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Abstract

Let {Bβ(x), x ∈ SN} be a fractional Brownian motion on the N -dimensional unit sphere

SN with Hurst index β. We study the excursion probability P {supx∈T Bβ(x) > u} and

obtain the asymptotics as u→∞, where T can be the entire sphere SN or a geodesic disc

on SN .
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1 Introduction

Let {X(t), t ∈ T} be a real-valued Gaussian random field living on some parameter space

T . The extremes, especially excursion probabilities P{supt∈T X(t) > u}, of the field have

been extensively studied in the literature due to the importance in both probability theory

[26, 6, 10, 16, 20, 30] and statistical applications such as the p-value computation for controlling

the family-wise error [31, 32], nonparametric density estimation [5, 15, 25] and construction of

confidence bands [21, 33]. We refer to the survey [1] and monographs [24, 2, 3] for the history,

recent developments and more related applications on this subject.

Recently, the study of random fields on spheres is attracting more and more attention due

to vast applications in astronomy [22], spatial statistics [13, 28], geoscience [23, 19] and envi-

ronmental sciences [29]. In particular, Istas [17, 18] introduced spherical fractional Brownian

motion (abbreviated as SFBM throughout this paper) on spheres and studied the Karhunen-

Loève expansion and other properties. As an important extension to the classical fractional

Brownian motion on Euclidean space, it would be very useful and valuable to study the excur-

sion probability of SFBM, which is the main purpose of this paper.

∗Supported by NSF Grant DMS-1811632.
†Supported by Swiss National Science Foundation Grant 200021-175752/1.
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Let o be a fixed point on the N -dimensional unit sphere SN ⊂ RN+1. The SFBM, denoted

by Bβ = {Bβ(x), x ∈ SN}, is defined in Istas [17] as a centered real-valued Gaussian random

field on SN such that Bβ(o) = 0 and

E[Bβ(x)−Bβ(y)]2 = d2β(x, y), ∀x, y ∈ SN , (1.1)

where the index β ∈ (0, 1/2] and d(·, ·) is the spherical distance on SN , that is d(x, y) =

arccos 〈x, y〉, ∀x, y ∈ SN . Here 〈·, ·〉 is the usual inner product in RN+1. It follows immediately

that the covariance structure is given by

Cov(Bβ(x), Bβ(y)) =
1

2

(
d2β(x, o) + d2β(y, o)− d2β(x, y)

)
. (1.2)

In this paper, we shall study the asymptotics of the excursion probability P{supx∈T Bβ(x) >

u} as u → ∞. Two cases for the parameter set T are considered separately: (i) T = SN and

(ii) T = Ta := {x ∈ SN : d(x, o) ≤ a}, where a ∈ (0, π). In other words, Ta is the geodesic disc

on SN of radius a centered at o, so that Ta = SN when a = π. Notice that, the maximum of

the variance function of Bβ(x) over T will be attained at a single point for case (i) and on the

boundary set {x ∈ SN : d(x, o) = a}, which is in fact an (N − 1)-dimensional sphere, for case

(ii), respectively, making the latter case more challenging.

Since the sphere SN is not an Euclidean space, it would be hard to apply directly the

traditional double sum method over SN to derive the asymptotics of the excursion probability.

Instead, we shall apply the main technique in Cheng and Xiao [7] to consider the SFBM as

a Gaussian random field on Euclidean space by using spherical coordinate transformation. In

such way, we can study the local behaviors of the standard deviation and correlation functions

of the field under spherical coordinates (see Lemmas 3.2 and 4.2 below), and then apply the

results in Euclidean space (see Lemma 3.3 and Theorem 4.3 below) to derive the desired

asymptotics of the excursion probabilities in Theorems 3.4 and 4.5. In particular, for case (ii),

the maximum of variance is attained on a set of dimension at least one (when N ≥ 2) and there

is no known asymptotic result in the literature except for the two-dimensional case studied in

[10]. In order to obtain the asymptotics on a geodesic disc in Theorem 4.5, we establish an

asymptotic result on Euclidean space in Theorem 4.3 which is valuable itself in extreme value

theory and will have further applications in the future.

The paper is organized as follows. We first introduce the preliminaries, such as spherical

coordinate transformation and the Pickands and Piterbarg constants, in Section 2; and then

study the asymptotics of the excursion probabilities of Bβ(x) on the entire sphere SN and on a

geodesic disc in Sections 3 and 4, respectively. Finally, the Appendix contains some auxiliary

results and the proof of Theorem 4.3.
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2 Preliminaries

2.1 Spherical Coordinates and Notations

For x = (x1, . . . , xN , xN+1) ∈ SN , its corresponding spherical coordinate θ = (θ1, . . . , θN ) is

defined by the following way.

x1 = cos θ1, . . . , xN =

(
N−1∏
i=1

sin θi

)
cos θN , xN+1 =

N∏
i=1

sin θi, (2.1)

where θ ∈ Θ := [0, π]N−1 × [0, 2π).

Throughout this paper, for two points x = (x1, . . . , xN+1) and y = (y1, . . . , yN+1) on SN ,

we always denote by θ = (θ1, . . . , θN ) and ϕ = (ϕ1, . . . , ϕN ) the spherical coordinates of x

and y, respectively. For functions f(x) and g(x, y), x, y ∈ SN , we denote by f̃(θ) := f(x) and

g̃(θ, ϕ) := g(x, y) the corresponding functions of f(x) and g(x, y) under spherical coordinates,

respectively.

Let d(·, ·) denote the spherical distance on SN and let ‖ · ‖ be the Euclidean norm in RN+1

or in RN , which will be clear from the context. For a set D ⊂ RN , denote by mes(D) the

measure (volume) of D. Denote by Ψ(u) the tail probability of standard normal distribution,

that is Ψ(u) = (2π)−1/2
∫∞
u e−v

2/2dv. For any two real-valued functions h1(u) and h2(u), we

say h1(u) ∼ h2(u) as u→ u0 ∈ [−∞,+∞] if limu→u0 h1(u)/h2(u) = 1.

2.2 Pickands and Piterbarg Constants

Let {χH(t), t ∈ RN}, H ∈ (0, 1], be a Gaussian random field with mean function

E (χH(t)) = −‖t‖2H , t ∈ RN ,

and covariance

Cov(χH(t), χH(s)) = ‖t‖2H + ‖s‖2H − ‖t− s‖2H , t, s ∈ RN .

Let H2H(E) = E {supt∈E exp[χH(t)]}, where E ⊂ RN is a compact set. The Pickands constant

[24] is defined by

HN2H := lim
S→∞

HN2H([0, S])

S
, where HN2H([0, S]) = lim

S1→∞

H2H([0, S]× [0, S1]N−1)

SN−1
1

. (2.2)

The Piterbarg constant [4, 24] is defined by

Pg2H := lim
S→∞

Pg2H([−S, S]N ), where Pg2H(E) = E
{

sup
t∈E

eχH(t)−g(t)
}
, (2.3)

E ⊂ RN is a compact set and g is a continuous function over RN . Moreover, let

Mg
2H := lim

S→∞
lim

S1→∞

Pg2H([−S, S]× [0, S1]N−1)

SN−1
1

,

M̂g
2H := lim

S→∞
Mg

2H([0, S]), where Mg
2H([0, S]) = lim

S1→∞

Pg2H([0, S]× [0, S1]N−1)

SN−1
1

,

(2.4)

if the limits above exist.
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3 Excursion Probability on SN

We first study the excursion probability of Bβ over the entire sphere. Recall the notations intro-

duced in Section 2.1, we have that P {supx∈SN Bβ(x) > u} is equivalent to P{supθ∈Θ B̃β(θ) >

u}, where B̃β(θ) := Bβ(x) and Θ = [0, π]N−1 × [0, 2π) is an N -dimensional rectangle on RN .

