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Abstract—To achieve better fault diagnosis of rotating machinery, this paper presents a novel intelligent fault diagnosis model based on 

singular value manifold features (SVMF), optimized support vector machine (SVMs) and multi-sensor information fusion. Firstly, a new fault 

feature denoted as SVMF is developed to better represent faults. SVMF is acquired by extracting manifold topology features of the singular 

spectrum. Compared with frequently-used fault features, the feature scale of SVMF is constant under variable rotating speed, and the extraction 

process of SVMF also has the effect of self-weighting. So SVMF has a better representation of faults. Then, to select optimal parameters for 

model training of SVMs, an improved fruit fly algorithm is proposed by introducing guidance search mechanism and enhanced local search 

operation, and as a result, both the convergence speed and accuracy are improved. At last, the Dempster-Shafer evidence theory is introduced 

to fuse decision-level information of SVMs models of multiple sensors. By information fusion, the conflict of fault diagnosis conclusions from 

multi-sensor is eliminated, which lead to high robustness and accuracy of fault diagnosis model. As a summary, the proposed method combines 

the advantages of SVMF in fault representation, SVMs in fault identification and the Dempster-Shafer evidence theory in information fusion, 

and as a result the proposed method will get better fault diagnosis performance. The proposed intelligent fault diagnosis model is subsequently 

applied to the fault diagnosis of the gearbox. Experimental results show that the proposed fault diagnostic framework is versatile at detecting 

faults accurately. 

 
Keywords—Gearbox fault, fault diagnosis, singular spectrum, support vector machine, fruit fly algorithm, 

Dempster-Shafer evidence theory 

 

1. INTRODUCTION 

Mechanical equipment is fundamental to modern industry. With the growing complexity and scale of industrial equipment, 

the difficulty of equipment maintenance and repairment increases sharply, and the economic losses caused by mechanical 

equipment failure become more unbearable. Therefore, the industry has a strong demand for fault diagnosis technology, 

especially for intelligent fault diagnosis technology. Besides, with the popularity of unmanned factories and the demand of 

manufacturing industry of transforming to service-oriented manufacturing from traditional manufacturing, it can be expected that 

intelligent operation and maintenance technology will become one of the key technologies in the future.  

Driven by industrial requirements, increasing attention has been paid on the research of fault diagnosis in recent years, 

including model-based simulation [1], signal processing-based fault diagnosis [2] and data-driven fault diagnosis [3]. 

Model-based fault diagnosis and signal processing-based fault diagnosis require high professional knowledge, and the results of 

fault diagnosis largely depend on the experience of experts. So it is difficult to meet the needs of modern industry for intelligent 
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fault diagnosis and intelligent maintenance. Data-driven fault diagnosis combines feature extraction and artificial intelligence 

algorithms to overcome the shortcomings of the previous two methods. With the help of artificial intelligence algorithms and 

decision fusion mechanisms, fault diagnosis rules are learned from operational data to establish a diagnostic model or expert 

system with knowledge inference capacity to achieve an automatic identification of faults. The main advantage of data-driven 

fault diagnosis method is that it weakens the requirement of expert knowledge and makes this kind of method more suitable for 

industrial practice. 

Generally, data-driven fault diagnosis approaches can be summarized into two steps: feature extraction and fault classification. 

Extracting sensitive features for further fault classification is the key step. Several kinds of features have been introduced or 

proposed for fault diagnosis, such as frequency spectrum [4], time-frequency statistical features [5], ARMA model coefficients 

[6], information entropy features [7], wavelet packet analysis [8], and so on. These feature extraction methods perform well 

under constant operation condition. However, in practice, there are large fluctuations in the operation condition, especially the 

rotating speed of machinery, such as wind turbines. In situation of variable rotating speed, the value of the fault feature varies 

greatly as the frequently-used feature extraction algorithms are not self-adaptive, and as a result poor fault diagnosis performance 

will be derived [9]. In this work, a new kind of fault feature, named as singular value manifold features (SVMF), is proposed. 

SVMF is acquired by extracting manifold topology features of the singular spectrum. The singular spectrum is extracted by 

Singular value decomposition (SVD), and SVD is essentially a matrix decomposition method, which is often used in signal 

processing to decompose signals into multiple subspaces to achieve noise reduction or feature extraction [10]. SVD is 

self-adaptive and needs no basis functions [11]. At present, SVD has been widely used in the field of mechanical fault diagnosis, 

such as combining SVD with kurtosis index to achieve signal de-noising [12] and using SVD to decompose the coefficient 

matrix of continuous wavelet decomposition to enhance the impulse component in fault vibration signal [13], etc. SVD can 

self-adaptively separate the components in the signal, and the singular spectrum obtained by SVD reflects the energy distribution 

of the signal. Therefore, there are also studies on the combination of the singular spectrum and pattern recognition algorithm for 

intelligent fault diagnosis [14-15]. However, the variation range of the scale of singular value is very large. When fault diagnosis 

is conducted directly by singular spectrum, the information contained in the small singular values is weakened by large singular 

values, so the fault information contained in the singular spectrum cannot be fully utilized. To address the above concerns, this 

paper proposes a new kind of fault features denoted as SVMF for fault diagnosis, and the proposed features are acquired by 

extracting the manifold topology features of the singular spectrum. The distribution changes of signals collected under different 

fault states can be directly reflected as the distribution changes of the singular spectrum, and manifold topology can directly 

represent the changes of the singular spectrum, thus reflecting the changes in equipment operation status. At the same time, a 

variable scale manner is adopted to carry out feature extraction of SVMF according to the distribution characteristics of the 

singular spectrum. Therefore, the feature extraction process of SVMF has the effect of self-weighting, which can increase the 

ability of features to characterize faults. Compared with other fault features, the advantages of the proposed SVMF includes three 

aspects: 1) The fault information contained in the singular spectrum can be fully utilized to eliminate the influence of the singular 

values on the fault feature extraction; 2) The range of SVMF is [0,1], and that is to say, the numerical scale of SVMF extracted 

under different rotating speeds is the same, which is more suitable for fault diagnosis under variable speed conditions; 3) The 

feature extraction process has the effect of self-weighting, which enhances the ability to characterize faults. 

