arXiv:2006.14513v1 [cs.NI] 25 Jun 2020

Blockchain-Aided Flow Insertion and Verification in Software
Defined Networks

Jiejun Hu, Martin Reed, Mays Al-Naday, Nikolaos Thomos
School of Computer Science and Electronic Engineering
University of Essex
Colchester, UK

Email: jiejun.hu@essex.ac.uk, mjreed@essex.ac.uk, mfthaln@essex.ac.uk, nthomos@essex.ac.uk *

Abstract

The Internet of Things (IoT) connected by Software
Defined Networking (SDN) promises to bring great
benefits to cyber-physical systems. However, the in-
creased attack surface offered by the growing number
of connected vulnerable devices and complex nature
of SDN control plane applications could overturn the
huge benefits of such a system. This paper addresses
the vulnerability of some unspecified security flaw in
the SDN control plane application (such as a zero-
day software vulnerability) which can be exploited to
insert malicious flow rules in the switch that do not
match network policies. Specifically, we propose a
blockchain-as-a-service (BaaS) based framework that
supports switch flow verification and insertion; and
additionally provides straightforward deployment of
blockchain technology within an existing SDN in-
frastructure. While use of an external BaaS brings
straightforward deployment, it obscures knowledge
of the blockchain agents who are responsible for flow
conformance testing through a smart blockchain con-
tract, leading to potential exploitation. Thus, we
design a strategy to prevent the blockchain agents
from acting arbitrarily, as this would result in what
is termed a aAlJmoral hazardaAl. We achieve this
by developing a novel mathematical model of the fair
reward scheme based on game theory. To understand
the performance of our system, we evaluate our model

*This paper was presented in 2020 Global Internet of Things
Summit (GIoTS) (pp. 1-6). IEEE.

using a Matlab based simulation framework. The
simulation results demonstrate that the proposed al-
gorithm balances the needs of the blockchain agents
to maximise the overall social welfare, i.e. the sum
of profits across all parties.

Keywords: blockchain; SDN; security, loT, flow
verification;

1 Introduction

Software Defined Networking (SDN) has been pro-
posed to increase network scalability and improve
flexibility, through decoupling of the data and control
planes. Such characteristics have rendered SDN as an
attractive choice for connecting Internet of Things
(IoT) use-cases, particularly those cannot be sup-
ported by legacy networks |1l2]. However, the inherit
trust of the switch to the controller and the applica-
tion running in the controller leaves the SDN infras-
tructure vulnerable to a cyber-attack through which
malicious flow rules may be inserted into the SDN
switch(es)|3]. Here, we consider two security prob-
lems in SDN: first, there is no flow conformance test
applied when updating the flow table of a switch, i.e.
checking that a flow conforms to some external pol-
icy; second, attackers may attempt to tamper with
messages between the controller and the switch. Ei-
ther of these scenarios would allow an attacker to
seriously undermine the data-plane; for example, by
diverting traffic for malicious inspection or blocking

services to perform denial of service and these are se-
rious concerns for operators that are deploying SDN.

To address the security issues above, this paper
proposes a novel solution which carries out an inde-
pendent confirmation of the SDN control plane ac-
tion. The use of an independent confirmation is im-
portant as it can be separate from the underlying
SDN application, which may be vulnerable. This
is performed through a flow conformance test im-
plemented within a smart contract of a blockchain
(BC) [4]. BC technology, a sub-concept of distributed
ledger technology, is essentially an append-only data
structure maintained by a group of not-fully-trusted
nodes, that nevertheless provide a trusted data struc-
ture through a suitable consensus algorithm [5]. Fur-
thermore, BC is decentralized, immutable, transpar-
ent, and reliable, which allows it to stand indepen-
dently from the SDN network and the IoT network to
establish a distributed trust mechanism. The mech-
anism described within this paper should be seen as
one part of a wider security architecture. An ex-
ample of such a security architecture for IoT sys-
tems is that proposed by the SerloT project 6] which
combines novel network security mechanisms [78] to-
gether with wider analytic strategies and tests them
in real-world use cases.

