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A comparative study of two key
algorithms in multiple objective linear
programming
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Abstract

Multiple objective linear programming problems are solved with a variety of algorithms. While these algorithms vary in

philosophy and outlook, most of them fall into two broad categories: those that are decision space-based and those that

are objective space-based. This paper reports the outcome of a computational investigation of two key representative

algorithms, one of each category, namely the parametric simplex algorithm which is a prominent representative of the

former and the primal variant of Bensons Outer-approximation algorithm which is a prominent representative of the

latter. The paper includes a procedure to compute the most preferred nondominated point which is an important

feature in the implementation of these algorithms and their comparison. Computational and comparative results on

problem instances ranging from small to medium and large are provided.
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Introduction

Multiple objective linear programming (MOLP) is a
branch of multiple criteria decision making
(MCDM)32,33 that seeks to optimize two or more
linear objective functions subject to linear constraints.
Indeed, many real-world decision-making problems
involve more than one objective function and can be
formulated as MOLP problems. MOLP models
have been widely applied in many fields of
human endeavour such as science, engineering and
management and have become a useful tool in
decision making. An MOLP problem can be
expressed as

min cT1 x ¼ f1

..

.

cTq x ¼ fq

subject to x 2 X ¼ x 2 Rn : Ax ¼ b; b 2 Rm; x � 0f g
(1)

or alternatively as a linear vector optimization problem

min Cx

subject to Ax ¼ b

x � 0

(2)

where C is a q� n criterion matrix consisting of the
rows ck; k ¼ 1; . . . ; q, A is an m� n constraint matrix
and b 2 Rm is the right hand side vector. The feasible
set in the decision space is X ¼ x 2 Rn :f
Ax ¼ b; x � 0g, and in the objective space, it is
Y ¼ Cx : x 2 Xf g. The set Y is also referred to as the
image of X. The upper image is defined as YþRq

þ.
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In practice, MOLP is typically solved by the
Decision Maker (DM) with the support of the analyst
looking for a most preferred (best) solution in the fea-
sible region X. This is because optimizing all the objec-
tive functions simultaneously is not possible due to
their conflicting nature. Consequently, the concept of
optimality is replaced with that of efficiency. The pur-
pose of MOLP is to obtain either all the efficient or
nondominated points or a subset of either or a most
preferred point depending on the purpose for which it
is needed.

An efficient solution of an MOLP problem is a solu-
tion that cannot improve any of the objective functions
without deteriorating at least one of the other objec-
tives. A weakly efficient solution is one that no other
solution can improve all the objective functions
simultaneously.

A nondominated point in the objective space is the
image of an efficient solution in the decision space, and
the set of all nondominated points forms the nondomi-
nated set. Let x̂ 2 X be a feasible solution of equation
(2) and let ŷ ¼ Cx̂:

• x̂ is called efficient if there is no x 2 X, such that
Cx � Cx̂ and Cx 6¼ Cx̂; correspondingly, ŷ ¼ Cx̂ is
called nondominated.

• x̂ is called weakly efficient if there is no x 2 X, such
that Cx < Cx̂; and ŷ ¼ Cx̂ is called weakly
nondominated.1

The set of all efficient solutions and the set of all weakly
efficient solutions of equation (2) are denoted by XE

and XWE, respectively. The sets YN ¼ fCx : x 2 XEg
and YWN ¼ fCx : x 2 XWEg are the nondominated and
weakly nondominated sets in the objective space of
equation (2), respectively.

The nondominated faces in the objective space of a
given problem constitute the nondominated frontier,
and the efficient faces in the decision space of the prob-
lem constitute the efficient frontier.

Robustness of method can be defined in different
ways, in terms of computing efficiency or the ability
of a method to solve problems depending on the
researcher. In this paper, we consider it as the ability
of a method to solve all problems (both simple
and difficult).

The ideal objective point y� is the minimum criterion
values over the efficient set XE. The ideal objective
values are easy to obtain by simply minimizing each
objective function individually over the feasible
region X.2

MOLP has been an active area of research since the
1960s. During this period, various algorithms have
been developed for generating either the entire efficient
or nondominated set, or a subset of it, or a most

preferred efficient or nondominated point for the prob-
lem. Most of these approaches are decision space-
based. However, objective space-based methods are
becoming more and more prominent.

In this paper, we are concerned with the state-of-the-
art technology for MOLP. We are interested in a
detailed comparison of the recently introduced para-
metric simplex algorithm (PSA) of Rudloff et al.3

with the primal variant of Benson’s4 outer-
approximation algorithm (BOA) which is an objective
space-based method. It has been noted by Benson4

that, in practice, the DM prefers to base his or her
choice of a most preferred (best) solution on the non-
dominated points. To achieve this comparison, we shall
act here as the DM and choose a most preferred non-
dominated point (MPNP) whose components are as
close as possible to an unattainable ideal objective
point from the nondominated set returned by PSA to
compare with a MPNP returned by BOA. These two
algorithms are based on the same solution concept
introduced by L€ohne.5 The algorithms will be com-
pared comprehensively on a series of existing
test problems.

One of the key issues in MOLP is computing the
MPNP’s. We give a detailed procedure for the purpose
here which allows us to carry out the comparison.

This paper is organized as follows: ‘Motivation’ sec-
tion is the motivation. ‘Literature review’ section is a
review of the related literature which centres on the
parametric simplex and the objective space-based
method that is BOA. We present PSA in ‘The paramet-
ric simplex algorithm’ section. ‘Scalarization techni-
ques’ section discusses two scalarization techniques.
BOA is presented in ‘Benson’s outer-approximation
algorithm’ section. ‘Selection of the MPNP’ section
discusses the selection of an MPNP. Detailed numeri-
cal experiments are presented in ‘Experimental results’
section to compare the quality of a MPNP, robustness
and computing efficiency of the two algorithms. The
results are summarized in the ‘Summary of results’ sec-
tion. Finally, a conclusion is drawn in
‘Conclusion’ section.

Motivation

These two algorithms are similar in output but differ-
ent in philosophy since one of them, BOA, is an objec-
tive space-based search algorithm, while PSA is a
decision space-based algorithm. They are prominent
examples of MOLP algorithms. Unfortunately, there
is no empirical evidence in the literature, as far as we
can tell, that separates them in terms of robustness and
the quality of a MPNP they returned. This paper
intends to fill this gap. It considers all available test
problems ranging from small size to large size and
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solves them with Matlab implementations of the two
algorithms on the same machine. The extensive results
are recorded and discussed. It is hoped that these
results would be a valuable guideline for the potential
users to choose between the two depending on the
problems they have to solve. It is also important to
add that a comprehensive review of existing work is
included. This puts the work well in context and
saves the reader the need to consult much of the liter-
ature on the topic. We shall dwell more on robustness
and quality of a MPNP returned by these algorithms
using existing and realistic instances.

Note that to the best of our knowledge, no one
tested these algorithms as extensively as we have done
here in terms of the size and variety of problems.

The PSA of Rudloff et al.3 works in the decision
space and does not intend to find the set of all efficient
extreme points of the problem; rather it finds a solution
based on the idea of L€ohne.5 That is, it finds a subset of
efficient extreme points and directions that allows to
generate the whole efficient frontier and also returns
the corresponding nondominated points and direc-
tions. BOA, on the other hand, works in the objective
space to find the set of all nondominated points as well
as directions of the problem.