After feature extraction, a classification model with high efficiency and robustness is needed to identify fault types. Until now, 

several algorithms have been applied for fault identification, such as deep learning method [16], Hidden Markov model (HMM) 

[17], Artificial Neural Network (ANN) [18], K-Nearest Neighbor (KNN) [19], Naïve Bayes [20], Support Vector Machine 

(SVMs) [21] and so on. As big data analysis method, deep learning needs massive data for model training. hidden Markov 
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model, k-nearest neighbour and the artificial neural network  will also suffer over-fitting without enough training samples, and 

artificial neural network even easily gets trapped in local optimum owing to empirical risk minimization principle. However, it 

would be almost impossible to get a large number of training samples in industrial scenarios and thus fault diagnosis results of 

these methods are not satisfactory with small size samples. Compared with formerly mentioned methods, researchers have 

reported that SVMs can achieve better correct classification [22-23]. That is because SVMs based on structural risk minimization 

principle can minimize an upper bound on the expected risk and implements classification by using a separating hyperplane 

determined by a few support vectors. Therefore, SVMs are less prone to the problem of over-fitting, local optimal solution 

problems faced than other methods, and have better generalization capability for small sample size problem. However, the 

performance of SVMs depend largely on the selection of parameters, but unfortunately, there is still no guiding theory for the 

parameter selection until now. That is because the SVMs contain two kinds of parameters with a wide range of values, but these 

two kinds of parameters are not differentiable. The forced calculation of gradient is approximate, and the effect of optimization 

stability is also not good. Some scholars have tried the trial method, grid method and gradient descent method to do this work 

[24][25]. However, the trial method lacks theoretical guidance and relies on experience, which results in that the final parameters 

are not necessarily optimal. The basic principles of grid parameter optimization algorithm are as follows: firstly, every point in 

the specified grid range is traversed, and then every point is transformed into SVMs parameters for verification, and finally the 

grid point with the smallest error is selected as the optimal parameter of SVMs. So grid parameter optimization is very 

time-consuming. Gradient descent algorithm is very sensitive to the selection of initial value, and sometimes the error of 

experimental results is very large. Therefore, these algorithms have been difficult to meet the needs of the actual application. At 

present, intelligent optimization algorithms are the most often applied methods for parameter selection, such as particle swarm 

optimization (PSO) [26] and genetic algorithm (GA) [27]. The fruit fly algorithm, proposed by Wen-Tsao Pan [28], is a new 

intelligent optimization algorithm. Compared with other algorithms, the fruit fly algorithm is easy to implement and has low 

computational complexity. However, the imperfect search mechanism and poor local search ability prevent the further 

performance improvement of the fruit fly algorithm. In this work, an improved fruit fly algorithm (IFFA) is proposed by 

introducing guidance search mechanism and enhanced local search operation. Guidance search mechanism ensures that the 

search direction approximates the maximum gradient direction, and which improves search efficiency. Enhanced local search 

operation guarantees optimal search location during search iteration, as a result, the search accuracy is improved. Consequently, 

optimal parameters selected by IFFA for SVMs greatly improve the fault diagnosis performance. 

For fault diagnosis, more fault information leads to high reliability and accuracy of fault diagnosis. Compared to a single 

sensor installed on the shell of the machine, more abundant fault information is collected by multiple sensors installed in several 

positions. Therefore, the fusing of multiple sensors information for fault diagnosis can obtain better fault diagnosis results. 

However, due to noise and interference during signal transmission, the fault information acquired by sensors is somehow random 

and ambiguous, which not only leads to the uncertainty of fault diagnosis results from the single signal source but also leads to 

conflicting conclusions from multiple sensors. D-S evidence theory describes uncertainties by synthesizing knowledge from 

multiple data sources and has a strong ability to deal with uncertain information. Without prior probability, the D-S theory 

obtains the result of multi-source information fusion through certain reasoning. At present, D-S evidence theory has been 

introduced into many application fields to realize multi-sensor information fusion for decision-making [29][31]. Therefore, this 

paper constructs several optimized SVM fault diagnosis models through multiple sensors information, and then combines D-S 

evidence theory to fusing information of multiple sensors, to improve the robustness and identification accuracy of the fault 

diagnosis model. In another word, combining the advantages of SVMF in fault representation, SVMs in fault identification and 

D-S in information fusion, is the main innovation of this paper, and hence the proposed method will get better fault diagnosis 
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performance. The contributions of this paper can be summarized as follows:  

1) A new kind of fault features denoted as SVMF is proposed for fault diagnosis. SVMF contains more abundant fault 

information, of which the feature scale does not change with the operation speed and the feature extraction process has the effect 

of self-weighting. As a result, the new feature characterizes faults well. 

2) The IFFA is proposed by introducing guidance search mechanism and enhanced local search operation to train the SVMs 

fault diagnosis model. The proposed IFFA algorithm improves both search efficiency and search accuracy. 

3) D-S evidence theory is used to fuse decision-level information of SVMs fault diagnosis models constructed by multiple 

sensors, which eliminates the conflict of fault diagnosis conclusions from multiple sources and increases the robustness and 

accuracy of fault diagnosis model. 

4) The effectiveness of the proposed method is verified by the gearbox fault diagnosis experiment. The experimental results 

show the effectiveness of the proposed method. 

The rest of this paper is organized as follows. In section 2, the feature extraction method of SVMF, the SVMs fault 

diagnosis model based on IFFA algorithm and the related theory of D-S evidence for multi-sensor information fusion are 

introduced in detail; the flow and framework of the proposed fault diagnosis method are described in the third section; in section 

4, the effectiveness of the proposed algorithm will be verified by gearbox fault data; the fifth section concludes the article. 

