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ABSTRACT This paper proposes a novel human-inspired methodology called IRON-MAN (Integrated
RatiONal prediction and Motionless ANalysis) for mobile multi-processor systems-on-chips (MPSoCs).
The methodology integrates analysis of the previous image frames of the video to represent the analysis of
the current frame in order to perform Temporal Motionless Analysis of the Video (TMAV). This is the first
work on TMAV using Convolutional Neural Network (CNN) for scene prediction in MPSoCs. Experimental
results show that our methodology outperforms state-of-the-art. We also introduce a metric named, Energy
Consumption per Training Image (ECTI) to assess the suitability of using a CNN model in mobile MPSoCs
with a focus on energy consumption and lifespan reliability of the device.

INDEX TERMS Convolutional neural network (CNN), temporal analysis, motionless analysis, video,
lifespan, reliability, energy efficiency, embedded device, multiprocessor systems-on-chip (MPSoCs).

I. INTRODUCTION AND MOTIVATION
Recently there has been a huge increase in utilizing Con-
volutional Neural Networks (CNNs) [1]–[3] to solve several
real-life challenges such as human rights violation [4], traffic
categorization [5]–[7], pedestrian detection [8]–[10], weather
forecasting [11], [12], etc due to its high prediction accura-
cy/categorization in the aforementioned target applications.
One particular case for harnessing the efficacy of visual CNN
based prediction model is Intelligent Transportation Systems
(ITS), which is becoming an important pillar in the modern
‘‘smart city’’ framework.

Given the increase in vehicles on road one of the key chal-
lenges in ITS is accurate traffic load categorization. In recent
times, there has also been emergence of several methods
capable of monitoring and analyzing traffic using motionless
analysis of videos [5]–[7], [14], where videos of traffic are
broken into frames instead, and the frames are analyzed for
further computation or prediction. Themainmotivation to uti-
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FIGURE 1. Frames (Images) from the same Light traffic category of UCSD
dataset [13] and associated prediction by a trained CNN model [6].

lize methodologies consisting of motionless analysis of video
is that it is difficult to stream high-frame rate videos gathered
by a large network of interconnected cameras due to band-
width limitation. Hence, streaming low-frame rate videos on
these camera networks is very common. In many cases, it is
challenging to stream more than 2 frames per second due to
the limited bandwidth of the network when these cameras
stream over a WIFI network [5], [6]. Moreover, to analyze
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video in real-time without motion features over a WIFI net-
work is difficult due to communication bandwidth constraint
and hence, it is better to analyze the image fames on the cam-
era enabled embedded device itself [6] instead of relying on a
server system over the WIFI network. Another motivation to
develop such approaches in embedded devices is the afford-
ability of such devices, e.g. in developing countries (where an
Odroid XU4 [15] mobile platform with a camera sensor costs
only 59 USD), instead of employing powerful server systems
used for analysis purposes [6]. Comparatively, a powerful
server with GPU compute capability (Nvidia Tesla GPU) to
perform traditional prediction with CNNs costs more than
8,500 USD [16] and also requires multiple installations of
such servers based on Geo-location. Therefore, the approach
of analyzing videos without motion features on the embedded
device is not just beneficial for categorizing traffic load but
could be extended to several computer vision based real-
world applications that require analysis of low-frame rate
videos. Although motionless analysis of videos has its own
benefits, it also come with limitations described with the
following observations.

Observation 1: Although several implementations of such
methods were able to achieve high prediction accuracy on
known dataset [5], [6], [14], in some test cases the predic-
tion/analysis was not accurate at all. The reason for poor pre-
diction/analysis is that in some cases it is difficult to predict
the label of an image frame from a video if the ground truth1

of the image is overlapping with several other categories
(labels). For example, in the dataset of traffic released by
UCSD [5], [13], which consists of light, heavy and traffic
jam categories, two frames (images) belonging to the same
category of video are predicted differently by the CNNmodel
[6]. The reason for such behavior is that the CNN predicts
the label and probability of it occurring on the instantaneous
image frame. In Fig. 1, we notice that a trained CNN model
[6] with an overall prediction accuracy of 81.25% predicted
the wrong label for a frame, which falls under Light category,
but was instead predicted asHeavy. However, both the frames
belong to the same video under the Light category. If the
ground truth of the two images (Fig. 1 (a) & (b)) are compared
then it is justifiable that the prediction by the CNN is in fact
accurate due to the fact that the traffic projected in Fig. 1.(b)
is more congested than the traffic projected in 1.(a). In reality
the analysis of each image frame of the video should also
portray the overall analysis2 for the video instead of the image
frame itself in order to convey the temporal prediction. Since,
each individual image frame of a video could lead to different
analysis result (prediction/label), the temporal prediction is
the prediction analysis of the video over time. This limitation
is due to the fact that the trained CNNmodel only predicts the
label or analyzes the current image frame without taking past

1Ground truth of the image frame in this case is the information gained
through empirical evidence as opposed to the inference made by the CNN
model.

2Here, overall analysis of video means the analysis of the video as a whole
as opposed to the analysis of each image frame of the video.

image frames into consideration. Therefore, the challenge is
to analyze and predict videos just from the image frames
without motion features of the video and yet give accurate
temporal prediction results for the video as well.

There have been some recent studies, which focused on
future predictions of motion in ego-centric videos3 [17],
[18] or action4 [19], [20] taken by a human being, such as
predicting the future position of a person based on the cur-
rent image frame. However, no study to our best knowledge
has tried to predict the scene5 [21], [22] of a video from
image frames taking predictions from immediate previous
frames into account to provide a more holistic analysis of the
scene over a time period. Hence, we call such an analysis as
TemporalMotionless Analysis of Video (TMAV). Several tar-
get applications of CNN such as traffic categorization require
such kind of analysis in comparison with traditional ones [5],
[6], [14].

Observation 2: In the study [6], Dey et al. proposed a
methodology to implement a CNN, which is trained on a
configurable embedded device, and it was utilized to cate-
gorize traffic on the same device. Although this study gave
a novel approach on analyzing traffic using video cameras
in low bandwidth network without the need to communicate
the image frames over the WIFI network, the study had
energy consumption and device lifespan reliability issues
(shown later in the section). Due to wide consumer adop-
tion of mobile devices utilizing multi-processor system-on-a-
chip (MPSoC) [23]–[31], which implements several different
types of processing elements (PEs) such as CPU/GPU on
the platform, MPSoCs are perfect candidates for implement-
ing computing resource demanding algorithms such as CNN
based methodologies.