Literature review

MOLP algorithms using a parametric programming
approach have been widely studied in the last five dec-
ades. The first parametric programming approach to
MOLP appears to be due to Sch€onfeld.6 The author
presented an algorithm for the enumeration of efficient
solutions of the problem using parametric program-
ming. Geoffrion7 presented a bicriterion parametric
linear programming algorithm to solve the problem.
It was noted that solutions are not extreme points of
the feasible region, pointing to the fact that one should
not rely only on algorithms that consider extreme point
solutions as in ordinary LP.

Evans and Steuer8 introduced MSA for finding all
the efficient extreme points and unbounded efficient
edges for MOLPs. The algorithm first establishes that
the problem is feasible and has efficient solutions. This
is done by solving an auxiliary LP and two weighted
sum LPs to find an initial efficient basis. Thereafter, it
generates efficient bases by moving from one efficient
extreme point to adjacent efficient extreme points until
all the efficient extreme points have been found. The
efficient extreme points are obtained using a test prob-
lem that determines the pivots that lead to them.

Zeleny9 extended the approach of Geoffrion7 to
solve problems with more than two objectives. He
decomposes the parametric space into finite subspaces
that provide a set of optimal weights corresponding to

extreme point solutions. It was noted that the approach
might be inefficient for degenerate problems as two or
more bases may be associated with the same extreme
point. The vertices are tested for efficiency as soon as
they are generated by solving an LP that determines the
efficiency of such vertices.

Yu and Zeleny10 presented two basic forms of para-
metric linear programming approaches and their com-
putational procedures for computing the efficient set;
the direct decomposition of the parametric space that
was earlier introduced in Zeleny9 and the indirect alge-
braic method. Based on a numerical experiment, the
indirect algebraic method outperforms the direct
decomposition method.

A parametric linear programming algorithm for
generating the set of efficient vertices and higher-
dimensional faces of the problem was presented by
Gal.11 In this procedure, efficient extreme points are
generated through the use of an auxiliary problem
which itself is an ordinary LP. The algorithm also
determines higher-dimensional efficient faces for
degenerate problems which were only discussed in
Zeleny9 but not solved. The efficient faces are generat-
ed following a bottom-up search strategy, that is, they
are generated based on the information provided by the
efficient extreme points.

Steuer12 applied the MSA of Evans and Steuer8 to
parametric MOLP problems. Different methods for
obtaining an initial efficient basis as well as different
LP test problems were also presented. Similarly,
Ehrgott1 used this MSA variant to solve parametric
MOLP problems.

A modification of the PSA for single objective LP to
solve bounded bicriterion LP problems was presented
by Ruszczy�nski and Vanderbei.13 The approach was
applied to a large mean-risk portfolio optimization
problem for which the nondominated portfolios
were generated.

Ehrgott et al.14 introduced a primal-dual simplex
algorithm for bounded problems. This algorithm
finds a subset of efficient solutions that are enough to
generate the whole efficient frontier. The algorithm
starts with a coarse partitioning of the weight space
which continues in each iteration as well as solves a
costly LP in each iteration. A vertex enumeration is
then performed in the last step to obtain efficient sol-
utions. Numerical illustrations show the applicability
of the algorithm.

Recently, Rudloff et al.3 presented a PSA for the
problem. The algorithm is a generalization of the algo-
rithm of Ruszczy�nski and Vanderbei14 and is similar to
that of Ehrgott et al.14 It works for any dimension,
solves bounded and unbounded problems (unlike that
of Ehrgott et al.14 and Ruszczy�nski and Vanderbei13)
and does not find all the efficient solutions just like that
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of Ehrgott et al.14 Instead, it finds a solution based on
the idea of L€ohne,5 i.e. a subset of efficient extreme
points and directions that allows to generate the
whole efficient frontier. This is the so-called PSA. It
was compared with a version of BOA in Hamel
et al.15 and MSA of Evans and Steuer8 using small
MOLP instances which were randomly generated
with three and four objectives and up to 50 variables
and constraints. The numerical results show that the
proposed algorithm outperforms Benson’s algorithm
for non-degenerate problems. However, Benson’s algo-
rithm is better for highly degenerate problems. PSA
was also found to be computationally more efficient
than the algorithm of Evans and Steuer.15 This com-
parison only focused on computing efficiency. Here,
apart from computing efficiency, we will also compare
the robustness and quality of MPNP’s returned by
these two methods using existing and realistic
MOLP instances.

Due to the various difficulties arising from solving
MOLP problems in the decision space (such as having
different efficient solutions that map onto the same
point in the objective space), efforts were made to
look at the possibility of solving them in the objec-
tive space.

Benson,4 who presented a detailed account of deci-
sion space approaches, proposed an algorithm for gen-
erating the set of all nondominated points in the
objective space. This is the so-called BOA. According
to him, this algorithm is the first of its kind.
Computational results suggest that the objective space-
based approach is better than the decision space-based
one. A further analysis of the objective space-based
algorithm was presented in Benson.16 This outer
approximation algorithm also generates the set of all
weakly nondominated points, thereby enhancing the
usefulness of the algorithm as a decision aid.

Another of Benson’s17 suggestions is a hybrid
approach for solving the problem in the objective
space. The approach partitions the objective space
into simplices that lie in each face so as to generate
the set of nondominated points. This idea was earlier
presented in Ban.18 The algorithm is quite similar to
that in Benson.4 The difference is in the manner in
which the nondominated vertices are found. While a
vertex enumeration procedure is employed in
Benson,4 a simplicial partitioning technique is used in
the latter.

In Shao and Ehrgott,19 a modification of the algo-
rithm of Benson4 was presented. While in Benson,4 a
bisection method that requires the solution of many
LPs in one step is required; here, solving one LP
achieves the desired effect and in the process improves
computation time. Shao and Ehrgott20 proposed an
approximate dual variant of the algorithm of Benson4

for obtaining approximate nondominated points of the
problem. The proposed algorithm was applied to the
beam intensity optimization problem of radio therapy
treatment planning for which approximate nondomi-
nated points were obtained. Numerical testing shows
that the approach is faster than solving the
primal directly.

The explicit form of the algorithm of Benson4 as
modified by Shao and Ehrgott19 is presented in
L€ohne.5 This version solves two LPs in each iteration
during the process of obtaining nondominated points
and is extended to unbounded problems. L€ohne21

developed a Matlab implementation of this algorithm
called BENSOLVE-1.2 for computing all the nondomi-
nated points and directions (unbounded nondominated
edges) of the problem.

Csirmaz22 presented an improved version of the
algorithm of Benson4 that solves one LP and a vertex
enumeration problem in each iteration. While in
Benson,4 solving two LPs to determine a unique
boundary point and a supporting hyperplane of the
image is required in two steps; here, the two steps are
merged and solving only one LP does both tasks and
improves computation time. The algorithm was used to
generate all the nondominated vertices of the polytope
defined by a set of Shannon inequalities on four
random variables so as to map their entropy region.
Numerical testing shows the applicability of the
approach to medium and large instances with 3 and
10 objectives and up to 5772 variables and 635
constraints.

Hamel et al.15 introduced new versions and exten-
sions of the algorithm of Benson.4 The primal and dual
variants of the algorithm solve only one LP problem in
each iteration and is extended to pointed solid polyhe-
dral ordering cones. Tests reveal a reduction in compu-
tation time. Similarly, L€ohne et al.23 extended the
primal and dual variants of this algorithm to solve
convex vector optimization problems approximately
in the objective space.