Therefore, to establish the asymptotics for the excursion probability of Bβ, we will study

the properties of the standard deviation and correlation functions of B̃β, which is a Gaussian

random field living on Θ, and then apply results on extremes for Gaussian random fields on

Euclidean space.

In this section, we assume without loss of generality that Bβ starts at o = (0, 0, . . . , 1, 0) ∈
RN+1 whose spherical coordinate is given by (π/2, . . . , π/2, 0) ∈ Θ ⊂ RN according to (2.1).

Denote by σ(x) the standard deviation function of Bβ(x). By (1.1),

σ(x) = dβ(x, o) = arccosβ 〈x, o〉 = arccosβ(xN ), x ∈ SN , (3.1)

which attains its unique maximum πβ at p := (0, 0, . . . ,−1, 0) ∈ RN+1 whose spherical coor-

dinate is given by θ0 := (π/2, . . . , π/2, π). Note that, by (3.1), we have the following standard

deviation function under spherical coordinates,

σ̃(θ) := σ(x) = arccosβ(xN ) = arccosβ

((
N−1∏
i=1

sin θi

)
cos θN

)
, (3.2)

which attains its unique maximum at the interior point θ0 ∈ Θ above. Additionally, it follows

from (1.1) and (1.2) that the correlation function of Bβ(x) becomes

r(x, y) =
d2β(x, o) + d2β(y, o)− d2β(x, y)

2dβ(x, o)dβ(y, o)
, x, y ∈ SN , (3.3)

whose form under spherical coordinates, denoted by r̃(θ, ϕ), can be obtained accordingly.

Remark 3.1 We choose the starting point of Bβ(x) at o = (0, 0, . . . , 1, 0) ∈ RN+1 to make

sure that the maximum of the variance function of B̃β(θ) will be attained at an interior point

in Θ. This will simplify a lot the arguments on deriving the asymptotics for the excursion

probability. Note that the choice of starting point o does not affect our results since the

asymptotics of the excursion probability is determined only by the behavior of the field around

the points attaining the maximum of the variance function. �

We first derive a result below showing the local behaviors of the standard deviation and

correlation functions of B̃β(θ), the SFBM under spherical coordinates, around θ0.

Lemma 3.2 Let θ0 = (π/2, . . . , π/2, π) ∈ Θ ⊂ RN . Then

σ̃(θ) = πβ − βπβ−1‖θ − θ0‖(1 + o(1)), as ‖θ − θ0‖ → 0; (3.4)

and

r̃(θ, ϕ) = 1− ‖ϕ− θ‖
2β

2π2β
(1 + o(1)), as ‖θ − θ0‖ ∨ ‖ϕ− θ0‖ → 0. (3.5)
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Proof. Note that, as xN ↓ −1,

arccos(xN )− arccos(−1) =

∫ xN

−1

−1√
1− t2

dt =

∫ 1+xN

0

−1√
2t− t2

dt

∼ −
∫ 1+xN

0

1√
2t
dt = −

√
2(1 + xN ).

(3.6)

It then follows from (3.6) and Taylor’s expansion that, as ‖θ − θ0‖ → 0,

σ̃(θ)− πβ = arccosβ(
N−1∏
i=1

sin θi cos θN )− πβ ∼ βπβ−1

(
arccos(

N−1∏
i=1

sin θi cos θN )− arccos(−1)

)

∼ −
√

2βπβ−1

√√√√1 +

N−1∏
i=1

sin θi cos θN ∼ −βπβ−1

√√√√N−1∑
i=1

|θi − π/2|2 + |θN − π|2,

yielding (3.4).

We derive next the expansion for the correlation function. First note that

1− r(x, y) =
d2β(x, y)−

(
dβ(x, o)− dβ(y, o)

)2
2dβ(x, o)dβ(y, o)

. (3.7)

As x, y → p = (0, 0, . . . ,−1, 0) ∈ RN+1, which is equivalent to θ, ϕ→ θ0, by Taylor’s formula,(
dβ(x, o)− dβ(y, o)

)2
∼ β2π2(β−1)(d(x, o)− d(y, o))2.

Combining this with the triangle inequality such that |d(x, o) − d(y, o)| ≤ d(x, y), we obtain

that for β ∈ (0, 1/2],(
dβ(x, o)− dβ(y, o)

)2
= o

(
d2β(x, y)

)
, as x, y → p,

implying 1 − r(x, y) ∼ d2β(x, y)/(2π2β) by (3.7). Note also that by Lemma 2.1 in Cheng and

Xiao [7], as x, y → p, d(x, y) ∼ ‖θ − ϕ‖. Therefore,

1− r̃(θ, ϕ) = 1− r(x, y) ∼ d2β(x, y)

2π2β
∼ ‖ϕ− θ‖

2β

2π2β
,

yielding (3.5). �

For convenience, we present here a simpler version of Theorem 8.2 in Piterbarg [24]. Let

{X(t), t ∈ E}, where E ⊂ RN is a compact set, be a centered Gaussian random field with

variance function attaining its maximum at the unique point t0 ∈ E. Moreover, there exist

non-degenerate N ×N matrices A and C, and constants η > 0 and α ∈ (0, 2] such that√
Var(X(t)) = 1− ‖A(t− t0)‖η(1 + o(1)), ‖t− t0‖ → 0, (3.8)

and

Corr(X(t), X(s)) = 1− ‖C(t− s)‖α(1 + o(1)), t, s→ t0. (3.9)

Additionally, there exist γ > 0 and G > 0 such that

E [X(t)−X(s)]2 ≤ G‖t− s‖γ , s, t ∈ E. (3.10)
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Lemma 3.3 Let {X(t), t ∈ E}, where E ⊂ RN is a compact set, be a centered Gaussian

random field with variance function attaining its maximum at the unique point t0 ∈ E. Assume

further that t0 is an inner point of E and (3.8)-(3.10) are satisfied.

If α < η, then

P
{

sup
t∈E

X(t) > u

}
∼ HNα

∫
RN

e−‖AC
−1t‖ηdt u

2N
α
− 2N

η Ψ(u), u→∞. (3.11)

If α = η, then

P
{

sup
t∈E

X(t) > u

}
∼ P‖AC−1t‖α

α Ψ(u), u→∞. (3.12)

If α > η, then

P
{

sup
t∈E

X(t) > u

}
∼ Ψ(u), u→∞.

We are now ready to derive one of our main results as follows.

Theorem 3.4 Let {Bβ(x), x ∈ SN} be a SFBM, where β ∈ (0, 1/2].

(i) If β ∈ (0, 1/2), then

P

{
sup
x∈SN

Bβ(x) > u

}
∼ HN2β

N !π(2β−1/2)N

2
N
2β βNΓ(N/2 + 1)

u
(1−2β)N

β Ψ(π−βu), u→∞,

where HN2β is the Pickands constant defined in (2.2).

(ii) If β = 1/2, then

P

{
sup
x∈SN

Bβ(x) > u

}
∼ Pg1 Ψ(π−1/2u), u→∞.

where Pg1 is the Piterbarg constant defined in (2.3) and g(t) =
√∑N

i=1 t
2
i , t ∈ RN .

Proof. (i) Note that

P

{
sup
x∈SN

Bβ(x) > u

}
= P

{
sup
θ∈Θ

B̃β(θ)

πβ
>

u

πβ

}
.

It follows from Lemma 3.2 that

1− σ̃(θ)

πβ
=
β

π
‖θ − θ0‖(1 + o(1)), ‖θ − θ0‖ → 0,

1− r̃(θ, ϕ) =
1

2π2β
‖θ − ϕ‖2β(1 + o(1)), ‖θ − θ0‖ ∨ ‖ϕ− θ0‖ → 0.

