.56 to 0.90) 0.65 (0.44 to 0.82) 0.85 (0.64 to 0.95) 

Specificity 0.87 (0.73 to 0.95) 0.72 (0.56 to 0.84) 0.85 (0.71 to 0.93) 

PPV 0.77 (0.56 to 0.90) 0.57 (0.38 to 0.74) 0.76 (0.56 to 0.89) 

NPV 0.87 (0.73 to 0.95) 0.79 (0.63 to 0.89) 0.91 (0.77 to 0.97) 

Visual 

estimates 

from CT/ 

Parameter 

CTA CTP CTA/CTP 

Sensitivity 0.94 (0.68 to 0.99) 0.81 (0.54 to 0.95) 0.94 (0.68 to 0.99) 

Specificity 0.88 (0.47 to 0.99) 0.50 (0.17 to 0.83) 0.88 (0.47 to 0.99) 

PPV 0.94 (0.68 to 0.99) 0.76 (0.50 to 0.92) 0.94 (0.68 to 0.99) 

NPV 0.88 (0.47 to 0.99) 0.57 (0.20 to 0.88) 0.88 (0.47 to 0.99) 
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7.4 Discussion 

The main findings of this work demonstrated that (1) quantitative MR analysis 

showed higher diagnostic accuracy (i.e. sensitivity, specificity, positive predictive 

value and negative predictive value) compared to visual MR analysis. (2) Distributed 

parameter modelling showed higher diagnostic accuracy than Fermi modelling in 

detecting obstructive coronary artery disease, both in per vessel and per patient based 

analysis. 

Furthermore, (3) in this data analysis, distributed parameter modelling-derived 

myocardial blood flow showed higher sensitivity in detecting obstructive coronary 

artery disease compared to visual estimates from CT analysis, in per vessel based 

analysis. (4) The highest diagnostic accuracy for the detection of obstructive 

coronary artery disease was performed by distributed parameter modelling-derived 

myocardial blood flow at stress, in per patient based analysis.  

7.4.1 Visual versus quantitative MR analysis 

Data from two patients were considered non-diagnostic for visual assessment, due to 

low contrast to noise ratio which caused difficulties in detecting relative hypo-

enhancement. Thus, these data were excluded from visual analysis. In contrast, 

model analysis of these data was possible whilst the profiles of dynamic perfusion 

curves did not differ compared to data from other patients (Figure 7-20).   

In per vessel based analysis, visual MR estimates gave higher specificity compared 

to quantitative MR estimates. However, visual MR estimates showed lower 

sensitivity, positive predictive value and negative predictive value for the detection 

of obstructive coronary artery disease than quantitative MR estimates (Tables 7-2 
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and 7-5). Particularly, quantitative MR analysis showed higher sensitivity using both 

models and superior positive and negative predictive value using the distributed 

parameter model, compared to visual MR assessment.   

In per patient based analysis, distributed parameter modelling demonstrated superior 

diagnostic accuracy in detecting obstructive coronary artery disease, compared to 

visual MR estimates (Tables 7-2 and 7-8). Further interpretation of quantitative MR 

analysis in per vessel and per patient basis, will be discussed in the following 

subsections. 
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Figure 7-20) Examples of images that were considered non-diagnostic for visual assessment 

are shown, at the peak of contrast enhancement in the myocardium. Patient 1 (a), identified 

with no stenotic vessel territories and patient 2 (b), with haemodynamically significant right 

coronary artery disease. (c) and (d), (e) and (f) are examples of Gadolinium (Gd) 

concentration-time curves (blue) with Fermi and distributed parameter modelling (red), 

derived from patients 1 and 2, respectively.     

 

a) b) 

c) d) c) 

e) f) 

a) b) 
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7.4.2 Haemodynamics in quantitative MR analysis  

This is the first study implementing 1-barrier 2-region distributed parameter 

modelling in 24 patients with known or suspected coronary artery disease. Studies 

using fully quantitative MR perfusion methods are limited either to small numbers of 

healthy volunteers [29, 36-38, 43] or to the assessment of mean myocardial perfusion 

reserve of the two lowest scoring segments using Fermi modelling [58, 59].  

The optimal thresholds in per vessel (1.7 ml/min/ml) and in per patient (2.1 

ml/min/ml) based analysis for hyperaemic myocardial blood flow (Table 7-3), were 

in agreement with previous positron emission tomography myocardial perfusion 

studies which aimed to either identify 1, 2 and 3 vessel disease [136] or to localize 

perfusion defects to significantly stenotic coronary arteries [152, 153] (see Table 7-

11). Positron emission tomography is currently the reference standard for absolute 

quantification of myocardial blood flow [59, 135-137]. At the time of writing this 

thesis, no other MR perfusion imaging study has accurately identified perfusion 

abnormalities in the presence of significant coronary artery disease, using absolute 

myocardial blood flow values at stress. 
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Table 7-11) Haemodynamic threshold values from previous positron emission tomography 

(PET) and magnetic resonance imaging (MRI) studies. MBF: myocardial blood flow, MPR: 

myocardial perfusion reserve, MPR2: mean myocardial perfusion reserve of the two lowest 

scoring segments.  

[Reference] Previous studies 

(imaging modality, haemodynamic 

parameter). 

Haemodynamic 

thresholds (angiographic 

threshold) 

[136] Nesterov et al (PET, MBF) 2.50 ml/min/ml (≥ 50%) 

[152] Karamitsos et al (PET, MBF) 2.45 ml/min/ml (≥ 50%)) 

[153] Hajjiri et al (PET, MBF). 1.85 ml/min/ml (≥ 70%) 

[153] Hajjiri et al (PET, MPR). 2.00 (≥ 70%) 

[137] Kaufmann et al (PET, MPR) 2.50 

[58] Lockie et al (MRI, MPR2) 1.58 (≥ 70%) 

[59] Morton et al (MRI, MPR2) 1.58 (≥ 70%) 

 

 

The Fermi model demonstrated higher haemodynamic thresholds both in per vessel 

(2.6 ml/min/ml) and in per patient (3 ml/min/ml) based analysis, compared to 

distributed parameter modelling (Table 7-3). Threshold values for Fermi modelling 

were also higher compared to previous PET perfusion studies (Table 7-11) [136, 137, 

152-154]. Arterial input function saturation effects that may be present in single 
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bolus data have been previously demonstrated to result in significant overestimation 

of myocardial blood flow in Fermi modelling [24]. Our group has previously 

demonstrated that the distributed parameter model appears to be less dependent on 

arterial input function saturation effects, compared to the Fermi model (chapter 5). 