When the CNN model, proposed in the study [6], is imple-
mented and trained on a MPSoC such as Odroid XU4 [15],
the maximum temperature of the CPU reached 93.72◦C on
an average and the power consumption peaked at 10.63 Watt
on an average during the training period. Reaching a high
operating temperature for a long period of time is an impor-
tant factor in the reduction of lifespan of the device. In some
studies [32]–[35], it has been found that an increase in the
operating temperature by 10-15◦ centigrades could reduce
the lifespan of the device by 2×. Additionally, an increase
in energy consumption on embedded devices is harmful for
battery operation itself [36], [37], especially in low-power
embedded devices. Therefore, it is important to design an
energy-efficient CNNmodel, which is able to achieve desired
analysis of video without motion features, but at the same
time does not affect the lifespan reliability of the system
adversely.

3Ego-centric video is a first-person vision technique, which acts as an
artificial visual system that perceives the world around camera wearers and
assist them to decide their next action.

4Action is based on the movement of the human being in consideration in
the image frame.

5Scene is a place where a human being could navigate or can act within.
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In order to overcome the limitations of the existing
approaches we propose IRON-MAN: Integrated RatiONal
prediction and Motionless ANalysis of videos using CNN,
which is capable of performing TMAV , in MPSoCs. To this
end, this paper is an extended version of [7] and makes the
following contributions:

1) An energy efficient scene prediction methodology
(IRON-MAN) based on CNN, which integrates predic-
tions of previous image frames of a video to predict
the current frame, and hence, analyze the video without
using motion features.

2) A newmetric namedEnergy Consumption per Training
Image (ECTI ), which will enable the choice of suitable
CNN model for real-world applications on embedded
devices keeping energy-efficiency in mind.

3) Validation of the proposed approach on a real hardware
platform, the Odroid-XU4 [15].

4) Effect on lifespan of the device utilizing CNN based
approaches on such platforms.

5) Comparative study of IRON-MAN with existing state-
of-the-art approaches.

6) A framework to deploy IRON-MAN in large-scale over
the cloud.

7) Discussion and limitations of IRON-MAN.
8) Proposal of an alternative prediction module in IRON-

MAN to overcome its limitations.

II. PAPER ORGANIZATION
The rest of the paper is organized as follows: in Sec. III,
we introduce some of the concepts and relevant technologies
that are utilized in this work; in Sec. IV, we discuss the state-
of-the-art methodologies related to traffic categorization and
pedestrian detection; in Sec. V, we introduce our proposed
methodology, IRON-MAN, to performTMAV, and also intro-
duced the ECTImetric; in Sec. VI, we show evaluation results
from the experiments along with comparative study with the
sate-of-the-art; in Sec. VII, we propose the framework to
deploy IRON-MAN in large-scale over the cloud and also
show experimental evaluation in the cloud; in Sec. VIII,
we discuss the limitations of the IRON-MAN; in Sec. IX,
we propose an alternative approach for the IRON-MAN to
overcome its limitations; finally, we conclude the paper in
Sec. X.

III. PRELIMINARIES
A. CONVOLUTIONAL NEURAL NETWORKS AND DEEP
LEARNING
A Deep Learning (DL) model [38] consists of an input layer,
several intermediate (hidden) layers stacked on top of each
other and an output layer. In the input layer, which is the first
layer of the model, the raw values of data features are fed
into it. In each of the hidden layers a mathematical opera-
tion called convolution is applied to extract specific features,
which is then utilized to predict the label of the raw data in the
last (output) layer of the DL network. Most of the time, if a

model utilize an input layer, a hidden layer and an output layer
then the model is denoted as Convolutional Neural Network
(CNN) model or simply, CovNet. If such a model uses a
lot of stacked hidden layers only then it is denoted as a DL
model or Deep Neural Networks (DNN).

B. PRE-TRAINED NETWORKS AND TRANSFER LEARNING
A conventional approach to enable training of DNN/CNN on
relative small datasets is to use a model pre-trained on a very
large dataset, and then use the CNN as an initialization for
the applicative task of interest. Such a method of training
is called ‘‘transfer learning’’ [39] and we have followed the
same principle.. The chosen CNN models mentioned in Sec.
V-A are pre-trained on ImageNet.

C. POWER CONSUMPTION, THERMAL BEHAVIOUR AND
RELIABILITY ISSUES IN MPSoCs
Energy efficient (reduced power consumption) execution of
applications on multi-processor systems such as MPSoCs is
desired in order to improve the operation time of battery-
powered systems. This requires development of efficient run-
time management (RTM) approaches and/or designing the
executing application in an energy-efficient approach. Due to
computational complexity of CNN models it is very impor-
tant to design CNN model based applications, which are
energy efficient on MPSoCs. On the other hand, on systems
utilizingMPSoCs if proper energy consumption control mea-
sures are not taken then it could lead to heat generation in
the system. The availability of multiple PEs on the system
in comparison with uniprocessors can lead to more non-
uniformity of heat generation/dissipation capable of reducing
performance and lifespan reliability of the system over the
period of time [40]. Therefore, optimizing thermal behaviour
of the MPSoC is very important for such devices.

IV. RELATED WORK
Before 2015, majority of traffic analysis and categorization
was mostly performed using the following methodologies:

• Vehicle based methodologies, where either vehicles are
first localized on the road with a background subtraction
method [41]–[43] or the vehicles are localizedwithmov-
ing feature keypoints [44]–[46]. In these methodologies,
the resulting tracks are concatenated together to identify
key features of traffic such as traffic lanes, average
traffic speed, average traffic density, etc.

• A holistic approach, where a macroscopic analysis of
traffic flow is understood through global representation
of a scene, which is obtained by accounting for spatio-
temporal features except tracking using background sub-
traction and moving feature keypoints [13], [47], [48].

