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Abstract—This work studies the class of algorithms for learn-
ing with side–information that emerge by extending generative
models with embedded context–related variables. Using finite
mixture models (FMM) as the prototypical Bayesian network,
we show that maximum–likelihood estimation (MLE) of param-
eters through expectation–maximization (EM) improves over the
regular unsupervised case and can approach the performances
of supervised learning, despite the absence of any explicit
ground truth data labeling. By direct application of the miss-
ing information principle (MIP), the algorithms’ performances
are proven to range between the conventional supervised and
unsupervised MLE extremities proportionally to the information
content of the contextual assistance provided. The acquired
benefits regard higher estimation precision, smaller standard
errors, faster convergence rates and improved classification
accuracy or regression fitness shown in various scenarios, while
also highlighting important properties and differences among the
outlined situations. Applicability is showcased with three real–
world unsupervised classification scenarios employing Gaussian
Mixture Models. Importantly, we exemplify the natural extension
of this methodology to any type of generative model by deriving
an equivalent context-aware algorithm for variational autoen-
coders (VAs), thus broadening the spectrum of applicability to
unsupervised deep learning with artificial neural netowrks. The
latter is contrasted with a neural-symbolic algorithm exploiting
side–information.

Index Terms—context–awareness, expectation–maximization,
finite mixture models, maximum–likelihood, parameter estima-
tion, side–information, unsupervised learning, variational autoen-
coder.

I. INTRODUCTION

THE commonly encountered situation of missing data
labels has raised an increasing interest in unsupervised

learning approaches for classification. Unsupervised classifi-
cation can be defined as the task of estimating the parameters
of a classification model when the number and type of classes
are known, training data samples are available, but there exist
no associated ground truth data labels whatsoever. The latter
characteristic distinguishes this problem from semi-supervised
learning methods [1], where some labeled instances exist. The
absence of any kind of reward signal renders reinforcement
learning [2] equally unsuitable. Recent works have showcased
that, even in this setting, there exist ways to improve parameter
estimation exploiting additional, side-information.
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Along these lines, this work studies algorithms which
can exploit probabilistic contextual information to improve
maximum–likelihood (ML) estimation (MLE) in generative
finite mixture models (FMM) [3, chap. 9] and variational au-
toencoders (VAs) [4]. More specifically, we focus on situations
where it is possible to extend the probabilistic directed graph
of a generative model with contextual random variables ci
whose prior, p(ci), and/or conditional distributions, p(zi|ci)
or p(ci|zi)1, are known, thus providing the additional side–
information. We show that such contextual assistance is able
to partially reveal the missing data label information.

As illustrative examples, one can consider an adaptive
activity recognition system equipped with online unsupervised
learning capabilities to classify a set of activity classes z from
kinematic sensor data features x. Such a system could benefit
from environmental context c ∈ {h(ome), o(utdoor)}, upon
which z naturally depends. That is, since the aforementioned
distributions (e.g., p(z = run|c = o) and p(z = walk|c = o))
are indicative of the current activity even in the case of
latent context c, which is a consequence of the statistical
relationships between context and labels, i.e., the facts that
running is more likely to occur outdoors, while walking in-
doors. Similarly, unsupervised learning of lung tumor detectors
with z ∈ {malignant, benign} from X-ray imaging features
x, could be enhanced by knowledge on the results of a parallel
blood test c (observed, but conditionally independent from x),
where the dependency relationship between z and c is reversed
with respect to the previous example.

The main motivation of this study is to show that such
algorithms are able to learn “better” than their unsupervised
equivalents and close to the supervised ones despite com-
pletely discarding any need for ground truth. Secondly, we
wish to explore the information-theoretic principles under
which this type of side–information yields estimation benefits.
The contributions of this article are threefold. First, we draw
attention to the fact that simple MLE along with the above
mild assumptions result in improved unsupervised learning, a
fact so far neglected in favor of more complex methodologies
[5], [6]. Second, for the FMM case, we prove this frame-
work’s benefits in various scenarios in terms of parameter
estimation precision, standard errors, convergence rates and
classification or regression quality. A comparative analysis
of the algorithms in question is also offered. Additionally,
we demonstrate the applicability of this approach to real–
world problems. The third contribution entails the in-depth
study of the underlying mechanisms through which these
algorithms improve unsupervised estimation, using again the
simple FMM case as a vehicle. This includes, on the one

1Variable zi represents the latent class label of data sample xi.
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hand, the analysis of exemplary likelihood landscapes. On the
other hand, we explicitly demonstrate—for the first time—the
alleviation of missing label information by side–information,
through the missing information principle (MIP) [7]. Lastly,
we demonstrate how the same idea extends to VAs, thus
additionally empowering with side–information unsupervised
deep learning methods; a topic that despite its recent break-
throughs, is still largely dependent on the existence of labeled
datasets. Applicability with deep artificial neural networks
(ANNs) allows for comparing the proposed approach with
recent methods inspired by neural-symbolic integration.

The remainder of this manuscript is organized as follows:
Section II discusses the relevant literature and highlights its
differences with the present work. Section III presents the
examined algorithms, the relevant theory and the evaluation
methodology. Section IV illustrates the results on artificial and
real datasets. Finally, Section V discusses our this work in the
light of the results.

II. RELATED WORK

Most recent work on learning with side–information em-
ploys undirected graphs and addresses natural language pro-
cessing (NLP) applications. A great deal of literature addresses
various cases of weak supervision where, although some form
of data labels is available, it differs from regular supervision.
A first case concerns learning from partially or ambiguously
labeled datasets, where each data sample is associated to many
possible labels only one of which is correct [8], [9]. Second,
multi-label, multi-annotator (crowd-sourcing) settings where
all of the labels could be valid, potentially with different
or time-varying reliability [10]–[12]. Partial-label problems,
where labels are only missing for some of the classes, are
studied in [13]. In [14], another partial-label framework is
investigated, concerning the case where one knows to which
classes a sample does not belong. Additionally, multiple-
instance or multi-view learning methods, where each learning
example contains a bag of samples are proposed in [15]–[18].
In [19], a generic method to handle most of the above problems
is presented. Nguyen et al. [20] put forward a framework
exploiting additional information in the form of reliability
indices of data labels. Similarly, cases with noisy or wrong
labels are addressed in [21]–[24]. The setting discussed here
differs substantially from all these approaches, as well as from
co-training [25], [26] and all other semi-supervised learning
methodologies, in that the contextual random variables can
be virtually anything, including, but not restricted to some
kind of explicit labeling. Hence, side–information on data
labels emerges naturally through the dependence relationship
between the latent label/class and the contextual variables
taking the form of implicit, but not actual “probabilistic
labels”. Essentially, our framework proposes how “soft” labels
can be derived by context without manual effort and explicit
labelers.

Another class of related problems regards those where side–
information is provided in the form of constraints. Most of
the early work has focused on known positive and/or negative
linkage between pairs or sets of samples [27], [28]. Beyond

case–specific methods, there exist frameworks able to cope
with context-aware learning irrespectively of the form of side–
information, as elaborated below.