2. THE PROPOSED METHOD OF FAULT DIAGNOSIS 

2.1 Feature Extraction Method of Singular Spectrum Manifolds 

2.1.1 Singular Value Decomposition 

 As a matrix decomposition method, SVD cannot directly deal with one-dimensional vibration signals. Therefore, 

one-dimensional vibration signals are usually reconstructed into high-dimensional matrices for processing, such as Toeplitz 

matrix, periodic matrix, Hankel matrix and so on. Among them, the Hankel matrix is the most widely used and the construction 

method is the simplest [11]. Given a vibration signal  1 2, ,..., Nx x x=X
, the construction method of the Hankel matrix is as 

follows: 

𝑨 = [

𝑥1

𝑥2

𝑥2

𝑥3

⋯
…

𝑥q

𝑥q+1

⋮   ⋮ ⋮ ⋮
𝑥p 𝑥p+1 ⋯ 𝑥N

]                                        (1) 

Where 1 ,p q N  , p is the reconstruction dimension, 1q N p= − + is the number of samples in the Hankel matrix, N  is 

the length of the vibration signal. The definition of SVD for the matrix
p qR A  is as follows:  

T=Α UΣV                                           (2) 

In formula (2), 1 2, ,..., p p

p R  =  U u u u  and 1 2, ,..., q q

p R  =  V v v v are two orthogonal decomposition matrices, 

( )1 2= , ,..., , p q

ndiag R     Σ O  is a singular value matrix, ( )min ,n p q= is the number of singular values,
1 2 ... n     are 

singular values,
1 2( , , )ndiag     is a diagonal matrix, O is a zero value matrix, , 1, ,i i p= Lu and , 1, ,j j q= Lv are 

respectively the left and right singular vectors. Fig. 1 is the singular value extracted from several gearbox fault signals [32]. It 

can be seen that the singular spectrum obtained by SVD can represent the distribution of the signal. The distribution of the 

singular spectrum corresponding to different faults and its manifold topological structure is different, so the singular spectrum is 

usually used as fault feature for mechanical fault diagnosis. However, the variation range of scales of singular values is very 

large, and therefore the fault information contained in small singular values is easily submerged by large singular values. As a 

result, only a few relative larger singular values play a role in fault diagnosis, and the fault information contained in the singular 
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spectrum cannot be fully utilized. 

 
                         (a) the original singular values                           (b) singular values using logarithmic scale 

Fig.1 The singular spectrum of gearbox fault signals 

2.1.2 Analysis of Singular value Manifolds 

Fig. 1 shows that the distribution of singular spectrums for different faults is different from each other, which can be 

directly reflected by the difference of manifold topological structure of singular spectrum. Since the singular value manifolds are 

one-dimensional, this paper proposes to use the slope of the singular spectrum to extract the topological features of singular 

spectrum manifolds, namely SVMF. For the singular spectrum  1 2, ,..., nSVs   =
, the extraction method of the proposed 

SVMF based on the slope of the singular spectrum is as follows: 

1 , 1i i

i

i

n i
k

 
 +−

=                                          (3) 

According to the definition of formula (3), for a singular spectrum SVs , 1n −  slope values,  1 2, ,..., nSLs   = , of the 

singular spectrum can be calculated. SLs  is the proposed SVMF and can effectively characterize the manifold topological 

structure of the singular spectrum. When calculating the slope of the singular spectrum 
l , the value of denominator 

lk  of 

formula (3) has a great influence on the calculation results. As shown in Fig. 2 below, when 
1 1i i j j   + +− = − =  , if 

i jk k=  

is taken in calculating the slope, the slope of corresponding 
i  and 

j  is 
i j = ,  where 𝑛 > 𝑖, 𝑗 > 1. However, the 

relative variation of the singular spectrum at 
j  is obviously greater than that at 

i . That is to say, the SVMF should have 

bigger curvature at 
j , so 

i jk k  should be satisfied when calculating the slope of the singular spectrum. In this paper, a 

variable scale method is proposed to calculate the slope of the singular spectrum. In the calculation process, 
ik  is taken as 𝑘𝑖 =

𝜆𝑖 . That is to say the proposed SVMF corresponds to the relative differences between consecutive singular values. By 

introducing 𝑘𝑖 = 𝜆𝑖 into formula (3), it can be seen that the range of feature values in SVMF is [0, 1]. That is to say, the 

numerical scales of the feature of SVMF extracted under different operational conditions are the same, so SVMF is more suitable 

for fault diagnosis under variable rotating speeds. At the same time, 𝑘𝑖 = 𝜆𝑖  is set in the process of feature extraction, which is 

similar to self-weighting the feature according to the characteristics of the singular spectrum itself in the process of fault feature 

extraction, so that the proposed SVMF can more effectively characterize the faults. Fig.3 shows SVMF extracted from gearbox 

fault signals. Comparing Fig.3 with Fig.1, it can be seen that the fault information in small singular values is also available, and 

therefore fault information contained in the singular spectrum is fully utilized. 
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kj
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(a) (b)
 

Fig.2 Variable scale extraction of singular value spectrum slope 

 
  (a) the original singular values                           (b) singular values using logarithmic scale 

Fig.3 The singular spectrum manifold features of gearbox fault signals 

2.2 Fruit Fly Algorithm for Parameters Optimization of SVMs 

2.2.1 Theory of Support vector machine 

 SVMs is a pattern recognition algorithm based on structural risk minimization. By establishing an optimal decision 

hyperplane, the distance between inter-class samples nearest to the plane is maximized, thus providing good generalization 

ability for classification problems. Its model is usually described as follows: 

( ) ( )

( )( )

i j

2

1

( , )=

1
min

2

. . 1 0;

1,2,...,

T

i j

N

i

i

T

i i i

i

f

C

s t y b

N

 



 

=

 
+ 

 

+ − + 

 =



x x x x

w

w x

                          (4) 

Where w  denotes the normal vector of the hyperplane, ( )   is the pre-defined function of 
ix , C denotes the penalty 

factor, 
i  denotes the relaxation variable and b  denotes the displacement or the distance to the hyperplane. ( , )f    is the kernel 

function which is to map the samples from the original space to a high-dimensional feature space, so that the samples can be 

linearly separable in the high-dimensional space. At present, the most widely used kernel function is the radial basis function 