The work is inspired by recent studies that
have proposed different architectures to establish
blockchain-based SDN scenarios. A novel blockchain-
based distributed cloud architecture has been pro-
posed in [9J10], with fog nodes at the edge provid-
ing functionality of the SDN controller. Their work
introduces a hierarchy with a central blockchain-
based cloud moving towards a blockchain-based edge,
with the latter taking responsibility of updating the
flow rules. Although the works in [9J10] show how
cloud/fog computing would support blockchain, the
solution neglects the issue of flow conformance testing
that we address in this paper. Studies|11/12] also at-
tempt to solve the security challenges in IoT by using
blockchain to dynamically update an attack detec-
tion model. Boukria et al.[13] propose a blockchain-
based controller against false flow rule injection. The
authors mainly focused on the SDN controller au-
thentication. However, these solutions fail to exploit
blockchain technology in a manner that is compatible

SDN Controller

Blockchain
Agent

& SDN Switch

CEETEE |oT Hub

@& T 167 Device

Figure 1: System model of blockchain-based SDN

with existing SDN architectures. Specifically, they do
not consider how to verify a new flow using blockchain
in fine-grained manner; nor, how to enable blockchain
technology without changing the foundation of SDN.
This paper aims to solve these problem by introduc-
ing the novel security solution for blockchain-based
SDN (BC-SDN). We do this through designing a flow
conformance testing workflow that uses smart con-
tracts and solve the reward scheme through a novel
mathematical analysis.

1.1 Architecture of Blockchain-based
SDN

We consider an architecture that consists of tra-
ditional SDN and Blockchain-as-a-Service (BaaS)
model [14], in a generic IoT scenario. In this scenario,
IoT devices communicate with each other through
a SDN-based network|6]. The communication is re-
alised through data-plane paths (and actions) that re-
sult from a centralised SDN application in the central
SDN controller; this application inserts flow rules in
the SDN switches according to some predetermined
algorithm. It is this SDN application, or the con-
troller itself, which is open to vulnerabilities that may
allow an attacker to cause malicious behaviour. We
incorporate a blockchain overlay to act as an inter-
mediary verification plane between the control and
forwarding counterparts to stop malicious flow in-
sertion. Fig. [I| shows an architectural view of the
entities in our BC-SDN proposition, including: a)
IoT devices that can sense the environment, upload

sensory data and control actuators; b) IoT hubs
that connect the IoT devices to the SDN-switches;
¢) SDN switches that detect new flows and exe-
cute a forwarding plan calculated by the SDN con-
troller(s); d) Blockchain agents (BCAs) that are
servers provided by a third party. BCAs are in charge
of flow conformance testing, which includes flow ver-
ification and validation via smart contract. Further-
more, BCAs also execute basic blockchain functions,
such as consensus process, sending transactions, and
maintaining the shared ledger. And finally e) the
Controller with a global view of the network and
which calculates the best path of the packets accord-
ing to some pre-defined policy.

In this paper we adopt a permissioned-based con-
sortium blockchain, such as Hyperledger, which
means that only authorized entities can conduct the
blockchain functions. Futhermore, we adopt BaaS
infrastructure with a BCA colocated with an SDN
switch. There are three main advantages of using the
proposed mechanism for flow conformance testing.
First, as BCAs are colocated with the SDN switches,
providing a blockchain service to the SDN, the BCAs
confirm the secure communication between the con-
troller and the corresponding switch. Second, BCAs
are components provided by an independent entity,
which conducts flow verification/validation outside
the SDN network to guarantee the connection pri-
vacy. Finally, BaaS enables straightforward deploy-
ment of blockchain in SDN without the SDN operator
needing to create their own blockchain system.

1.2 Solution and Contribution

In the proposed architecture, BCAs verify the con-
formance of a flow as an external service, while the
SDN network entities are the users of the BCA ser-
vice. Thus, a reward strategy is critical to stimulate
the BCAs to perform the verification and validation
action. When a leading BCA initializes the flow con-
formance testing procedure, it hires a group of BCAs
as verifiers and offers them a reward. The verifiers
have knowledge of: their computation ability, channel
condition, and the size of the task. Hence, the veri-
fiers can decide how much reward they want. How-
ever, the verifier may behave greedily and demand a

higher price for a simple task, or else they will not
implement the task. This phenomenon is known as a
"moral hazard" of the verifiers. The underlying rea-
son for the moral hazard is the asymmetric relation-
ship about system information, i.e. the verifiers have
more information to make a decision than the lead-
ing BCA. To maintain the execution of flow verifica-
tion/validation, the leading BCA needs a new reward
scheme to overcome the moral hazard of verifiers.