Based on our review of the topic, it was observed
that no comparison of robustness and quality of a
MPNP chosen from the nondominated set returned
by PSA with the MPNP chosen from the nondomi-
nated set returned by BOA has been carried out. We
intend to fill this gap here.

The parametric simplex algorithm

The PSA of Rudloff et al.3 is one of the current solu-
tion approaches for MOLP. It can be viewed as a var-
iant of the algorithm of Evans and Steuer,8 with a
similar structure. It is different in the sense that it
does not find all the efficient extreme points and
unbounded efficient edges (extreme rays) as is being
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done in Evans and Steuer.8 As mentioned earlier, the
algorithm works in the decision space and finds a solu-
tion based on the idea of L€ohne;5 i.e., it finds a finite
subset of efficient extreme points and directions that
allows to generate the whole efficient frontier. The
algorithm is initialized by solving an LP to find a
weight vector, such that the weighted sum problem
using this weight vector yields an optimal solution.
The corresponding optimal dictionary (containing
basic and nonbasic variables) is used to construct an
initial dictionary D0 and an index set of entering vari-
ables JD

0

. The optimal solution is then used as an initial
efficient basic feasible solution x0. Its implementation
stores a set of Boundary Dictionaries (BD) containing
dictionaries that are not yet visited and a set of Visited
Dictionaries (VD) that contains dictionaries that are
already visited. At each iteration, the algorithm moves
from one dictionary to another, collecting their basic
solutions into a set of efficient solutions �X for output
until all the dictionaries are visited. More specifically,
the algorithm performs pivoting for only one leaving
variable among the set of all possible leaving variables
and picks only one entering variable, thereby making it
computationally efficient. In addition, rather than solv-
ing a vertex enumeration problem which is more costlier
as is being done in Benson,4 the algorithm finds a set of
parameters that guarantees the efficiency of the current
vertex and eliminates the redundant inequalities thereof.
This is done by solving a parametrized LP to check if an
inequality is defining or redundant; if redundant, it
would be eliminated which also improves the computa-
tion time. For unbounded problems where there is no
leaving variable for an entering variable, a correspond-
ing homogenous problem is solved, and the solution
found forms the extreme directions of the problem.
When all the dictionaries are visited, the algorithm
stops and returns the set of efficient extreme points �X
and directions �X

h
as well as the corresponding nondo-

minated vertices �Y and directions �Y
h
of the problem.

Before we describe the pseudo-code form of PSA, we
first explain the used notation.

Notation

A, b, C problem data
B the set of basic variables

BD the set of boundary dictionaries
D0 the initial dictionary
ED0

the set of explored pivots for the ini-
tial dictionary

JD the index set of entering variables
JD

0

an initial index set of entering variables
N the set of nonbasic variables
R the recession cone of the image

x0 an initial efficient basic feasible solution cor-
responding to the initial dictionary

The indices i, j correspond to basic variable xi 2 B

and nonbasic variable xj 2 N, respectively

B�1 the inverse of the basic matrix
�D the new dictionary

ED the set of explored pivots for the cur-
rent dictionary

E �D the set of all explored pivots of the new dic-
tionary �D

PT½ �Xh� the image of the direction
VD the set of visited dictionaries
�x the basic feasible solution for the new dictio-

nary �D
xh a direction of recession in the decision space
�X the set of efficient extreme points in the deci-

sion space
�X
h

the set of extreme directions in the deci-
sion space

�Y the set of all nondominated vertices in the
objective space

�Y
h

the set of extreme directions in the objec-
tive space

�ZT
Ne

j a direction in the objective space

Algorithm 1 Parametric simplex algorithm3

0: Input: A, b, C
1. Initialize: Find D0 and the index set of entering

variables JD
0

;
BD fD0g, �X  fx0g; �Yh  1,
VS 1,
�X
h  1, ED0  1, R 1:

2. while BD 6¼1 do
3. Let D 2 BD with nonbasic variables N and

index set of entering variables JD;
4. for j 2 JD do
5. Let xj be the entering variable;
6. if B�1Nej � 0 then
7. Let xh be such that xhB ¼ �B�1Nej

and xhN ¼ ej;
8. �X

h  �X
h [ fxhg

9. �Y
h  PT½ �Xh� [ f�ZT

Ne
jg

10. else
11. Pick i 2 argmini2B;ðB�1NÞij>0

ðB�1bÞi
ðB�1NÞij;

12. if ðj; iÞ 62 ED then
13. Perform the pivot with entering

variable xj and leaving variable xi;
14. Call the new dictionary �D with

nonbasic variables �N ¼ N [ fignfjg;

Nyiam and Salhi 5



Illustration of PSA

We consider the following MOLP adapted from Alves

et al.,24 which we solved using a Matlab implementa-

tion of PSA

min f1 ¼ �3x1 � x2

min f2 ¼ � x1 � 4x2

Subject to

� x1 þ x2 � 2

x1 þ x2 � 7

x1 þ 2x2 � 10

x1; x2 � 0

(3)

The efficient extreme points found are x1 ¼
ð2:0; 4:0ÞT; x2 ¼ ð4:0; 3:0ÞT and x3 ¼ ð7:0; 0:0ÞT. The

corresponding nondominated points are f1 ¼
ð�10:0; � 18:0ÞT; f2 ¼ ð�15:0; � 16:0ÞT and f3 ¼
ð�21:0; � 7:0ÞT, respectively, where x1 ¼
ðx11; x12ÞT; x2 ¼ ðx21; x22ÞT; x3 ¼ ðx31; x32ÞT 2 XE and f1 ¼
ðf11; f12ÞT; f2 ¼ ðf21; f22ÞT; f3 ¼ ðf31; f32ÞT 2 YN. The feasible

region in the decision space is shown in Figure 1.

Scalarization techniques

Before presenting BOA, we first present two basic sca-

larization methods that play an important role in its

implementation. These methods are weighted sum sca-

larization and translative or scalarization by a reference

variable. As noted in L€ohne,5 scalarization is one of the
most important techniques used in MOLP.

In the weighted sum method, a new objective func-
tion based on the q-linear objectives is obtained by
assigning non-negative weights wi 2 Rq to each of the
objectives. The weighted sum of the objectives isPq

i¼1 wicix ¼ wTCx: For each vector w 2 Rq; w � 0,
we obtain a scalar linear program

min wTCx subject to Ax � b P1ðwÞ

The weights are usually normalized, so that eTw ¼ 1,
with eT ¼ ð1; . . . ; 1Þ. The dual of P1ðwÞ is

max bTu subject to
ATu ¼ CTw

u � 0 D1ðwÞ

(

In the method of scalarization by a reference vari-
able, the q objectives are associated to a common ref-
erence variable z, and the ith objective is restrained
from being larger than the reference variable and a
fixed real number yi, that is c1x � y1 þ z,
c2x � y2 þ z, . . ., cqx � yq þ z.