(RBF), which is expressed as follows: 

( )
2

2
, exp

2

i j

i jf
g

 −
 = −
 
 

x x
x x                                (5) 

Where g denotes the parameter of RBF, ix and jx  denote the sample points. 
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2.2.2 Optimized Support vector machine 

From the above mathematical model, it can be seen that there are usually two kinds of parameters involved in SVMs, namely 

penalty factor and kernel parameter. However, there is currently no complete set of theories for the value setting of these two 

parameters, which are usually tried out through a large number of experiments. In recent years, to improve the efficiency of 

parameters’ selection, many studies use an intelligent algorithm to search for the best value. However, the parameters of SVMs 

have a wide range of values, which puts forward high requirements for the performance of an intelligent algorithm. This requires 

that the parameters searched by the algorithm can maximize the performance of SVMs, and also requires that the algorithm has 

high computational efficiency. To meet the above requirements, an improved fruit fly algorithm (IFFA) is proposed to optimize 

the parameters of SVMs. Compared with other intelligent algorithms, the advantage of fruit fly algorithm (FFA) is that its 

algorithm is easy to implement, easy to convert its theoretical ideas into program code and easy to understand. Besides, the time 

complexity of the algorithm is not high, so it has certain advantages in computational efficiencies.  

Although FFA has some advantages, its search mechanism is too simple compared with other algorithms, resulting in poor 

search ability. In order to improve the search efficiency and accuracy of FFA, guidance search mechanism and enhanced local 

search ability are introduced into FFA in this paper. 

Firstly, this paper introduces guidance search mechanism [33] to improve FFA. To make fruit flies search adaptively, the 

formula (6) is utilized to update the position of fruit flies so that the search space is adjusted according to the best individual of 

the last generation: 

1

2

RandomValue A

RandomValue A

k

i

k

i

X BestX

Y BestY

= + 

= + 
                              (6) 

The position of each fruit fly 
ifly  can be represented by a vector ( ),i iX Y . In the parameter optimization applied to the 

SVM, 
iX  and 

iY  represent the parameters C and g  of the SVM respectively. Therefore, in the k-th iteration, 
1

kA  can 

regulate the search range of penalty factor C , and 
2

kA  can regulate the search range of the parameter g . The expression of 

k

jA  is as follows: 

1

1 1

1 1

,                  =1

A ,           

,          

j

k k k k

j r j

k k k

a j

A k

C A Smell Smell

C A Smell Smell

− −

− −




= 




                               (7) 

In the first generation, the 1

jA  is preset to a constant number which is usually the diameter of the search space. 
kSmell  is the 

current fitness value, and the larger the value is, the better the solution will be. If no better solution is found in iteration, the 

search space needs to be reduced to improve the possibility of searching for high-quality solutions. If a better solution is found, 

the search space is increased to explore other locations within the feasible region. Formula (7) reduces the search space by a 

coefficient 
rC  ( 1rC  ) and enlarges the search space by 

aC ( 1aC  ). 

Furthermore, to make better use of the guidance search mechanism, this paper designs a guiding fruit fly operation, which is 

described as Algorithm 1. 

 

Algorithm 1 Generating the guiding fruit fly 

Require: ( )est , estB X B Y , 
ifly ,  and   

Sort the fliers by their fitness values ( )iSmell fly  in 

ascending order 

1 1

1
k i i

i i

fly fly
 

 


 = = − +

 
 − 

 
  ; 

( ),k kG BestX BestY = + ; 

return 
kG  
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Algorithm 2 Generating the local fruit fly 

Require: ( )est , estB X B Y ,   and r  

 if rand r  

_

_

k

k

local X BestX randn

local Y BestY randn





= + 

= + 
; 

( )_ , _k k kL local X local Y= ; 

end if 

return 
kL  

 

In Algorithm 1,   ranges from 0 to 1, usually 0.2 [33]. The guidance search mechanism is similar to finding the maximum 

gradient direction (
k ). In each generation, the operation yields the current maximum gradient descent direction, which 

generates a guiding fruit fly 
kG . This operation can make the best use of the search information of fruit flies, thus effectively 

improving the efficiency of the algorithm. 

Besides, to further improve the local search ability and search accuracy of the algorithm, this paper introduces the local search 

operation to enhance the local search ability of the algorithm [34], which is described in detail as shown in Algorithm 2. In this 

algorithm,  is a small constant which represents the local search range and r  is the incremental factor. The value of r  

increases with the advance of computing time. Its concrete expression is as follows: 

( )1 0[1 exp ]tr r t+ = − −                                    (8) 

Where   is a constant, usually 0.9. The initial value 
0r  of the incremental factor can be selected in the interval  0 1， . The 

local search operation is a dynamic adjustment process. In the early stage of the IFFA, the algorithm still needs to expand the 

search space and carry out global optimization, because the position of the high-quality solution has not been searched. At this 

stage, the incremental factor is small, and the probability of triggering local search is also small. With the continuous operation 

of the algorithm, high-quality solutions appear one after another. At this stage, local optimization should be carried out near the 

high-quality solution to avoid missing the optimal solution. Therefore, the incremental factor also increases, which triggers local 

search operation and generates the corresponding local fruit fly 
kL . 

Finally, according to the above improvements, an improved fruit fly algorithm is proposed as shown in Algorithm 3. The 

IFFA not only enhances the information utilization ability but also enhances the search ability of the algorithm, which improves 

the efficiency and accuracy of the algorithm. 

 

Algorithm 3 Improved fruit fly algorithm 

Randomly initialize   fruit flies in the potential space. 