Chang et al. [29] have proposed constraint–driven learning
(CODL), which penalizes constraint violations of a given
model by augmenting the objective function with a penalty
term. Nevertheless, its formulation assumes labeled instances
for initialization, does not maintain uncertainty during learn-
ing, and involves a fairly heuristic optimization algorithm
with many hyperparameters. Liang et al. [30] put forward a
Bayesian approach by modeling side–information as so–called
“measurements”: noisy expectations of constraint features. The
employed objective function is optimized with a complicated
variational approximation which is the method’s main disad-
vantage.

In a series of articles, McCallum and colleagues have
introduced Generalized Expectation Criteria (GEC), where
the additional information comes as linear constraints of a
set of feature expectations forming a standalone objective or
augmenting the common likelihood objective with an extra
term [5]. A special case of GEC had been initially proposed
as “expectation regularization” [31]. Several optimization pro-
cedures have been presented and tested, including gradient
descent [32] and variational approximation [33].

Using the very same modeling of side–information,
Ganchev et al. [6] have proposed Posterior Regularization
(PR). In this case, constraints are imposed directly on the pos-
terior distributions of latent models, giving rise to optimization
algorithms akin to regular expectation–maximization (EM).
PR’s conceptual intuitiveness has contributed to its recent
popularity [34]–[36]. Ghosh et al. [37] have independently
proposed a PR formulation specific to FMMs and constraints
in the form of a–priori knowledge of mixing proportions, de-
riving a variant of the “scaled”–PR algorithm for this particular
problem [6, Appendix A]. Despite sharing the same model,
this work exploits a less generic type of side–information and
involves complex formulations.

In a brilliant analysis [6, Section 4], it is shown that
under certain approximations all four generic frameworks are
equivalent. Compared to these approaches, it can be said that
the algorithms examined here trade-off generality in favor
of simplicity and intuitiveness. This claim is substantiated in
Appendix A, where the PR-equivalents of our algorithms are
discussed.

The idea of augmenting a given model to include context,
the cornerstone of our work, can be traced back to the
“hierarchical shrinkage” method [38]. Probabilistic context
modeling identical to ours is proposed in [39]. However, in this
case the authors focus on classification improvements rather
than the estimation properties of the algorithm.

Some of the aforementioned studies propose algorithms
with identical formulations to those proposed in the present
work. Specifically, Bouveyron et al. [21] and Côme et al. [40]
have produced the formulation of what we call here the WCA
algorithm, in the context of learning with noisy labels and
through Dempster–Shafer basic belief assignments, respec-
tively. On the other hand, Ambroise et al. [14] and Szczurek et
al. [22] (who also compare to the work of Côme et al.) arrive
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at the formulation of our CA algorithm assuming, again, the
existence of “soft” supervision. Our work is, first, more general
than those, since we exhaustively compare all algorithmic
possibilities. Most importantly, as already mentioned, our
derivations do not take the existence of “uncertain” labels for
granted and discard the need for any kind of ground truth.
Additionally, the scope of this article is the only one strongly
focused on the information-theoretic effects of learning with
side–information. Finally, we show extensibility to different
generative models, including deep neural nets.

Given the recent advent of deep learning and the central role
of ANNs therein, methods born in the framework of neural-
symbolic integration [41] (where data-driven inference is
combined with independent, “symbolic” knowledge–e.g. logic
rules) have been considered, where symbolic knowledge plays
the role of side–information. In the two most relevant methods,
Hu et al. [42] use knowledge distillation to harness supervised
learning with logical constraints, however, this method still
mainly relies on the availability of labels, with rules only
refining the learning process. The idea of augmenting deep
generative models with side–information can be found in [43],
but the authors do not go beyond the specific setting they dis-
cuss (oracle-provided similarity constraint triplets) and focus
on explainability rather than performance.

III. METHODS

A. Context–aware learning algorithms for FMMs

Fig. 1. Graphical representations of augmented (solid boxes) and regular
(dashed boxes) mixture models for a set of N independent and identically dis-
tributed (iid) data samples. Random variables depicted in circles, transparent
for latent variables, shaded for observed variables and stripping for variables
that can be observed or latent on occasion. Model parameters are illustrated
with squares. xi are the observed data samples, zi the latent class labels and
ci the contextual variables. Model (a) gives rise to CA–type of estimation and
(b) to WCA. Model (c) depicts the graph of a variational autoencoder-based
mixture for the equivalent of CA estimation.

The proposed idea is best explained in the framework of
FMMs, the simplest and most basic Bayesian network. In
order to gain a solid understanding, the reader should recall
[3, chap. 9.2] that a FMM is represented by the direfted
graph illustrated in Fig. 1a-b (enclosed in a dashed box),
where xi ∈ X is the observed independent and identically
distributed (iid) data samples of a dataset X with cardinality
N (i ∈ [1, N ]), zi ∈ Z is the latent data representing the
mixture/class generating sample xi having a 1–of–M repre-
sentation, so that zij ∈ {0, 1},

∑
j zij = 1 and M the number

of mixtures/classes. The distribution of observed data x is then
p(x) =

∑
z p(x, z) =

∑
z p(z)p(x|z) =

∑M
j=1 πjfj(x,θj),

where, πj = p(zj = 1) are the mixture coefficients with∑M
j=1 πj = 1 and f(x,θ′) = p(x|z,θ′) with f belonging to

some identifiable family with parameters θ′. ML estimation
consists in maximizing the logarithm of the incomplete–
data, marginal likelihood logL(θ|X) = log(

∏N
i=1 p(xi)) over

θ. In supervised estimation, zi are the observed labels yi,
yielding analytic solutions. Conversely, for latent zi one relies
on the iterative EM–MLE, where, first, the expectation (un-
der posteriors p(z|x,θ)) of the complete–data log–likelihood
logLc(θ|X,Z) is formed (E–step):

Q(θ, θ̂k) = Eθ̂k{logLc(θ|X,Z)} =
N,M∑
i,j

Eθ̂k{zij}logπj +
N,M∑
i,j

Eθ̂k{zij}log(fj(xi,θj))
(1)

where θ = {πj ,θj},∀j are the overall estimated parameters
and θ̂k the kth estimate. Then, Q(θ, θ̂k) can be analytically
maximized (M–step): θ̂k+1 = argmax

θ
{Q(θ, θ̂k)}.

This conventional unsupervised EM–MLE algorithm
(termed hereafter US) is known to get stack in local maxima
(thus being sensitive to the initialization θ̂0) and exhibits
compromised estimation precision compared to supervised
estimation (termed S). Furthermore, it is inferior to S in
terms of standard errors and convergence rate (since it is
iterative). It is clear that these limitations should be related to
the missing label information. Both methods share the same
objective of (1), only differing in the replacement of labels yi
(S) by posteriors Eθ̂k{zij} = p(zi = j|xi, θ̂k) (US). Hence,
it is reasonable to assume that boosting the information
content (entropy) of distributions Eθ̂k{zij} towards the labels
yi should raise US performances closer to those of S.