Although the aforementioned methodologies are highly
effective to analyze traffic, the biggest limiting factor is
the cost of sophisticated camera-network involved and the
requirement for high-frame-rate videos to compute reli-
able motion features. To break away from this trend of
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traffic analysis, in 2015 Luo et al. [5] proposed a method-
ology to use various image processing and CNN based
approaches to analyze traffic without moving features. In [5],
the authors used four different visual descriptors such as
bag of visual words (BOVW), Vector of Locally Aggre-
gated Descriptors (VLAD), improved Fisher Vector (IFV)
and Locality-constrained Linear Coding (LLC), and have also
used pre-trained deep CNN models such as Caffe and VGG
to analyze traffic and predict categorization of the same.
Although the theory proposed by Luo to use popular image
processing and CNN methods to classify traffic is novel
and solves the low-frame-rate video streaming issue, but
the methodology was not implemented on embedded device
for local training/inference. In [6], Dey et al. proposed an
improved traffic categorization based on CNN in embedded
devices utilizing System-on-a-programmable-chip (SoPC),
however, this work does not consider holistic prediction of
the video (no TMAV). In another extended paper published
by Luo et al. [14], the researchers have used SegCNN and
RegCNN to analyze and classify traffic. In this aforemen-
tioned paper as well, the authors are training and classifying
traffic images after the video frames are transferred to the
server from the interconnected camera network and does not
perform TMAV.

Other state-of-the-art methodologies include detecting &
counting the numbers of cars and computing traffic density
based on that using CNN-based vehicle detectors with high
accuracy at near real time [49]–[51]. Although this way of
detecting traffic density could still be classified as a vehicle
based approach and has become popular in recent times but
there are associated challengeswith thesemethods as follows:

• Training and test data should belong to the same dataset
taken from the same camera with same configuration
and hence require consistency in training.

• Cars detected need to be within a particular range or
scope of the image and thesemethodologies fail to detect
cars, which are far away in the images captured.

• These methodologies performed poorly if the captured
images were occluded, especially in case of heavy traffic
& jam.

From the aforementioned list of issues with the state-of-
the-art methods, although Deep Learning [52] could solve
the problem of detecting occluded objects properly but such
method usually requires large dataset to be trained with.
Since, our methodology is applied to an embedded/mobile
device, connected to its own camera sensor, collecting local
image frame (data) to continuously train the model on the
device for prediction is not an issue.

On the other hand, another key challenge in Intelligent
Transport Systems is pedestrian detection. Using CNNs to
detect pedestrians is not a new topic [53]. In [8], Dollár
et al. proposed a benchmark for pedestrian detection with
improved evaluation metrics. In [8], the benchmark dataset
was developed to solve the following: scalability, occlu-
sion and positioning of pedestrians in the images. In [10],

Burton et al. performed pedestrian detection by locating an
object resembling the class of a person using CNN from a
distance of 100m, with a lateral accuracy of ±20 cm. In [9],
Flohr and Gavrila proposed another dataset for pedestrian
detection as benchmark, where the pedestrians are observed
from a traffic vehicle by using on-board stereo cameras. The
same work and dataset is extended by Li et al. [54], which
includes cyclist video samples captured with the same setup
as [9]. We utilize IRON-MAN to predict pedestrian obstruc-
tion detection to evaluate the suitability and scalability of our
proposed methodology for this type of target application as
well. More details on experimental results and evaluation is
provided in Sec. VI.

V. PROPOSED METHODOLOGY: IRON-MAN
In our proposed approach, we utilize the concept of Hybrid
Training Method [6], where we train our model both during
offline (training period) and online (runtime/post-training
period) modes. IRON-MAN (IntegratedRatiONal prediction
and Motionless ANalysis of videos) has two modules in it:
Training and Prediction (as shown in Fig. 2). The strength of
our approach is that it provides temporal analysis of videos
without motion features i.e. TMAV.

In the training module, we use transfer learning6 [39], [55]
by utilizing an existing pre-trained network and training the
classifier with our data categories. First, we train the pre-
trained CNN with our dataset, which could be either per-
formed on the MPSoC or on a powerful computing system,
which has a lot more computing resources than the MPSoC
that could be leveraged to improve the training time. After
the initial phase of training is complete, we evaluate the
overall prediction accuracy of the trained CNN. If the overall
prediction accuracy (Pi) of the CNN is equal or more than the
desired quality of experience (Q) [6], then we utilize the CNN
for prediction in the prediction module. Here, the desired
quality of experience (Q) is the minimum (desired) validation
prediction accuracy that the model has to achieve after the
completion of the training. However, if the desired prediction
accuracy is not achieved then we retrain (details in Sec. V-
A) the CNN with the failed predicted images. This retrain
methodology is human-inspired as it mimics one of the key
intelligence feature of a human being, which is learning
from the surrounding environment to adapt. When a human
being meets a new environment and is not aware of the rules
and regulations associated with it, the human tries to adjust
and adapt by learning the new set of rules and regulations.
We have utilized the same concept in our approach as well,
which is described subsequently in Sec. V-A.

After the retraining of the CNN, when the desired pre-
diction accuracy is achieved we use the trained CNN in
the prediction module. Now, instead of providing prediction
result for each individual image frame, we integrate the final
prediction by taking previous image frames into consider-

6Learning achieved by taking the convolutional base of a pre-trained
network, running the new data of 4 traffic categories through it and training
a new randomly initialized classifier
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ation. Our CNN model’s prediction is inspired by Bayes’
theorem and sequential Bayesian updating [56], where the
model updates the probability of the occurring prediction
label by incorporating the probability of the label occurring in
the previous frames. This approach is again human-inspired
as it is adopted from the ideology of humans updating their
knowledge using Bayesian inference logic. Detailed algo-
rithm and inner working (Training and Prediction modules)
of the IRON-MAN is provided in the following two subsec-
tions.

FIGURE 2. IRON-MAN Model Work-flow.

FIGURE 3. Network architecture used for fine-tuning pre-trained CNN for
traffic categorization.