The reference variable z is the objective function that
has to be minimized. By setting e ¼ ð1; . . . ; 1ÞT, we
obtain for each vector y 2 Rq the scalar linear program

min z subject to
Ax � b

Cx� ze � y: P2ðyÞ

(

The dual program is

max bTu� yTw subject to

ATu� CTw ¼ 0

eTw ¼ 1

ðu;wÞ � 0: D2ðyÞ

8><
>:

15. if �D 62 VS then
16. if �D 2 BD then
17. E �D  E �D [ fði; jÞg;
18. else
19. Let �x be the basic solution

for �D;
20. �X  �X [ f�xg;
21. �Y  PT½ �X� [ fPT�xg;
22. Compute the index set of

entering variables J �D of �D;
23. LetE �D ¼ fði; jÞg;
24. BD BD [ f �Dg;
25. endif
26. endif
27. endif
28. endif
29. endfor
30. VS VS [ fDg, BD BDnfDg
31. endwhile
32. Output: ð �X; �XhÞ : Set of Efficient solutions and

directions; ð �Y; �YhÞ : Nondominated set and
directions.

Figure 1. Efficient edges joining the three points in the deci-
sion space.
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The above two scalarization techniques are funda-
mental for the implementation of BOA which is dis-
cussed in the next section.5

Benson’s outer-approximation algorithm

This version of BOA is due to Shao and Ehrgott.19 It
can be found in L€ohne.5 It works in the objective space
of the problem and returns the set of all nondominated
points and extreme directions. The algorithm can be
regarded as a primal-dual method because it also
solves the dual problem. But here, we are only con-
cerned with the solution of the primal. The algorithm
first constructs an initial polyhedron Y0 (outer approx-
imation) containing the upper image Y in the objective
space and an interior point p̂ of the image is determined
by solving P1ðwÞ. The inequality representation of the
outer approximation is also determined by solving
D1ðwÞ. The algorithm constructs a sequence of decreas-
ing polytope Y0 � Y1 � . . . � Yk ¼ Y. The vertices of
each polytope Yk as well as inequality representation
(facets) are stored in each iteration. Then, for each
vertex v of the polytope, the algorithm checks if the
vertex is on the boundary of Y. If the vertices are on
it, the problem is solved. The external vertices of Y are
among the vertices of Yk. Otherwise, for any vertex v of
Yk that is not on the boundary of Y, the algorithm
connects this vertex to the interior point p̂ and finds
the intersection y of this line with the boundary of Y by
solving P2ðyÞ. Then a supporting hyperplane adjacent
to y is constructed by solving D2ðyÞ. This hyperplane is
added to Yk to provide a smaller approximation. The
algorithm is repeated in the same way until the vertices
of Yk coincide with the boundary of Y. The algorithm
returns the set of vertices on the boundary of Y as the
nondominated set �Y and directions �Yh of the problem.
The notation used in the pseudo-code of BOA is
as follows.

Notation

A, b, C problem data
D�h the homogeneous dual problem;
k the iteration counter
p̂ an interior point;
Ph the homogeneous problem

R(v) the LP that finds the unique value d
�T a set of solutions of the dual problem
�T
h

the solution of the homogeneous
dual problem

Yd
k the inequality representation of the

current polytope
Yp

k the representation by vertices
ðŷ; zÞ an optimal solution to P2ðyÞ

dð0 < d < 1Þ a unique value that determines the
intersection or boundary point y

The command solveðÞ solves an LP

vertðÞ returns the vertices of a polytope Yk
�Y the set of nondominated vertices

ð �YhÞ the set of extreme directions

Illustration of BOA

Consider again Problem 3 of ‘Illustration of PSA’ sec-

tion. The nondominated points found by Algorithm 2

are f1 ¼ ð�21:0; � 7:0ÞT; f2 ¼ ð�15:0; � 16:0ÞT and

f3 ¼ ð�10:0; � 18:0ÞT, respectively. These nondomi-

nated points are shown in Figure 2.

Selection of the MPNP

This issue has been alluded to in the introduction. To

determine the MPNP, we employ the technique

of Compromise Programming (CP) introduced by

Zeleny25 and compute the ideal objective point which

would serve as a reference point in each case. CP is a

Algorithm 2 Benson’s outer-approximation algorithm5

0: Input: A; b;C : Problem data
a solution ðf0g; �YhÞ to Ph;
a solution �T

h
to D�h;

1. Initialize: p̂  PðsolveðP1ð0ÞÞÞ þ e;
2. �T  fðsolveðD1ðwÞÞ;wÞjðu;wÞ 2 �T

hg;
3. while z ¼ 0 do
4. Yd

k  fD�ðu;wÞjðu;wÞ 2 �Tg;
5. Y

p
k  vertðYdÞ;

6. �Y  1;
7. for i ¼ 1 to jYpj do
8. v Y

p
k½i�;

9. ðŷ; zÞ  solveðP2ðyÞÞ;
10. �Y  �Y [ fŷg;
11. if z 6¼ 0 then
12. ðx; dÞ  solveðRðvÞÞ; ð0 < d < 1Þ;
13. y dv þ ð1� dÞp̂;
14. ðu;wÞ  solveðD2ðyÞÞ;
15. �T  �T [ fðu;wÞg;
16. endif;
17. endfor;
18. endwhile
19. Output: ð �Y; �YhÞ : Nondominated set and

directions;
�T : a solution to dual:
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mathematical programming method that is based on the

notion of distance of a most preferred solution from the

ideal point y�.26 CP can be used to find the best non-

dominated point by determining the minimum distance

to the ideal point.27 Ehrgott and Tenfelde-Podehl28 note

that the ideal point is an essential component of CP, and

the idea is to find a nondominated point which is as close

as possible to it. This is a point in the objective space

whose components are the optimal values of the objec-

tive functions when they are individually optimized.24 It

was also noted in Zeleny26 that the ideal point serves as a

rationale directing and facilitating human choice and

decision making. To find the ideal point, we simply

solve q single objective problems

min cTkx; k ¼ 1; 2; . . . ; q
subject to x 2 X

(4)

We note here that the ideal point itself is not an

element of the nondominated set ðy� 62 YNÞ.
Otherwise, this would mean that the objective functions

are not conflicting, but it always exists in the objective

space. Its corresponding point in the decision space

may not exist.24

For our numerical illustration above (Problem 3 of

‘Illustration of PSA’ section), solving each of the objec-

tive functions individually over the feasible region X

yields the ideal objective point y� ¼ ð�21:0;�18:0ÞT.
Clearly, y� 62 YN, where YN ¼ fð�10:0; � 18:0ÞT;
ð�15:0; � 16:0ÞT; ð�21:0; � 7:0ÞTg as returned by

PSA and BOA for this problem.

Having computed the ideal objective point y�, we
now determine the minimum distance of each nondo-
minated point ŷ from it by finding

min fkŷ1 � y�k; kŷ2 � y�k; . . . ; kŷn � y�kg

where ŷi 2 YN has already been found either by PSA or
BOA, k:k is the Euclidean norm on Rq and y� is the
ideal objective point. Using the nondominated points
f1, f2 and f3 for Problem 3 yield

kf1 � y�k ¼ 11:0; kf2 � y�k ¼ 6:3
and kf3 � y�k ¼ 11:0

Since the relative distance of f2 from the ideal point
y� is 6.3 which is the smallest of the three, it therefore
means that f2 ¼ ð�15:0; � 16:0ÞT is the closest of the
three nondominated points to the ideal point
y� ¼ ð�21:0;�18:0ÞT. Hence, f2 is selected as the
DM’s MPNP.