Evaluate the flies’ fitness and get the current best position:  

repeat 

for 1i =  to  do 

       Calculate the position of each fruit fly according to 

(6) and (7); 

       Calculate the fitness value of fruit fly; 

end for 

Generate the guiding fruit fly according to Alg. 2; 

Generate the local fruit fly according to Alg. 3; 

Evaluate the fitness of all fruit flies; 

  Update the current best fitness value and best position; 

until termination criteria is met 
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return the position and the fitness of the best individual. 

 

2.3 Dempster–Shafer evidence theory 

For the samples obtained from several measurement points, there are always conflicts between the fault diagnosis results of 

different measurement points. In order to effectively utilize the information of all measurement points, this paper uses D-S 

evidence theory to fuse the posterior probability of the output of each measurement point, so as to eliminate the conflict of 

multi-source signals and obtain a more reliable classification result [29][31]. D-S evidence theory is an effective reasoning 

method for uncertain information. Compared with traditional fusion decision-making method, it can grasp the unknown and 

uncertainty of sensor information better. Its basic theory is as follows. 

(1) Basic probability assignment (BPA): D-S evidence theory regards the possible solutions to a judgment problem and 

constitute a set, denoted as  . Given some fault samples of ( )' ' 2k k  classes, the fault class labels constitute a set, namely the 

framework of identification  . Furthermore, we can get a belief function of each type of fault ( )m   on the framework. The 

belief assignment function on  is defined as ( )  : 0,1m  → , and it satisfies: 

(i) ( ) 0;m  =          (ii) ( ) 1m





=                         (9) 

Where m  is the basic probability assignment,   is the proposition of a certain type of fault and ( )m   is the basic 

probability value of  . In the formula (9), condition (i) denotes that there is no belief for empty propositions, and condition (ii) 

indicates that the sum of belief values for propositions of all faults under the framework of identification is 1. For every SVM 

classifier, the BPA of the s-th sensor is  1 2, ,..., k

s s sm m m . 

(2)Belief function: The belief function of the proposition   is: 

( ) ( )  ,  
B

Bel m B


 


=                                  (10) 

It is also named as the lower bound, meaning the least probability that the proposition holds. If some evidence supports one 

proposition, then it should also support the inference of the proposition similarly. 

(3)Plausibility function: The plausibility function of a proposition   is defined as follows. 

( ) ( ) ( )1
B

Pls Bel m B
 

 


= − = 
I

                             (11) 

The plausibility function is also named as the upper bound, giving an uncertainty measure for the proposition holding. 

(4)The fusion rule: 

Let
1 2, ,...,k k k

sm m m  denote different basic probability assignments derived from multiple sensors, then the Dempster fusion rule 

is as follows: 

( ) ( )

( )
1

      

0

i

n

j i

j

m K m

m

 

  



= =


=  


 =

 
I                          (12) 

Wherein ( )1

1

1 ,    
i

n

j i

j

K m
 

 −

= =

= −   
I

. The value of K  reflects the conflict of the evidence: the larger K  means the 

more serious conflict and the worse effect of fusion. Since 

1 2

1 1 1

1 2

2 2 2

1 2

  ... 

  ... 

        

  ... 

k

k

i

k

n n n

m m m

m m m
D

m m m

 
 
 

=
 
 
  

is the probability assignment of sample i on        

n sensors, 1,2,...,i l=  then for l test samples, we have  1 2, ,..., lD D D . For any 
iD , it is integrated based on the equation (12) 

after which we can obtain the probability of the sample falling into every class. The final result is the label with the highest 

probability. 
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3. THE FRAMEWORK OF THE PROPOSED FAULT DIAGNOSIS METHOD 

The flow chart of the fault diagnosis method presented in this paper is shown in Fig. 4. Firstly, the vibration signals of 

multiple sensors located in several measuring points are collected. Subsequently, we can see that in the figure, the proposed 

SVMF is extracted from the collected vibration signals to construct the fault feature set for each measuring point. Then, the 

acquired fault feature sets are utilized to train and test the optimized SVMs models, while the parameters of SVMs are selected 

by IFFA, and the posterior probability of the test samples and the diagnosis results of each measuring points are obtained. In this 

figure, it is shown that the input data of each sensor is processed by SVMF and optimized SVMs, the classification result is 

output according to the posterior probability of each state. However, the output of each sensor may conflict with each other. 

Therefore, the posterior probabilities of multi-sensors are fused by using the D-S evidence theory to get the final diagnosis 

results in the last stage of this method. 

Start

Gearbox 

Sensor 1

DS evidence theory

Finish

Sensor 2 ... Sensor N

Manifold 

feature 

extraction

Optimized 

SVM 1

Optimized 

SVM 2 ...
Optimized 

SVM N

Output  1 Output 2 ... Output N

Final decision

Manifold 

feature 

extraction
...

Manifold 

feature 

extraction

 
Fig.4 The fault diagnosis process of the proposed method 

4. EXPERIMENTAL VERIFICATION 

4.1 Comparison of feature extraction methods 

In this section, the proposed SVMF is compared with several existing fault features to verify the feasibility and superiority of 

the proposed method. The experimental data come from a gearbox, and Fig.5 shows the gearbox fault diagnosis test rig. The 

gearbox fault diagnosis test rig mainly consists of a speed control device, variable frequency AC drive motor, planetary gearbox, 

second stage parallel shaft gearbox, magnetic brake, etc. In this experiment, five kinds of gearbox faults are simulated: tooth root 

corrosion, tooth root crack, bearing inner ring fault, bearing outer ring fault, and mixed fault. For the above faults, the 

corresponding data were collected under the conditions of variable rotating speed and constant rotating speed. The rotating speed 
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of driving motor linearly increases from 20-40Hz under the variable rotating speed conditions, while the rotating speed of 

driving motor is 20Hz under the condition of constant rotating speed. The vibration data were collected at a sampling frequency 

of 12.8kHz for the conditions of variable rotating speed and 25.6 kHz for the conditions of constant rotating speed, and three 

sensors are applied for vibration signals collection. The three sensors are respectively located on the left side of the planetary 

wheel X (Point1), planetary wheel Y (Point2) and the intermediate shaft of the gearbox (Point3). Each experiment was repeated 

for four times, and four vibration signals have been collected by each sensor for each fault state under each operating condition. 