A. TRAINING MODULE
For the proposed approach, any pre-trained CNN model such
as VGG [3], ResNet [57], MobileNet [58], etc could be
selected. It is very common to choose a pre-trained CNN
model and fine-tune the model to train on a target appli-
cation. Fine-tuning is the process of taking the weights of
a pre-trained CNN and using it as initialization for a new
model being trained on a dataset from the same domain. This
approach is used to speed up the training process while being
able to train on small dataset. We fine-tuned our pre-trained
CNN model by adding our a new randomly initialized classi-
fier, and training the last fully connected layer by freezing
all the layers of the base model (frozen layers represented

with gray colour in Fig. 3 with respect to traffic catego-
rization prediction) and unfreezing the last fully connected
layer (unfrozen layers represented with green colour in Fig. 3
with respect to traffic categorization prediction). If the target
application changes such as the case for pedestrian detection,
only the randomly initialized classifier changes to fine-tune
for the current target application.

The training module itself consist of two part training:
Offline and Online mode. During the offline mode, the CNN
is trained with stock images from a dataset stored on a
memory. After the initial training period (offline) the CNN is
then fed with live images from the camera and the prediction
for each image frame is evaluated during the validation of
the model. Upon failure in prediction for each image during
validation testing, the image is stored in a stack implemen-
tation called ‘‘reFeed Image Stack’’. After utilizing cross-
validation technique [59], where validation testing is per-
formed on a separate dataset such as live image frames from
the camera stream, the overall prediction accuracy (Pi) of the
CNN model is evaluated. If the overall prediction accuracy
is equal or more than the desired quality of experience (Q)
then the training process concludes and the CNN is ready
to start predicting categories in the prediction module. The
governing equation to check for the suitability of the CNN
for further prediction is provided in Eq. 1 [6], where I is
the dataset consisting of images, i is an image in the dataset
and Pi is the prediction accuracy of the CNN for i. However,
if the desired quality of experience is not met in terms of
prediction accuracy then the CNN is trained with the failed
prediction images, which are stored in the reFeed image
stack. We call this as the reTrain approach so that the CNN
can achieve a higher localized prediction accuracy. Here,
the term localized prediction accuracy means the prediction
accuracy of the model for a set of images that is restricted
to a specific task or place. In this application, it should be
kept in mind that reTrain does not mean training the whole
model from the beginning, however, it means to continue
the training process with the images from the reFeed image
stack in order to improve learning capability of the CNN
model. The retrainmechanism is bound to improve prediction
accuracy because we train the CNNmodel’s classifier and the
last fully connected layer (as mentioned earlier in the fine-
tuning mechanism) with the failed images saved in the reFeed
image stack and this approachmimics a human being’s ability
to rectify his/her mistake after making one. Here, the failed
images are the image frames which were predicted/labeled
incorrectly during the testing of the trained CNN model.

∀{i ∈ I : i > 1}, Pi ≥ Q (1)

Note: Using the proposed approach, training could be
performed both on the MPSoC or on a more powerful com-
puting device. If the CNN is trained on a device other than
the MPSoC, then after the aforementioned training phases
(offline and online) are complete, the CNN model’s parame-
ters and weights could be saved and migrated to the MPSoC
to act as the Prediction module. Utilizing this method of
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training the CNN can also improve reliability (lifespan) and
energy efficiency of the device due to the required operat-
ing resources during the training period being high. Here,
the operating resources represent the computing resources
such as CPU and/or GPU, memory, etc. required during the
operation of an executing application.

B. PREDICTION MODULE
From Bayes’ Theorem [56], if we assume the posterior, prior
and likelihood to be po, pr and li respectively then we can
represent the expression representing the Bayesian Update
Scheme as follows:

po ∝ pr × li (2)

In Eq. 2, posterior (po) is the revised probability of an event
occurring after taking new information into consideration,
prior (pr) is the probability of the event assessed before
revising posterior and likelihood (li) is the probability that
an event which has already occurred would yield a specific
outcome. Now, if we assume new posterior, current and new
likelihood to be npo, cur and nli respectively then using
sequential update scheme where we take the past into account
and the modified expression for Bayesian Update Scheme is
as follows:

npo ∝ cur × nli (3)

In Eq. 3, current (cur) is the probability of some entity
occurring whereas the new likelihood (nli) is the Bayesian
Update taking posterior from the past into account. This
approach sometimes is also called a Recursive Bayesian
Update. For our scenario, we are trying to predict the current
probability for the label (category), which becomes the new
posterior (npo) in the equation, current is the probability
prediction of the category of the image frame provided by
the CNN and new likelihood is the probability of the category
occurring in some previous time steps. Here, the reason to
mention some previous time steps is because the number
of previous time steps to take into consideration will be a
heuristic choice of the user. In our case, we call the number
of previous frames (images), which is considered to provide
an integrated prediction for the chosen category, as Frame
Window. Frame Window consists of N number of frames,
which are taken into consideration.

If we consider that the prediction for the category in the
current frame as Pcategorythis , prediction for the same category
in the previous frame as Pcategorythis−1 and the total prediction
accuracy of the model after the training/cross-validation of
the model is complete as PCNN then the updated equation for
Bayes’ Theorem is as follows:

Pcategoryupdated ∝ P
category
this−1 × P

category
this (4)

Eq. 4 could be utilized to predict the frame using the
prediction of previous frame as follows:

Pcategoryupdated =
Pcategorythis−1 × P

category
this

(Pcategorythis−1 × P
category
this )+ PCNN

(5)

In Eq. 5, Pcategoryupdated is the updated prediction using Bayes’
Theorem for the same category by the CNNmodel.We should
also note that both Pcategorythis−1 and Pcategorythis are conjugate priors
for our scenario since they belong to the same category as
the posterior (Pcategoryupdated ) and hence, in the same probability
distribution family. Now, depending on the Frame Window,
the evaluation of Pcategoryupdated will vary, which leads us to an
updated equation as follows:

Pcategoryupdated

=



Pcategorythis , if N = 0
Pcategorythis−1 × P

category
this

(Pcategorythis−1 × P
category
this )+ PCNN

, if N = 1

∏N

1

Pcategorythis−N × P
category
this−(N−1)

(Pcategorythis−N ×P
category
this−(N−1))+PCNN

, if N > 1

(6)

Eq. 6 is the governing equation, which is utilized to predict
the probability of the category during the Frame Window.