The idea put forward in this article is to achieve this goal
by directly embedding probabilistic side–information into a
generative model. More specifically, it suffices that a) con-
textual information can be modeled by (in general, latent)
random variables ci2 which b) can be assumed to have a de-
pendence relationship with the latent nodes zi (augmenting the
underlying model, as shown in Fig. 1 for the case of FMMs)
and c) whose distributions p(ci) and/or p(zi|ci), p(ci|zi)
are known. Given these prerequisites, deriving context-aware
algorithms results from straightforward application of MLE
on the augmented models, which results in the regular EM
algorithm for FMMs. Analytical derivations can be found in
Appendix B.

It is critical to discuss what these assumptions imply for the
applicability of the proposed approach. The first prerequisite is
a mere modeling choice and hardly restrictive, since all natural
quantities can be modeled as random variables. The second
assumption forms the basis of our framework. It advocates
for a paradigm shift where one needs not solely rely on
the possibility to collect usual “data and labels”, but can
instead identify contextual sources of information that may
partially reveal the missing data labels. Of course, this might
not always be possible. The third assumption can also be
limiting since, even after identifying potentially useful types
of context, the distributions p(c), p(z|c), p(c|z) could still be
unknown, difficult to pre-estimate, or rather uninformative.
For instance, in the medical informatics example used in
Section I, medical tests additional to X-ray imaging for lung
tumour detection might be as hard, expensive or dangerous

2Without loss of generality, the contextual random variables will be
assumed hereafter to be univariate and discrete.
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to collect as the biopsy that would reveal the actual ground
truth labels (malignant or benign). In addition to this, this
last prerequisite can only be satisfied for fully defined z (i.e.,
known number of mixtures M ), which limits the scope to
unsupervised classification. Hence, with respect to the last
two assumptions, there can be no guarantees of existence or
benefits, or even a way to analytically quantify the likelihood
of those in general applications. Nevertheless, in the era of
information explosion and the emergence of the Internet Of
Things, we believe that these assumptions can be already
satisfied more often than not, with the situation improving in
the foreseeable future.

The two possible types of dependence between ci and zi
give rise to two different augmented models (Fig. 1a and
b) and, therefore, two corresponding EM–MLE algorithms
termed CA and WCA, respectively. We are also considering
a third, heuristic algorithm termed DCA (Direct Context–
Aware), where the posterior distribution of latent labels is
defined by arbitrary probabilistic labels and the evidence
X is ignored. Table I summarizes the naming convention,
probabilistic labels pi, E–step and logL formulation of each
algorithm.

From a factor graph perspective [3, chap. 8.4.3], the basic
premise of CA and WCA is the provision of additional (com-
pared to US) information through the messages passed to the
latent nodes zi. As evident in the E–steps of Table I, US only
benefits from evidence X , while belief propagation with CA
and WCA should be richer due to the additional contextual
variables C. Of note, in the original S/US estimation problem
θ is not cumbered with additional parameters related to the
contextual variables, despite the model augmentation, due to
the assumption of known priors and conditionals. It follows
that the graphical representation of contextual assistance can
be more complex than a single variable c, as long as the
conditions of no additional parameters and seamless message
parsing are satisfied. Essentially, the need for ground truth
is replaced by a lesser requirement for knowledge of the
aforementioned distributions. Those can be learned prior to
the deployment of the algorithms, or even be publicly available
(e.g., language models).

As already illustrated (Table I), the context–related terms
of each algorithm can be isolated to implicitly define sample-
wise probabilistic “labels” pij with

∑M
j=1 pij = 1 (i.e., each

pi is a discrete probability distribution over the latent variable
zi). The entropy of these labels represents a measure of the
contextual information content individually for each sample
xi and, by averaging, for the overall estimation problem. Our
work is the only one, besides [40], highlighting the impor-
tance of side–information measurability for the prediction of
estimation benefits, our primary axis of investigation.

B. Information matrices and missing information principle

In order to shed light on the fundamental issue of alleviating
the missing label information through the provision of side–
information, one can rely on the Fisher Information [44], the
most formal way of measuring the amount of information
involved in the estimation of the unknown parameters θ.

Therefore, we study approximations of the (expected) Fisher
information matrix I(θ) through its sampled-based version,
the observed information matrix I(θ|X). The latter measures
the amount of information a sample X carries on the estimated
parameters θ, where I(θ) = Eθ̂[I(θ|X)] and I(θ|X) =

−∂logL(θ)
∂θ∂θT |θ=θ̂ML

, the negative of the Hessian of the log-
likelihood objective function evaluated at the ML estimate.

In [7], it is proved that the observed information for
missing–data problems can be computed as the difference
I(θ|X) = Ic(θ|X) − Im(θ|X). The first term is an es-
timate of the available information if there were no miss-
ing data. The second term, called the missing information
matrix, represents the information lost due to missing data.
This relation has been called the missing information prin-
ciple (MIP). Both these matrices can be computed through
complete–data quantities (so that their calculation is tractable),
as: Ic(θ|X) = Eθ̂{−

∂2logLc

∂θ∂θT }|θ=θ̂ML
and Im(θ|X) =

covθ̂{Sc(X|θ)Sc(X|θ)
T }|θ=θ̂ML

, where Sc(X|θ) is the
score (gradient vector) of the complete–data log-likelihood.

The Fisher information also allows for the computation of
the variance–covariance matrix of the MLE, as C = I−1(θ|X)
and, hence, the standard errors of parameter estimation as
SEi =

2

√
I−1i,i (θ|X) for the ith parameter in vector θ, without

resorting to repeated sampling. The same is true for the algo-
rithms’ convergence rate, since, when EM converges to a local
maximum, it has been shown [45] that the convergence rate
r = limk→∞ ‖ θ̂

k+1−θ̂k

θ̂
k−θ̂k−1 ‖ is linear and coincides with the spec-

tral radius (λmax, where λi ∈ [0, 1),∀i, the eigenvalues) of the
“rate” matrix J , defined as J(θ) = I−1c (X|θ)Im(X|θ). The
latter expresses the total fraction of missing information [46].
In Section IV we use the definition r′ = 1 − r = 1 − λmax,
which complies with the intuition that 0 corresponds to non-
converging and 1 to immediately converging algorithms.