Applying the identity

‖x− y‖ = 2 sin

(
d(x, y)

2

)
, ∀x, y ∈ SN ,

there exists a positive constant C1 such that

d2β(x, y) ≤ C1‖x− y‖2β, ∀x, y ∈ SN .
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Combining this inequality with (1.1), there exists a positive constant C2 such that

E
[
B̃β(θ)− B̃β(ϕ)

]2
= d2β(x, y) ≤ C1‖x− y‖2β ≤ C2‖θ − ϕ‖2β, ∀θ, ϕ ∈ Θ.

Therefore, for β ∈ (0, 1/2), applying Lemma 3.3 with η = 1, α = 2β, A = βπ−1IN and

C = 2−1/(2β)π−1IN , we obtain

P

{
sup
x∈SN

Bβ(x) > u

}
∼ HN2β

∫
RN

e−21/(2β)β‖s‖ds v
(1−2β)N

β Ψ(v),

where v = π−βu and IN is the N ×N identity matrix. Note that
∫∞

0 rN−1e−rdr = Γ(N) and∫
[0,π]N−2×[0,2π]

sinN−2 θ1 sinN−3 θ2 . . . sin θN−2dθ1 · · · dθN−1 = Area(SN−1) =
2πN/2

Γ(N/2)
, (3.13)

one can use the spherical coordinate transformation to obtain∫
RN

e−‖s‖ds = Γ(N)× 2πN/2

Γ(N/2)
=

N !πN/2

Γ(N/2 + 1)
.

Therefore, as u→∞,

P

{
sup
x∈SN

Bβ(x) > u

}
∼ HN2β

N !π(2β−1/2)N

2
N
2β βNΓ(N/2 + 1)

u
(1−2β)N

β Ψ(π−βu).

(ii) For β = 1/2, applying again Lemma 3.3, we have that

P

{
sup
x∈SN

Bβ(x) > u

}
∼ Pg1 Ψ(π−βu), u→∞,

where g(t) = ‖t‖, t ∈ RN . �

4 Excursion Probability on a Geodesic Disc

In this section, we will study the excursion probability of Bβ(x) over a geodesic disc on SN .

Without loss of generality, assume that Bβ(x) starts at o′ = (1, 0, . . . , 0) ∈ RN+1 whose

spherical coordinate is given by (0, . . . , 0) ∈ Θ ⊂ RN according to (2.1). The standard deviation

function of B̃β(θ) now becomes

σ̃(θ) = σ(x) = arccosβ 〈x, o′〉 = arccosβ(x1) = θβ1 , θ ∈ Θ. (4.1)

The geodesic disc on SN with radius a > 0 and center at o′ is defined as

Ta = {x ∈ SN : d(x, o′) ≤ a}.

Since d(x, o′) = θ1, the set corresponding to Ta under spherical coordinates becomes

Θa = [0, a]× [0, π]N−2 × [0, 2π).
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It is straightforward to check that σ̃(θ) attains its maximum only at

{θ ∈ Θa : θ1 = a} = {a} × [0, π]N−2 × [0, 2π),

which is one of the (N − 1)-dimensional faces of the N -dimensional rectangle Θa.

Remark 4.1 We choose the starting point of Bβ(x) at o′ = (1, 0, . . . , 0) ∈ RN+1 to make

the variance function of B̃β(θ) have a simple form so that the set attaining the maximum of

variance would be easier to handle. Again, the choice of starting point does not affect our

results. �

Similarly to Lemma 3.2, we have the following result describing the local behaviors of the

standard deviation and correlation functions of B̃β(θ) around Θa.

Lemma 4.2 Let Θa = [0, a]× [0, π]N−2 × [0, 2π). Then

σ̃(θ)

aβ
= 1− β

a
|a− θ1|(1 + o(1)), θ ∈ Θa, θ1 → a; (4.2)

and

r̃(θ, ϕ) = 1− (1 + o(1))
1

2a2β

[
(ϕ1 − θ1)2 + (sin2 a)(ϕ2 − θ2)2 + · · ·

+

(
sin2 a

N−1∏
i=2

sin2 θi

)
(ϕN − θN )2

]β
, θ, ϕ ∈ Θa, ‖θ − ϕ‖ → 0, θ1 → a.

(4.3)

Proof. Note that (4.2) follows immediately from Taylor’s formula. By similar arguments in

the proof of Lemma 3.2, we obtain

1− r̃(θ, ϕ) = 1− r(x, y) ∼ d2β(x, y)

2a2β
.

Then (4.3) follows from Lemma 2.1 in Cheng and Xiao [7]. �

Here, we present a result extending both Theorems 7.1 and 8.2 in Piterbarg [24]. It is not

only useful to prove Theorem 4.5 below, but valuable itself in extreme value theory. The proof

is given in the Appendix.

Let {X(t), t ∈ E}, where E =
∏N
i=1[ai, bi], be a Gaussian random field with continuous

trajectories. Its standard deviation function σX(t) attains the maximum 1 at the hyperspace

E0 = {t∗1} ×
∏N
i=2[ai, bi], where t∗1 ∈ [a1, b1], and satisfies

lim
|t1−t∗1|→0

sup
t1 6=t∗1

t̂∈
∏N
i=2[ai,bi]

∣∣∣∣ 1− σX(t)

h(t̂)|t1 − t∗1|γ
− 1

∣∣∣∣ = 0, (4.4)

where γ > 0 and h(t̂), t̂ ∈
∏N
i=2[ai, bi], is a positive continuous function with t̂ = (t2, . . . , tN ).

Moreover,

lim
δ→0, u→∞

sup
s 6=t, s,t∈Eu
‖s−t‖≤δ

∣∣∣∣∣∣∣
1− r(s, t)(

c1(t1 − s1)2 +
∑N

i=2 ci(t̂)(ti − si)2
)β − 1

∣∣∣∣∣∣∣ = 0, (4.5)
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where Eu =
(

[t∗1 − ((log u)/u)2/γ , t∗1 + ((log u)/u)2/γ ]×
∏N
i=2[ai, bi]

)
∩E, δ > 0, β ∈ (0, 1), c1 >

0 and ci(t̂), 2 ≤ i ≤ N , are positive and continuous functions over
∏N
i=2[ai, bi]. Additionally,

assume that

r(s, t) < 1, s 6= t, s, t ∈ E. (4.6)

Theorem 4.3 Let {X(t), t ∈ E}, where E =
∏N
i=1[ai, bi], be a Gaussian random field with

continuous trajectories satisfying (4.4)-(4.6) and let t∗1 = a1 or b1. Then we have, as u→∞,

(i) for β < γ/2,

P
{

sup
t∈E

X(t) > u

}
∼
√
c1Γ(1/γ + 1)HN2β

∫
t̂∈

∏N
i=2[ai,bi]

h−1/γ(t̂)

N∏
i=2

√
ci(t̂)dt̂ u

N
β
− 2
γ Ψ(u); (4.7)

(ii) for β = γ/2,

P
{

sup
t∈E

X(t) > u

}
∼
∫
t̂∈

∏N
i=2[ai,bi]

M̂g(t)
2β

N∏
i=2

√
ci(t̂)dt̂ u

N−1
β Ψ(u), (4.8)

where g(t) = c−β1 h(t̂)|t1|γ, t ∈ RN ;

(iii) for β > γ/2,

P
{

sup
t∈E

X(t) > u

}
∼ HN−1

2β

∫
t̂∈

∏N
i=2[ai,bi]

N∏
i=2

√
ci(t̂)dt̂ u

N−1
β Ψ(u). (4.9)

Remark 4.4 In Theorem 4.3 above, we consider the case when t∗1 is the boundary of the

interval [a1, b1]. If t∗1 ∈ (a1, b1), the following results will be obtained by modifying the proof

accordingly. (i) For β < γ/2, replace HN2β by 2HN2β in the asymptotics in (4.7); (ii) for β = γ/2,

replace M̂g(t)
2β by Mg(t)

2β in the asymptotics in (4.8); (iii) for β > γ/2, the asymptotics in (4.8)

still holds. �

We formulate our next main result as following.