In the Prediction module, IRON-MAN has a queue imple-
mentation of the image stack (called as Image Queue), where
the N number of frames are stored and N is defined by
the user to denote the size of the Frame Window. When an
(N + 1)th image frame comes from the camera for prediction,
the images stored at 1st position of the ImageQueue is popped
out and the (N + 1)th image frame is pushed in the N th

position of the queue while everything getting shifted a place
in the middle just like in a first-in-first-out (FIFO) queue
implementation. When prediction for a particular frame is
required, the prediction of the frame by the CNN model is
provided as well as the prediction of the Frame Window is
provided by using the Eq. 6. After utilizing Eq. 6 the updated
prediction (Pcategoryiupdated ) for a specific category i is compared
with the the updated prediction of other categories and the
label for the maximum value of the prediction is provided
as output. In our experimentation, we use N = 7, which is
discovered empirically to produce the best prediction result.
More details on the selection of the value of N is provided in
Sec. VIII.

C. ECTI: ENERGY CONSUMPTION PER TRAINING IMAGE
A new metric, ECTI (Energy Consumption per Training
Image), is introduced to choose the suitability of a CNN
model in embedded systems. If we consider ET as the total
execution time period required to train the CNNwith a dataset
I consisting of n number of images to achieve a validation
prediction accuracy of P, Q as the quality of experience,
and the average power consumption per second during the
training period as e then the equation for ECTI could be
defined as follows:

ECTI = (
ET
n
× e) iff P ≥ Q (7)

The unit of ECTI is kilo−watt−hour (kWh), where ET is
represented in hours and e in kilo-Watt (kW ). To choose the
most suitable CNN for an embedded application we have to
select the CNN with the least value of ECTI .
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VI. EXPERIMENTAL RESULTS
A. DATASET USED
We have performed our validation on two different test cases:
traffic categorization and pedestrian obstruction.

1) TRAFFIC CATEGORIZATION DATASET
For our traffic categorization experimentation we are using
the same dataset used in [5], [6], [14]. Mainly two dataset
are used in this experiment. The first dataset is released by
UCSD traffic control department [13]. This dataset contains
254 highway video sequences, all of which are filmed using
the same camera containing light, heavy and traffic jams
filmed at different periods of the day under different weather
conditions. Each UCSD video has a resolution of 320 ×
240 pixels with a frame rate of 10 fps. The video streams from
the UCSD dataset were converted to images by processing
1 frame out of every 8 frames (∼1.3 fps). This UCSD dataset
was used as the testing dataset. Since UCSD dataset is cate-
gorized into 3 labels: Light, Medium and Heavy, we manually
annotated the images into our desired 4 categories: Jam,
Heavy, Fluid, Empty. When the road was empty the images
were categorized as Empty and for light traffic it is labeled
as Fluid. When the traffic was heavy the images are labeled
as Heavy and for slow moving heavy traffic the images are
labeled as Jam. Another dataset consisting of the 400 images,
which is used in [5] and [6], captured from highway cameras
deployed all over the UK and also consist of several exam-
ples of different weather and lighting conditions in order to
provide a better training performance. These 400 images are
also segregated into 4 categories: Jam, Heavy, Fluid, Empty;
with each category having 100 images. This dataset was used
for training and validation purposes.

2) PEDESTRIAN OBSTRUCTION DATASET
For our pedestrian obstruction detection experimentation we
have used the pedestrian dataset used by Li et al. [54],
which consists of more than 5 million images for a total
of 32361 labeled vulnerable road users (VRUs), includ-
ing cyclists, pedestrians, tri-cyclists and motor-cyclists etc.
To evaluate our proposed IRON-MANapproachwe have only
used the training dataset of [54] consisting of 9742 images
for both training and validation, whereas we used the val-
idation dataset (for cross-validation) from the same study
for testing purposes. The images were manually labeled into
2 categories: Obstruction, No-Obstruction. Whenever there
were pedestrians in front or nearby the camera view, then it
is categorized as obstruction and in contrary it is labeled as
no-obstruction.

B. HARDWARE SETUP
We have implemented the methodology on an Odroid XU4
[15] (see Fig. 4), which employs Exynos 5422 MPSoC [60]
used in popular Samsung Note phones and phablets. Exynos
5422 implements ARM’s big.LITTLE architecture utilizing
4 ARM Cortex A-15 big CPUs, 4 ARM Cortex A-7 LITTLE

CPUs and 6 MALI T628 MP6 GPUs. The Odroid XU4 does
not have an internal power sensor, and we had to use an
external power monitor, Odroid smart power 2 [61], with
networking capabilities over WIFI to take power consump-
tion readings. The Odroid smart power 2 [61] is capable
of powering single-board devices with power requirement
ranging from 4 to 5.3 volts and 5 amp in 100mV step, andwas
used to monitor the power consumed by the MPSoC. Odroid-
XU4 platform has 4 temperature sensors on 4 ARM Cortex
A-15 big CPU cores, which we read to monitor temperature
behavior during our experiments. For all our experiments we
have only monitored 4 A-15 big CPU cores to observe the
operating temperature, and the highest temperature among
the big CPUs is considered for empirical evaluation.

The Odroid XU4 runs on UbuntuMate OS version 14.04
(Linux Odroid Kernel: 3.10.105), which is executed on onde-
mand power saving scheme of Linux and hence, implements
its respective power and thermal management scheme. The
Odroid XU4 also supports external micro-SD memory card
and we have utilized a 256 GB SanDisk Extreme micro-SD
card [62], capable of reading up to 160MB/s and writing up
to 90MB/s, to hold the dataset image frames for training.
In the traffic dataset, each image frame with a resolution of
320× 240 pixels consumes approximately 12KB in memory
and on the 256 GB micro-SD memory card we are able to
store more than 21,333,333 image frames on the device.

C. EXPERIMENTAL RESULTS
1) TRAFFIC CATEGORIZATION
To categorize traffic we chose four pre-Trained CNNmodels,
which were trained on millions of ImageNet images, for our
validation. These four CNN models are VGG16, VGG19 (a
deeper network of VGG16), ResNet50 andMobileNet. In our
experiments, we have chosen the quality of experience (Q)
to be 0.7 i.e. 70%. Through empirical evidence it was noticed
that the CNN model performs best when the prediction accu-
racy of 70% ormore is chosen in order to be utilized for traffic
categorization application in the real world, hence, 0.7 was
chosen to be the quality of experience. For VGG16, VGG19,
ResNet50 andMobileNet it took us 360, 360, 330, 360 images
respectively to train the pre-Trained using Transfer Learning
and our proposed retrain approaches (see Sec. V-A), and
gained a testing prediction accuracy of 98.93%, 96.62%,
92.79% and 85.75% respectively. The total execution time
of the CNN model training, average power consumption and
average operating temperature on the MPSoC during the
training of the respective CNN models are shown in Fig. 5.