Furthermore, it has been previously demonstrated that the Fermi model estimates 

myocardial blood flow values that were significantly increased compared to 

distributed parameter modelling estimates using either single [66] or dual bolus 

imaging, applied to eliminate arterial input function saturation (chapter 5). In a cross-

correlation study between magnetic resonance imaging and positron emission 

tomography, Fermi modelling estimated values of myocardial blood flow both at 

stress and rest which were considerably higher compared to the Patlak model used 

for quantification of 
13

N-ammonia perfusion data [59]. Systematic myocardial blood 

flow overestimation using Fermi modelling may explain its lower sensitivity in 

detecting hypoperfusion in obstructive coronary artery disease (susceptible to false 

negatives) compared to distributed parameter modelling. Fermi modelling showed 

higher haemodynamic thresholds for myocardial perfusion reserve both in per vessel 

(2.1) and in per patient (2.5) based analysis, compared to distributed parameter 

modelling (1.4 and 1.9 respectively, Table 7-3). Higher myocardial perfusion reserve 

values for Fermi modelling can be explained by higher estimated myocardial blood 

flow values, compared to those estimated by distributed parameter modelling.  

Myocardial perfusion reserve ratios generated using both Fermi and distributed 

parameter modelling (Table 7-3) agree with values by Kaufmann et al, reported for 

quantitative myocardial perfusion analysis in positron emission tomography (see 

Table 7-11) [137]. Kaufmann et al, reported that myocardial perfusion reserve values 
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<2.50 can be interpreted as impaired vasodilator capacity leading to reduced 

myocardial blood flow. Specifically, it was reported that abnormal myocardial 

perfusion reserve can be due to narrowing of the epicardial coronary arteries, or (in 

the absence of angiographically demonstrable findings) can possibly reflect 

dysfunction of the coronary microcirculation [137]. This study does not specify 

whether the above haemodynamic threshold is connected with a specific 

angiographic threshold, for which impaired vasodilator capacity can be interpreted as 

haemodynamically significant. Haemodynamic thresholds presented in Table 7-11, 

were lower for studies that aimed to detect reduced blood flow in vessel territories 

with ≥70% luminal stenosis on invasive coronary angiography (compared to those 

from studies that used angiographic thresholds of ≥50%). For detection of vessel 

territories with ≥70% luminal stenosis on invasive coronary angiography, lower 

myocardial perfusion reserve thresholds can be defined. For example, Hajjiri et al 

accurately detected impaired myocardial perfusion reserve values in territories with 

≥70% luminal stenosis on invasive coronary angiography, using a myocardial 

perfusion reserve threshold of 2.00 [153]. This can explain the relatively low 

threshold level demonstrated in this chapter for distributed parameter modelling-

derived myocardial perfusion reserve in per vessel analysis. Another reason might be 

the coincidental effect of microvascular dysfunction in this patient data, as 16 of the 

24 patients had at least one vessel identified with obstructive coronary artery disease. 

Thus, low thresholds maintaining high sensitivity on ROC analysis, minimized the 

detection of false positives (i.e. detection of reduced blood flow in vessels with no, 

minor or non-obstructive coronary artery disease), in per vessel analysis. Further 
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interpretation with respect to physiological considerations in per vessel analysis, is 

given in subsection 7.4.4.  

Similarly, thresholds calculated in this study for mean myocardial perfusion reserve 

ratios of the two lowest scoring segments are in agreement with values from previous 

magnetic resonance perfusion imaging studies (Table 7-12) [58, 59]. Low thresholds 

for distributed parameter modelling-derived myocardial perfusion reserve in per 

vessel analysis can explain low threshold values for mean myocardial perfusion 

reserve of the two lowest scoring segments.   

It is important that significant differences for myocardial blood flow, myocardial 

perfusion reserve and two lowest scoring segments of myocardial perfusion reserve) 

between (no, minor or non)-obstructive and obstructive coronary artery disease were 

considerably higher for distributed parameter modelling, in comparison with Fermi 

modelling, in per vessel based analysis (Figures 7-2 to 7-7). This was maintained in 

per patient based analysis (Figures 7-11 to 7-16). These findings suggest that 

distributed parameter modelling may have merit in stratification of hypoperfusion in 

obstructive coronary artery disease, than Fermi modelling.  

Significant differences between (no, minor or non)-obstructive and obstructive 

coronary artery disease were observed for all microvascular characteristic values 

calculated using distributed parameter modelling. Abnormal decreases of coronary 

blood flow led to reduced values of permeability surface area product. The 

intravascular space was significantly reduced as a function of luminal coronary 

stenosis which may indicate impaired recruitment of coronary arteries [24].   
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7.4.3 Per vessel based quantitative MR analysis 

In per vessel based analysis, the distributed parameter model demonstrated higher 

diagnostic accuracy against the standard Fermi model in detecting impaired 

haemodynamics in the presence of obstructive coronary artery disease (Table 7-5). 

Also, the areas under the curve for distributed parameter modelling were consistently 

higher for myocardial blood flow, myocardial perfusion reserve and two lowest 

scoring segments of myocardial perfusion reserve, compared to Fermi modelling 

(Table 7-5, Figures 7-8 to 7-10).  

Distributed parameter modelling-derived myocardial blood flow at stress and 

myocardial perfusion reserve demonstrated superior diagnostic accuracy in detecting 

hypoperfusion in obstructive coronary artery disease, compared to all other 

haemodynamic parameter-model combinations (Table 7-5). Moreover, distributed 

parameter modelling-derived myocardial blood flow at stress reached higher 

sensitivity compared to myocardial perfusion reserve and mean myocardial perfusion 

reserve of the two lowest scoring segments, calculated using the distributed 

parameter model. 

7.4.4 Physiological considerations in per vessel analysis 

The specificities and positive predictive values were in a lower range compared to 

the sensitivities and negative predictive values for both modelling approaches in per 

vessel based analysis (Table 7-5). This means that quantitative MR analysis has 

identified hypoperfusion in vessels with (no, minor or non)-obstructive coronary 

artery disease, which have reduced the specificity and positive predictive value (false 

positives in per vessel analysis).  
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72 % of the patients with (no, minor or non)-obstructive disease had at least one 

vessel with obstructive coronary artery disease. Furthermore, the vast majority of the 

study participants had been referred for angina (96%), were under treatment for 

cardiac arrhythmias and hypertension (beta blockers, 83 %), were under medication 

for hyperlipidemia (statins, 88 %) and were previous smokers (63 %), all high risk 

factors for microvascular dysfunction [155].  

It has been demonstrated that distal pre-arterioles in the myocardial microvascular 

network are more responsive to changes in the intravascular pressure than other types 

of myocardial vessels and therefore are responsible for auto-regulation of myocardial 

blood flow [156]. In addition, arterioles are responsive to changes in the intra-

myocardial concentration of metabolites and are mainly responsible for the metabolic 

regulation of myocardial blood flow [155].  

It is important to consider that microvascular dysfunction may have a major impact 

on global myocardial blood flow [137, 155, 156], which could also affect myocardial 

perfusion in vessels with (no, minor or non)-obstructive coronary artery disease. This 

may explain why quantitative MR analysis has detected reduced myocardial blood 

flow in vessels with (no, minor or non)-obstructive coronary artery disease in our 

population, which in turn decreased the specificity and positive predictive value of 

both modelling approaches (false positives in per vessel analysis).  