The design of the reward mechanism is critical in
a cyber-physical system and game theoretic methods
are widely used in solving this problem. Due to the
fact that blockchain technology is a resource consum-
ing application, studies concentrate on optimisation
problems that consider various aspects such as: the
latency, throughput of transactions, finality, security,
and decentralization[15/16]. In this paper, to solve
the moral hazard of verifiers, we analyze and quantify
the verification/validation latency which is related to
the blocksize of the BCAs. Then, we design the re-
ward mechanism based on contract theory|17]. The
main contributions of this paper are summarized as
follows:

e We first propose a Blockchain-aided Software-
Defined Network, a novel framework that uses
blockchain technology to provide flow conformance
testing in SDN.

e We design the workflow of flow insertion and
verification of BC-SDN with the assistance of
blockchain.

o We devise a fair reward scheme based on contract
theory to stimulate the BCAs.

To the best of our knowledge, our work is the first
to propose the workflow of flow rule verification in
BC-SDN, and also to use contract theory to study
the quantified performance of blockchain in this use-
case.

2 Workflow of BC-SDN

In order to explain the proposed workflow of BC-SDN
we use Fig. 2] which presents a sample network. We

New packet -

Sensorl T

T
i
i
1. New packet |
i
i
i

BCAn

Switchl L Y
i Verification
| preparation 6. Flow rule insert
/ |
BCA1l + >
- e
Path 2. Flow rule 5. Verification
calculation feedback result
l
Controll L |
er i
3. Path broadcast for
verification
|y
BCA 2 : H
i Al
. | 4. Path execution
: | and confirmation

Figure 2: Workflow of BC-SDN

consider that Sensor 1 generates a new packet. First,

we

1.

assume that:

This blockchain application is using one unique
Hyperledger channel, although other users may
be using different channels.

. The IoT devices/IoT hubs that require new flow

rules have been registered and enrolled with the
organization’s Certificate Authority and received
back necessary cryptographic material, which is
used to authenticate a device.

. The BCAs have been fed with previous topol-

ogy and connectivity information from the con-
troller.

The controller is responsible for path calcula-
tions, which will result in a set of flow rules ac-
cording to the path.

All communication channels are secured through
a mechanism such as transport layer security
(TLS) authenticated using appropriately de-
ployed certificates.

The blockchain implements a next generation
smart contract which keeps all data secure, as
described by Cai et al. |18|

The switch and the controller use an unmodi-
fied OpenFlow protocol so that the validation

is performed as a transparent process; any val-
idation failure is communicated using standard
OpenFlow error messages.

The actions of establishing and testing confor-
mance of a new flow rule are embedded in a smart
contract within the blockchain. The endorsement
policy states that it requires n verifiers to establish
a new flow rule. Below, we explain these actions in
more depth.

1. Sensorl causes Switchl to initiate a new flow
establishment request when it sends a packet
with source IP/port information, destination
IP /port information, and protocol. The message
is formed as packet = <soulP, desIP, souPort,
desPort, Protocol> without an existing flow rule,
and is sent to the controller over the secure com-
munication channel. The controller calculates
the path according to the packet and generates
new flow rules that it forwards to the correspond-
ing BCA (verification initiator, VI). The ID of
flow is fid= hash(packet). This request of the
controller targets BCA1l. The VI constructs a
new flow proposal <PROPOSAL, tz, Consig>
ensures the new flow proposal is properly formed;
tz includes: the ID of controller, ID of the flow,
packet, ID of smart contract, endorsement pol-
icy, and time stamp. The VI’s credentials are
used to produce a signature ConSig = hash(tz)
for this proposal.