C. Likelihood landscapes

Fig. 2a illustrates the incomplete–data log–likelihoods
logL(µ1) and the intermediate objectives maximized at the
first M–step (complete–data log–likelihood expectations plus
the latent data entropy) Q(µ1, µ̂1

0) + H(µ̂1
0, µ̂1

0) (see Ap-
pendix B) for a mixture of two univariate Gaussians3. The
estimation precision benefits of context–aware algorithms (in
case of “correct” context as in the example) come as a result
of a favourably modified logL(θ) (compared to that of US).
These log–likelihoods (here with NE = 0.7) tend to have a
larger local maximum close to the supervised estimate (black
‘x’) and, hence, also closer to the true parameter value. This
maximum will thus also tend to be the global maximum. Even
more, the other local maxima are suppressed, reducing the
sensitivity to initialization (where US is known to perform
poorly). In Fig. 2a, all context–aware algorithms “escape” (in
contrast to US) the local maximum of US on the right side of
µ̂1

0 and converge to the first local maximum on the left side

3Only µ1 is estimated starting from µ̂1
0 = 2. Parameters π1 = 0.1, µ2 =

1, s1 = 0.5, s2 = 3 are fixed. Estimation is based on N = 100 randomly
generated samples with µ1 = 0. This setting is selected among those leading
to multiple local maxima, so that the effects of the proposed algorithms can
be clearly illustrated.
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TABLE I
ALGORITHMS UNDER STUDY. US: REGULAR UNSUPERVISED EM–LEARNING. CA: CONTEXT–AWARE EM–LEARNING. WCA: WEIGHTED

CONTEXT–AWARE EM–LEARNING. DCA: DIRECT CONTEXT–AWARE LEARNING. S: REGULAR SUPERVISED LEARNING.

pi
E–step

Eθ̂{zij} = . . .
logL =

N∑
i=1

log(
M∑
j=1

(. . . ))

US None πjfj(xi|θ̂j)
M∑

m=1
πmfm(xi|θ̂m)

πjfj(xi|θ̂)

CA


∑
ci

p(ci)p(zi|ci), latent C

p(zi|ci), observed C

pijfj(xi|θ̂j)
M∑

m=1
pimfm(xi|θ̂m)

pijfj(xi|θ̂)

WCA p(ci|zi)
p(ci)

pijπjfj(xi|θ̂j)
M∑

m=1
pimπmfm(xi|θ̂m)

pijπjfj(xi|θ̂)

DCA Custom pij πjfj(xi|θ̂)

S yi

{
1 , yi = j

0 , yi 6= j
πjfj(xi|θ̂)

(‘x’ of the respective color). The latter is much closer to the
true parameter value, yielding higher estimation precision.

The magnitude of these effects increases with increasing
contextual negentropy NE, as shown in Fig. 2b. As NE → 1
(dotted lines) the problem reduces to supervised learning.
Furthermore, in the case of ignorant context (NE = 0),
the WCA objective (solid green line) reduces to a translated
version of that of US (red), while CA (blue) already “boosts”
the favorable maximum. Hence, for “ignorant” context, WCA
is identical to US, while CA can already yield improvements
in precision.

The improvement of convergence rate and its dependence
on contextual negentropy are also implied in the example,
since the estimates µ̂1

1 (first iteration) for CA (blue ‘o’) and
WCA (green ‘o’) are much closer to their final MLE than
for US (red) or CAE (CA with ignorant context, magenta).
This fact is further substantiated in the next section. DCA,
as elaborated later, underperforms in comparison to the other
context–aware algorithms, suggesting that discarding data–
dependent evidence completely is suboptimal.

D. Standard errors and convergence rate through the MIP

The application of the missing information principle (MIP)
on algorithms CA, WCA and US is demonstrated in a (ran-
domly selected) mixture of two univariate Gaussians problem4.
For each (increasing) NE value, we perform 100 repetitions
randomly generating N = 104 samples from the above
distribution and estimate the algorithms’ average (across rep-
etitions) standard errors and convergence rates.

For one repetition of the aforementioned problem, Fig. 2c
(for WCA) and 2d (for CA) show that matrices Ic (first row)
remain unaffected by increasing NE, since the complete–data
information Ic = IS should be independent of any side–
information. On the contrary, the magnitudes of the elements
of the missing information matrix Im (second row), which

4π1 = 0.6, µ1 = 0, µ2 = 1, s1 = 1, s2 = 2. Parameters s1, s2 are fixed.
π1, µ1, µ2 are estimated from initial π̂10 = 0.5, µ̂1

0 = 0.49, µ̂2
0 = 0.51.

for NE = 0 obtains its maximum IMAX
m = IUSm (when no

additional information on missing labels exists), are reduced
with increasing NE, to eventually vanish into the 0 matrix
as NE → 1 (IMIN

m = ISm = 0, since data labels are fully
revealed by context). Consequently, the fractions of missing
information (rate matrix J = I−1c ∗ Im, third row) also
vanish, along with its spectral radius. Hence, the missing label
information in context–aware EM learning is shown to be
eliminated proportionally to the information content of the
provided side–information.

The finally available information in these algorithms, as
encoded in the information matrices I = Ic − Im (MIP
definition), will consequently be bounded. Above, by IMAX =
IMAX
c − IMIN

m = ISc − 0 = IS (identical to the super-
vised MLE, S) and below by, IMIN = IMIN

c − IMAX
m =

ISc − IUSm = IUS (identical to the unsupervised MLE, US).
Expressions IMAX

c = IMIN
c = IS and IMAX

m = IUSm and
IMIN
m = ISm = 0 hold by definitions. These exemplary results

are substantiated and shown to generalize to arbitrary FMM
problems by Propositions 1–3 of Appendix D.

Fig. 2e illustrates the average predicted standard errors of
estimates π̂1 (♦), µ̂1 (O) and µ̂2 (�) as well as their sum (◦)
with increasing contextual negentropy NE for US (red), CA
(blue) and WCA (green). Indeed, it is illustrated that standard
errors of all parameters (see below for the explanation of
exceptions), as well as their sum, decrease with increasing NE
for both CA and WCA, converging towards the corresponding
standard errors of S at NE = 1. Similarly, Fig. 2f shows
that the convergence rate r′ of CA (blue) and WCA (green)
is improved with increasing NE to reach single–iteration
convergence (r′ = 1, like S) in the case of “perfect” context
(NE = 1). Thus, as expected (Section III-B), stronger side–
information improves the performances on these two metrics.

Interestingly, the standard errors and convergence rates of
CA are superior to their WCA equivalents for the whole NE
spectrum, until both algorithms converge to their S limit at
NE → 1. CA thus yields a better lower bound than the
regular US performances, exhibited by WCA. This is due to the



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

(b)(a) (c)

WCA

μ1

μ2

π1

μ1 μ2 π1

(d)

CA

μ1

μ2

μ1 μ2

+1

-1

 0

(e)

Contextual Negentropy, NE

A
ve

ra
ge

 S
ta

nd
ar

d 
E

rr
or

s

(f)