Results from the per vessel based quantitative MR analysis demonstrate that it may 

not always be possible to discriminate vessel territories classified with (no, minor or 

non)-obstructive coronary artery in patients with at least one vessel classified with 

obstructive coronary artery disease using quantitative modelling of MR perfusion 
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data. The coincidental effect of microvascular dysfunction in these patients could 

possibly explain the homogeneous deficiency in coronary blood flow detected with 

both quantitative modelling approaches.  

7.4.5 Methodological considerations in per vessel analysis 

Any possible misregistration between the actual architecture of vessel territories and 

the standard 16-segment model used for myocardial segmentation [16] is a 

methodological consideration that should not be excluded in both visual and 

quantitative MR analysis. Both types of analysis can be subject to overlap of vessel 

territories which could in turn affect the sensitivity and/or specificity of each method. 

In addition, misregistration between visual MR analysis and quantitative MR 

analysis is possible and could influence direct comparisons in diagnostic statistics.  

In that context, a previous study demonstrated a combination of left circumflex artery 

and right coronary artery territories for myocardial blood flow analysis, to overcome 

any overlaps of the above vessel territories [153]. Despite this, the reference method 

for quantitative MR analysis of myocardial perfusion still occurs across the three 

major epicardial arteries. This standard type of analysis was also implemented 

throughout this study (and throughout this thesis). 

7.4.6 Per patient based quantitative MR analysis 

The diagnostic accuracy of quantitative MR analysis was further examined in per 

patient based analysis. All patients with at least one vessel territory classified with 

obstructive coronary artery disease were stratified in Group 2, whilst patients with all 

vessels classified with (no, minor or non)-obstructive disease were stratified in 

Group 1.  
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The sensitivity and positive predictive value for per patient based analysis were 

improved for both models compared to per vessel based analysis, with distributed 

parameter modelling reaching the highest diagnostic accuracy (Table 7-8 versus 7-5). 

On ROC analysis, distributed parameter modelling-derived myocardial blood flow 

and perfusion reserve detected 47 and 46 of the 48 territories of patients with at least 

one vessel territory classified in Group 2, respectively. Fermi modelling-derived 

myocardial blood flow and perfusion reserve, both detected 42 of the 48 vessel 

territories. Also, the areas under the curve for distributed parameter modelling were 

considerably higher for myocardial blood flow, myocardial perfusion reserve and 

two lowest scoring segments of myocardial perfusion reserve, compared to Fermi 

modelling (Table 7-5, Figures 7-17 to 7-19).  

7.4.7 Physiological interpretations in per patient analysis  

The per patient based results indicate that distributed parameter modelling may be 

able to discriminate haemodynamic states of patients with at least one vessel 

classified with obstructive disease versus patients with all vessels classified with (no, 

minor or non)-obstructive disease.  

On ROC analysis, the Fermi and distributed parameter models detected reduced 

myocardial blood flow in the entire myocardium in 10 and 11 of 12 patients with 1- 

and 2-vessel disease, respectively. This can also indicate that in patients with at least 

one vessel classified with obstructive disease, the overall myocardial perfusion may 

be consistently lower compared to patients with all vessels classified with (no, minor 

or non)-obstructive disease (Figures 7-12, 7-14 and 7-16). 
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To further establish the haemodynamic thresholds for myocardial blood flow and 

myocardial perfusion reserve demonstrated at this chapter, a larger study population 

is needed for a follow-up trial.  

7.4.8 Visual CT versus quantitative MR analysis 

In per vessel based analysis, combined CT angiography/perfusion showed higher 

specificity and positive predictive value than CT angiography alone. Although visual 

estimates from CT perfusion imaging showed low to moderate diagnostic accuracy in 

detecting obstructive coronary artery disease, it has been shown to be additive to CT 

angiography in per vessel analysis, which is consistent with previous studies [84, 90, 

95, 150]. 

Even though combined CT angiography/perfusion showed higher specificity and 

positive predictive value, it performed lower sensitivity in detecting obstructive 

coronary artery disease, compared to distributed parameter modelling-derived 

myocardial blood flow.  

In per patient based analysis, CT angiography and combined CT 

angiography/perfusion, reached the highest diagnostic accuracy in detecting 

obstructive coronary artery disease (note: although marginally lower compared to 

distributed parameter modelling). Diagnostic accuracy parameters presented in this 

study for both CT angiography and combined CT angiography/perfusion are in 

agreement with previous studies and can support the potential of the above methods 

in the clinical setting, for the detection of obstructive coronary artery disease [84, 

150].  
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7.4.9 Study limitations 

The above methods need to be assessed in larger patient cohorts to further assess 

their diagnostic accuracy.  

Invasive coronary angiography outcomes were not quantitatively assessed. However, 

angiographic outcomes were combined with fractional flow reserve in all patients to 

discriminate haemodynamically significant coronary atherosclerosis [109, 120, 121]. 

For magnetic resonance perfusion acquisitions, a single bolus protocol was 

implemented to eliminate patient discomfort. Thus, it was impossible to assess any 

myocardial blood flow overestimations at the specific contrast agent dose (0.05 

mmol/kg) used in this study, due to arterial input function saturation issues. This 

assessment was made in a cohort of healthy volunteers in chapter 5 (using dual bolus 

imaging), in which it was shown that the distributed parameter model was less 

dependent on saturation effects, although at a lower contrast agent dose (0.03 

mmol/kg) [141]. However, it is currently shown here that distributed parameter 

modelling performed higher sensitivity and specificity in detecting obstructive 

coronary artery disease in single bolus data, than the Fermi model.  

T1 maps of the myocardium in the absence of contrast enhancement were not 

acquired in 5 patients. For myocardial blood flow quantification, baseline T1 values 

for these patients were estimated from T1 maps of patients with perfusion defects in 

the same vessel territories.  

Currently, the majority of MR myocardial perfusion studies acquire a limited number 

(typically 3) of noncontiguous two-dimensional short axis slices. Recently, three-

dimensional myocardial perfusion methods have been proposed to overcome any 
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limitations deriving from two-dimensional spatial coverage [157, 158]. Although 

these methods have not been extensively validated, they may provide a larger cardiac 

coverage for visual and quantitative MR analysis and could possibly provide a more 

accurate comparison between MR and CT data through registration of the two 3D 

datasets.   

The validity of visual assessments from CT perfusion images may has been affected 

by the effects of beta blockers administered in some subjects. Beta blockers may 

have induced pressure decreases in the vasculature which can possibly influence the 

coronary haemodynamics. Only visual estimates were used at this study for the 

analysis of CT data. A more direct comparison between MR and CT data would 

necessitate performing quantification of stenotic lesions from CT angiographic data 

and semi-quantification of transmural perfusion ratios from CT perfusion data, using 

dedicated software [90, 95, 98, 150, 151]. At the time of writing this thesis, none of 

the quantitative CT data analysis was available. In this chapter, the author aimed to 

compare the diagnostic accuracy of quantitative MR analysis against the current 

clinical reference standard (i.e. visual assessment) of MR and CT data analysis.  