2. The VI starts the verification of the new flow
by employing verifier peers. The verifiers check
that: the proposal is well formed; it has not
been submitted already in the past; the signa-
ture is valid; and that the VI is properly autho-
rized to perform the proposed operation. The
verifiers use the new flow proposal as input to
invoke the smart contract. The smart contract
checks the new flow against the flow conformance
policy and asserts as TRUE or FALSE accord-
ingly. All the response values will be stored in
blockchain’s status database readset and write-
set. The response values along with the verifiers’
signature is passed back to the VI as a "proposal
response" ProRes=<TransactionEndorsed, fid,

TranProposal, epSig>, where TranProposal =
(epID, fid, chaincodelD, tx, readset, writeset).
If this new flow is invalid, then send message
<TransactionEndorsed, fid, REJECT, epSig>.
Note that no changes are made to the flow ledger
till now.

. Proposal responses are checked as follows. The
VI inspects the verifiers’ signature and confirms
that the number of identical ProRes responses
reach the number expected by the endorsement
policy. If the VI only enquires of data from
the ledger, then there is no need to update
the blockchain database, the ordering service.
The VI checks the endorsement policy has been
reached before storing the new flow in the ledger.

. Ordering service: a service in Hyperledger imple-
mented in a separate group of peers called order-
ers that preform transaction ordering and main-
tain the distributed ledger. The VI broadcasts
the proposal <PROPOSAL> with <ProRes> in
one message broadcast =(PROPOSAL, ProRes)
to all of the orderers in the ordering service. The
leader of the ordering service calls the ordering
peers by sending the message deliver(seqno, pre-
vhash, endorsement), where segno is sequence
number, prevhash is the hash of the most re-
cently delivered endorsement. The ordering ser-
vice orders the messages chronologically and cre-
ates blocks of transactions.

. New flow validation and committing: The blocks
of transactions are delivered to all BCAs. The
BCAs verify the ID of smart contract, en-
dorsement policy, and consistency of the status
database to avoid violations. If the checks pass,
the transaction is deemed valid or committed.
In this case, the BCAs set the bitmask of the
PeerLedger. If the checks fail, the new flow es-
tablishment is considered invalid and the BCA
unsets the bitmask of the PeerLedger. This in-
valid transaction is stored until it is deleted by
a periodic blockchain function.

. Ledger updated: Each BCA appends the block
with the new fid. At the same time, the VI is

notified that the new flow has been immutably
appended to the chain.

3 System model

We use BaaS in BC-SDN, i.e. we rent the servers
from a third party. This means that the VI lacks of
knowledge of the performance (and other abilities)
of the servers, thus there is asymmetry between the
knowledge of the VI and the BaaS. This information
asymmetry leads to what is known as a moral haz-
ard[19]. The moral hazard is commonly solved by
contract theory in field of economics. Motivated by
the above, in this paper we design a reward scheme of
BaaS, which can solve the moral hazard of the third-
party BCAs. In BC-SDN, flow conformance testing is
provided by BCA verifiers and a contract is designed
based on the outcome of the verifiers. The verifier
offers two flow conformance testing plan. A simple
flow conformance testing that only verifies the source
and destination MAC address and Port number. And
a complex flow conformance testing that verifies the
whole path. When a flow conformance initiates, the
VI presents a contract for the verifiers offering a re-
ward. Then, the verifiers have the option to either
accept the reward or refuse. According to the re-
ward, the verifiers exert the flow conformance testing
plan. In this section, we first introduce the system
model by analysing the cost and income of the VI
and the verifiers. Then, we define the employed util-
ity functions of both the VI and the verifiers. Finally,
we propose our solution based on contract theory.

3.1 Execution cost of a verifier

Verifier ¢ € V = {1,...,n} who participates in ver-
ification can select the blocksize from a set & =
{51, ..s8n},n > 1. We define verifier i select block-
size s; € S Similarly to [4], the execution cost of a
verifier is defined in quadratic form, which is thus
convex and provides a straightforward evaluation of
the derivative.

@(si) = %as?, s; €8 (1)

where « is a parameter that reflects the cost factor
of a verifier.