The following more substantial illustrative MOLP
adapted from Zeleny9 with three objectives makes
the point

min f1 ¼ �x1 � 2x2 þ x3 � 3x4 � 2x5 � x7

min f2 ¼ � x2 � x3 � 2x4 � 3x5 � x6

min f3 ¼ �x1 � x3 þ x4 þ x6 þ x7

Subject to

x1 þ 2x2 þ x3 þ x4 þ 2x5 þ x6 þ 2x7 � 16

� 2x1 � x2 þ x4 þ 2x5 þ x7 � 16

� x1 þ x3 þ 2x5 � 2x7 � 16

x2 þ 2x3 � x4 þ x5 � 2x6 � x7 � 16

x1; x2; x3; x4; x5; x6; x7 � 0

(5)

Again, optimizing each of the objective functions
individually over the feasible region yields the ideal
objective point y� ¼ ð�48:0;�32:0;�16:0ÞT. Solving
Problem 5 with BOA, the set of nondominated points
found is YN ¼ fð�48:0;�32:0; 16:0ÞT; ð�16:0;
0:0;�16:0ÞT; ð0:0;�8:0;�16:0ÞT; ð�5:33;�21:33;
�5:33ÞT; ð�16:0;�24:0; 0:0ÞTg with y� 62 YN. By deter-
mining the minimum distance of each of these nondo-
minated points from the ideal point y�, it was found
that the point ð�48:0;�32:0; 16:0ÞT is the closest. Its
distance from it is 32. It is selected as the DM’s MPNP.

For PSA, the set of nondominated points found
is YN ¼ fð�8:0;�4:0; 12:0ÞT; ð�16:0; 0:0;�16:0ÞT; ð0:0;
�8:0; 8:0ÞT; ð�8:0; 0:0; 8:0ÞTg also with y� 62 YN.

Next, we measure the distances of each of these
points from the ideal point y� ¼
ð�48:0;�32:0;�16:0ÞT as was done with those
returned by BOA. It turned out that the nondominated

Figure 2. Nondominated edges connecting the three points in
the objective space.
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point ð�16:0; 0:0;�16:0ÞT is the closest to the ideal

point y� and is selected as the DM’s MPNP as shown

in Table 1, Problem 9. Its distance from it is 55.42
which is bigger than 32 which was the closest when

measuring the points returned by BOA, thereby

making the MPNP returned by BOA closer to the

ideal point and of higher quality for this problem.
We have used this method to choose the MPNP

from the nondominated sets returned by PSA and

BOA for comparison. The measure of the quality of

solutions used is the distance to the ideal point as

explained above.

Experimental results

In this section, we provide numerical results to com-
pare the computing efficiency, robustness and the qual-

ity of a MPNP returned by Algorithms 1 and 2.
Table 2 shows the numerical results for a collection

of 53 problems, from the existing literature. Problem 1
is taken from Ehrgott,1 Problems 2–10 were taken from

Zeleny.26 Problems 11–21 are test problems from the

interactive MOLP explorer (iMOLPe) of Alves et al.24

Problems 22–47 are taken from Steuer.12 Problems 48

and 53 are test problem in Bensolve-2.0 of L€ohne and
Weißing,29 while Problem 52 is a test problem in

Bensolve-1.2 of L€ohne.20 Finally, Problems 49–51 are

obtained using a script in Bensolve-2.0 of L€ohne and

Weißing29 that was used to generate problem 53 with

the same number of variables and constraints. Problem
48 has a dense constraint matrix with an identity matrix

of order n as its criterion matrix, where n is the number

of variables in the problem. The RHS vector is such

that all the components are zeros except for a one (1) at

the beginning as the only none zero element. Problems
49–51 and 53 have dense criterion matrices with iden-

tity matrices of order n as their constraint matrices,

where n is also the number of variables in the respective

problem. All the elements in the RHS vectors are ones.

Finally, Problem 52 is such that the constraint matrix is
sparse while the criterion matrix is dense. The RHS
vector is such that all the components are ones except
for 200 at the end as the largest entry.

Both Algorithms 1 and 2 were implemented in
Matlab. In all tests, m is the number of constraints, n
the number of variables, q the number of objectives and
NNP the number of nondominated points returned by
the algorithms. All problems were executed on an Intel
Core i5-2500 CPU at 3.30GHz with 16.0GB RAM. We
recorded the CPU times (in seconds) returned by the
algorithms for each problem and also acted as the DM
by choosing a MPNP (whose components are as close
as possible to the ideal objective point as explained in
‘Selection of the most preferred nondominated point’
section) from the nondominated set YN ¼
fCx : x 2 XEg returned by PSA to compare with a
MPNP returned by BOA.

As can be seen in Table 2, the CPU times increase as
the problem dimension increases. We can also infer
from Tables 2 and 3 that the CPU times also depend
to some extent on the total number of nondominated
points returned by the algorithm for a given problem.
That is to say, the more the number of nondominated
points in a given problem, the more computational
effort would be required to obtain them. We note
here that most of the problems in Table 2 are non-
degenerate. For these problems, PSA appears to have
computational advantage over BOA, most especially
for those problems with more nondominated points
as it returns only a subset of them; see problems 20,
25, 30, 39, 40 and 46. We noticed that for those prob-
lems where both algorithms return the same number of
nondominated points, there is a slight difference in
CPU time which is in favour of PSA. We also observed
that PSA returns more nondominated points for some
of the problems than BOA; this is not supposed to
happen as it is meant to return a subset of these
points. Some of the nondominated points returned

Table 1. Summary of experimental results.

Criteria for evaluation

Algorithms

Computing efficiency

Robustness Quality of MPNPDegenerate problems

Non-degenerate

problems

BOA Computationally superior

to PSA on highly

degenerate problems

Computationally inferior

to PSA on non-degenerate

problems

Outperforms PSA in

terms of robustness

of methods

Returned high quality MPNP

than PSA on highly

degenerate problems

PSA Computationally inferior

to BOA on highly

degenerate problems

Computationally more

efficient than BOA on

non-degenerate problems

Not so robust as

compared to BOA

Returned high quality MPNP as

BOA for most of the problems

considered
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Table 2. Comparative results for small to medium instances.