 

 

 

 

 

 



224 
 

7.5 Conclusions 

Analysis of absolute myocardial blood flow at hyperaemia with distributed parameter 

modelling showed high sensitivity and negative predictive value in detecting 

hypoperfusion corresponding to haemodynamically significant stenotic vessel 

territories, assessed using invasive coronary angiography and fractional flow reserve. 

In this data analysis, the sensitivity and negative predictive value of distributed 

parameter modelling was higher in detecting impaired haemodynamics, than in the 

case of Fermi modelling and visual MR estimates.  

Distributed parameter modelling reached superior sensitivity in detecting obstructive 

coronary artery disease compared to visual estimates from CT imaging. CT perfusion 

was additive to CT angiography and combined CT angiography/perfusion showed 

high diagnostic accuracy in detecting obstructive coronary artery disease.  

In per patient based analysis, the diagnostic accuracy of all methods was improved. 

Distributed parameter-derived haemodynamic thresholds on ROC analysis may have 

potential to be established as important biomarkers, in order to stratify patients with 

obstructive coronary artery disease.    

Comparing quantitative MR analysis against invasive methods and visual estimates 

from MR and CT, this chapter demonstrates that distributed parameter modelling 

may have a potential as a non-invasive method, at the setting of detection and 

prognostication of haemodynamically significant coronary artery disease.  
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Summary 

This chapter detailed assessment of quantitative MR analysis using Fermi and 

distributed parameter modelling against invasive clinical standard methods, using 

data from 24 patients with known or suspected coronary artery disease. Quantitative 

MR analysis was also compared against visual MR and CT analysis. 

In per vessel analysis, distributed parameter modelling reached superior sensitivity 

and negative predictive value in detecting obstructive coronary artery disease, 

compared to both Fermi modelling and visual MR estimates. Moreover, distributed 

parameter modelling showed higher sensitivity in detecting obstructive coronary 

artery disease, compared to visual estimates from CT imaging.  

In per patient based analysis, haemodynamic thresholds on ROC analysis for 

distributed parameter modelling showed the highest sensitivity and negative 

predictive value in stratifying patients with at least one vessel with obstructive 

coronary artery disease. Assessing these results in larger patient cohorts can 

potentially establish the use of quantitative MR analysis for the diagnosis and 

prognostication of haemodynamically significant coronary artery disease.  
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8. Conclusions and future work 

This thesis describes the development of an MRI cardiac perfusion analysis protocol 

at 3T. Particularly, it focused on the implementation of Fermi and one-barrier, two-

region distributed parameter modelling for measuring myocardial blood flow and 

additional microvascular characteristics from healthy volunteer, simulated and 

clinical data.  

8.1 Summary of conclusions 

The work in chapter 5 detailed a comparison of single versus dual bolus estimates of 

myocardial blood flow, using Fermi and distributed parameter modelling. Dual bolus 

imaging was implemented in eight healthy volunteers. For the single bolus analysis, 

the arterial input function was extracted from the standard (main bolus) contrast 

agent dose component. For the dual bolus analysis, the pre-bolus arterial input 

function was scaled and used for deconvolution analysis. Fermi modelling 

demonstrated significant overestimations in myocardial blood flow in single bolus 

compared to dual bolus analysis [24, 31, 54, 75]. No significant difference was 

observed in distributed parameter-derived myocardial blood flow estimates between 

single and dual bolus analysis, which shows that distributed parameter modelling 

may be less dependent on arterial input function saturation than Fermi modelling.  

Fermi modelling is currently the most popular approach for MR perfusion 

quantification [31, 54, 58, 59, 75, 76]. However, Fermi modelling systematically 

introduces considerable myocardial blood flow overestimations in single bolus data 

corrupted due to arterial input function saturation [31, 54, 75]. Single bolus protocols 

are still widely used in clinical imaging but are substantially limited to only reliably 
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obtaining qualitative assessments (possibly due to the fact that Fermi modelling is 

mainly selected for quantitative MR perfusion analysis) [24, 58, 59]. The findings of 

chapter 5 suggest that distributed parameter modelling may allow quantitative 

assessments from single bolus imaging that can be less dependent on arterial input 

function saturation. The distributed parameter model can be implemented in single 

bolus data provided that a relatively low contrast agent dose is used [141]. It is 

important to mention that the above model analysis has been assessed using a 

relatively low contrast agent dose at 3T (0.03 mmol/kg, see future work in subsection 

8.3).   

Implementation of both models in a pilot cohort of five patients with coronary artery 

disease (CAD), showed that the distributed parameter model detected reduced 

myocardial blood flow in all 7 vessels with obstructive lesions and in all 5 vessels 

with non-obstructive lesions when compared against invasive methods that are 

currently being used as a clinical gold standard assessment. Fermi modelling 

detected 6 and 3 vessel territories in these patients, respectively. 

In chapter 6, distributed parameter and first-pass distributed parameter modelling 

were further investigated against ideal values from simulated data. Simulated 

contrast agent concentration curves were produced through the convolution of the 

distributed parameter model with the entire contrast agent concentration-time course 

of an optimum arterial input function (derived from data of a healthy subject) [50, 

66, 141]. Distributed parameter modelling can be used to calculate myocardial blood 

flow as well as additional microvascular characteristics including intravascular 

space, extravascular-extracellular space, permeability surface area product, 

extraction fraction and volume of distribution [66]. The fitted parameters Tc, Te and 
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T were ranged to simulate a series of normal myocardial blood flow values (1.0-5.0 

ml/min/ml of tissue). It was demonstrated that distributed parameter-derived 

myocardial blood flow values generated using only the first-pass time course of the 

data were not different versus myocardial blood flow values from simulated data 

generated using the entire time course. This comparison suggests that estimates of 

myocardial blood flow generated using distributed parameter modelling were 

independent on the number of time points of the dataset used for fitting in this 

simulation (assuming that the time range selected for analysis includes at least the 

first-pass of contrast).  

The extravascular-extracellular space and distribution volume were significantly 

lower in first-pass distributed parameter modelling as compared to ideal values, due 

to reductions in the fitted parameter T (mean overall transit time). Thus, it is 

important to consider that for the precise calculation of the extravascular-

extracellular space and distribution volume, distributed parameter modelling may 

have to be convolved with the entire arterial input function curve [24]. 

The findings in chapter 6 suggest that the application of distributed parameter 

modelling can eliminate any uncertainties for the selection of the first-pass range 

from the entire acquired dataset. The selection of the first-pass range can be 

challenging either when the concentration minimum is not clearly visible due to 

noise effects and/ or in dual bolus imaging, in which the bolus dispersion of a scaled 

pre-bolus arterial input function can be different compared to a standard main bolus 

arterial input function. Observing no differences in myocardial blood flow estimates 

between first-pass distributed parameter modelling and simulated data described in 

this chapter, may in turn contribute to facilitate development and optimisation of 
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more reliable automated software algorithms, for myocardial blood flow 

quantification. Sensitivity to accurate selection of the first-pass range (mainly when 

dealing with dual bolus imaging data), currently requires manual input for this 

process to be reliable. Although mathematical algorithms can potentially be 

implemented in the future for automatically identifying the first-pass range, 

interpretation is still needed for dual bolus imaging data whether the first-pass range 

is selected from the scaled pre-bolus or the standard main arterial input function. A 

modelling approach such as the distributed parameter model, showing lack of 

dependence on the number of time points used for fitting, could therefore potentially 

aid in elimination of these uncertainties and help to facilitate development of 

automated algorithms.  