3.2 Performance evaluation of a veri-
fier

In contract theory, the VI can only observe the per-
formance of the verifier but not the real effort it ex-
erts. Consider a blocksize s; the verifier exerts is in-
visible from the VI, but the performance of the ver-
ifiers is observable. In this paper, the performance
metric is the verification/validation latency, and is
defined as £ = {l1,...,l,},n > 1. We assume the
latency is proportional to the blocksize defined as
l; = f(s;), where function f(-) is monotonically in-
creasing with s;. For the sake of simplicity, we assume
a linear relation as [; = s;, without affecting the gen-
erality of our conclusions. Note that we assume that
the latency in the Hyperledger fabric iteself is the
same for all users and is thus not considered here.

3.3 Reward plan for a verifier

The reward for the verifier 7 is denoted as R =
{r1,..,rnt,n > 1. r; € R means the reward for per
unit of performance. We define the income for the
verifier as r;l;. In this model, the VI considers only
the latency that the verifier provides and wishes to
incentivise the verifier to provide the more complex
flow conformance test.

3.4 Utility functions of VI and verifier

In our model, the VI considers only the latency of the
verifier because it expects the verifiers perform com-
plex flow conformance testing, which leads to long
latency. We define the utility function of VI as the
gross benefit minus the reward to the verifier. Thus,
the VI's utility function is written as

Uy = Bl; —ril; (2)
where 8 is the income factor of VI and r;l; is the
reward plan for a verifier. VI needs to enquire the
latency of verifier to offer the reward. So, we assume

that the VI has full trust in the latency verifier re-
ports. Thus, we substitute I; with s;, the utility of
VI can be rewritten as

U, = Bs; —1is; (3)
The utility of the verifier considers the reward plan

minus the execution cost. Thus, the utility of verifier
1 is defined as

1
Ui = 7is; — 5043? 4)

3.5 Social Welfare

We define the social welfare w of the BaaS service as
the profit of the verifier and the VI. Thus, from the
utility of the verifier and the utility of the VI ,
the social welfare is

1
w=U; +U, = fBs; — —~as>

S 5)

4 Problem formulation

As mentioned earlier, a contract is designed as the
tuple (R, L), as the VI rewards the verifiers accord-
ing to the latency. The VI aims to use the minimal
reward to obtain the optimal blocksize s to guar-
antee the flow verification/validation is in progress.
Meanwhile, the verifier chooses the optimal blocksize
according to the reward. According to our system
model, we can formulate the maximization of the ver-
ifier’s utility as

maxr;s; — —as: (6)
s 2
L5
s.t. ris;— -as; > o
2
Si < Smax

where $,,q, is the biggest blocksize. And the maxi-
mization problem of VI is formulated as

max (s; — 1;8; (9)
Ti,S;
s.t. Bs;i—risi >0 (10)

where o is the reservation utility of verifier. Reserva-
tion utility is the minimum profit that must be guar-
anteed by the contract to make it acceptable to the
verifiers. The optimization problem aims to maxi-
mize the utility of VI by proposing a reward plan
according to the latency of a verifier. Through solv-
ing the maximization problem @ we determine the
optimal blocksize s, which is then used to maximize
the utility of verifier. The maximization problem @D
guarantees that under the optimal blocksize, the VI
maximizes its utility by choosing the optimal reward
Ty

For simplicity, but without loss of generality, we as-
sume only one VI and a group of verifiers V. The veri-
fier ¢ offers two different verification plans. We denote
d as the verification plan indicator, where d € {u, ¢}.
When d = p, the verifier ¢ will preform a complex
verification with a larger blocksize s!, which has a
longer latency [#. On the contrary, d = ¢ indicates
a simple verification that verifies the source and des-
tination IP address with a smaller s¢, which has the
smaller latency [*. An example of a complex verifica-
tion could be a whole path of a flow, as opposed to
a simpler verification which could be only the source
and destination addresses.