Figure.6 shows the vibration signals collected under a constant rotating speed condition in Point1. Then, the vibration signals are 

divided into fault samples, and each fault sample contains 4096 sampling points. The fault samples obtained from two of the four 

vibration signals are used as training samples, and the rest samples are used for model testing. In this experiment, for each sensor, 

there are 3200 fault samples collected under variable speed condition, and 960 fault samples collected under constant speed 

condition. That is to say, for variable speed condition, 1600 samples are used for training, and 1600 samples are used for testing. 

For constant speed condition, 480 samples are used for training, and 480 samples are used for testing. 

 

 
Fig.5. The test point arrangement in gearbox vibration test 

 

 

Fig.6. The time and frequency waveforms of the collected vibration signals: (a) tooth root corrosion; (b) tooth root crack; (c)bearing inner ring fault; 

(d)bearing outer ring fault; (e) mixed bearing fault 

 

 

 The proposed SVMF is compared with some other features extracted from the singular spectrum, including singular spectrum 

(SVS) [35], singular value ratios (SVR) [36] and normalized singular spectrum (SVE) [11][14]. The definitions of these features 

are shown in Table I.  
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TABLE I 
THE DEFINITION OF FAULT FEATURES 

Processing Methods Calculation Formulas 

SVS 
i i =  

 

SVR 
 

1i i i   +=  

 

SVE 

2 2

1

l

i i jj
  

=
=   

 

For further validation of SVMF, SVMF is also compared with the time-frequency statistical feature (TF), wavelet packet 

energy (WPE), autoregressive models (AR) and information entropy (IE). Each kind of fault features is extracted under two 

conditions (variable speed and constant speed). The data size after processing is shown in Table Ⅱ. 

 
TABLE Ⅱ 

THE SIZE OF FEATURE DATA 

Feature Extraction Methods 
Variable Speed Data 

(20-40Hz) 

Constant Speed Data 
(20Hz) 

SVMF 1600 24  960 24  

TF 1600 24  960 24  

WPE 1600 24  960 16  

AR 1600 6  960 6  

AR_10 1600 10  960 10  

TF 1600 16  960 16  

IE 1600 5  960 5  

e.g. 1600 24 means 1600 samples, each with a dimension of 24. 

 

In order to compare the effectiveness of feature extraction methods, SVMs is used to judge fault identification results on 

the platform of MATLAB R2016b with libsvm toolbox [37], and uniformly use the proposed IFFA to optimize the parameters of 

SVMs. Fault diagnosis models are performed for several times, and the most stable fault identification results are selected for 

analyzing, and the fault identification accuracy is shown in Table Ⅲ. Fig.7 through Fig.10 show the curves of SVS, SVMF, SVE 

and SVR obtained under variable rotating speed. Several conclusions are derived from Table Ⅲ: (1) it is obvious that the 

singular values contain a large amount of fault information. However, as shown in Fig.7, only a few relative larger singular 

values play a role in fault diagnosis, which as a result lead to poor fault identification; (2) SVMF, SVR and SVE are more 

effective than SVS, and among which SVMF is superior to other methods, especially for fault diagnosis under variable rotating 

speed. As shown in Fig.9, the proposed SVMF directly applied the manifold topologic structure information of singular spectrum 

to fault diagnosis and so overcome influences of the singular values. According to the computation formal of SVE, extraction of 

SVE is equivalent to the normalization of singular values. Hence, the problem that fault diagnosis accuracy is influenced by the 

value variation of singular values still exists in SVE. Distribution of SVE in Fig.9 is similar to the SVS in Fig.7, which further 

verifies the conclusion. Though the fault diagnosis results of SVR is very close to the proposed SVMF, as shown in Fig.10, the 

value range of SVR is random and non-uniform. So fault diagnosis result using SVR and SVE is still no satisfactory. On the 

other hand, the normalized value range and self-weighting of SVMF perfectly overcome the shortcoming of SVR and SVE, so 

fault diagnosis results using SVMF are satisfactory under both constant and variable rotating speed. In Table Ⅳ, the results of 

the SVMs using SVMF of different sensors are also listed out, which further proved the fault clustering effective of these 

proposed fault features. (3) The frequently-used statistical features perform well under constant rotating speed but unsatisfactory 

under variable rotating condition. The main reason is that the extraction of these features is not adaptive, so features extracted 

under different rotating speed are not comparable. In this experiment, it should also be noted that the time-frequency statistical 

feature contains energy normalization processing. 

 Table V also gives out the fault diagnosis result of SVS both with and without feature fusion, and the feature fusion is 
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achieved through dimension reduction by t-Distributed Stochastic Neighbor Embedding t-SNE [38]. After feature fusion, the 

dimension of SVS is reduced to two, and the range of numerical variation of features are decreased. As shown in Table VI, the 

testing results of SVS without t-SNE are random, and the fault diagnosis of SVS with t-SNE is much better than the original 

SVS. As a conclusion, the non-uniform scale of SVD-based features may lead to poor fault diagnosis performance and this also 

future proves why the proposed SVMF performs better than other SVD-based features.   

  

  (a) the original singular values                           (b) singular values using logarithmic scale 

Fig.7 The curve of the singular spectrum obtained from original signals 

 

  (a) the original singular values                           (b) singular values using logarithmic scale 

Fig.8 The curve of singular spectrum manifold features obtained from original signals 

 

 

  (a) the original singular values                           (b) singular values using logarithmic scale 
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Fig.9 The curve of singular spectrum energy obtained from original signals 

 

 

  (a) the original singular values                           (b) singular values using logarithmic scale 

Fig.10 The curve of singular value ratios obtained from original signals 

4.2 Comparison of optimized SVMs 

In this section, genetic algorithm (GA), adaptive particle swarm optimization (APSO) [39], bat algorithm (BA), classical fruit 

fly algorithm (FFA), guiding fireworks algorithm (GFWA) and IFFA are selected to optimize the parameters of SVMs to 

compare the performance of the proposed IFFA. The maximum number of iterations of all algorithms is set to 100 and the 

population size is set to 20. 