In chapter 7, data from twenty four patients with known or suspected CAD were 

analysed. In per vessel analysis, it was shown that the sensitivity and negative 

predictive value of distributed parameter modelling was higher in detecting reduced 

myocardial blood flow in obstructive CAD, compared to Fermi modelling and visual 

MR estimates. Significant differences between vessels classified with obstructive 

versus non-obstructive CAD were higher for distributed parameter modelling, 

compared to Fermi modelling. Significant differences were also observed between 

obstructive and non-obstructive CAD, across all distributed parameter modelling-

derived microvascular characteristics. Furthermore, distributed parameter modelling 

reached superior sensitivity in detecting obstructive CAD, compared to visual 

estimates from CT imaging.  

In per patient based analysis, the diagnostic accuracy of all applied models was 

further improved. Differences in haemodynamics between obstructive and non-
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obstructive CAD were considerably increased in per patient compared to per vessel 

analysis. Haemodynamic thresholds on ROC analysis for distributed parameter 

modelling showed the highest sensitivity and negative predictive value in stratifying 

patients with at least one vessel with obstructive CAD. 

Both the per vessel and per patient analysis of cardiac MR perfusion data 

demonstrated that distributed parameter modelling showed higher sensitivity and 

specificity compared to Fermi modelling (which is currently the most popular 

approach for myocardial blood flow analysis from MR data). This analysis also 

showed that distributed parameter modelling may have a potential as a non-invasive 

tool for the diagnosis and prognostication of haemodynamically significant CAD.  

The work presented in chapters 5 and 7 was performed before investigating 

numerical simulations in chapter 6. This is the reason why first-pass distributed 

parameter modelling was not investigated in the patient population of chapter 7, for 

assessing its diagnostic performance in the detection of obstructive coronary artery 

disease.  

8.2 Further discussion  

To date, the majority of myocardial perfusion MR studies (including the present 

work) assume negligible water exchange effects in the myocardial tissue [24, 69]. As 

described in chapters 2 and 3, the concentration of gadolinium in the myocardium 

can be indirectly detected through the change in T1 relaxation rate (in T1 weighted 

techniques used for myocardial DCE-MRI). If sufficiently fast, water exchange 

across the capillary barrier (water exchange between the intravascular and 

extravascular-extracellular space) and the cellular membrane (between the 
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extravascular-extracellular and intracellular space), may allow proton spins to sample 

different environments during spin relaxation [24, 159]. The observed T1 relaxation 

rate can therefore no longer be determined only by local contrast agent 

concentrations, but also depends on the rates at which proton spins exchange 

between spaces and by the relative volumes of these spaces [159].   

There are two limiting cases according to which water exchange effects can be 

negligible: the slow (or no exchange) limit and the fast exchange limit [159]. It is 

still unknown whether either limit might be closer to myocardial physiology. A 

previous myocardial perfusion study has shown that the rapid application of 

radiofrequency pulses (short repetition time) during relaxation recovery can reduce 

the sensitivity of the observed T1 relaxation rate to water exchange [28]. Another 

study has shown that the zero exchange assumption might be reasonable for the 

interpretation of myocardial contrast enhancement, when a combination of high flip 

angle (20
0
) and short repetition time (2.40 ms) are used in a saturation recovery 

gradient echo sequence [160]. More recently, Li et al have incorporated a description 

of water exchange into a tracer kinetic model and suggested that quantification of 

perfusion from DCE-MRI data is not sensitive to water exchange effects [161]. The 

investigation of water exchange effects in DCE-MRI is a complex issue and work is 

still in progress [24, 28, 159-161].  

A possible method for assessing whether water exchange effects can affect 

measurements from DCE-MRI data could be a comparison versus absolute 

measurements from cardiac positron emission tomography (PET) data [136,137]. 

Quantification of myocardial blood flow and microvascular characteristics from PET 

are challenged by other type of technical problems, such as attenuation correction 
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issues or the fact that low spatial resolution PET data often lead to signal spill over 

from the left ventricle onto the myocardial tissue [154].  

PET uses a radioactive tracer such as labelled water and benefits from a more direct 

relationship between signal intensity and radiotracer concentration [154], compared 

to DCE-MRI. Moreover, PET has been widely used to assess haemodynamics in 

healthy volunteers [162, 163], in patients with coronary artery disease [136, 137] and 

in patients with other cardiac diseases [164]. A thorough comparison between 

cardiac DCE-MRI and cardiac PET perfusion imaging acquired in the same subjects 

may provide new insights for the interpretation of absolute measurements obtained 

through mathematical modelling (see future work, subsection 8.3). This assessment 

could potentially provide answers with regard to whether the assumption of 

negligible water exchange effects in cardiac DCE-MRI can overestimate or 

underestimate myocardial blood flow and volume of distribution [159]. In the data 

analysis of chapters 5-7, it has been demonstrated that distributed parameter 

modelling may be less dependent on arterial input function saturation, is independent 

of the number of time points used for fitting and has better sensitivity and specificity 

in detecting obstructive CAD than Fermi modelling. Absolute validation of any 

myocardial blood flow model is challenging and there is no non-invasive imaging 

methodology that can be considered a true ‘gold standard’ assessment of myocardial 

blood flow (each has its limitations). Thus, a comparison of DCE-MRI with 

distributed parameter modelling versus current absolute ‘reference’ measurements 

derived from PET perfusion imaging acquired in the same subjects, would help to 

test the results and conclusions of this work. 
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8.3 Future work 

A future aim is to extend the analysis in chapter 5 to examine the behaviour of other 

model-based [37] or model-independent applications [34, 43], in single versus dual 

bolus analysis. Moreover, the impact of contrast agent dose in single versus dual 

bolus analysis can be further assessed for each model application, by recruiting a 

new healthy volunteer cohort, in which slightly higher (e.g. 0.04, 0.05 mmol/kg) and 

slightly lower contrast agent doses (e.g. 0.025 mmol/kg) can be investigated. To our 

knowledge, this has not yet been explored for each model application, possibly 

because Fermi modelling is currently the preferred method for MR perfusion analysis 

[31, 54, 58, 59, 75, 76]. Assessing the impact of contrast agent dose using a range of 

doses may potentially provide more options in the clinical setting for obtaining 

reproducible quantitative assessments whilst maintaining high contrast-to-noise ratio 

in the myocardium in patients who have compromised vascular dynamics. Numerical 

simulations can also be performed to further investigate why distributed parameter 

modelling is less dependent to arterial input function saturation effects than the 

Fermi model.   