Theorem 4.5 Let {Bβ(x), x ∈ SN} be a SFBM, where β ∈ (0, 1/2], and let Ta = {x ∈ SN :

d(x, o′) ≤ a} with a ∈ (0, π).

(i) If β ∈ (0, 1/2), then

P
{

sup
x∈Ta

Bβ(x) > u

}
∼ HN2β

NπN/2(sin a)N−1

2
N
2β a2N−2β−1βΓ(N/2 + 1)

u
N
β
−2

Ψ(a−βu), u→∞,

where HN2β is the Pickands constant defined in (2.2).

(ii) If β = 1/2, then

P
{

sup
x∈Ta

Bβ(x) > u

}
∼ M̂g

1

NπN/2(sin a)N−1

2N−1a2(N−1)Γ(N/2 + 1)
u2(N−1)Ψ(a−1/2u), u→∞,

where M̂g
1 is defined in (2.4) and is finite by Lemma 5.2, g(t) = |t1|, t = (t1, . . . , tN ) ∈ RN .
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Proof. Note that

P
{

sup
x∈Ta

Bβ(x) > u

}
= P

{
sup
θ∈Θa

B̃β(θ)

aβ
>

u

aβ

}
,

and we will focus on studying the excursion probability on the right hand side which turns out

to be of Euclidean case. It is straightforward that for any 0 < ε < π/2,

P

{
sup
θ∈Θεa

B̃β(θ)

aβ
>

u

aβ

}
≤ P

{
sup
θ∈Θa

B̃β(θ)

aβ
>

u

aβ

}

≤ P

{
sup
θ∈Θεa

B̃β(θ)

aβ
>

u

aβ

}
+ P

{
sup

θ∈Θa\Θεa

B̃β(θ)

aβ
>

u

aβ

}
,

(4.10)

where

Θε
a = [0, a]× [ε, π − ε]N−2 × [0, 2π − ε].

Applying Lemma 4.2 and Theorem 4.3 with β = β, γ = 1, h(θ̂) = β/a, c1 = (2a2β)−1/β,

c2(θ̂) = (2a2β)−1/β sin2 a and cj(θ̂) = (2a2β)−1/β(sin2 a)
∏j−1
i=2 sin2 θi for 3 ≤ j ≤ N , we have

that for β ∈ (0, 1/2),

P

{
sup
θ∈Θεa

B̃β(θ)

aβ
>

u

aβ

}

∼ HN2β
a

β
(2a2β)−N/(2β)(sin a)N−1a2β−N

∫
θ̂∈Θ̂ε

N−1∏
i=2

(sin θi)
N−idθ̂ uN/β−2Ψ(

u

aβ
);

(4.11)

and for β = 1/2,

P

{
sup
θ∈Θεa

B̃β(θ)

aβ
>

u

aβ

}

∼ M̂g
1(2a)1−N (sin a)N−1a1−N

∫
θ̂∈Θ̂ε

N−1∏
i=2

(sin θi)
N−idθ̂ u2(N−1)Ψ(

u

a1/2
),

(4.12)

where g(t) = |t1|, t = (t1, . . . , tN ) ∈ RN , and

Θ̂ε = [ε, π − ε]N−2 × [0, 2π − ε], θ̂ = (θ2, . . . , θN ).

Next we show that the last term in (4.10) is negligible. Denote by

E0 = [0, a− ε]× [0, π]N−2 × [0, 2π), Ej = [a− ε, a]× Fj , 1 ≤ j ≤ n,

where Fj , 1 ≤ j ≤ n, is a collection of compact rectangles forming a partition of [0, π]N−2 ×
[0, 2π) \ Θ̂ε. Moreover, assume that Fj and Fj′ have no common inner point for j 6= j′ and the

largest edge of Fj has length L. Then we have that

P

{
sup

θ∈Θa\Θεa

B̃β(θ)

aβ
>

u

aβ

}
≤

n∑
j=0

P

{
sup
θ∈Ej

B̃β(θ)

aβ
>

u

aβ

}
.
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It follows from Lemma 4.2 that there exists 0 < δ < 1 such that supθ∈E0
σ̃(θ)/aβ < 1− δ. By

the Borell-TIS inequality [2], for u sufficiently large,

P

{
sup
θ∈E0

B̃β(θ)

aβ
>

u

aβ

}
≤ exp

{
− (u/aβ)2

2(1− δ)2

}
.

By (4.2)-(4.3) and the Slepain inequality, we have that for ε > 0 and L > 0 sufficiently small

P

{
sup
θ∈Ej

B̃β(θ)

aβ
>

u

aβ

}
≤ P

{
sup
θ∈Ej

B̃β(θ)/σ̃(θ)

1 + β
2a |a− θ1|

>
u

aβ

}
≤ P

{
sup
θ∈Ej

Y (Cθ)

1 + β
2a |a− θ1|

>
u

aβ

}
,

where 1 ≤ j ≤ n, C > 2−1/(2β)a−1, and Y (t) is a centered homogeneous Gaussian random field

with continuous trajectories, unit variance and correlation function satisfying

Corr(Y (s), Y (t)) = e−‖s−t‖
2β
, s, t ∈ RN .

In light of Theorem 4.3 with β = β, γ = 1, h(θ̂) = β/(2a), c1 = C2, ci(θ̂) = C2, 2 ≤ i ≤ n, we

have for 1 ≤ j ≤ n,

P

{
sup
θ∈Ej

Y (Cθ)

1 + β
2a |a− θ1|

>
u

aβ

}
∼ HN2βCN

2a

β
mes(Fj)(

u

aβ
)
N
β
−2

Ψ(
u

aβ
), β < 1/2,

P

{
sup
θ∈Ej

Y (Cθ)

1 + β
2a |a− θ1|

>
u

aβ

}
∼ M̂(4aC)−1|t1|

1 mes(Fj)(
u
√
C√
a

)2N−2Ψ(
u

a1/2
), β = 1/2.

Further,

n∑
j=1

P

{
sup
θ∈Ej

Y (Cθ)

1 + β
2a |a− θ1|

>
u

aβ

}
∼ HN2βCN

2a

β

n∑
j=1

mes(Fj)(
u

aβ
)
N
β
−2

Ψ(
u

aβ
), β < 1/2,

n∑
j=1

P

{
sup
θ∈Ej

Y (Cθ)

1 + β
2a |a− θ1|

>
u

aβ

}
∼ M̂(4aC)−1|t1|

1

n∑
j=1

mes(Fj)(
u
√
C√
a

)2N−2Ψ(
u

a1/2
), β = 1/2.

Note that limε→0
∑n

j=1 mes(Fj) = 0 implies that the last term in (4.10) is negligible.

Applying (3.13), one has

lim
ε→0

∫
θ̂∈Θ̂ε

N−1∏
i=2

(sin θi)
N−idθ̂ =

∫
θ̂∈[0,π]N−2×[0,2π)

N−1∏
i=2

(sin θi)
N−idθ̂ =

NπN/2

Γ(N/2 + 1)
.