In this section, the variable speed data obtained from three measuring points are selected, and the data are processed by 

time-frequency statistical feature, AR, wavelet packet energy, information entropy, and the proposed SVMF. Then the feature 

data are input into the support vector machines optimized by intelligent algorithms. The classification accuracy results are shown 

in Table VI, and the convergence curves of all algorithms are shown in Fig. 11. 

From the comparative experiments in this section, we can see that the IFFA has certain advantages in improving the 

classification accuracy of SVMs. Compared with other algorithms, IFFA has good search performance and information 

utilization ability, owing to the introduction of guidance search mechanism and enhanced local search operation. Though in some 

cases IFFA has the same accuracy with other algorithms, IFFA shows better convergence speed. Therefore, the SVMs model 

based on IFFA has good classification accuracy and computational efficiency in fault diagnosis. 

4.3 Comparison of data fusion 

In order to reflect the role of multi-sensor information fusion, this section uses D-S evidence theory and voting method to fuse 

the results of SVMs output from three measurement points. Similarly, the fused results of all feature extraction methods are 

compared, and the results are recorded in Table VII.   

Regarding the voting method, there are two types, hard voting and soft voting, and the fusion rule is that the minority is 

subordinate to the majority. As shown in Table VII, soft voting can solve the conflict of hard voting, that is because soft voting 

introduces weight for each information source based on hard voting. In this experiment, the weights of the three measurement 

points, in turn, are 1, 1, and 1.5. That is to say, the weight of point 3 is 1.5 and the weights of remaining points are 1, because the 

fault diagnosis accuracy of point3 is better than the other two measurement points. Compared with both types of voting method, 

D-S evidence theory can integrate the results of each measurement point into a more ideal final fault diagnosis result. For this 

experiment, except for SVS, the final obtained accuracy has been considerably improved after the fusion by D-S evidence 

theory. All fault features have better classification accuracy after information fusion, especially in the working condition of 
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constant speed, the final accuracy of many features corresponds to 100%. While in the case of variable rotating speed, the fusion 

accuracy is also higher than that of the single measurement point. Note that: the fusion accuracy of the proposed SVMF is 100%, 

which is superior to other existing feature extraction methods.  

TABLE Ⅲ 

THE ACCURACY COMPARISON OF DIFFERENT FEATURE EXTRACTION METHODS (%) 

working 

Condition 

Measu-

ring 

Points 

SVS  SVR SVE SVMF AR wavelet packet 

energy 

information 

entropy 

time-frequency 

statistical feature 

train test train test train test train test train test train test train test train test 

Variable 

Speed 

Point1 50.88 20 97.63 95.38 95.13 92.19 98.19 96 96 91.31 98.69 95.13 69.38 63.81 88.13 80.81 

Point2 35.38 20 98.31 97.19 96 92.31 99.13 97.75 94.06 90.38 98.81 95.38 79.38 71.25 88.5 84.94 

Point3 33.88 20 99 98.19 96.31 93.94 99.63 99.5 89.88 88.19 97.06 96.19 88.06 82.94 93.88 78.94 

Constant 

Speed 

Point1 66.04 20 99.58 99.79 99.58 96.67 100 100 99.38 98.55 99.38 98.33 97.92 91.25 98.54 97.08 

Point2 64.79 20 100 100 100 99.17 100 100 95.63 94.38 98.13 95.66 94.58 93.54 99.38 96.67 

Point3 80.83 20 99.79 98.96 96.67 95.63 99.79 98.96 99.38 98.96 95.66 96.49 96.46 90 99.79 98.33 

TABLE Ⅳ 

The testing recognition rate of each type of fault with SVMF (%) 

Working 

condition 

Measuring 

point 

Root corrosion Combined fault Inner fault Root crack Outer fault 

Variable  
speed 

Point 1 100 96.5625 93.75 100 89.6875 

Point 2 96.875 99.6875 97.1875 97.5 97.5 

Point 3 100 98.75 99.375 100 99.375 

Constant  
speed 

Point 1 100 100 100 100 100 

Point 2 100 100 100 100 100 

Point 3 100 97.92 96.875 100 100 

 

TABLE Ⅴ 
                      FAULT DIAGNOSIS OF SVS WITH AND WITHOUT FEATURE FUSION (%) 

working Condition Measuring 
Points 

SVS (without t-SNE) SVS (with t-SNE) 

train test train test 

Variable Speed Point 1 50.88 20 80.81 77.31 
Point 2 35.38 20 84.31 81.5 

Point 3 33.88 20 88.63 77.25 

Constant Speed Point 1 66.67 20 98.33 90.625 

Point 2 68.13 20 99.79 98.125 

Point 3 78.54 20 98.125 93.125 

 

TABLE  VI 
THE COMPARISON OF OPTIMIZED SVMS (%) 

Feature extraction 
method 

Measuring 
Points 

APSO-SVM GA-SVM IFFA-SVM BA-SVM FFA-SVM GFWA-SVM 

train test train test train test train test train test train test 

TF Point1 88 80.63 88 80.75 88.13 80.81 87.94 80.13 88 80.63 88.13 80.75 
Point2 88.5 84.88 88.5 84.69 88.5 84.94 88.38 84.69 88.31 84.19 88.5 84.75 
Point3 93.75 78.56 93.81 78.56 93.88 78.94 93.63 78.69 93.81 78.81 93.81 78.88 

AR Point1 95.5 90.88 95.88 91.19 96 91.31 95.56 91.13 95.81 91.19 95.94 91.19 

Point2 94 89.75 94 90.19 94.06 90.38 93.88 89 91.81 88.69 92.69 88.75 

Point3 89.81 87.88 89.19 87.81 89.88 88.19 89.31 87.69 89.06 87.69 89.75 87.94 

WPE Point1 98.5 95.06 98.63 95.13 98.75 95.13 98.69 94.625 98.31 94.81 98.69 95.13 