Contextual Negentropy, NE

A
ve

ra
ge

 C
on

ve
rg

en
ce

 R
at

e

Fig. 2. (a) logL(µ1) (solid lines) and Q(µ1, µ̂1
0)+H(µ̂1

0, µ̂1
0) (at first EM iteration, dashed lines) for various estimation algorithms as color–coded in the

legend, in a mixture of two univariate Gaussians model. CAE refers to algorithm CA with ignorant context and CA, WCA and DCA are shown for contextual
negentropy NE = 0.7. ML estimates after convergence shown with ‘x’ and estimates after the first iteration in ‘o’. (b) Incomplete–data log–likelihoods
logL(µ1) in the same problem as in (a) for US (red solid) and various contextual negentropy levels as shown in the legend for CA (blue) and WCA (green).
Information matrices Ic, Im and rate matrix J = I−1

c ∗ Im with increasing contextual negentropy NE in a mixture of two univariate Gaussians estimation
problem (see text), for (c) WCA and (d) CA. All matrix values normalized to [−1, 1] by dividing with the respective absolute value of the US algorithm. (e)
Average predicted standard errors of π̂1 (♦), µ̂1 (O) and µ̂2 (�) and their sum (◦) with increasing contextual negentropy NE in 100 repetitions of a mixture
of two univariate Gaussians estimation problem. Different algorithms color–coded in the legend. (f) Average predicted convergence rates and their standard
deviations for the three algorithms (color–coded in the legend) in the same estimation problem.

structure of the information matrices for CA which, compared
to those of US/WCA, are reduced by removing the elements
associated to the mixing coefficients πj ,∀j (as in Fig. 2d).
Essentially, in CA, the mixing coefficient distribution π is
independent of X and fully determined by C. The mixing
coefficients πj are computed here for CA as πj = 1

N

∑
i p
′
ij ,

where p′ij = 1 if j = argmaxk{pik} and 0 otherwise, an
unbiased estimator exhibiting the same standard errors for πj
as S (“correct” context). The fraction of missing information
is always reduced for CA, due to the absence of uncertainty
regarding π5. The lower bound of CA still corresponds to that
of US, but the one with fixed π.

It is also interesting that, exceptionally, the standard errors
of µ1 (Fig. 2e) are superior (smaller) for WCA rather than CA.
Such exceptions can occur because the missing information
is not distributed uniformly across the estimated parameters,
or identically among the different algorithms. However, the
sum/average of standard errors only depend on the overall
fraction of missing information (λmax of J), shown to always
reduce with increasing NE (Proposition 2, Appendix D) and
be smaller for CA compared to WCA. Furthermore, since the
rates of convergence coincide to a global rate only depending
on λmax (except for rare cases [48]), the rate of convergence
of CA is also guaranteed to be greater/equal to that of US and
WCA (for a given NE).

E. Context–aware learning algorithms for VAs

Formulating the proposed algorithms for other Bayesian
networks follows the exact same steps. For example, context-
aware learning of Hidden Markov Model (HMM) parameters
would exploit contextual variables co-dependent to the hid-
den state (with known statistics) and result in a version of
the Baum-Welch algorithm with modified E–step to include

5In general, it can be shown by applying Theorem 4 in [47] that removing
any parameter from the estimation problem can only reduce the spectral radius
of the rate matrix J .

side–information, and identical M–step. However, in view of
classification tasks, it would be ideal to be able to apply the
proposed approach in the context of deep learning with ANNs,
which have shown to excel in this task when big data is
present thanks to far superior expressiveness than FMMs or
other probabilistic generative models. This possibility would
also alleviate a major weakness of this literature, namely, the
heavy reliance on supervised learning which, alongside the
need for (labeled) big data, limits their wider deployment.

At first, this endeavor may seem odd, with several reasons
ostensibly preventing the derivation of equivalent context-
aware algorithms in this framework. First, contextual random
variables cannot be intuitively embedded into non-probabilistic
models like ANNs. Most importantly, these are discriminative
models conventionally requiring loss functions other than
MLE, which demand explicit labels (“targets”). Furthermore,
by avoiding to model the data and joint distributions, they yield
no regular unsupervised learning algorithm to build upon. Yet,
by imposing softmax output layers, ANNs can in fact represent
conditional distributions and be trained with MLE. In addition
to this, generative deep neural networks admitting probabilistic
graphical representations have been recently formulated, the
most popular of which is termed variational autoencoder
(VA) [4].

Hence, the basic idea is to derive a mixture model with
VAs and proceed thereafter to embed context in the exact
same way as with the FMMs. Luckily, VAs, as originally
proposed [4], already respect the same simple directed graph
enclosed in dashed lines in Fig. 1a-b. However, priors p(z) in
this case are Gaussian, so that variables z cannot represent the
latent class labels as we would like. It is for this reason that
VAs are primarily used for dimensionality reduction–finding
a compressed, informative embedding z of the data x, but are
not ideal for clustering purposes. Modeling z as a discrete
latent variable to get exactly the FMM graph equivalent is ill-
posed, because it prevents the use of the “reparametrization
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trick”, which allows gradients to flow through random vari-
ables for parameter estimation. Although solutions have been
proposed [49], it is simpler to maintain the lower-dimensional
embedding, here denoted w, and let it be governed by the
latent class labels z as shown in Fig. 1c. This remains more
intuitive than other approaches to implement mixture models
with VAs (e.g. [50], [51]), many of which assume a Gaussian
mixture for the prior p(w), instead. The mixture model in our
case is thus defined with respect to the embedding w rather
than the data x, an idea introduced in [52] for semi-supervised
learning (M2 model). The additional contextual variables are
then linked to z as in the FMM case.

The profound similarity of this model’s joint distribution to
that of the FMMs (the only difference being the interleaving
of w in the message passing between z and x) and the fact
that context is embedded in the exact same place and manner,
makes it easy to prove that the definitions of probabilistic
labels pi are identical to the FMM case (see Appendix B).
The inference model of the context-free case is q(z, w|x) =
q(z|x)q(w|x, z) (where q(w|x, z) the VA’s encoder model),
so that the context-enabled version simply consists in fusing
probabilistic labels pi with the distribution q(zi|xi) (softmax
layer output of the corresponding network) for each sample
xi, equivalently to the way shown in Table I for p(zi|xi) in
the FMM scenario (the E–step of the EM algorithm). Of note,
although in Fig. 1c the CA case for VAs is illustrated, the
WCA equivalent can be similarly derived.

Finally, the parameters of all networks defining the mixture-
VA (q(z|x) or q(z|x, c), encoder q(w|x, z), decoder q(x|w, z))
are learned with gradient descent. The objective consists of
the regular reconstruction loss and the regularization term for
priors p(w), in addition to the variational lower bound that can
be written Eq(z,w|x)[log p(z)

q(z|x) + log p(w|z)
q(w|x,z) + log p(x|z, w)].

It must be underlined that the method is agnostic to the type
of ANNs used to implement the graph.

F. Evaluation metrics

The results of Section IV compare five algorithms (CA,
WCA, DCA, US, S) in simulations with artificial FMM
datasets, as well as in real–world problems. The estimation
properties reported are precision, standard errors and con-
vergence rate. Estimation precision is the Euclidean distance
between the estimated parameter vector θ̂ and the actual one
θA, namely: D = ‖θ̂ − θA‖. For standard errors we employ
the aforementioned estimator SEi. For brevity, we only report
the average ASE = 1

L

∑L
i=1 SEi (where L is the number

of estimated parameters). Similarly, the MIP–based estimate
r′ = 1− r is used for the convergence rate. The classification
performance of trained models is assessed through N-class
accuracy A = Nc/N , where Nc the number of correctly
classified samples out of N total samples across all classes.
Finally, for regression tasks, the mean square error MSE is
reported.