Plugging this into (4.11) and (4.12), together with (4.10), we obtain the desired asymptotic

results by letting ε→ 0. �

It is worth mentioning that, when N = 1, the geodesic disc Ta becomes a circular arc and

the maximum of variance is attained at only the two boundary points of Ta. Recall Lemma

3.3 and note that if N = 1 and t0 is a boundary point instead of an interior point, then

we can obtain the asymptotics by multiplying the original asymptotics in (3.11) by 1/2 for

11



β ∈ (0, 1/2), and by replacing P‖AC
−1t‖α

α in (3.12) by M̂‖AC
−1t‖α

α for β = 1/2. Applying these

results, together with Lemma 4.2, similarly to the proof of Theorem 3.4, we have that

P
{

sup
x∈Ta

Bβ(x) > u

}
∼ H1

2β

a2β−1

2
1
2β
−1
β
u

1
β
−2

Ψ(a−βu), β ∈ (0, 1/2),

P
{

sup
x∈Ta

Bβ(x) > u

}
∼ 2M̂g

1Ψ(a−1/2u), β = 1/2,

(4.13)

where g(t) = |t|, t ∈ R. Then it is easy to check that the asymptotics in (4.13) are exactly the

same as those in Theorem 4.5 for N = 1.
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5 Appendix

The following useful lemma can be shown by similar arguments in the proof of Lemma 7.1 in

[24]. The proof is omitted in this paper.

Lemma 5.1 Let Y (t), t ∈ RN be a centered homogeneous Gaussian random field with contin-

uous trajectories, unit variance and correlation function satisfying, with β ∈ (0, 1],

1− Corr(Y (s), Y (t)) = ‖s− t‖2β(1 + o(1)), ‖s− t‖ → 0.

Denote by {uλ, λ ∈ Λ} a series of function of u with the property that

lim
u→∞

sup
λ∈Λ

∣∣∣uλ
u
− 1
∣∣∣ = 0.

Then for all b ≥ 0

lim
u→∞

sup
λ∈Λ

∣∣∣∣∣∣
P
{

supt∈[0,u−1/βS]×
∏N
i=2[ai,bi]

Y (t)
1+b|t1|2β

> uλ

}
u
N−1
β Ψ(uλ)

−Mb|t1|2β
2β ([0, S])

N∏
i=2

(bi − ai)

∣∣∣∣∣∣ = 0,

where

Mb|t1|2β
2β ([0, S]) = lim

S1→∞

Pb|t1|
2β

2β ([0, S]× [0, S1]N−1)

SN−1
1

∈ (0,∞).

The following lemma shows the finiteness of the constant M̂g
1 in Theorem 4.5.

Lemma 5.2 For any β ∈ (0, 1] and b > 0,

M̂b|t1|2β
2β := lim

S→∞
Mb|t1|2β

2β ([0, S]) ∈ (0,∞).

12



Proof. Let Y (t) be as in Lemma 5.1. Note that for 0 < S1 < log u and S > 0,

A0(u, S1) ≤ P

{
sup

t∈[0,u−1/β log u]×[0,1]N−1

Y (t)

1 + b|t1|2β
> u

}
≤
b(log u)/Sc+1∑

k=0

Ak(u, S), (5.1)

where

Ak(u, S) = P

{
sup

t∈[u−1/βkS,u−1/β(k+1)S]×[0,1]N−1

Y (t)

1 + b|t1|2β
> u

}
.

In light of Lemma 5.1 and subadditivity of M0
2β([0, S]), we have

A0(u, S) ∼Mb|t1|2β
2β ([0, S])u

N−1
β Ψ(u),

Ak(u, S) ≤ P

{
sup

t∈[u−1/βkS,u−1/β(k+1)S]×[0,1]N−1

Y (t) > u(1 + u−2b|kS|2β)

}
∼M0

2β([0, S])u
N−1
β Ψ(u(1 + u−2b|kS|2β))

≤ CSe−b|kS|2βu
N−1
β Ψ(u), 1 ≤ k ≤ b(log u)/Sc+ 1,

where C > 0 is a fixed constant. Dividing (5.1) by u
N−1
β Ψ(u) on both sides, we have that

Mb|t1|2β
2β ([0, S1]) ≤Mb|t1|2β

2β ([0, S]) +
∞∑
k=1

CSe−b|kS|
2β
<∞.

Letting S1 →∞ leads to

lim
S1→∞

Mb|t1|2β
2β ([0, S1]) <∞,

completing the proof. �

Proof of Theorem 4.3 Without loss of generality, we assume that t∗1 = a1, implying

Eu = [a1, a1 + ((log u)/u)2/γ ]×
∏N
i=2[ai, bi]. Denote by

F1,ε = [a1 + ε, b1]×
N∏
i=2

[ai, bi], F2,ε(u) = [a1 + ((log u)/u)2/γ , a1 + ε]×
N∏
i=2

[ai, bi].

Then it follows that

P
{

sup
t∈Eu

X(t) > u

}
≤ P

{
sup
t∈E

X(t) > u

}
≤ P

{
sup
t∈Eu

X(t) > u

}
+ P

{
sup
t∈F1,ε

X(t) > u

}
+ P

{
sup

t∈F2,ε(u)
X(t) > u

}
.

(5.2)

By (4.4), for ε > 0 sufficiently small, there exists a constant δ > 0 such that supt∈F1,ε
σ2(t) <

1− δ. By the Borell-TIS inequality [2], for u large enough,

P

{
sup
t∈F1,ε

X(t) > u

}
≤ exp

{
− u2

2(1− δ)

}
. (5.3)
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Moreover, in light of (4.5), there exists C > 0 such that for u sufficiently large and ε > 0

sufficiently small,

E{
(
X(t)−X(s)

)
} ≤ C‖t− s‖2β ≤ NC

N∑
i=1

|ti − si|2β, s, t ∈ F2,ε(u),

where X is the standardized field of X. Additionally, it follows from (4.4) that there exists

C1 > 0 such that

sup
t∈F2,ε(u)

σ2(t) < 1− C1

(
log u

u

)2

.

By Theorem 8.1 in [24], we have that, for u sufficiently large,

P

{
sup

t∈F2,ε(u)
X(t) > u

}
≤ C2u

N
β Ψ

 u√
1− C1

(
log u
u

)2

 . (5.4)

We study next P
{

supt∈Eu X(t) > u
}

to derive the exact asymptotics and show that

P

{
sup
t∈F1,ε

X(t) > u

}
and P

{
sup

t∈F2,ε(u)
X(t) > u

}
are negligible as u→∞. We distinguish three scenarios: β < γ/2, β = γ/2 and β > γ/2.

(i) Case β < γ/2. We first introduce some notation for further analysis. Let

Ik(u) = [a1 + ku−1/βS, a1 + (k + 1)u−1/βS], M±u =

[
((log u)/u)2/γ

u−1/βS

]
± 1. (5.5)

Split
∏N
i=2[ai, bi] into nN−1 rectangles with the form

∏N
i=2

[
ai + ki(bi−ai)

n , ai + (ki+1)(bi−ai)
n

]
with n, ki ∈ N, denoted by {Dj , 1 ≤ j ≤ nN−1}. We assume that Dj and Dj′ have no common

inner points for j 6= j′. Let

Ik,j(u) = Ik(u)×Dj , Λ± = {(k, j) : 0 ≤ k ≤M±u , 1 ≤ j ≤ nN−1},

uk,j,ε = u

(
1 + (1− ε)hj inf

t1∈Ik(u)
|t1 − t∗1|γ

)
, hj = inf

t̂∈Dj
h(t̂), (5.6)

c(j) = ((c1 + ε)1/2, (c2,j + ε)1/2, . . . , (cN,j + ε)1/2), ck,j = sup
t̂∈Dj

ck(t̂), 2 ≤ k ≤ N.

Moreover, let Y (t) be a centered homogeneous Gaussian random fields with continuous tra-

jectories, unit variance and correlation function satisfying Corr(Y (s), Y (t)) = e−‖s−t‖
2β

with

β ∈ (0, 1]. It follows straightforwardly that

π−(u)− Σ(u) ≤ P
{

sup
t∈Eu

X(t) > u

}
≤ π+(u), (5.7)

where

π±(u) =
∑

(k,j)∈Λ±

P

{
sup

t∈Ik,j(u)
X(t) > u

}
,
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Σ(u) =
∑

(k,j)6=(k′,j′),k≤k′,(k,j),(k′,j′)∈Λ−

P

{
sup

t∈Ik,j(u)
X(t) > u, sup

t∈Ik′,j′ (u)
X(t) > u

}
.