Point2 98.81 95.25 98.75 95.19 98.81 95.38 98.81 95.25 98.75 95.25 98.81 95.38 

Point3 97 95.75 97 95.81 97.06 96.19 96.69 95.75 95.38 95.06 97 95.81 

IE Point1 69 64.38 68.88 63 69.38 63.81 68.75 62.38 59.94 57.69 69 63.25 

Point2 78.44 70.94 79.31 70.94 79.38 71.25 75.94 69.06 66.81 62.13 79.25 71.25 
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Point3 87.44 82.81 86.13 82.5 88.06 82.94 85.56 82.5 80.88 77.69 87.5 82.94 

SVMF Point1 98 95.63 98.06 95.56 98.19 96 97.94 95.56 96.94 95.75 98.06 95.81 

Point2 98.5 97.63 98.5 97.63 99.13 97.75 98.5 97.63 98.31 97.19 99.13 97.63 

Point3 99.63 99.44 99.56 99.31 99.63 99.5 99.56 99.25 99.25 99.19 99.56 99.44 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Page 17 of 21 AUTHOR SUBMITTED MANUSCRIPT - MST-109676.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

(e) 

Fig.11 The convergence curves of algorithms. (a) time-frequency statistical feature. (b) AR. (c) wavelet packet energy feature. (d) information entropy. (e) 

SVMF. 

 

TABLE VII 

THE FUSION RESULTS OF D-S EVIDENCE THEORY (%) 

Working 

condition 

Feature 

extraction 

method 

Point1  Point2 Point3 Fusion result Voting result 

testing testing 
testing fusion Hard voting Soft voting 

 

 

 

Variable 

Speed 

 

 

 

SVS 20 20 20 20 20 20 

SVR 95.38 97.19 98.19 99.875 Conflict 98.625 

SVE 92.1875 92.3125 93.9375 99.125 Conflict 99.125 

SVMF 96 97.75 99.5 100 99.938 99.938 

AR 91.3125 90.375 88.1875 99.375 Conflict 98.4375 

AR_10 92.375 90.9375 87.375 99.875 Conflict 98.625 

WPE 95.125 95.375 96.1875 99.875 Conflict 99.813 

IE 63.8125 71.25 82.9375 86.188 Conflict 85.313 

TF 80.8125 84.9375 78.9375 91.625 Conflict 90.6875 

 

 

 

Constant 

Speed 

 

 

 

SVS 20 20 20 20 20 20 

SVR 99.7917 100 98.9583 100 100 100 

SVE 96.667 99.1667 95.625 100 99.583 99.583 

SVMF 100 100 98.9583 100 100 100 

AR 98.5417 94.375 98.9583 100 99.375 99.375 

AR_10 98.55 97 98.375 100 99.375 100 

WPE 98.3333 95.625 96.4583 99.792 Conflict 99.167 

IE 91.25 93.5417 90 99.375 Conflict 97.917 

TF 97.0833 96.6667 98.3333 100 100 100 

e.g. the “conflict” in the table indicates that the result cannot be fused by hard voting. AR is 6-dimensional AR data, AR_10 is 10-dimensional data. 

 

TABLE VIII 

THE TIME IT TAKES FOR THE ALGORITHM TO ITERATE ONCE (S) 

Feature 

extraction 

Measuring 

point 

APSO GA IFFA BA FFA GFWA 

 Point 1 26.814 18.335 20.162 30.215 19.537 28.242 

TF Point 2 27.697 20.963 26.624 31.354 21.461 32.019 
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 Point 3 17.916 12.534 16.647 18.367 13.291 18.370 

 Point 1 34.032 29.344 30.765 37.130 33.973 35.343 

AR Point 2 31.730 28.108 32.777 39.736 34.359 36.585 

 Point 3 34.907 30.253 37.850 39.446 35.258 40.833 

 Point 1 33.205 29.708 31.653 40.818 32.187 40.651 

WPE Point 2 39.096 31.844 40.009 48.419 38.619 50.795 

 Point 3 28.845 23.228 30.405 33.135 27.748 31.787 

 Point 1 41.516 35.695 39.153 49.718 39.780 58.762 

IE Point 2 40.187 33.548 37.633 41.194 36.799 45.562 

 Point 3 38.428 32.677 37.453 38.109 35.503 39.452 

 Point 1 49.692 41.669 50.863 65.149 50.418 53.595 

SVMF Point 2 53.006 43.625 51.833 57.171 50.831 59.481 

 Point 3 52.492 42.614 50.215 59.282 50.772 56.693 

 

Table VIII shows the calculation time of one iteration of all algorithm compared in this experiment. From the calculation 

time of each algorithm, the genetic algorithm has obvious advantages, which is due to the fact that the genetic algorithm only 

needs to perform crossover and mutation operations to update the population. However, as can be seen from Figure 11, 

combined with the convergence of the algorithms, it can be seen that the improved fruit fly algorithm still has dominantly 

computational advantages.  

 

 

5 CONCLUSION 

This study proposes a fault diagnosis model based on singular spectrum manifold features, optimized SVMs and 

multi-sensor information fusion. First of all, SVMF is proposed which can make the fault information contained in small 

singular values available. In the fault identification stage, IFFA is proposed to select parameters of SVMs, which has good 

convergence speed and accuracy. To eliminate conflict of fault diagnosis conclusions of multiple sensors, D-S evidence theory 

is used to fuse the posterior probabilities of multiple sensors. The proposed fault diagnosis model integrated the advantages of 

SVMF in fault representation, optimal SVMs in fault identification and D-S evidence theory for information fusion, and as a 

result, the fault diagnosis accuracy is effectively improved. The fault diagnosis experiment of a gearbox demonstrated and 

verified the superiority of the proposed method. Finally, only vibration signals are applied for fault diagnosis in this paper, and 

the information fusion of multiple kinds of signals may future improve fault diagnosis performance. This is a very meaningful 

potential future work but also a tricky task.   
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