In order to quantify the information content of side–
information, we employ a scaled negentropy definition on
probabilistic labels pi: NEi = 1 +

∑M
j=1 pij logM pij . This

metric is conveniently bounded, NEi ∈ [0, 1], for any

number of mixtures M . NEi = 0 when pi is uniform,
pij = 1/M,∀j ∈ [1,M ] (“ignorant” context, pi does not
cast a preference over any class). Conversely, NEi = 1 when
pim = 1,m ∈ [1,M ] and pij = 0,∀j 6= m, j ∈ [1,M ]
(“perfect” context, fully revealing the class label yi. The NE
level of a dataset is extracted as the average across all included
labels pi.

G. Simulation design

For our simulation studies, a label pi for each sample xi is
constructed randomly, so that its information content is NEi.
For all but one examined scenarios, all samples in X are
assigned the same NE value (NEi = NE,∀i). In the “mixed”
context scenario, however, each NEi is randomly drawn from
a fixed interval. In all but the “wrong” context scenario (see
below), pi-s are constructed to cast greater confidence to
the ground-truth label yi (“correct” context). Formally, we
impose argmax{pi} = argmax{yi}, so that pi-s always
“predict” the correct yi with increasing confidence as NE
increases. This rule is only abandoned in the “wrong” context
scenario, where the effects of misleading contextual informa-
tion are investigated. In this scenario, ki = argmax{pi} 6=
argmax{yi}, ki ∈ [1,M ]∀i is selected randomly out of the
M −1 remaining possibilities for a reported percentage of the
generated pi-s.

The following scenarios are considered with “correct” con-
text. A: a mixture of two univariate normal distributions,
where variances are known and only the two class means are
estimated, B: a mixture of two univariate normal distributions,
where all existing parameters are estimated, C: a mixture of
three univariate normal distributions, D: a mixture of two
multivariate (2D) normal distributions, E: a mixture of two
univariate Maxwell–Boltzmann distributions and F: a mixture
of two univariate, first order, linear regressors. These six
scenarios are chosen to differ in terms of the numbers and
types of mixtures employed (where, the Maxwell–Boltzmann
of Scenario E is not a member of the exponential family), the
number of estimated parameters, the dimension of the input
space and the utility of the FMM (classification versus regres-
sion). The scenarios targeting “mixed” and “wrong” context
situations (Appendix E) employ mixtures of two univariate
normal distributions.

For each scenario, 1000 estimation problems are gener-
ated and solved for all compared algorithms. Each prob-
lem r ∈ [1, 1000] is associated to a randomly generated
dataset Xr, Yr, P

NE
r of observed data, ground–truth labels

and probabilistic labels of NE, respectively. For algorithms
CA, WCA and DCA, each problem r is further solved for
NE ∈ [0 : 0.1 : 0.99], so that our evaluation encompasses
the complete range of possible contextual information content.
The cardinality N of each dataset is fixed to 100 times
the number of parameters to be estimated. The ground–truth
Yr is constructed to have balanced number of samples per
class. The observed data Xr are randomly generated from
semi-randomly selected “actual” distributions with parameters
θAr (of the respective scenario’s type) and the estimation
begins with semi-randomly chosen initialization θ̂0r (common



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

to all algorithms). These semi-random procedures, detailed in
Appendix C, ensure balanced number of samples per class
and minimal impact of separability and initialization on the
extracted results. All algorithms are left to perform as many
iterations t, as needed so that ‖θ̂tr − θ̂t−1

r ‖ < 10−5. If this
stopping criterion is not reached after 300 iterations for some
algorithm, θ̂300r is used as its final estimate.

The classification accuracy A is computed for each scenario,
problem r and algorithm, by generating a second “testing”
dataset X ′r, Y

′
r (of equal cardinality to Xr) from the same

“actual” FMM, which is classified using the estimated pa-
rameters of each algorithm by means of the Maximum–A–
Posteriori rule. For the mixture–of–regressions scenario, the
same evaluation methodology is applied to derive the MSE
on the testing set.

IV. RESULTS

A. Results with artificial data

Sections III-C and III-D justify theoretically the estimation
benefits brought forward by the proposed approach. More
specifically, in Section III-C we show, on the one hand, how
the log-likelihood objectives in this methodology, compared to
the US equivalent, exhibit lower local maxima except for the
one closer to the supervised estimate. This effect increases
the chances of convergence to this favourable extremum by
reducing the EM algorithm’s sensitivity to initialization. On
the other hand, Section III-D shows that the fraction of missing
information of an estimation problem, as expressed by the
spectral radius of the rate matrix (see Section III-B), is shown
to decrease proportionally to the information content of the
provided side–information, bounded by US and S (maximum
and zero missing information, respectively). Therefore, the
estimation properties that depend on the fraction of missing
information, namely, the standard errors and the convergence
rate, also benefit from context–awareness. Appendix D for-
mally proves that these effects generalize to all FMMs. The
theoretically anticipated effects are verified by simulations
with artificially generated data, presented in this section.

The following set of simulations is meant to compare
the performances of the derived algorithms for the “correct”
context situation. Within each scenario, we illustrate each
metric’s average across all 1000 problems for algorithm α

and some NE, M
NE

α , normalized to be bounded by S and US
performances, as: M̃NE

α = (M
NE

α −MUS)/(MS −MUS).
Fig. 3a–b show that, for all examined properties, CA and

WCA exhibit improved performances proportionally to the
strength of contextual assistance. Additionally, the average
performances are upper–bounded by S (at NE → 1) and
lower–bounded by US (at NE → 0). CA is consistently
outperforming WCA for the same NE, while both algorithms
yield substantially better D, A and/or MSE than DCA.
While WCA reduces to US for NE = 0 (Appendix B and
Section III-D), CA yields improvements over US even in
this case. Scenario A is an exception occurring for fixed
π (Section III-D). These trends are universal, although the
magnitude of improvements as a function of NE is metric–

and scenario–dependent, confirming the generalizability of the
examples in Appendices III-C and III-D.

Statistical testing reveals that the added value of CA and
WCA over conventional unsupervised estimation US is sig-
nificant for all metrics, already at very low NE (for CA,
even for ignorant context). Scenarios E and F for metrics
A and MSE, respectively, are exceptions where improved
estimation precision D does not translate into significantly
better classification/regression, as an intrinsic property of the
respective FMMs. Nevertheless, for metrics D and ASE,
it is only at very high NE that CA and WCA become
indistinguishably similar to S, while for r′ supervised learning
S is significantly better even at NE = 0.99. The undesirable
significance notwithstanding, the average differences for all
metrics tend to operate much closer to the S rather than the
US “extremity” even at low NE (especially for CA). Further-
more, concerning A and MSE, context–aware algorithms are
statistically similar to S since very low NE. The superiority of
CA over WCA is shown to be significant only for the first few
tested NE levels for metrics D, ASE and A/MSE, while
it persists for almost the entirety of the NE spectrum for r′.
Finally, DCA is again shown to underperform.