Based on Eq. 7 the evaluated ECTI values for VGG16,
VGG19, ResNet50 andMobileNet are shown in Fig. 6. On the
X-axis of Fig. 6 the respective CNN models are reflected,
whereas, the Y-axis reflects the ECTI value for the corre-
sponding model in kWh. Based on the values from Fig. 6
MobileNet is the most energy efficient model, which also has
a prediction accuracy over the chosen quality of experience
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TABLE 1. Predictions of traffic categorization image frames with and without IRON-MAN.

TABLE 2. Predictions of pedestrian obstruction image frames with and without IRON-MAN.

(Q), that could be utilized for training on the device utlizing
MPSoC.

Now, to prove efficacy of our integrated rational prediction
of image frames from the video, we randomly chose a video
from UCSD traffic dataset [13] and broke the video into
image frames, which represents the same category as the
video itself. We chose a video from medium traffic cate-
gory, which corresponds to Fluid traffic category, and utilized
the MobileNet model as the CNN model in IRON-MAN

to predict the label of a sequence of image frames as well
as the label for video. For this experiment we chose the
Frame Window of 3 images representing a video sequence
of 4 seconds (approx.). Table. 1 shows the prediction of labels
if we only use MobileNet without our IRON-MAN approach,
where prediction of previous image frames are not taken into
consideration, and if we use IRON-MAN, where prediction
from previous image frames are taken into consideration,
as well. The table shows that IRON-MAN is able to demon-
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FIGURE 4. Odroid XU4 development board and Exynos 5422 MPSoC.

strate the prediction of the correct label of the image frames
belonging to the same video category.

FIGURE 5. Total execution time of the CNN model training, average power
consumption and average operating temperature on the MPSoC for the
following CNN models: MobileNet, ResNet50, VGG16, VGG19.

FIGURE 6. Evaluated ECTI values for VGG16, VGG19, ResNet50 and
MobileNet CNN models.

2) PEDESTRIAN OBSTRUCTION
In another experiment, we chose simultaneous image frames
having pedestrians as obstruction from the pedestrian dataset
[54] to validate efficacy of IRON-MAN. Table 2 shows that

IRON-MAN was again able to predict whether the path is
obstructed by a pedestrian or not using integrated results from
previous frames. MobileNet CNN was utilized in this exper-
iment, which gained a testing prediction accuracy of 79.50%
after transfer learning and retraining approaches for this
application. MobileNet was also selected as the choice of
CNN model due to its energy efficiency (refer to Sec. VI-C1)
on the MPSoC device.

a: EFFECT ON LIFESPAN OF THE DEVICE
Given the architecture of IRON-MAN, where training/infer-
ence is automated and executing at all times on the device,
and based on the assumption that an increase in the oper-
ating temperature by 10-15◦ centigrades could reduce the
lifespan of the device by 2× [33], [35], we evaluated the
effect on the device’s lifespan for different CNN models
used in IRON-MAN. We also noticed that the maximum
baseline temperature, which is the operating temperature of
the CPU core when idle i.e. only executing background tasks
while on Linux’s ondemand power scheme, of the ARM
Cortex A-15 big CPU core was 69.24◦C (average). There-
fore, the deviation of operating temperature while training
and the baseline temperature was 24.36 ◦C (average) for
VGG16, 24.77 ◦C (average) for VGG19, 24.48 ◦C (average)
for ResNet50 and 24.06 ◦C (average) for MobileNet. There-
fore, considering that the device lifespan reduces by 2× for
every 10◦C increase in operating temperature, if training is
performed on the device then the lifespan of the same device
reduces by 4.872× (' 24.36

10 ×2) for utilizingVGG16, 4.954×
(' 24.77

10 × 2) for utilizing VGG19, 4.896× (' 24.48
10 × 2)

for utilizing ResNet50 and 4.812× (' 24.06
10 ×2) for utilizing

MobileNet. Therefore, until the application requires the CNN
to be trained on the embedded MPSoC to continue providing
desirable analysis it is highly recommended that the CNN is
not trained on the embedded system, and instead, trained off
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device (on a server) with hardware capabilities to accelerate
CNN model training.

b: COMPARATIVE STUDY OF IRON-MAN
To evaluate the efficacy of IRON-MAN, we compared the
methodologywith the state-of-the-art approach for traffic cat-
egorization proposed by Luo et al. [14]. Since, the methodol-
ogy proposed in [14] is closely related to the target application
of traffic categorzation without motion features, it is a very
suitable methodology for a comparative study with IRON-
MAN. Additionally, IRON-MAN being the first methodology
to perform TMAV in traffic categorization, it would be unrea-
sonable to compare the methodology with any other existing
approaches. In [14], the researchers have used SegCNN and
RegCNN to analyze and categorize traffic. The main motiva-
tion of utilizing SegCNN and RegCNN in their approach is
to improve the accuracy of the prediction model even without
training the CNN with a large dataset (consisting of millions
of images). After the training, Luo et al.’s approach was
able to achieve a prediction accuracy of 94.8% during testing
for traffic categorization, which is comparable to prediction
accuracy achieved utilizing ResNet in IRON-MAN (refer to
Sec. VI-C1), however, it has lower prediction accuracy than
VGG when chosen for IRON-MAN. Since, ResNet achieved
comparable prediction accuracy with Luo et al.’s approach,
hence, we utilized ResNet in IRON-MAN to perform the
comparative study. It should be kept in mind that given the
complexity of [14], we trained themodel on a general purpose
computer with GPU accelerator and then the trained model
was transferred to the Odroid XU4 and utilized for prediction
(inference) only. Therefore, in this comparative studywe have
only provided a comparison based on inference time.