Chapter 6 is currently being prepared as manuscript, for submission to an imaging-

based journal. With reference to the work presented in chapter 6, other model-based 

[66] or model-independent [34, 43] applications can also be investigated as to 

whether analysis using only the first-pass range can give accurate measurements of 

myocardial blood flow, compared to ideal values from simulated data. Modelling 

approaches that prove capable of quantifying blood flow from the first-pass range 

may be subsequently used for further assessment against simulated first-pass 

myocardial perfusion data derived from a hardware flow phantom [60]. This process 
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would assess which model application is a better estimate of first-pass phantom data. 

Also, additional numerical simulations can be performed to assess which is the 

minimum time frame that can be used to extract reliable information of myocardial 

blood flow and microvascular characteristics with distributed parameter modelling (it 

may be less than the first-pass range that was used in this thesis).  

The qualitative and quantitative MR analysis versus invasive methods presented in 

chapter 7 will be submitted as manuscript to a cardiovascular MR- imaging focused 

journal. Obtaining semi-quantification measurements for transmural perfusion ratios 

from CT perfusion data [90], would give more direct comparisons against our 

absolute quantifications from MR imaging. These measurements will be performed 

in the next few months by a team of experienced clinicians at the Clinical Research 

Imaging Centre of the University of Edinburgh. Assessing these findings in larger 

patient cohorts would help to establish haemodynamic thresholds for quantitative 

MR analysis, at the setting of non-invasive diagnosis of obstructive CAD. Finally, 

cardiac perfusion PET data have been acquired in a subpopulation (N=8) of this 

patient cohort. It is our aim to analyse these data and investigate and assess any 

cross-correlations with absolute measurements from DCE-MRI data.  

In addition to the above, the author would like to mention that due to time 

restrictions it was not possible to examine model application using other nonlinearity 

correction methods such as the dual sequence [69, 72] or the bookend technique that 

has been recently investigated for cardiac data [165]. Thus, in the work presented in 

this thesis, dual bolus imaging was considered to be the gold standard for assessing 

and interpreting our model comparisons in chapters 5 and 7. The main limitation of 

the dual bolus imaging might be compatibility issues in contrast agent dispersions 
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between the pre-bolus and the main bolus data (as described in chapter 6). A 

comparison between different non-linearity methods could potentially demonstrate 

whether either method can improve myocardial perfusion quantification from DCE-

MRI data.  
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10. Appendix   

The author presents here mathematical processes to provide a better understanding to 

the reader for some of the basic operations that were used throughout this thesis. 

Particularly, the mathematics leading to equation 2-18 (Appendix 1) and to equation 

3-1 (Appendix 2) are provided by combining background information from [12-14, 

25-27] and using knowledge from algebra and linear differential equations theory. 

The author also provides mathematical theory with regard to convolution, impulse 

response and deconvolution (Appendix 3), important subject areas for blood flow 

quantification from medical imaging data [17]. In the last subsection (Appendix 4), 

the basic steps for replicating contours and segmentation in Matlab are presented.  

 

10.1 Appendix 1 

The Bloch equations are a set of relationships that were developed by physicist Felix 

Bloch and calculate the nuclear magnetisation in a three dimensional Cartesian 

system Mx, My, Mz as a function of time: 
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where Bx, By, Bz are the x, y and z components of the main magnetic field B, γ is the 

gyromagnetic ratio, T1 and T2 are T1 and T2 relaxation times and Mo is the fully 

relaxed longitudinal magnetisation.   
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Considering that in MRI, the main magnetic field Bo is applied along the z-axis, it 

can be derived that Bx=By=0 and Bz=Bo. Bloch equations can then be simplified to: 
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To mathematically describe changes in longitudinal magnetisation Mz as a function 

of time, equation 10-6 is used. Equation 10-6 is a first order linear differential 

equation. Solving equation 10-6 for Mz gives the expression for the exponential 

recovery of longitudinal magnetization after the application of a preparation pulse 

(e.g. saturation, inversion pulse). The solution of 10-6 is provided here by the author.
                                          

 

Equation 10-6 can be rewritten:       
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Multiplying 10-6 by the integrating factor: 
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By using the product rule: 
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Finally solving for Mz: 
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The boundary conditions are now investigated.  

1. In equation 10-7, at t=0 and for a 180
o
 preparation pulse, Mz (0) = -Mo and: 
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and equation 10-7 becomes: 
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2. In equation 10-7, at t=0 and for a 90
o
 preparation pulse, Mz (0) = 0 and: 
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and equation 10-7 becomes: 
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Following the application of a non-selective preparation pulse, the magnetisation is 

allowed to relax for a specific amount of time (inversion time or TI). If Mz
1 

(-) is the 

longitudinal magnetisation just before the first slice-selective α-radiofrequency-pulse 

and Mz
n 

(-) is the longitudinal magnetisation before the n
th

 successive α-

radiofrequency-pulse, then: 

For a 180
o
 preparation pulse: 
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For a 90
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 preparation pulse: 
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where Mz
n 

(+) is the longitudinal magnetisation right after the n
th

 successive α-

radiofrequency-pulse. Just before the n
th

 α-radiofrequency-pulse, the general formula 

for the longitudinal magnetisation is: 
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And by using equation 10-10:     

                        
)1()cos()()( 111 T

TR

o
T

TR

n
z

n
z eMeaMM


 

       (10-12)                                                  

 

If: 

 
1)cos(

T

TR

eaa




 

11
T

TR

eb




 

Then: 

                                           
bMaMM o

n
z

n
z   )()( 1

                          (10-13) 

As described in [25-27], Mz
n 

(-) can also be expressed as a function of the first signal 

in the train, i.e. Mz
1 

(-). Thus, equation 10-13 can also be expressed as: 
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After many α pulses, magnetisation reaches a constant value Mz 
c
 which can be 

defined by equation 10-15 for n=∞: 
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For T1=1000 ms, the full recovery of Mz in an inversion-recovery experiment will be 

achieved at a time of about 4 to 5 times T1. Due to the application of successive a 

pulses, there is a constant loss of longitudinal magnetisation (after each a pulse) and 

therefore, one observes an effective relaxation time T1
*
 which is smaller than T1 [14].  

The magnetisation signal Mz
n 

(-) is related to Mz
c
 through the following treatment: 
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For an inversion recovery experiment at t=0, Mz
1 (0)= -1 and: 
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Equation 10-16 can be written as a monoexponential curve: 
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With: 
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Because TR<<T1*<T1, Mz
c can be given in a good approximation by: 
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Hence, the time dependence of magnetisation is given by:    
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equation 2-18 can be derived from 10-18:  
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where A, B and T1* can be calculated by a three-parameter fit.  