Last but not least, our simulations demonstrate that context–
awareness can substantially reduce the number of problems
that could not converge with regular US training6. In the most
characteristic example (due to the larger number of mixtures)
of scenario C, where 83.7% of problems did not converge
with US, this percentage is reduced by CA to 3.8% at NE =
0 and 1.0% for NE ∈ [0.1, 0.99]. WCA also alleviates this
problem (less aggressively), by gradually reducing the non-
convergence percentage to 67% at NE = 0.1, 39.4% at NE =
0.5 and, eventually, 1.0% at NE = 0.99. It is thus shown that
context–awareness is able to avoid irregularities, already at low
NE levels. In the interest of space, results on more “realistic”
situations where contextual assistance can be, to some extent,
“wrong” and of “mixed” NE are offered in Appendix E.

B. Results on real–world scenarios

1) Gaussian Mixture Models: The versatility of CA and
WCA parameter estimation is shown in three different unsuper-
vised classification scenarios using Gaussian Mixture Models
(GMMs): i) A brain-computer interface (BCI) speller, where
the BCI classifier translating brain signals into text-entry
actions is learned on-the-fly with CA context derived from
a language model and the speller’s structure. ii) Unsupervised
CA and WCA training of classifiers diagnosing malignancies
in mammograms, where known risk factors and manual as-
sessments represent the side–information at hand. iii) Unsu-
pervised recalibration of fingerspelling classifiers recognizing
sign language from video frames, where, again, a language
model provides contextual assistance. Detailed methods and
results on all these applications are elaborated in Appendix F,
while Table II summarizes the average improvements obtained
with the proposed algorithms against US, and how their
performance compares to supervised learning S. Overall, the

6An EM algorithm fails to converge to a local maximum when the spectral
radius of J exceeds unity [46].
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Fig. 3. Normalized, average (across 1000 problems of each of 6 FMM estimation scenarios A–F): (a) estimation precision D (right y-axis only refers to DCA
performances), (b) convergence rate r′, (c) average (across parameters) standard error ASE and (d) classification accuracy A/regression mean square error
MSE. The performances of each context–aware algorithm (CA, WCA, DCA) for each scenario A–F are color– and shape–coded as shown in the legends.
Performances for different NE levels arranged along the horizontal axis. For each metric and scenario, the embedded colormaps illustrate the lowest (when
US is involved) or highest (for all other combinations) NE level (color–coded as shown in the adjacent colorbars) above which the algorithms on top and
bottom of each column significantly differ at the 95% confidence interval (one–sided, paired Wilcoxon rank–sum tests with Bonferroni correction for multiple
comparisons). Red color denotes no significant difference for any NE level.

TABLE II
CONCENTRATED CLASSIFICATION ACCURACY RESULTS (%) FOR FMM

UNSUPERVISED CLASSIFICATION APPLICATION SCENARIOS: (A) BCI, (B)
CANCER DETECTION AND (C) FINGERSPELLING.

US CA WCA S

A 52.4± 8.1 64.7± 6.5 - 66.2± 7.2

B 79.6± 8.5 88.1± 3.4 89.8± 3.1 91.8± 1.9

C 61.0± 9.4 72.1± 7.9 - 90.1± 2.9

findings of the simulations with artificial data are shown to
replicate with realistic data, the main conclusion being that the
proposed context-aware learning significantly outperforms reg-
ular unsupervised learning in terms of classification accuracy,
and is competitive to the supervised case in spite of discarding
the need for ground truth labels.

2) Variational autoencoders and comparison with a neural-
symbolic method: The applicability of the idea put forward
in this paper with generative deep neural nets is shown by
employing the VA-based mixture model explained in Sec-
tion III-E to perform unsupervised classification of the well-
known MNIST benchmark database of handwritten digits
(55000 training and 10000 testing labeled samples for 10
classes–digits 0 to 9). Since our goal is to show the merits
of context-aware learning and not to optimize the network
architecture, we vectorize the 28x28 pixel images (to 784-
dimensional input vectors) and use regular, non-convolutional
layers. Specifically, the encoder model consists of 2 hidden
layers with 512 units each, and an additional third layer with

128 units (64 + 64) to output the means and variances of
the latent space w. The decoder model consists of 3 layers
with 512, 512 and 784 units, while the model q(z|x) contains
3 layers with 512, 512 and 10 units. RelU activation is
used everywhere apart from the output layers of the decoder
(logit), the q(z|x) network (logit+softmax) and the encoder
(no activation for means and softplus for variances, to imitate
a covariance matrix).

Contextual information derives by considering a scenario
of (numerical) student ID recognition as part of an automatic
exam paper processing system. Due to the inherent structure
of such identification systems (e.g. serial historical number-
ing, continuity within a university department), the place of
a digit within the student ID reveals a lot of information
about its potential identity, while the statistics of this kind
of side–information can be very easily acquired through the
university’s database (importantly, with view to such use, reg-
istrations can be manipulated to yield even richer information
content). Specifically, we assume a realistic case of 5-digit-
long IDs, where the first digit is always 1, the second is
7/8/9 with probabilities 0.05/0.80/0.15, respectively, and the
remaining three places yield distributions that slightly diverge
from the uniform one, each favouring some of the remaining
digits. For our simulations, we generate randomly such student
IDs and assign MNIST samples and probabilistic labels pi
accordingly to each digit.

We compare this approach with the algorithm proposed
in [42], which we consider to be the most relevant work in
the ANN literature for learning with side–information. This
method distills additional information in the form of logic
rules (hence its affinity to neural-symbolic integration). Its
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basic premise is an iterative knowledge distillation algorithm,
which augments the objective function of a regular supervised
ANN with an extra term encouraging the network’s softmax
output to fit, in addition to the ground truth labels y, also a
“soft” prediction s. The latter results from the fusion of the
network’s output with evidence from the logic rules (Eq. 4
in [42], what the authors call the “teacher network” output).
Of note, since rules are ultimately used to constrain p(z|x),
the authors admit that, like we have also denoted for our own
algorithms (Appendix A), this method also falls under the class
of Posterior Regularization.

For a fair comparison based on the same model and
type/level of contextual assistance, we employ the same ANN
q(z|x) that is part of our VA–based mixture formulation
and set the soft prediction s to be the Bayesian fusion of
the same probabilistic labels pi, with the network’s output
q(z|x) (i.e., the two distributions are multiplied and the
result is normalized). Since this method explicitly balances
the supervised and the rule-based objectives with a regularizer
π ∈ [0, 1] (Eq. 2), we compare with: i) Sd: π = 0, i.e., regular
supervised training of the discriminative model, ii) Knowledge
distillation (KD) KD0.1: π = 0.1, iii) KD0.5, iv) KD0.9, v)
KD1.0 (pi = 1.0, thus ground truth labels are ignored and the
network is trained only on side–information) and vi) KDexp:
πt = 1−0.95t, where t the epoch. These are compared to VA-
US (the softmax output q(z|x) of our model is left untouched
by context), VA-CA and VA-S (class labels are fed as contextual
assistance). A limited number of labeled data (only 10 per
class) are used to “seed” VA-CA so as to enforce the ith cluster
to represent the corresponding class (otherwise it is unknown
in what order the elements of probabilistic labels pi should
be presented to the algorithm), while the same data are used
to associate the found clusters to the digit classes for VA-US
(the class with most such samples in a cluster “wins” it).