Asymptotics for π±(u). To derive the upper bound, in light of Slepian inequlaity we have

P

{
sup

t∈Ik,j(u)
X(t) > u

}
≤ P

{
sup

t∈Ik,j(u)
X(t) > uk,j,ε

}
≤ P

{
sup

t∈Ik,j(u)
Y (c(j)t) > uk,j,ε

}

= P

{
sup

t∈c(j)I0,1(u)
Y (t) > uk,j,ε

}
,

where for any D ⊂ RN , c(j)D = {((c1 + ε)1/2t1, (c2,j + ε)1/2t2, . . . , (cN,j + ε)1/2tN ) : t ∈ D}.
In light of Lemma 5.1, we have

P

{
sup

t∈Ik,j(u)
X(t) > u

}

≤ HN2β([0, (c1 + ε)1/2S])
N∏
i=2

(ci,j + ε)1/2mes(Dj)u
N−1
β Ψ(uk,j,ε)(1 + o(1)),

(5.8)

as u→∞, uniformly with respect to (k, j) ∈ Λ+. Hence, as u→∞,

M+
u∑

k=0

P

{
sup

t∈Ik,j(u)
X(t) > u

}
≤ HN2β([0, (c1 + ε)1/2S])

N∏
i=2

(ci,j + ε)1/2mes(Dj)u
N−1
β

M+
u∑

k=0

Ψ(uk,j,ε).

Noting that, as u→∞,

M+
u∑

k=0

Ψ(uk,j,ε) ≤ Ψ(u)

M+
u∑

k=0

e−(1−ε)hju2|ku−1/βS|γ

≤ Ψ(u)
(

(1− ε)1/γh
1/γ
j u2/γ−1/βS

)−1

×
M+
u∑

k=0

e−|k(1−ε)1/γh1/γj u2/γ−1/βS|γ × (1− ε)1/γh
1/γ
j u2/γ−1/βS

≤ Ψ(u)
(

(1− ε)1/γh
1/γ
j u2/γ−1/βS

)−1
∫ ∞

0
e−|t|

γ
dt,

we have

M+
u∑

k=0

P

{
sup

t∈Ik,j(u)
X(t) > u

}

≤
HN2β([0, (c1 + ε)1/2S])

S
Γ(1/γ + 1)(1− ε)−1/γh

−1/γ
j

N∏
i=2

(ci,j + ε)1/2mes(Dj)u
N
β
− 2
γ Ψ(u)

≤ HN2βΓ(1/γ + 1)(c1 + ε)1/2(1− ε)−1/γh
−1/γ
j

N∏
i=2

(ci,j + ε)1/2mes(Dj)u
N
β
− 2
γ Ψ(u),

15



as u→∞ and S →∞. Furthermore,

π+(u) =
nN−1∑
j=1

M+
u∑

k=0

P

{
sup

t∈Ik,j(u)
X(t) > u

}

≤ HN2β
Γ(1/γ + 1)(c1 + ε)1/2

(1− ε)1/γ
u
N
β
− 2
γ Ψ(u)

nN−1∑
j=0

(
h
−1/γ
j

N∏
i=2

(ci,j + ε)1/2mes(Dj)

)

∼ HN2βΓ(1/γ + 1)c
1/2
1 u

N
β
− 2
γ Ψ(u)

∫
t̂∈

∏N
i=2[ai,bi]

h−1/γ(t̂)
N∏
i=2

c
1/2
i (t̂)dt̂,

(5.9)

as u→∞, n→∞, ε→ 0. Analogously, we can show that

π−(u) ∼ HN2βΓ(1/γ + 1)c
1/2
1 u

N
β
− 2
γ Ψ(u)

∫
t̂∈

∏N
i=2[ai,bi]

h−1/γ(t̂)
N∏
i=2

c
1/2
i (t̂)dt̂, (5.10)

as u→∞, n→∞. Next we show that Σ(u) is negligible compared with π−(u) as u→∞. For

this, denote by

Λ−1 = {(k, j, k′, j′) : (k, j), (k′, j′) ∈ Λ−, k ≤ k′, Dj ∩Dj′ = ∅},

Λ−2 = {(k, j, k′, j′) : (k, j), (k′, j′) ∈ Λ−, k ≤ k′ ≤ k + 1, Dj ∩Dj′ 6= ∅, j 6= j′},

Λ−3 = {(k, j, k′, j′) : (k, j), (k′, j′) ∈ Λ−, k + 1 < k′, Dj ∩Dj′ 6= ∅},

Λ−4 = {(k, j, k′, j′) : (k, j), (k′, j′) ∈ Λ−, k′ = k + 1, j = j′}.

Then it follows that Σ(u) ≤
∑4

i=1 Σi(u), where

Σi(u) =
∑

(k,j,k′,j′)∈Λ−i

P

{
sup

t∈Ik,j(u)
X(t) > u, sup

t∈Ik′,j′ (u)
X(t) > u

}
.

Upper bound for Σ1(u). Note that

Σ1(u) ≤
∑

(k,j,k′,j′)∈Λ−1

P

{
sup

s∈Ik,j(u),t∈Ik,j(u)
X(s) +X(t) > 2u

}
,

and by (4.4) and (4.6), there exists 0 < δ < 1 such that

Var (X(s) +X(t)) = σ2(s) + σ2(t) + 2σ(s)2σ(t)r(s, t) < 4− δ.

It follows from the Borell-TIS inequality [2] that, as u→∞,

Σ1(u) ≤
∑

(k,j,k′,j′)∈Λ−1

e
− (2u−E(supt∈E X(t)))2

2(4−δ) ≤ (nN−1M+
u )2e

− (2u−E(supt∈E X(t)))2

2(4−δ) = o(π−(u)).(5.11)

16



Upper bound for Σ2(u). For (k, j, k′, j′) ∈ Λ−2 , without loss of generality, we assume that

Dj =
N∏
i=2

[
ai +

ki(bi − ai)
n

, ai +
(ki + 1)(bi − ai)

n

]
,

Dj′ =

[
a2 +

(k2 + 1)(b2 − a2)

n
, a2 +

(k2 + 2)(b2 − a2)

n

]
×

N∏
i=3

[
ai +

ki(bi − ai)
n

, ai +
(ki + 1)(bi − ai)

n

]
.

Split Dj′ into two parts:

D
(1)
j′ =

[
a2 +

(k2 + 1)(b2 − a2)

n
, a2 +

(k2 + 1)(b2 − a2)

n
+
b2 − a2

n2

]
×

N∏
i=3

[
ai +

ki(bi − ai)
n

, ai +
(ki + 1)(bi − ai)

n

]
,

D
(2)
j′ =

[
a2 +

(k2 + 1)(b2 − a2)

n
+
b2 − a2

n2
, a2 +

(k2 + 2)(b2 − a2)

n

]
×

N∏
i=3

[
ai +

ki(bi − ai)
n

, ai +
(ki + 1)(bi − ai)

n

]
.