Moreover, given the computation complexity of [14], exe-
cuting (inference) the approach has an overhead of 5.2× on
theOdroidXU4MPSoC than compared to IRON-MAN. Fig. 7
shows the execution time (in seconds) of analyzing 9 sequen-
tial image frames of the same video from the UCSD dataset
[13]. Each test was performed 5 times on the Odroid XU4,
utilizing all eight CPU cores (big.LITTLECPU cores) and the
average execution time for image analysis for each number
of image frame is provided in Fig. 7. Since the concept of
frame window or temporal analysis of image frames of video
does not exist in [14], we sequentially feed each image frames
from the video to the methodology to get the output analysis.
From Fig. 7 we can notice that it takes 1.487275 seconds for
Luo et al.’s approach to analyze 9 sequential image frames,
whereas it takes 0.285775 seconds to analyze 9 sequential
image frames in the framewindow for the IRON-MAN. There-
fore, the overhead associated with Luo et al.’s approach is
5.2× (approx.) on the Odroid XU4 MPSoC.

VII. LARGE-SCALE INTEGRATION OF IRON-MAN OVER
THE CLOUD
IRON-MAN can be deployed in large-scale over the cloud/In-
ternet using database/web-services. Fig. 8 shows the dia-
grammatic representation of a large scale integration of

FIGURE 7. Execution time taken to analyze 9 image frames sequentially
from the traffic video by different methods (Execution time in seconds vs
number of image frames analyzed).

IRON-MAN, where the network consists of n number of
Odroid XU4 devices, each connected to their own camera
sensors and each Odroid is denoted as Devi (ith device). Each
Odroid performs prediction using IRON-MAN and then the
prediction data is relayed to an online database/web-service
in the cloud for further processing.

FIGURE 8. Diagram representing large-scale integration of IRON-MAN
over the cloud.

In order to identify data from each device accurately, data
consisting of device id, prediction result, time stamp and
Geo-location of the device are sent as a JSON (JavaScript
ObjectNotation) object over the Internet to the cloud. Listing
1 shows the python code implemented in the Odroid XU4 to
send prediction data from the device as a JSON object, where
the device id is the mac address of the Odroid to properly
identify the device, location is the Geo-location (latitude,
longitude) of the implementation of the Odroid and time is
the current time-stamp when the prediction was performed
and relayed over the network. Fig. 9 shows the JSON object
output which is relayed to the online database/web-service.

Performance of IRON-MAN over the cloud: We imple-
mented the online database/web-service by utilizing Google
Cloud Platform’s (GCP) [63] Compute Engine, which is a
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Listing 1. Example of python code snippet to send prediction data as
JSON object over the Internet network for large-scale integration

FIGURE 9. JSON object output of the python code snippet (Listing 1) to
send prediction data as JSON object over the Internet network for
large-scale integration.

virtual machine consisting of 2 vCPUs, 2 GB RAM mem-
ory and 100 GB disk memory space. On the online virtual
machine (on the cloud) we implemented the web-service,
which processes the JSON data sent from each Odroid device
(we utilized 3 Odroid devices, each with their own cam-
era sensors, connected to the online virtual machine over
the Internet). After the data from the Odroid is sent to the
online virtual machine, the prediction data (device id, predic-
tion, Geo-location & time stamp) is stored in the database
on the virtual machine. The Odroid devices were set in
Colchester, UK, whereas, the GCP online virtual machine is
set-up in Western Europe region. The communication over-
head between each Odroid and the online virtual machine
was 112.57 milliseconds on an average. The online virtual
machine, with its current computing resource, is capable of
handling up to 300 connection requests per seconds with-
out contributing to the communication overhead. Therefore,
every second 300 Odroid devices can send data to the online
virtual machine in parallel for further processing as men-
tioned earlier.

VIII. LIMITATIONS AND DISCUSSION
Lemma 1: Updated prediction (Pcategoryupdated ) of the category

using Baye’s Theorem tends to zero as prediction (Pcategorythis )
for the category in the current frame tends to zero.

In the Eq. 4, if Pcategorythis −→ 0 then Pcategoryupdated −→ 0 (see
Eq. 8). Hence, for a lower value of Pcategorythis we would be
achieving a lower value of Pcategorythis if prediction (Pcategorythis−1 )
for the same category in the previous image frame is less

than or equal to one7 (Pcategorythis−1 ≤ 1).

Pcategoryupdated −→ 0 as Pcategorythis −→ 0 (8)

Theorem 1: If N ≥ 1 in the frame window and
Pcategorythis −→ 0 then the updated prediction (Pcategoryupdated ) of the
category converging to zero increases as N increases.
In Eq. 6, if the number of image frames (N ) is greater than

one then the updated prediction for the category is represented
by Eq. 9.

Pcategoryupdated =

N∏
1

Pcategorythis−N × P
category
this−(N−1)

(Pcategorythis−N × P
category
this−(N−1))+ PCNN

, if N>1

(9)

Pk =
Pcategorythis−N × P

category
this−(N−1)

(Pcategorythis−N × P
category
this−(N−1))+ PCNN

(10)

In the Eq. 9, if we consider the term Pk as shown in
Eq. 10, since the preceding term is part of the product series
represented in Eq. 9 and consider Pcategoryupdated as a function (FN ,i)
of N and i, where i is the ith image in the frame window
consisting of N image frames, and both i and N are whole
numbers (N , i ∈ W andN > i ≥ 1), then the aforementioned
equation (Eq. 9) could be represented as follows:

FN ,i =

N∏
k=N−i+1

Pk (11)

Since Pcategorythis is an integral part of Pk in Eq. 11 (see
Eq. 9), using the knowledge from lemma 1 we can say that as
Pcategorythis −→ 0 thenPk −→ 0 aswell. Now, asN −→∞ and
Pk −→ 0 then FN ,i −→ 0. Therefore, using this knowledge
we could state that: 0 ≤ FN ,i ≤ Pk and proving the fact
that as N gets larger and Pcategorythis gets smaller (close to zero),
the updated prediction (Pcategoryupdated ) also converges to zero.
Through our empirical data we noticed that the afore-

mentioned theorem holds true and this could be considered
as a potential limitation of using Bayes’ Theorem along
with CNN’s prediction as proposed in IRON-MAN. In our
experiments, when the number of image frames in the frame
window was selected to be more than 7, the prediction for
the category became equal to zero for all the classes and
hence, a frame window of more than 7 image frames could
not be chosen for accurate predictions. Now, if we consider
t seconds as the time interval between two image frames in the
video then because of Lemma 1 and Theorem 1 using IRON-
MAN methodology we are only able to analyze a snippet of
the video of t × 7 seconds duration. If we consider the traffic
categorization problem where each image frames were taken
every 1.3 seconds (see Sec. VI-A) interval then using IRON-
MAN we are able to analyze 9.1 (1.3 × 7) seconds of the
video with high prediction accuracy.