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

1 Ehrgott1 3 3 3 3 f1¼ –2.00 0.038 3 f1¼ –2.00 0.031

f2¼ 10.00 f2¼ 10.00

f3¼ –5.00 f3¼ –5.00

2 Zeleny26 2 2 2 3 f1¼ –25,000 0.021 3 f1¼ –25,000 0.015

f2¼ –66,667 f2¼ –66,667

3 Zeleny26 2 4 2 2 f1¼ –9.00 0.026 2 f1¼ –9.00 0.019

f2¼ –15.00 f2¼ –15.00

4 Zeleny26 2 4 3 3 f1¼ –3.00 0.161 3 f1¼ –3.00 0.121

f2¼ –7.50 f2¼ –7.50

f3¼ 9.00 f3¼ 9.00

5 Zeleny26 2 6 2 3 f1¼ –24.00 0.212 3 f1¼ –24.00 0.181

f2¼ –16.00 f2¼ –16.00

6 Zeleny26 3 3 3 5 f1¼ 3.00 0.046 5 f1¼ 3.00 0.032

f2¼ –6.00 f2¼ –6.00

f3¼ –12.00 f3¼ –12.00

7 Zeleny26 5 3 3 4 f1¼ 0.00 0.043 4 f1¼ 0.00 0.041

f2¼ –4.00 f2¼ –4.00

f3¼ –24.00 f3¼ –23.62

8 Zeleny26 5 2 2 1 f1¼ –52.00 0.016 1 f1¼ –52.00 0.011

f2¼ –52.00 f2¼ –52.00

9 Zeleny26 6 4 2 1 f1¼ 0.00 0.017 1 f1¼ 0.00 0.012

f2¼ 0.00 f2¼ 0.00

10 Zeleny26 7 4 3 5 f1¼ –48.00 0.163 4 f1¼ –16.00 0.152

f2¼ –32.00 f2¼ 0.00

f3¼ 16.00 f3¼ –16.00

11 iMOLPe 2 3 2 3 f1¼ –21.00 0.047 3 f1¼ –21.00 0.035

f2¼ –7.00 f2¼ –7.00

12 iMOLPe 3 3 4 3 f1¼ –10.00 0.033 3 f1¼ –10.00 0.021

f2¼ –20.00 f2¼ –20.00

f3¼ –100.00 f3¼ –100.00

f4¼ –10.00 f4¼ –10.00

13 iMOLPe 3 5 3 10 f1¼ –21.00 0.042 10 f1¼ –21.00 0.033

f2¼ –4.50 f2¼ –4.50

f3¼ –4.00 f3¼ –4.00

14 iMOLPe 3 3 3 7 f1¼ –2.66 0.035 7 f1¼ –2.66 0.032

f2¼ –2.00 f2¼ –2.00

f3¼ –0.33 f3¼ –0.33

15 iMOLPe 4 3 3 8 f1¼ –48.50 0.038 8 f1¼ –48.50 0.036

f2¼ –19.50 f2¼ –19.50

f3¼ –37.00 f3¼ –37.00

16 iMOLPe 4 2 3 6 f1¼ –20.00 0.036 6 f1¼ –20.00 0.035

f2¼ –80.00 f2¼ –80.00

f3¼ –40.00 f3¼ –40.00

17 iMOLPe 4 4 3 11 f1¼ –40.00 0.186 11 f1¼ –40.00 0.162

f2¼ –50.00 f2¼ –50.00

f3¼ –10.00 f3¼ –10.00

18 iMOLPe 3 3 3 5 f1¼ 0.00 0.033 5 f1¼ 0.00 0.031

f2¼ –2.00 f2¼ –2.00

f3¼ –4.00 f3¼ –4.00

19 iMOLPe 15 10 2 11 f1¼ –363.82 0.195 7 f1¼ –229.18 0.125

f2¼ –33.70 f2¼ –35.31

20 iMOLPe 15 10 3 37 f1¼ –363.82 0.476 7 f1¼ –134.17 0.301

f2¼ –33.70 f2¼ –32.88

f3¼ –136.71 f3¼ –135.82

(continued)
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Table 2. Continued.

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

21 iMOLPe 10 5 3 14 f1¼ 226.40 0.623 14 f1¼ 223.09 0.589

f2¼ –501.86 f2¼ –496.23

f3¼ –351.14 f3¼ –246.64

22 Steuer12 5 5 2 5 f1¼ –10.00 0.036 5 f1¼ –10.00 0.034

f2¼ –3.00 f2¼ –3.00

23 Steuer12 4 4 3 3 f1¼ 3.42 0.015 3 f1¼ 3.42 0.012

f2¼ –10.28 f2¼ –10.28

f3¼ –3.42 f3¼ –3.42

24 Steuer12 5 5 4 14 f1¼ 1.02 0.098 14 f1¼ 1.02 0.081

f2¼ –25.46 f2¼ –25.46

f3¼ 24.44 f3¼ 24.44

f4¼ –28.32 f4¼ –28.32

25 Steuer12 10 8 4 72 f1¼ 106.29 1.973 65 f1¼ 183.36 0.921

f2¼ –462.13 f2¼ –424.26

f3¼ 175.57 f3¼ 117.29

f4¼ –33.41 f4¼ –4.03

26 Steuer12 5 4 3 9 f1¼ –52.07 0.054 8 f1¼ –52.07 0.045

f2¼ 31.50 f2¼ 31.50

f3¼ –17.35 f3¼ –17.35

27 Steuer12 6 8 4 14 f1¼ –6.94 0.065 6 f1¼ –6.94 0.053

f2¼ –5.38 f2¼ –5.38

f3¼ 6.83 f3¼ 6.83

f4¼ –9.16 f4¼ –9.16

28 Steuer12 7 6 4 15 f1¼ –31.53 0.286 12 f1¼ –31.53 0.555

f2¼ –26.48 f2¼ –26.48

f3¼ –26.57 f3¼ –26.57

f4¼ –0.34 f4¼ –0.34

29 Steuer12 7 6 4 9 f1¼ 26.80 0.192 9 f1¼ 26.80 0.142

f2¼ –37.73 f2¼ –37.73

f3¼ –24.33 f3¼ –24.33

f4¼ –59.60 f4¼ –59.60

30 Steuer12 8 8 6 286 f1¼ –74.00 73.963 40 f1¼ –77.00 0.699

f2¼ –107.50 f2¼ –52.00

f3¼ –41.25 f3¼ –16.00

f4¼ –27.25 f4¼ –52.40

f5¼ –9.00 f5¼ 26.00

f6¼ –30.75 f6¼ –20.00

31 Steuer12 8 8 3 5 f1¼ –36.57 0.168 5 f1¼ –36.57 0.156

f2¼ –22.28 f2¼ –22.28

f3¼ –14.00 f3¼ –14.00

32 Steuer12 8 8 3 12 f1¼ –14.03 0.135 1 f1¼ –6.50 0.121

f2¼ –18.00 f2¼ –11.00

f3¼ –4.93 f3¼ –7.50

33 Steuer12 5 5 4 12 f1¼ –21.50 0.277 8 f1¼ –8.00 0.216

f2¼ –39.25 f2¼ –23.87

f3¼ –16.25 f3¼ –7.62

f4¼ 27.00 f4¼ 27.00

34 Steuer12 6 6 3 17 f1¼ –12.65 0.212 17 f1¼ 13.62 0.210

f2¼ 0.00 f2¼ –9.75

f3¼ –30.15 f3¼ –26.25

35 Steuer12 5 5 4 9 f1¼ –14.66 0.462 2 f1¼ –14.00 0.345

f2¼ –21.06 f2¼ 0.00

f3¼ 35.73 f3¼ 27.00

(continued)
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Table 2. Continued.