Then it follows that

P

{
sup

t∈Ik,j(u)
X(t) > u, sup

t∈Ik′,j′ (u)
X(t) > u

}

≤ P

 sup
t∈I(1)

k′,j′ (u)

X(t) > u

+ P

 sup
t∈Ik,j(u)

X(t) > u, sup
t∈I(2)

k′,j′ (u)

X(t) > u


with I

(l)
k′j′(u) = Ik′(u)×D(l)

j′ , l = 1, 2. By Lemma 5.1 and (5.8), we have as u→∞,

P

 sup
t∈I(1)

k′,j′ (u)

X(t) > u

 ≤ Cmes(D
(1)
j′ )

mes(Dj′)
P

{
sup

t∈Ik′,j′ (u)
X(t) > u

}
,

where C > 0 is a constant independent of k′ and j′. Using the fact that Dj′ has at most 3N−1

neighbors and

lim
n→∞

sup
1≤j′≤nN−1

mes(D
(1)
j′ )

mes(Dj′)
= 0,

we have∑
(k,j,k′,j′)∈Λ−2

P

 sup
t∈I(1)

k′,j′ (u)

X(t) > u

 ≤ C ∑
(k,j,k′,j′)∈Λ−2

mes(D
(1)
j′ )

mes(Dj′)
P

{
sup

t∈Ik′,j′ (u)
X(t) > u

}

≤ 3N−1C
∑

(k′,j′)∈Λ−

mes(D
(1)
j′ )

mes(Dj′)
P

{
sup

t∈Ik′,j′ (u)
X(t) > u

}

= o(π−(u)), u→∞, n→∞.
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Using the same argument as in (5.11), we have

∑
(k,j,k′,j′)∈Λ−2

P

 sup
t∈Ik,j(u)

X(t) > u, sup
t∈I(2)

k′,j′ (u)

X(t) > u

 = o(π−(u)), u→∞.

Hence,

Σ2(u) = o(π−(u)), u→∞.

Upper bound for Σ3(u). Let

Jl(u) =
N∏
i=2

[liu
−1/βS, (li + 1)u−1/βS], with l = (l2, . . . , lN ), Ξj = {l : Dj

⋂
Jl(u) 6= ∅},

Jk,l(u) = Ik(u)× Jl(u).

Then

P

{
sup

t∈Ik,j(u)
X(t) > u, sup

t∈Ik′,j′ (u)
X(t) > u

}

≤ P

{
sup

t∈Ik,j(u)
X(t) > uk,j,ε, sup

t∈Ik′,j′ (u)
X(t) > uk′,j′,ε

}

≤
∑

l∈Ξj ,l′∈Ξj′

P

{
sup

t∈Jk,l(u)
X(t) > uk,j,ε, sup

t∈Jk′,l′ (u)
X(t) > uk′,j′,ε

}

=
∑

l∈Ξj ,l′∈Ξj′

P

{
sup

t∈Jk,l(1)
X(u−1/βt) > uk,j,ε, sup

t∈Jk′,l′ (1)
X(u−1/βt) > uk′,j′,ε

}
.

In view of (4.5), there exist C1, C2 > 0 such that for u and n sufficiently large

C1

N∑
i=1

|si − ti|2β ≤ u2(1− Corr(X(u−1/βs), X(u−1/βt))) ≤ C2

N∑
i=1

|si − ti|2β,

and

Corr(X(u−1/βs), X(u−1/βt)) ≥ 1/2,

hold for all s, t ∈ [a1u
1/β, a1u

1/β + ((log u)/u)2/γu1/β] ×
⋃
Dj∩Dj′ 6=∅

u1/βDj′ , 1 ≤ j ≤ nN−1

with u1/βDj′ = {u1/β t̂ : t̂ ∈ Dj′}. Thus in light of Corollary 3.1 in [11], there exist C, C1 > 0

such that for u and n sufficiently large, l ∈ Ξj , l
′ ∈ Ξj′ , Dj ∩ Dj′ 6= ∅, 0 ≤ k, k′ ≤ M+

u and

|k′ − k − 1| ≥ 1,

P
{

supt∈Jk,l(1)X(u−1/βt) > uk,j,ε, supt∈Jk′,l′ (1)X(u−1/βt) > uk′,j′,ε

}
≤ CS2Ne−C1S

2β(|k′−k−1|2β+‖l−l′‖2β)Ψ(uk,k′,j,j′ε), (5.12)

where

uk,k′,j,j′ε = min(uk,j,ε, uk′,j′,ε).
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We have

Σ3(u) ≤
∑

(k,j,k′,j′)∈Λ−3

P

{
sup

t∈Ik,j(u)
X(t) > u, sup

t∈Ik′,j′ (u)
X(t) > u

}

≤
∑

(k,j)∈Λ−,|k−k′−1|≥1,Dj
⋂
Dj′ 6=∅

P

{
sup

t∈Ik,j(u)
X(t) > u, sup

t∈Ik′,j′ (u)
X(t) > u

}

≤
∑

(k,j)∈Λ−,|k−k′−1|≥1,Dj
⋂
Dj′ 6=∅

∑
l∈Ξj ,l′∈Ξj′

P

{
sup

t∈Jk,l(1)
X(u−1/βt) > uk,j,ε, sup

t∈Jk′,l′ (1)
X(u−1/βt) > uk′,j′,ε

}
.

For (k, j) ∈ Λ−, it follows from (5.12) that

∑
|k−k′−1|≥1,Dj

⋂
Dj′ 6=∅

∑
l∈Ξj ,l′∈Ξj′

P

{
sup

t∈Jk,l(1)
X(u−1/βt) > uk,j,ε, sup

t∈Jk′,l′ (1)
X(u−1/βt) > uk′,j′,ε

}

≤
∑

|k−k′−1|≥1,Dj
⋂
Dj′ 6=∅

∑
l∈Ξj ,l′∈Ξj′

CS2Ne−C1S
2β(|k′−k−1|2β+‖l−l′‖2β)Ψ(uk,k′,j,j′,ε)

≤
∑
l∈Ξj

C3S
2Ne−C4S2β

Ψ(uk,j,ε)

≤ C3S
2N−1u

N−1
β e−C4S2β

Ψ(uk,j,ε), u→∞,

where C3 and C4 are two positive constants. Hence

Σ3(u) ≤
∑

(k,j)∈Λ−

C3S
2N−1u

N−1
β e−C4S2β

Ψ(uk,j,ε)

= C3S
2N−1e−C4S2β

∑
(k,j)∈Λ−

u
N−1
β Ψ(uk,j,ε) = o(π−(u)), u→∞, S →∞.

Upper bound for Σ4(u). Observe that

P

{
sup

t∈Ik,j(u)
X(t) > u, sup

t∈Ik+1,j(u)
X(t) > u

}

= P

{
sup

t∈Ik,j(u)
⋃
Ik+1,j(u)

X(t) > u

}
− P

{
sup

t∈Ik,j(u)
X(t) > u

}
− P

{
sup

t∈Ik+1,j(u)
X(t) > u

}
.
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Thus in light of (5.9) and (5.10), it follows that

Σ4(u) ≤
∑

(k,j)∈Λ−

P

{
sup

t∈Ik,j(u)
X(t) > u, sup

t∈Ik+1,j(u)
X(t) > u

}

≤
∑

(k,j)∈Λ−

P

{
sup

t∈Ik,j(u)
⋃
Ik+1,j(u)

X(t) > u

}
−

∑
(k,j)∈Λ−

P

{
sup

t∈Ik,j(u)
X(t) > u

}

−
∑

(k,j)∈Λ−

P

{
sup

t∈Ik+1,j(u)
X(t) > u

}

= 2π+(u)(1 + o(1))− 2π−(u)(1 + o(1)) = o(π−(u)), u→∞, S →∞.

Therefore we conclude that

Σ(u) = o(π−(u)), u→∞, S →∞,

together with (5.7), (5.9) and (5.10), yielding that as u→∞,

P
{

sup
t∈Eu

X(t) > u

}
∼ HN2βΓ(1/γ + 1)c

1/2
1 u

N
β
− 2
γ Ψ(u)

∫
t̂∈

∏N
i=2[ai,bi]

h−1/γ(t̂)

N∏
i=2

c
1/2
i (t̂)dt̂.

Inserting the above asymptotics, (5.3) and (5.4) into (5.2) establishes the claim.