For a verification task, the verifier with probabil-
ity p = p* chooses the larger blocksize s/ and with
probability p* chooses a smaller blocksize s}, where
p* =1—p. We assume that s; = s/’ = es!, where
e € (0,1) is blocksize difference factor. We can refor-
mulate the optimization problem @ and @D in two
stages: the maximization problem of verifiers and the
maximization problem of VI by substituting the op-
timal verifier’s blocksize s}. The first stage of the
optimisation problems is defined as

1 1
max p(r;s; — ias?) + (1 —p)(erisi — 5&6282) (11)
(12)

First, we find the derivative of the objective function

in and set it equal to zero to find the critical
points of the function. Hence, we obtain

ou

(982‘

s; = Ar;

s.t. s < Smax

=p(r; — as;) + (1 —p)(er; — ag’s;) =0

(13)

where A = %. The second stage of the

maximization problem is defined as following

max p(s; — ris?) + (1 - p)(eBs] —eris}) (14a)
Ti, S

s.t.

i

1 1
p(ris; — 5043;‘2) + (1 —p)(eris; — 5(16252‘2) >0
(14b)
By substituting the optimal s} in (14a) and (14b)),

we redefine the problem as

ma)*cp(ﬁAri — Arf)

TS,

+ (1 = p)(eBAr; —eAr?) (15)

.t.
> 2

(16)

Similarly, by solving the first stage of the optimiza-
tion problem, we determine the optimal blocksize, s},
and the optimal reward, r}, which are given by

o PB+ (1 —p)ep
' paA+ (1 —plaeA

o DB+ (L=p)p
' pa+ (1 —p)ae?

5 Simulation

In this section, we numerically evaluate the pro-
posed reward scheme in BC-SDN. We assume that
the BCAs work as verifiers/validators. The latency
includes the verification and validation latency. We
outsource the committing and ledger updating to
GoLevelDB|20], thus the latency of committing and
ledger updating can be neglected.

In the simulation set up, we assume that the reser-
vation utility of VI and verifier ¢ = 0. The reason we
set the reservation utility is that, the optimal block-
size and reward remain the same, no matter how o
changes and . We demonstrate the impact of
the income factor 3, the cost factor «, the probability
p of selecting a bigger blocksize, and the difference, €,
between the two blocksizes. For the sake of compar-
ison, we compare the proposed reward scheme with
a solution based on the Stackelberg game 21| which

1 1
p(Ar? — —aA*r?) + (1 — p)(eAr? — §a€2A2ri2) =0

150 i
—+—Moral hazard with p = 0.5
—&-Moral hazard with p = 0.8
—*— Stackelberg scheme

Fixed salary
2100+
8
K
=
s
(5]
S
n
S Sssaas
0 . k%
0.5 1 1.5 2

Coefficient of cost

Figure 3: Social welfare with respect to Cost factor
a

assumes the VI knows all the information of verifier
where optimal blocksize will exert according to the
optimal reward.

In Fig. [3] we compare the social welfare of three
reward mechanisms as it varies with the cost factor
« and the probability of selecting a bigger blocksize
p. From the simulation results, we can see as « in-
creases, the social welfare decreases. The reason for
this behaviour is that the larger cost factor, the larger
the cost of the verifier, which means that it is going
to cost more to maintain the same blocksize. How-
ever, the proposed reward mechanism achieves higher
social welfare when « is about 1.3. This is due to the
fact that in the moral hazard scenario, the verifier
can choose a smaller blocksize to compensate the ex-
ecution cost in order to maintain the social welfare.

In Fig. [d we analyse the impact of the probabil-
ity of selecting the bigger blocksizes on social wel-
fare. From the evaluation, it is obvious that there
is only one optimal blocksize in the Stackelberg sce-
nario. From this figure, we also note that for different
cost factors, the proposed scheme can maintain the
social welfare with a higher cost.

In Fig. [5} we evaluate the impact of the difference
in the blocksizes with different values of €. Note that
when ¢ tends to 0, i.e., the difference between the
blocksizes s* and s* is bigger. When it is ¢ = 1,
the blocksize is the same. For a neutral setting with
p = 0.5, « = 0.5, and 8 = 10, we observe that the

—#—Moral hazard with o = 0.5
250 ¢ —&—Stackelberg scheme with « =0.5|]
Moral hazard with o =1.3
200} Stackelberg scheme with o =1.3]
B = = = = = = = = = il

i
0
i
0
i
0
i
0

Social welfare
> o
o o

a
o
T

\

{

L L L L |

0.2 0.4 0.6 0.8 1
Probability of selecting a bigger blocksize

o =

Figure 4: Social welfare with respect to Probability
of selecting a bigger blocksize for different o values