We run ten repetitions of the learning problem (100 epochs)
with each algorithm (exceptionally, 30 repetitions for VA-
CA) and record the finally convergent classification accuracy
of each repetition. We obtain the following results, VA-US:
71.0±9.0, VA-CA: 82.2.0±15.4, VA-S: 98.1±0.07, Sd/KD0.0:
98.1± 0.09, KDexp: 49.5± 0.1, KD0.1: 98.2± 0.06, KD0.5:
97.9 ± 0.06, KD0.9: 86.3 ± 0.2, KD1.0: 49.3 ± 0.05. First,
it is clear that our VA-based context-aware algorithm per-
forms equivalently to the simple FMM-based one: it signifi-
cantly (p = 0.03 with a non-parametric, two-sided ranksum
test) outperforms the corresponding VA-US algorithm and
approaches the performance of VA-S. This implies that the
basic idea proposed here is applicable to complex, high-
dimensional problems, which simple generative models may
not be expressive enough to solve, so that deep learning is
required. The fact that VA-CA is still inferior to VA-S by a
large margin is due to the fact that certain repetitions still get
stack to local minima (the best repetitions converge to 96%).
Safely assuming that this algorithm has a similar effect on the
likelihood landscape as in the FMM case (see Section III-C),
stronger context should be able to alleviate this issue. However,
we believe that a more expressive ANN (i.e., with more hidden
layers and/or convolutional layers) may also be able to cope
with this. Another important observation is that, when trained

in an supervised manner, the extra parametrization of the
VA-based model is not detrimental to classification accuracy,
since this model performs similarly to Sd. Hence, generative
models can be equally effective for classification tasks to their
discriminative counterparts, while being able to do in parallel
much more than that. However, it should be highlighted that
this is probably only true when enough data are available, as
in this exemplary case.

On the contrary, the same side–information exploited
through the knowledge distillation method of [42] does not
seem to improve substantially over the regular supervised case
(the improvement of KD0.1 over Sd is marginal and may also
be random due to the small number of repetitions performed
here). The hyperparametrizations where substantial importance
is given to the side–information–based objective (KDexp,
KD0.9, KD1.0) perform poorly, while those where the influ-
ence of context is reduced simply converge to the supervised
performances (i.e., context seems to have no impact). This was
somewhat anticipated, since the weak information provided on
the data labels through context seems redundant when strong
information of the actual labels is available. Of note, the results
in [42] do not question this conclusion, because the benefits
demonstrated thereby are also slight and likely attributed to
the fact that manual labeling in the cases examined there
(i.e., sentiment analysis) are rather ambiguous and noisy (thus,
ground truth information is also weak, allowing a margin of
improvement through logic rule constraints). This should be
considered additionally to the fact that the approach proposed
here has anyway the advantage over knowledge distillation
of being unsupervised. A final important observation regards
the compromised performance of KD1.0. Our FMM-based
results suggested that the DCA method underperforms (unless
very strong contextual assistance is available), which led us
to confirm that data evidence carries a lot of information
that should not be ignored. Extending this conclusion, since
KD1.0 performs much worse than VA-US, it seems that even
if data evidence is employed, this wont be enough if the
underlying model is discriminative and does not model the
data distribution.

V. DISCUSSION

This work has studied unsupervised MLE algorithms devoid
of any need for data labels, but able to exploit side–information
in the form of probabilistic context embedded into a generative
model and with known statistics. A comparative analysis
and in–depth study of these algorithms’ properties for finite
mixture models is offered from both a theoretical and a
practical standpoint. An implementation with VAs extending
the same idea to deep learning is also provided.

We argue that the literature of learning from side–
information has largely ignored the merits of such fundamental
techniques in favour of alternatives mostly stemming from the
theory and practice of undirected graphs, which can often be
less practical. As an example, we find that in most application
scenarios and for most prospective users, it should be possible
and much more intuitive to express a given type of side–
information as a random variable with known statistics linking
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it to the missing class labels, rather than through a generalized
expectation criterion or a “feature expectation”. In other words,
the admittedly greater generality and flexibility of PR can be
most often traded off (Appendix A). Simplicity of the resulting
derivations and formulations can only be viewed as additional
advantages. We thus consider bringing this methodology in the
spotlight to be the main contribution of this article.

Another contribution entails the identification of basic
principles giving rise to improved EM–MLE by context–
awareness. First, we have shown that a context–assisted log–
likelihood objective is favourably distorted in comparison to
the regular one, so that sensitivity to initialization diminishes
and the chances of convergence closer to the supervised MLE
increase. The second principle regards the partial elimination
of missing label information through context as a result of the
applicability of the MIP. Demonstrating this makes our work
the first one to justify the benefits of side–information in learn-
ing from an information–theoretic viewpoint. Through these
principles, we have established experimentally and, wherever
possible, also formally, two important points. First, that any
positive effects on the estimation properties are proportional
to the information content of implicitly extracted instance–
wise probabilistic labels. Second, that the proposed algorithms
perform between the boundaries defined by the unsupervised
and supervised equivalents of a given problem.

We have showcased that estimation benefits are still evident
and significant in problems with variable, weak, or even, to a
certain extent, “wrong” contextual assistance, situations likely
to arise in practical applications. Furthermore, the algorithms’
limitations and comparative advantages have been outlined. In
this regard, we have demonstrated that completely disregarding
the evidence from observed samples in favour of context,
like with the DCA algorithm, or attempting to exploit it
when the underlying model is not generative, yields inferior
estimation properties. A general superiority of CA over WCA
as a result of removing missing information related to the
mixing coefficients has also been demonstrated. Furthermore,
the application of all algorithms in tough, real–world prob-
lems, and extensibility to deep learning scenarios, showcases
the broad applicability of context–aware learning as proposed
here.

As argued in Section III, the main limitation of the al-
gorithms proposed here is their non–universal applicability.
However, this is not specific to the proposed framework,
but, rather, a limitation shared among all methods exploiting
side–information. Indeed, it is not guaranteed that for any
application exploitable context as shown here exists, or that
the cost of automatically retrieving contextual assistance will
be lower than that of explicitly labeling data. However, as
the real–world examples of this paper illustrate, rich context
should be easily and cheaply acquired in a broad application
spectrum. Another limitation regards the fact that the prereq-
uisite knowledge of distributions p(z|c) or p(c|z) implies that
the latent class labels are at least defined, i.e., the number
and type of mixtures/classes M is known. Consequently, the
proposed methodology regards unsupervised classification and
not general clustering problems.
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