(ii) Case β = γ/2. It follows that

π−1 (u)− Σ5(u) ≤ P
{

sup
t∈Eu

X(t) > u

}
≤ π−1 (u) + π+

1 (u), (5.13)

where

π−1 (u) =

nN−1∑
j=1

P

{
sup

t∈I0,j(u)
X(t) > u

}
, π+

1 (u) =

M+
u∑

k=1

nN−1∑
j=1

P

{
sup

t∈Ik,j(u)
X(t) > u

}
,

Σ5(u) =
∑

1≤j<j′≤nN−1

P

{
sup

t∈I0,j(u)
X(t) > u, sup

t∈I0,j′ (u)
X(t) > u

}
,

with Ik,j and M±u being defined in (5.5) and (5.6).

Asymptotics of π−1 (u). By (4.4) and Slepain inequality,

π−1 (u) ≤
nN−1∑
j=1

P

{
sup

t∈I0,j(u)

X(t)

1 + hj |t1 − t∗1|γ
> u

}
≤

nN−1∑
j=1

P

{
sup

t∈I0,j(u)

Y (c(j)t)

1 + hj |t1 − t∗1|γ
> u

}

≤
nN−1∑
j=1

P

{
sup

t∈c(j)I0,j(u)

Y (t)

1 + hj(c1 + ε)−γ/2|t1 − t∗1|γ
> u

}
,

where hj and c(j) are given in (5.6). In light of Lemma 5.1 and Lemma 5.2, we have that

π−1 (u) ≤
nN−1∑
j=1

Mhj(c1+ε)−γ/2|t1|γ
2β [0, (c1 + ε)1/2S]

N∏
i=2

(ci,j + ε)1/2mes(Dj)u
N−1
β Ψ(u)

∼
∫
t̂∈

∏N
i=2[ai,bi]

M̂c−β1 h(t̂)|t1|γ
2β

N∏
i=2

√
ci(t̂)dt̂u

N−1
β Ψ(u),

(5.14)
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as u→∞, n→∞, ε→ 0. Similarly, we can show that

π−1 (u) ≥
∫
t̂∈

∏N
i=2[ai,bi]

M̂c−β1 h(t̂)|t1|γ
2β

N∏
i=2

√
ci(t̂)dt̂u

N−1
β Ψ(u)(1 + o(1)), u→∞, S →∞.

Hence

π−1 (u) ∼
∫
t̂∈

∏N
i=2[ai,bi]

M̂c−β1 h(t̂)|t1|γ
2β

N∏
i=2

√
ci(t̂)dt̂u

N−1
β Ψ(u), u→∞, S →∞.

Upper bound for π+
1 (u). In view of (5.8), we have, as u→∞,

π+
1 (u) ≤

M+
u∑

k=1

nN−1∑
j=1

P

{
sup

t∈Ik,j(u)
X(t) > uk,j,ε

}

≤
M+
u∑

k=1

nN−1∑
j=1

HN2β([0, (c1 + ε)1/2S])
N∏
i=2

(ci,j + ε)1/2mes(Dj)u
N−1
β Ψ(uk,j,ε).

Note that as u→∞,

M+
u∑

k=1

Ψ(uk,j,ε) ∼ Ψ(u)

M+
u∑

k=1

e−(1−ε)hj |kS|γ ≤ Ψ(u)e−CS
γ
,

where C > 0 is a positive constant. It follows that

π+
1 (u) ≤ Se−CSγ

nN−1∑
j=1

HN2β([0, (c1 + ε)1/2S])

S

N∏
i=2

(ci,j + ε)1/2mes(Dj)u
N−1
β Ψ(u)

= o(π−1 (u)), u→∞, S →∞.

(5.15)

Upper bound for Σ5(u). Let

Λ5 = {(j, j′) : 1 ≤ j < j′ ≤ nN−1, Dj

⋂
Dj′ = ∅},

Λ6 = {(j, j′) : 1 ≤ j < j′ ≤ nN−1, Dj

⋂
Dj′ 6= ∅}.

Then

Σ5(u) ≤ Σ6(u) + Σ7(u),

with

Σi(u) =
∑

(j,j′)∈Λi−1

P

{
sup

t∈I0,j(u)
X(t) > u, sup

t∈I0,j′ (u)
X(t) > u

}
, i = 6, 7.

Using same arguments as in those to get the upper bounds of Σ1(u) and Σ2(u), we can show

that Σi(u) = o(π−1 (u)), i = 6, 7, as u→∞ and n→∞. Hence

P
{

sup
t∈Eu

X(t) > u

}
∼
∫
t̂∈

∏N
i=2[ai,bi]

M̂c−β1 h(t̂)|t1|
2β

N∏
i=2

√
ci(t̂)dt̂u

N−1
β Ψ(u), u→∞,
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together with (5.2)-(5.4), establishing the claim.

(iii) Case β > γ/2. Observe that

π2(u) ≤ P
{

sup
t∈Eu

X(t) > u

}
≤ π−1 (u) + π+

1 (u),

with π−1 (u) and π+
1 (u) defined in (5.13) and

π2(u) = P

{
sup

t̂∈
∏N
i=2[ai,bi]

X(t∗1, t̂) > u

}
.

Upper bound of π±1 (u). By (4.4) and (5.14) , it follows that for any q, ε > 0 and sufficiently

large S1, as u→∞, n→∞,

π−1 (u) ≤
nN−1∑
j=1

P

{
sup

t∈I0,j(u)

X(t)

1 + q|t1 − t∗1|2β
> u

}

∼Mc−β1 q|t1|2β
2β [0, S]

∫
t̂∈

∏N
i=2[ai,bi]

N∏
i=2

√
ci(t̂)dt̂u

N−1
β Ψ(u)

≤ (1 + ε)
Pc
−β
1 q|t1|2β

2β ([0, S]× [0, S1]N−1)

SN−1
1

∫
t̂∈

∏N
i=2[ai,bi]

N∏
i=2

√
ci(t̂)dt̂u

N−1
β Ψ(u).

By the fact that

lim
S1→∞

lim
q→∞

Pc
−β
1 q|t1|2β

2β ([0, S]× [0, S1]N−1)

SN−1
1

= lim
S1→∞

HN2β({0} × [0, S1]N−1)

SN−1
1

= HN−1
2β ,

we have that as u→∞, n→∞, q →∞, S1 →∞ and ε→ 0,

π−1 (u) ≤ HN−1
2β

∫
t̂∈

∏N
i=2[ai,bi]

N∏
i=2

√
ci(t̂)dt̂u

N−1
β Ψ(u).

Using the same argument as in (5.15), we have that

π+
1 (u) = o(π−1 ), u→∞, S →∞.

Asymptotics of π2(u). Note that X(t∗1, t̂) is a Gaussian random field with unit variance and

correlation function satisfying

lim
δ→0

sup
ŝ 6=t̂,ŝ,t̂∈

∏N
i=2[ai,bi],|t̂−ŝ|≤δ

∣∣∣∣∣∣∣
1− Corr(X(t∗1, t̂), X(t∗1, ŝ))(∑N

i=2 ci(t̂)(ti − si)2
)β − 1

∣∣∣∣∣∣∣ = 0,

and

Corr(X(t∗1, t̂), X(t∗1, ŝ)) < 1, t̂ 6= ŝ, t̂, ŝ ∈
N∏
i=2

[ai, bi].
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By Theorem 7.1 in [24], we have

π2(u) ∼ HN−1
2β

∫
t̂∈

∏N
i=2[ai,bi]

N∏
i=2

√
ci(t̂)dt̂u

N−1
β Ψ(u), u→∞.

Therefore, we conclude that

P
{

sup
t∈Eu

X(t) > u

}
∼ HN−1

2β

∫
t̂∈

∏N
i=2[ai,bi]

N∏
i=2

√
ci(t̂)dt̂u

N−1
β Ψ(u), u→∞,

together with (5.2)-(5.4), establishing the claim. This completes the proof. �
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