200 | o
—#— Social welfare
—&— Utility of VI
P —k —o— Utility of verifier | | "
150 - A . |+ Blocksize
// ‘k\\
¥ \ |
2> y / * 11.5 g
=100 / g
5 / 3
+ *————f—%f—%wf%, w 311 @
T
500 /[, BEENE
e* a8 o 88 + o
Z o 6 006050 ¢
b —o—
O ‘ ‘ | ‘ 10
0 02 0.4 0.6 0.8 1

Figure 5: Probability and social welfare

utilities of the verifier and the VI increase when the
blocksize’s difference is increasing but that the rate of
this increase reduces as the blocksizes tend towards
the same size. At the same time, the biggest blocksize
is observed as when € = 0.4. The reason is that the
optimal blocksize is only related with p and € in .

To understand the impact of the income factor /3
of VI and the cost factor a on the social welfare in
the moral hazard scenario, we conduct a simulation
with results shown in Fig. [f] We can observe that if
the income factor is bigger, the social welfare always
increases irrespective of the probability p. Under the
same income factor, the the bigger cost factor is, the
smaller the social welfare. Also, we can observe that

500 ,

o 5 a=1.0, 3 =30

g a=1.5, 3 =30

3 o —a=1.0, 3 =20|]

= 400 a=1.5, 3 =20

s [W]

=300]

B

e

S

£ 200+

=

5 7Wv

[$]

8 100 ‘ ‘
0 0.2 0.4 0.6 0.8 1

Probability of selecting a bigger blocksize

Figure 6: Social welfare with respect to the probabil-
ity of selecting a bigger blocksize for various « and g
values

the lowest point of the social welfare appears when
p=0.4.

6 Conclusion

In this paper, we have investigated a novel security
solution of SDN by adopting blockchain technology.
According to the architecture of BC-SDN, we have
proposed the workflow of new flow verification and
insertion. Owing to the fact that we use BaaS, we
have designed a reward scheme to tackle the poten-
tial moral hazard caused by the BCAs from the third
party. By using the proposed reward scheme based
on contract theory, we obtain the optimal blocksize
of the blockchain and the corresponding reward for
it. Finally, we evaluate our system to demonstrate
the impact of different parameters using two differ-
ent incentive mechanisms. The results show that the
proposed reward scheme can gain good social welfare
when the cost factor is high compared to Stackelberg
reward scheme.

Acknowledgment

This work was carried out within the project SerloT,
funded by the European Union’s Horizon 2020 Re-
search and Innovation programme under grant agree-

ment No 780139.

References

(1]

2]

13l

4]

17l

18]

19]

S. Bera, S. Misra, and A. V. Vasilakos,
“Software-Defined Networking for Internet of
Things: A Survey,” IEEE Internet of Things
Journal, vol. 4, no. 6, pp. 1994-2008, Dec 2017.

J. L. HernAandez-Ramos, G. Baldini, R. Neisse,
M. Al-Naday, and M. J. Reed, “A policy-based
framework in Fog enabled Internet of things for
cooperative ITS,” in 2019 Global IoT Summit
(GIoTS), June 2019.

T. Eom, J. B. Hong, S. An, J. S. Park, and D. S.
Kim, “A systematic approach to threat mod-
eling and security analysis for software defined
networking,” IEEE Access, vol. 7, pp. 137432—
137445, 2019.

J. Hu, K. Yang, K. Wang, and K. Zhang, “A
blockchain-based reward mechanism for mobile
crowdsensing,” IEEE Transactions on Computa-
tional Social Systems, 2020.

T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C.
Ooi, and K.-L. Tan, “Blockbench: A frame-
work for analyzing private blockchains,” in Proc.
of ACM SIGMOD International Conference on
Management of Data, Chicago, IL, USA, May
2017.

E. Gelenbe, J. Domanska, T. Czachorski,
A. Drosou, and D. Tzovaras, “Security for in-
ternet of things: The SerloT project,” in Proc.
of ISNCC’18, Rome, Italy, Jun. 2018.