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

f4¼ –16.00 f4¼ 0.00

36 Steuer12 10 10 4 6 f1¼ 46.50 0.333 6 f1¼ 46.50 0.241

f2¼ 19.21 f2¼ 19.21

f3¼ –27.07 f3¼ –27.07

f4¼ –27.07 f4¼ –27.07

37 Steuer12 8 8 3 13 f1¼ –14.48 0.217 13 f1¼ –14.48 0.201

f2¼ –4.74 f2¼ –4.74

f3¼ 6.93 f3¼ 6.93

38 Steuer12 6 7 4 21 f1¼ –2.61 0.386 a – –

f2¼ –12.63

f3¼ 9.70

f4¼ 2.37

39 Steuer12 12 16 4 601 f1¼ –5.25 31.034 23 f1¼ –5.13 0.982

f2¼ –14.25 f2¼ –3.38

f3¼ –8.25 f3¼ 1.83

f4¼ –1.00 f4¼ –1.18

40 Steuer12 10 14 5 132 f1¼ –5.16 102.952 9 f1¼ –18.00 1.395

f2¼ –2.79 f2¼ 70.60

f3¼ –4.38 f3¼ –3.20

f4¼ –18.70 f4¼ 8.00

f5¼ –9.69 f5¼ –4.30

41 Steuer12 7 6 3 3 f1¼ –29.40 0.165 3 f1¼ –29.40 0.151

f2¼ –65.30 f2¼ –65.30

f3¼ –39.30 f3¼ –39.30

42 Steuer12 7 7 3 7 f1¼ –62.18 0.036 7 f1¼ –62.18 0.036

f2¼ –93.50 f2¼ –93.50

f3¼ –52.00 f3¼ –52.00

43 Steuer12 6 6 4 5 f1¼ –37.50 0.158 5 f1¼ –37.50 0.134

f2¼ –11.25 f2¼ –11.25

f3¼ –7.50 f3¼ –7.50

f4¼ –20.25 f4¼ –20.25

44 Steuer12 6 6 4 10 f1¼ 34.50 0.211 10 f1¼ 34.50 0.201

f2¼ –7.50 f2¼ –7.50

f3¼ –56.00 f3¼ –56.00

f4¼ –31.50 f4¼ –31.50

45 Steuer12 10 14 5 471 f1¼ 1.03 307.611 a – –

f2¼ –2.19

f3¼ 2.01

f4¼ –8.13

f5¼ 7.22

46 Steuer12 10 14 5 128 f1¼ –4.95 105.344 1 f1¼ 4.93 0.291

f2¼ –3.42 f2¼ –5.57

f3¼ –4.38 f3¼ –2.83

f4¼ –18.91 f4¼ –16.28

f5¼ –9.27 f5¼ –6.13

47 Steuer12 7 7 3 6 f1¼ –3.83 0.045 9 f1¼ –3.83 0.031

f2¼ –76.46 f2¼ –76.46

f3¼ –49.57 f3¼ –49.57

48 Bensolve-2.0 5 31 5 22 f1¼ 0.00 2.877 1 f1¼ 0.00 0.125

f2¼ –1.00 f2¼ 0.00

f3¼ 0.00 f3¼ 0.00

f4¼ 0.00 f4¼ 0.00

f5¼ –2.00 f5¼ 0.00

(continued)
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are repeated. In terms of the quality of a MPNP
returned by these algorithms, we observed in Table 2
that both algorithms returned the same MPNP points
for most of the problems considered. However, for a
few of these problems where the MPNP are not the
same, BOA returned higher quality MPNP than PSA
as illustrated in pages 15 and 16 (second numerical
illustration of Problem 5). This observation may be
largely due to the fact that PSA is not meant to
return all nondominated points, as it returns a subset
of them, whereas BOA returns all the nondominated
points of the problem.

Next, we use practical size MOLP instances from
Csirmaz30 which is an MOLP solver called Inner and
MOPLIB31 which stands for Multi-Objective Problem
Library. These test problems were also executed on the
same machine, and the results are reported in Table 3.

Problems 54–72 are from Csirmaz30 while Problems

73–86 are from MOPLIB. Note that Problems 54–73

are highly degenerate. Their structure is such that their

constraint and criterion matrices are sparse while all

the components of the RHS vectors are zeros except

for a one (1) as the only non-zero entry. In Problems

74 and 79, the constraint matrices are sparse, the crite-

rion matrices are dense and all the elements in the RHS

vectors are ones. Problems 75 and 76 have sparse con-

straints and criterion matrices with dense RHS vectors.

Problem 78 is such that the RHS vector is dense while

the constraint and criterion matrices are sparse. In

Problems 80 and 82, the constraint matrices are

sparse, criterion matrices are dense and all the elements

in the RHS vectors are ones. Problems 77 and 81 have

dense RHS vectors while the constraint and criterion

matrices are sparse. Problems 83 and 84 are such that

the constraint and criterion matrices are sparse, and all

the components of the RHS vectors are zeros except for

a one (1) at the beginning as the only non-zero element.

Problem 85 is such that the constraint and criterion

matrices are sparse while the components of the RHS

vector are all zeros except for a 90 at the end as the only

non-zero entry. Finally, Problem 86 is such that the

constraint and criterion matrices as well as the RHS

vector are all sparse. For the highly degenerate prob-

lems, it was observed that BOA is computationally

superior to PSA which confirms what was reported

by Rudloff et al.3 that BOA outperforms PSA on

highly degenerate problems. Even the nondominated

points returned by PSA for these problems are also

of lower quality than those returned by BOA.
In terms of robustness of methods, we noticed in

Tables 2 and 3 that PSA could not solve problems

38, 45, 52, 68 and 81. It returns the image which is

the whole region which indicates that none of the ver-

tices in the image is nondominated, meaning that no

solution is returned thereby making BOA more robust.

However, we also observed in Table 3 that BOA could

not produce results for some of the test problems

despite the long running time allowed (three days); it

was aborted. The fact that some problems were aborted

after three days of running time does not necessarily

mean that the algorithms cannot solve these problems;

if allowed to run further, they could potentially return

a huge number of nondominated points or run out of

memory which would indicate that the total number of

nondominated points has exceeded the Matlab storage

capacity on the machine used.
For those problems which were solved by BOA in

Table 3, it was also observed that the MPNPs returned

are of higher quality than those returned by PSA.

However, for the non-degenerate problems, PSA was

found to be computationally superior to BOA.

Table 2. Continued.

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

49 Bensolve-2.0 36 36 2 8 f1¼ –5.00 0.211 82 f1¼ –5.00 0.772

f2¼ –26.00 f2¼ –25.50

50 Bensolve-2.0 64 64 2 14 f1¼ –63.00 0.403 292 f1¼ –34.50 5.167

f2¼ –7.00 f2¼ –9.50

51 Bensolve-2.0 100 100 2 20 f1¼ –124.00 0.621 1102 f1¼ –123.50 36.323

f2¼ –9.00 f2¼ –9.00

52 Bensolve-1.2 100 101 2 32 f1¼ –8.42 0.503 a – –

f2¼ –116.65

53 Bensolve-2.0 343 343 3 1368 f1¼ –42.00 55.302 b – –

f2¼ –294.00

f3¼ –6.00

aThe image is the whole region, implying that the problem has no solution.
bOut of memory.
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Table 3. Comparative results for large instances (NNP stands for Number of Nondominated Points).