Finally T1 can be calculated from equation 2-19: 

                                             

)1/(*11  ABTT

                                          (2-19) 

                                             



268 
 

10.2 Appendix 2

 
As discussed in Appendix 1, the longitudinal magnetisation just before the nth a-

radiofrequency pulse is given by equation 10-14: 

                            a

a
bMaMM

n

o
n

z
n

z








1

1
)()(

1
11

                        (10-14) 

Because the MR signal is detected in the x-y plane, the magnetisation in the detection 

plane after the nth a-radiofrequency pulse is: 
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Thus, the MR signal generated after n a radiofrequency pulses in a saturation 

recovery FLASH sequence is given by [25]: 
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where SI is the MR signal intensity, Ψ is a calibration constant dependent on 

instrumental conditions, receiver gain, proton density and the flip angle α. PD is the 

pre-pulse delay which is the time between saturation pulse and the central line of k-

space. 
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10.3 Appendix 3 

Convolution is a mathematical technique with multiple applications that can be used 

to calculate the zero state response of a system to an arbitrary input signal by using 

the impulse response of the system. The zero state response of a system is the 

response to an input when the system has zero initial conditions. In mathematical 

terms, convolution can be seen as a mathematical operation of two functions f and g, 

producing a third function. The third function can typically be a modified version of 

one of the original functions f or g [17].  

The tissue impulse response is the basic property of a system which defines the way 

that the system responds to a stimulus or excitation (i.e. input signal). This can be 

schematically summarized in the following graph: 

                                                                      

where f(t) is the input signal and g(t) is the output.  

Let assume a linear and time-invariant system (LTI). If we now consider that the 

input is an impulse δ(t), then by definition, the output of the signal is the impulse 

response: 

 

Because of time-invariance, if the impulse is delayed by τ, then the output (i.e. 

impulse response) is also delayed by the same delay: 

 

 

Due to linearity, if the input is scaled by a factor, then the output is also scaled by the 

same factor. For example, if the input and output will be scaled by the factor f(τ)dτ: 

   

 h(t)  f(t)  g(t) 
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Furthermore, if we integrate the input from negative to positive infinity, the output is 

also integrated: 

 

 

From the shifting property of the tissue impulse response, it is known that: 
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Hence: 

 

 

By definition and based on the first diagram, if the input is f(t) then the output is g(t): 

 

Thus, the response of the system to a series of delayed input functions is: 
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Taking the limit as τ tends to 0, the summation in 10-20 yields the convolution 

integral: 

                                                
 

t

dtthftg

0

)()()(                                       (10-22) 

Equation 10-22 states that the output is equal to the sum of the responses from all 

individual impulses. Equation 10-22 can also be derived if the outputs of the last two 

diagrams will be equated. Thus, it can be concluded that if the tissue impulse 

response is known, it is possible to calculate the output for any given input. 
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The question that arises is how is it possible to calculate the tissue impulse response, 

if the input and output functions are known? In other words, how f(t) and g(t) 

functions are deconvolved, to calculate h(t)?  

The author here presents the model for deconvolution. The central idea is to convert 

our functions into the frequency domain using Fourier transform (FT). In the 

frequency domain, the output in equation 20-21 can be now calculated by the 

following multiplication (equation 10-23): 
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 where 

g ,


f  and 


h is the frequency domain of functions g, f and h respectively.       

To complete the deconvolution process, it is possible to get the tissue impulse 

response through the following division:              
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Finally, by using inverse Fourier transform (IFT), we can get the tissue impulse 

response in the time domain: 
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10.4 Appendix 4 

Basic steps for replicating contours and segmentation in Matlab are presented. 

1) After manual contouring in QMass, the x and y coordinates of all contours from 

each perfusion data set were saved in a txt file. A Matlab code was created to 

automatically identify and extract x and y coordinates of all contours from txt files 

which were then saved in a Matlab matrix. In a separate matrix, x and y coordinates 

of all starting points (blue crosses in Figure 4-11) across all dynamic perfusion 

images were also identified and saved. At this stage, it was possible to read and 

visualize cardiac contours and starting points on MR perfusion images in Matlab 

environment (Figure 10-1).  

 

 

 

 

 

 

 

Figure 10-1) a) Example image in Matlab of x and y coordinates of all endocardial (red x) 

and epicardial (green x) points read on MR perfusion images. b) Starting point and the 

nearest endocardial and epicardial points are shown with blue x.  

 

 

a) b) 
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2) From this step onwards, all geometrical and linear algebra operations that are 

automatically performed in QMass were interpreted and replicated in Matlab. In 

Qmass, the reference point for initiating myocardial segmentation is the starting 

point (blue cross in QMass and blue x in Matlab, Figures 4-11 and 10-1 

respectively). The starting point is set by the user (in one image) at the conjunction 

of the left and right ventricles and myocardial segmentation is then automatically 

performed. To initiate myocardial segmentation in Matlab, the nearest (one 

endocardial and one epicardial) point to the starting point was detected by applying 

the Pythagorean Theorem (equation 10-26) and Matlab coding. This can be detailed 

using Cartesian coordinates in Figure 10-2. In Matlab, the upper left corner in the 

image is (0,0). 

 

  

 

 

 

 

 

Figure 10-2) Endocardial (red) and epicardial (green) contours in Matlab Cartesian 

coordinates. The nearest endocardial and epicardial (black circles) point to the starting point 

was detected. xs, ys are the coordinates of the starting point and xe, ye are the coordinates of 

xs 

xe 

ye ys 

yes 

xes 

zes 
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the epicardial contour point (for simplicity only the epicardial contour point coordinates are 

presented here and the relative (imaginary) triangle is illustrated with red).  

Using equation 10-26 which is derived from the Pythagorean Theorem, it was 

possible to calculate the distances between the starting point and all the endocardial 

and epicardial contour points. The minimum distance was then detected and saved to 

define the nearest endocardial and epicardial contour point to the starting point. 

                                                                                          (10-26) 

where xes=xe-xs and yes=ye-ys. xe, ye and xs, ys are the x and y coordinates of each 

contour point (endocardial or epicardial) and of the starting point respectively. zes is 

the hypotenuse of the (imaginary) triangles formed with the other two sides being xes 

and yes, as shown in Figure 10-2. 

3) Both endocardial and epicardial contours were divided into 100 equally spaced 

points as first described in the study by von Land et al [132] and detailed in the thesis 

of van der Geest [133]. Starting from the nearest point to the starting point in both 

endocardial and epicardial contours, unequally spaced points were interpolated using 

parametric splines (using a Matlab function). After interpolation, the endocardial and 

epicardial contours were divided into 100 equally spaced points.  
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Figure 10-3) Myocardium is divided into 100 equally spaced chords in QMass. The same 

process (steps 3-7) was replicated in Matlab.   

4) A centerline was created by calculating the midpoints between all endocardial and 

epicardial (equally spaced) points. This can be described by the following set of 

equations: 

                                                                              (10-27) 

Similarly,
                          

 

                                          (10-28) 

where xep, yep and xen, yen are the x and y coordinates of the epicardial and 

endocardial equally spaced contour points respectively.  

5) Starting from the nearest midpoint (mo) to the starting point, the slope of the 

tangent line to each midpoint was then calculated using linear algebra (equation 10-

29).  
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                                                                                   (10-29) 

where xmo-2, ymo-2 and xmo+2, ymo+2 are the x and y coordinates of the second 

consecutive midpoint before and after mo (Figure 10-4). 

Subsequently, the slope of the perpendicular to the Tangentmo was calculated 

(equation 10-30). The point at which the perpendicular line intersects with the y axis 

was calculated using the linear equation (equation 10-31). 