7Prediction of an image frame could not be more than one since one
represents 100% probability of the category occurring and probability could
only range from 0 to 100.
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In order to overcome the aforementioned limitations of
IRON-MAN as mentioned earlier, we need to develop a more
robust algorithm so that we are able to analyze larger snippets
of videos (larger than 9.1 seconds for traffic categorization
problem) without motion features more accurately.

IX. AN ALTERNATIVE ONLINE PREDICTION:
AI-PREDICTION
To overcome the limitations mentioned in Sec. VIII,
we develop an alternate online prediction module to replace
the original prediction module proposed in V-B and improve
scalability such that more number of image frames could
be considered for the holistic analysis/prediction of the
video. We call this alternate online prediction module as the
Averaged Integrated Prediction (we also refer to this module
as the AI-Prediction), which is implemented as a software
agent in the application layer of the system.

FIGURE 10. Block digram of an alternative Online Prediction
(AI-Prediction).

The attached camera or video stream sends the image
frames to a queue implementation of images called as the
Image Queue, which is capable of holding n number of
images along with their associated prediction scores for each
classes of the target task. The latest image (ith) of the Image
Queue is sent to the Trained CNN, which is trained in the
Offline Training module for prediction. The CNN then pre-
dicts the associated prediction scores for each classes of the
target task of the current image frame (ith image frame).
If the Image Queue is full then the nth image is the ith

image or else the last image of the Image Queue is the ith

image.When the CNNpredicts the ith image frame, it is called
the Initial Prediction (PCNNi ). PCNNi is a set of prediction
scores for different classes of the target task for the ith image
frame and PCNNi is forwarded to a sub-module of TMAV-CNN
named Prediction Module. The prediction module has two
operations: Refer and Update Decision. Note: When a new
image frame is inserted into the Image Queue and if the queue
happens to be full then the 1st image frame of the queue is
popped (called as PopFront() function) and the new image
frame is inserted at the nth position of the queue (called as
PopBack() function). The Image Queue works the same way
queue is implemented in data-structures.

1) REFER
If we assume that the multi-class target task consists of
m number of classes (labels) such that the classes could
be represented as {label1, label2, . . . .labelm} and the asso-
ciated prediction scores for the classes of ith image frame

could be represented as {Plabel1CNNi ,P
label2
CNNi , . . . .P

labelm
CNNi }, then

PCNNi could be represented as a set such that PCNNi =
{Plabel1CNNi ,P

label2
CNNi , . . . .P

labelm
CNNi }. Now, the prediction module

updates the prediction scores of the ith image frame in the
Image Queue and refers to the prediction scores for each
classes of (n − 1) number of image frames and evaluates
the average prediction score for each classes for those image
frames (shown in Eq. 12). The reason to evaluate the average
prediction scores for each classes for (n − 1) number of
image frames is to take those prediction scores for previous
image frames into consideration before providing the final
prediction of the ith image so that a holistic scene prediction
is provided instead of just providing the prediction for the ith

image. Here, for ease of understanding let us assume that the
Image Queue is always full such that ith image frame is same
as the nth image frame.

Avg(PCNNn−1) =
1

n− 1
×

n−1∑
1

PCNN (12)

2) UPDATE DECISION
Now, in the Update Decision operation of the predic-
tion module to provide the final prediction (PfinalCNNn ) of
the nth image frame, the prediction module evaluates the
weighted average of n number of image frames in the
Image Queue using Eq. 12 such that the governing equa-
tion is represented as Eq. 13. Since PfinalCNNn (PfinalCNNn =

{Pfinal label1CNNn ,Pfinal label2CNNn , . . . .Pfinal labelmCNNn } where Pfinal labeliCNNn is
the respective prediction of ith class for the nth image frame)
is a set consisting of weighted average of the prediction scores
for m classes of the target task, to provide the final prediction
label (Pfinal labelCNNn ) the associated label of the maximum of

PfinalCNNn is provided as a result (see Eq. 14).

PfinalCNNn =
(n− 1)× PCNNn + Avg(PCNNn−1 )

n

=
(n−1)×PCNNn+(

1
n−1×

∑n−1
1 PCNN )

n
(13)

Pfinal labelCNNn = Max(PfinalCNNn ) (14)

A. LIMITATIONS OF AI-PREDICTION
Unlike the limitations shown in Sec. VIII, the number of
image frames chosen to be considered for holistic prediction
of the video could be more than 7, since, the PfinalCNNn does
not tend to zero if prediction of any intermediate class tends
to zero. However, given the fact that AIPrediction evaluates
the final prediction based on the average prediction of the
image frames, such methodology could lead to inaccuracy
if the chosen n number of image frames considered for the
prediction is very large. Therefore, it is to be kept in mind
that the developer/engineer of the IRON-MAN methodology
has to choose whether to use prediction module based on
Bayesian updating scheme (as proposed in Sec. V-B) or use
AIPrediction module depending on the accuracy vs scalabil-
ity requirement of the target application.
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X. CONCLUSION
In this paper, we propose IRON-MAN, which is capable of
providing Temporal Motionless Analysis of Videos (TMAV )
i.e. analyzing videos without motion features and providing
a holistic temporal analysis while utilizing predictions of the
past image frames into consideration. Based on the results we
have shown that training CNN based approaches on MPSoCs
could lead up to 4.8× (approx.) reduction in lifespan of the
embedded device and MobileNet is more energy efficient
compared to VGG and ResNet50 models. Therefore, it is rec-
ommended to perform the training off the embedded device
for improved longevity or utilize MobileNet for on-device
traffic categorization. It is also shown that for traffic catego-
rization application, our approach outperforms the state-of-
the-art. We have also discussed limitations of IRON-MAN
and provided an alternative approach to improve scalability
of the proposed methodology.
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