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

54 Inner 844 12 10 1 f1¼ –1.00, f2¼ –1.00, f3¼ 0.00 0.871 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 2.835

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

55 Inner 853 12 10 1 f1¼ –1.00, f2¼ –1.00, f3¼ 0.00 0.892 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 2.888

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

56 Inner 857 12 10 1 f1¼ –1.00, f2¼ –1.00, f3¼ 0.00 0.871 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 2.922

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

57 Inner 873 12 10 1 f1¼ 0.00, f2¼ –1.00, f3¼ –1.00 0.884 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 3.041

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

58 Inner 877 12 10 1 f1¼ 0.00, f2¼ –1.00, f3¼ –1.00 0.935 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 3.071

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

59 Inner 880 12 10 1 f1¼ 0.00, f2¼ –1.00, f3¼ –1.00 0.968 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 3.113

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

60 Inner 882 12 10 1 f1¼ –1.00, f2¼ 0.00, f3¼ –1.00 1.009 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 3.115

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

61 Inner 886 12 10 2 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 1.341 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 3.118

f4¼ 1.00, f5¼ –1.00, f6¼ –1.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

62 Inner 888 12 10 1 f1¼ –1.00, f2¼ –1.00, f3¼ 0.00 1.104 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 3.119

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

63 Inner 1009 12 10 1 f1¼ 0.00, f2¼ –1.00, f3¼ –1.00 1.281 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 3.911

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

64 Inner 1956 12 10 1 f1¼ –1.00, f2¼ –1.00, f3¼ 0.00 4.288 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 13.374

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

65 Inner 1983 12 10 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 4.418 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 13.805

f4¼ –1.00, f5¼ –1.00, f6¼ 0.00 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

66 Inner 3722 338 10 55 f1¼ –0.25, f2¼ –0.50, f3¼ –2.75, 22.167 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 56.198

f4¼ 1.87, f5¼ –0.62, f6¼ 0.00, f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

67 Inner 3725 338 10 61 f1¼ –0.20, f2¼ –0.40, f3¼ –2.40 24.605 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 56.458

(continued)
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Table 3. Continued.

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

f4¼ –2.20, f5¼ –0.6, f6¼ –0.20 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

68 Inner 3897 362 10 b – – a – –

69 Inner 5646 492 10 1575 f1¼ –0.38, f2¼ 0.00, f3¼ –2.55 125.488 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 130.159

f4¼ –1.66, f5¼ –0.16, f6¼–0.44 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

70 Inner 8891 707 10 13 f1¼ –0.20, f2¼ 0.00, f3¼ –2.20, 228.312 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 329.701

f4¼ –2.20, f5¼ –0.20, f6¼–0.20 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

71 Inner 9472 707 10 b – – 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 362.449

f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00

72 Inner 10017 779 10 31 f1¼–0.11, f2¼ 0.00, f3¼ –2.44 260.494 1 f1¼ 0.00, f2¼ 0.00, f3¼ 0.00 412.929

f4¼ –2.44, f5¼ –0.55, f6¼–0.55 f4¼ 0.00, f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00, f9¼ 0.00 f7¼ 0.00, f8¼ 0.00, f9¼ 0.00

f10¼ 0.00 f10¼ 0.00

73 MOPLIB 30 21 12 1 f1¼5.0E–12, f2¼5.0E–12 0.598 1 f1¼ 0, f2¼ 0 0.167

f3¼5.0E–12, f4¼5.0E–12 f3¼ 0, f4¼ 0

f5¼5.0E–12, f6¼5.0E–12 f5¼ 0, f6¼ 0

f7¼5.0E–12, f8¼5.0E–12 f7¼ 0, f8¼ 0

f9¼5.0E–12, f10¼5.0E–12 f9¼ 0, f10¼ 0

f11¼5.0E–12, f12¼–5.5E–11 f11¼ 0, f12¼ 0

74 MOPLIB 100 20 3 291 f1¼ –168.00 4.291 1 f1¼ –168.00 0.122

f2¼ –124.00 f2¼ –124.00

f3¼ –143.00 f3¼ –143.00

75 MOPLIB 53 221 3 2552 f1¼ 0.00 1663.803 1 f1¼ 0.00 0.682

f2¼ –2.00 f2¼ 0.00

f3¼ –13959.00 f3¼ –13461.00

76 MOPLIB 53 226 3 552 f1¼ –180.00 6.551 74 f1¼ –144.00 1.628

f2¼ –123.00 f2¼ –79.00

f3¼ 16842.00 f3¼ 13360.00

77 MOPLIB 1143 1211 3 c – – 1 f1¼ –85.00, f2¼ 0, f3¼ 0 16.248

78 MOPLIB 36939 4608 3 c – – 1 f1¼ 0, f2¼ 0, f3¼ 0 18927.102

79 MOPLIB 900 60 4 b – – 1 f1¼ –434.00, f2¼ –452.00 3.005

f3¼ –497.00, f4¼ –463.00

80 MOPLIB 729 729 4 b – – c – –

81 MOPLIB 4492 1003 4 c – – 1 – –

82 MOPLIB 900 60 10 c – – 1 f1¼ –394.00, f2¼ –429.00 4.306

f3¼ –415.00, f4¼ –428.00

f5¼ –447.00, f6 ¼–417.00
f7¼ –401.00, f8¼ –414.00

f9¼ –402.00, f10¼ –429.00

83 MOPLIB 779 10174 10 b – – 1 f1¼ 0.00, f2¼ 0.00 424.58

f3¼ 0.00, f4¼ 0.00

f5¼ 0.00, f6¼ 0.00

f7¼ 0.00, f8¼ 0.00

f9¼ 0.00, f10¼ 0.00

84 MOPLIB 376 1917 19 c – – 1 f1¼ 2, f2¼ –1, f3¼ –1 69.765

f4¼ –1, f5¼ 0, f6¼ –1,

(continued)
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Summary of results

In this section, we present the summary of experimental

results discussed in the previous section in Table 1. We

have also presented the CPU time of BOA and PSA for

70 out of the 86 instances (which represent 81.40%) of

the total problems solved by both methods in Figure 3.

Conclusion

We have reviewed the existing literature on the para-

metric simplex and Benson’s BOAs. We have also pre-

sented these algorithms, explained and illustrated them

on small MOLP instance. Crucially, we have explained

how MPNP’s are obtained. A detailed computational

Figure 3. Running time of PSA and BOA for the 70 instances solved.

Table 3. Continued.

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

f7¼ 0, f8¼ –1, f9¼ 0,

f10¼ –1, f11¼ –2, f12¼ –2

f13¼ 0, f14 ¼0, f15¼ 0

f16¼ 0, f17¼ 0, f18¼ 0,

f19¼ 0.

85 MOPLIB 218 28 27 b – – 1 f1¼ –360, f2¼ 0, f3¼ 0 14.746–

f4¼ 90, f5¼ 180, f6¼ 180

f7¼ 180, f8¼ 180, f9¼ 270

f10¼ 0, f11¼ 360, f12¼ 90

f13¼ 180, f14¼ 0, f15¼ 90

f16¼ 90, f17¼ 0, f18¼ –90,

f19¼ 90, f20¼ –90, f21¼ –90

f22¼ 90, f23¼ –90, f24¼ –90

f25¼ –90, f26¼ 90, f27¼ 0.

86 MOPLIB 295056 24586 2 c – c –

aThe image is the whole region, implying that the problem has no solution.
bAborted after three days of running time.
cOut of memory.
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experience to compare the efficiency, robustness as well

as the quality of MPNP’s is provided. The CPU times

and quality of MPNP’s returned by these algorithms

for a collection of 86 existing MOLP problems, ranging

from small to medium and practical size instances is

reported. It was observed that BOA is superior to

PSA in terms of robustness, quality of the MPNP’s it

returns and is also computationally more efficient than

PSA on highly degenerate problems. The measure of

quality used is the distance to the ideal point as

explained in ‘Experimental results’ section. However,

PSA outperforms BOA on non-degenerate problems.
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