                                                                                (10-30) 

                                                                           (10-31)                                                                  

where bn is the point at which the extension of the Perpendicularmo line intersects 

with the y axis and xmo and ymo are the coordinates of the midpoint mo (Figure 10-4). 

6) Between consecutive points along the cardiac contours (i.e. both endocardial and 

epicardial), (straight) line segments can be observed. The slopes of individual line 

segments could be calculated using equation 10-32.  

                                                                                               (10-32) 

where xo-1, yo-1 and xo, yo are the x and y coordinates of two consecutive points (i.e. 

ending points of each line segment) along the cardiac contours. Also, the point at 

which the extension of each line segment intersects with the y axis was calculated 

using the linear equation (equation 10-33).   

                                                                                               (10-33) 
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where bl is the point at which the extension of the line segment intersects with the y 

axis and xo and yo are the coordinates of the cardiac (endocardial or epicardial) 

contour point. Step 6 was repeated for all endocardial and epicardial line segments.  

7) The x and y coordinates of the intersections of the perpendicular line 

(Perpendicularmo) with individual line segments was then calculated (equation 10-34 

and 10-35). mo is the nearest midpoint to the starting point. eno and epo can also be 

defined, as the nearest endocardial and epicardial points to the starting point 

respectively. Since cardiac contouring can form curved lines, it was unknown with 

which line segment Perpendicularmo actually intersects. To account for complex 

curvatures when it was necessary for cardiac contouring to avoid image artifacts, the 

intersection points of three line segments before and after each eno and epo were 

calculated.    

                                                                                                        (10-34) 

                                                                                                       (10-35) 

 

where X and Y are the coordinates of the intersection points.  

The intersection points of the Perpendicularmo line with 6 line segments were 

calculated in total (with 6 endocardial line segments and 6 epicardial line segments). 

To discriminate from these intersection points the correct line segment with which 

the Perpendicularmo intersects (i.e. the correct X, Y point) and to exclude the 

possibility that the Perpendicularmo intersects with imaginary extensions of 

neighboring line segments, three algebraic relationships had to be satisfied:     
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a) First, the magnitude of the cross product of the line segment (with ending points: 

xo-1, yo-1 and xo, yo) and the (straight) line formed between the contour point X, Y and 

xo, yo had to be zero. This proves that the above straight lines are collinear.  

                                      (10-36) 

                                                                                               (10-37) 

                                                                                (10-38) 

Equation 10-36 describes the cross product of vectors u and v. Let u be the line 

segment and v be the line formed between the contour point X, Y and xo, yo. These 

straight line segments are two-dimensional vectors and thus, the first and second 

terms in equation 10-36 are neglected. Equation 10-37 represents the numeric 

solution of equation 10-36 whilst equation 10-38 gives the magnitude of the cross 

product. In two dimensional vectors, the terms a and b in equations 10-37 and 10-38 

are zero.  

b) The dot product of the aforementioned straight lines had to be positive.        

                                                   
                               

 (10-39)
 
 

Equation 10-39 gives the dot product of vectors u and v. u represents again the line 

segment and v is the line formed between the contour point X, Y and xo, yo. In two 

dimensional vectors the third term is neglected.  

c) The squared distance between the line segment points xo-1, yo-1 and xo, yo had to be 

bigger than the above dot product.  
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   (10-40)

                               
 

b) and c) prove that the line formed between the contour point X, Y and xo, yo is 

aligned with the line segment defined by xo-1, yo-1 and xo, yo and that the X, Y point 

can be found within the limits of the specific line segment. The correct X and Y 

coordinates were then saved. 

A graphical representation of the above process is presented in Figure 10-4.  

 

 

 

 

 

 

Figure 10-4) Graph showing consecutive endocardial (red), midpoint (black) and epicardial 

(green) equally spaced points. Tangent and perpendicular to the midpoint lines are 

illustrated. Line segments between consecutive contour points are shown for each cardiac 

contour. Small (black) line segments between X, Y and xo, yo along the endocardial (en) and 

epicardial (ep) contours are shown. The first chord perpendicular to the nearest midpoint 

(mo) to the starting point is shown. The blue cross represents the starting point. 

Step 7 was repeated for all 100 midpoints. X, Y points along both endocardial and 

epicardial contours were defined and saved. A line (i.e. half chord) was drawn to 

connect the correct X, Y point (along both endocardial and epicardial contours) with 
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its corresponding midpoint mo. Note that this line was always perpendicular to the 

midpoint. At the end of the processing, 100 chords were created which were 

connecting endocardial and epicardial points as shown in Figure 10-5c.  

 

 

 

 

 

 

 

 

 

 

 

Figure 10-5) a) Myocardial segmentation in Qmass. b) Myocardial segmentation replicated 

in Matlab. c) Endocardial (red) and epicardial (green) contours with centerline (blue) and all 

100 chords. d) All contours and chords for a full perfusion data set replicated in Matlab. 

8) Based on the QMass method for myocardial segmentation, basal and mid-

ventricular short axis views of the myocardium were divided into 6 myocardial 

segments. Starting from the first chord (i.e. chord perpendicular to the nearest 

a) b) 

c) d) 
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midpoint to the starting point) and counting anti-clockwise, myocardial segments 1, 

2, 3, 4, 5 and 6 (see Figure 4-11) consisted of 17, 17, 16, 17, 17 and 16 chords 

respectively. Apical slice was divided into 4 equal myocardial segments each one 

consisted of 25 chords. These segments were then renumbered according to the AHA 

model [Figure 4-4, 16]. Using this information, average signal intensity was 

extracted from each myocardial segment using Matlab.  
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..The enemy of man is not germs, but man himself, his pride, his prejudices, his stupidity, his 

arrogance. It was not enough to overthrow governments or masters, total revolution of 

thought was needed…  

..Peace is not the opposite of war, any more than death is the opposite of life. Every war is a 

defeat to the human spirit… 

..Until the man has become fully human, until he learns to conduct himself as a member of 

the earth, he will continue to create gods who will destroy him…  

..He spoke frequently of the past, it is true, not as something dead and forgotten however, but 

rather as something which we carry with us, something which fructifies the present and 

makes the future inviting. He spoke of little things and of great with equal reverence; he was 

never too busy to pause and dwell on the things which moved him; he had endless time on 

his hands, which in itself is the mark of a great soul. How can I ever forget that last 

impression he made upon me when we said farewell at the bus station in the heart of Athens? 

There are men who are so full, so rich, who give themselves so completely that each time 

you take leave of them, you feel it is absolutely of no consequence whether the parting is for 

a day or forever. They come to you brimming over and they fill you to overflowing. They 

ask nothing of you except that you participate in their superabundant joy of living. They 

never inquire which side of the fence you are on because the world they inhabit has no 

fences. They make themselves invulnerable by habitually exposing themselves to every 

danger. They grow more heroic in the measure that they reveal their weaknesses… 

From the book ‘The Colossus of Maroussi’, 1939, Greece.  

Henry Miller 
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