P. Amangele, M. J. Reed, M. Al-Naday, N. Tho-
mos, and M. Nowak, “Hierarchical machine
learning for IoT anomaly detection in SDN,”
in Proc. of InfoTech’19, Plovdin, Bulgaria, Sep.
2019.

M. Mitev, A. Chorti, E. V. Belmega, and
M. Reed, “Man-in-the-middle and denial of ser-
vice attacks in wireless secret key generation,” in
Proc. of GLOBECOM’19, HW, USA, Dec. 2019.

P. K. Sharma, M.-Y. Chen, and J. H. Park,
“A software defined fog node based distributed

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

blockchain cloud architecture for IoT,” IEEE Ac-
cess, vol. 6, pp. 115-124, 2017.

P. K. Sharma, S. Rathore, Y.-S. Jeong, and J. H.
Park, “Softedgenet: SDN based energy-efficient
distributed network architecture for edge com-
puting,” IEEE Comms magazine, vol. 56, no. 12,
pp. 104-111, 2018.

A. Muthanna, A. A Ateya, A. Khakimov,
I. Gudkova, A. Abuarqoub, K. Samouylov, and
A. Koucheryavy, “Secure and reliable IoT net-
works using fog computing with software-defined
networking and blockchain,” Journal of Sensor
and Actuator Networks, vol. 8, no. 1, p. 15, 2019.

S. Rathore, B. W. Kwon, and J. H. Park, “Block-
seciotnet: Blockchain-based decentralized secu-
rity architecture for IoT network,” Journal of
Network and Computer Applications, vol. 143,
pp. 167-177, 2019.

S. Boukria, M. Guerroumi, and I. Romdhani,
“BCFR: Blockchain-based controller against
false flow rule injection in SDN,” in Proc. of
ISCC’19, Barcelona, Spain, July 2019.

M. Samaniego and R. Deters, “Blockchain as
a service for IoT,)” in Proc. of iThings, Green-
Com, CPSCom, and SmartData’16, Chengdu,
Sichuan, China, Nov. 2016.

J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I
Kim, and J. Zhao, “Toward secure blockchain-
enabled internet of vehicles: Optimizing consen-
sus management using reputation and contract
theory,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 3, pp. 2906-2920, 2019.

M. Liu, R. Yu, Y. Teng, V. Leung, and M. Song,
“Performance optimization for blockchain-
enabled industrial Internet of things (IIoT)
systems: A deep reinforcement learning ap-
proach,” IEEE Transactions on Industrial
Informatics, 2019.

P. Bolton, M. Dewatripont et al., Contract the-
ory. MIT press, 2005.

10

18]

[19]

[20]

21]

C. Cai, Y. Zheng, Y. Du, Z. Qin, and C. Wang,
“Towards private, robust, and verifiable crowd-
sensing systems via public blockchains,” IFEE
Transactions on Dependable and Secure Com-
puting, available through early access https://
doi.org/10.1109/TDSC.2019.2941481.

B. Hélmstrom, “Moral hazard and observability,”
The Bell journal of economics, pp. 74-91, 1979.

P. Thakkar, S. Nathan, and B. Viswanathan,
“Performance benchmarking and optimizing hy-

perledger fabric blockchain platform,” in Proc. of
MASCOTS’18, Milwaukee, WI, USA, Sep. 2018.

J. Hu, K. Yang, L. Hu, and K. Wang, “Reward-
aided sensing task execution in mobile crowd-
sensing enabled by energy harvesting,” IEEE Ac-
cess, vol. 6, pp. 37604-37614, 2018.

https://doi.org/10.1109/TDSC.2019.2941481
https://doi.org/10.1109/TDSC.2019.2941481

	1 Introduction
	1.1 Architecture of Blockchain-based SDN
	1.2 Solution and Contribution

	2 Workflow of BC-SDN
	3 System model
	3.1 Execution cost of a verifier
	3.2 Performance evaluation of a verifier
	3.3 Reward plan for a verifier
	3.4 Utility functions of VI and verifier
	3.5 Social Welfare

	4 Problem formulation
	5 Simulation
	6 Conclusion

