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Abstract—This paper presents a novel approach for a robot
to conduct assembly tasks, namely robot learning from human
demonstrations. The learning of robotic assembly task is divided
into two phases: teaching and reproduction. During the teaching
phase, a wrist camera is used to scan the object on the workbench
and extract its SIFT feature. The human demonstrator teaches
the robot to grasp the object from the effective position and
orientation. During the reproduction phase, the robot uses
the learned knowledge to reproduce the grasping manipulation
autonomously. The robustness of the robotic assembly system
is evaluated through a series of grasping trials. The dual-arm
Baxter robot is used to perform the Peg-in-Hole task by using
the proposed approach. Experimental results show that the robot
is able to accomplish assembly task by learning from human
demonstration without traditional dedicated programming.

Index Terms—learning from demonstration, robotic assembly,
machine learning, Peg-in-Hole task, Baxter robot

I. INTRODUCTION

Robotic assembly needs a high degree of repeatability,
flexibility, and reliability to improve the automation perfor-
mance in assembly lines. Traditionally, the robotic assembly
operation is programmed or hard-coded by human operators
with a good knowledge of all geometrical characteristics of
individual parts. This assembly operation is normally position-
controlled and designed to follow desired trajectories with an
extremely tight positional accuracy [1]. Similar to humans
performing compliant movements by using force feedback
and tactile information, the contacts and forces are sensed by
robot sensors and used to implement the assembly procedures.
In general, the current robotic assembly systems can handle
known objects within the well-structured assembly lines very
well.

For instance, a multi-robot coordinated assembly system
for furniture assembly was investigated by Knepper et al. in
[2]. They listed the geometry of individual parts in a table
so that a group of robots can conduct parts delivery or parts
assembly collaboratively. The furniture parts were predefined
in CAD files for the modeling and recognition purpose so
that the correct assembly sequence can be deduced from
geometric data. On the other hand, Suarez-Ruiz and Pham
proposed a taxonomy of the manipulation primitives for bi-
manual pin insertion, which was only one of the key steps in
the autonomous assembly of an IKEA chair [3].

However, when the assembly tasks change, the current
robotic assembly need tedious reprogramming for every new

workpiece before the operation. In contrast, Learning from
Demonstration (LfD) paradigm enables robots to learn the
involved forces and trajectories for assembling tasks from
human demonstrations. The LfD allows for creating a con-
nection between perception and action for the robot. Recently,
LfD has been suggested as an effective way to accelerate the
programming of learning processes from the low-level control
to the high-level assembly planning [4]. Therefore, LfD is a
preferable approach for robotic assembly tasks [5].

In this paper, we propose a new approach to solve one of
the assembly tasks, Peg-in-Hole (PiH) problem, by using the
LfD paradigm. The object to be assembled is not limited to
predefined objects. The geometrical characteristics of the parts
are not necessary prior knowledge. In addition, the objects
can be placed in arbitrary poses and positions within the
workspace of the robotic arm. The robot learns assembly
skills through LfD paradigm, which allows non-experts to
teach the robot how to assemble. Instead of imitating the
trajectories demonstrated by the human, the robot learns the
most important position information of the PiH task through
the kinesthetic teaching.

The rest of this paper is organized as follows. Section
II briefly presents the related work on the field of robotic
assembly and explain how the assembly problem has been
solved up to now. In Section III, we present the methods that
we used to solve the assembly problem from two aspects: (i)
how the demonstrator teaches the robot and (ii) how the robot
reproduces the learned skills. Then, experimental evaluation of
the object recognition and assembly of Lego blocks are given
in Section IV to demonstrate the feasibility and performance
of the proposed approach. Finally, a brief conclusion and the
future improvement are given in Section V.

II. RELATED WORK

PiH is one of the most essential and representative assembly
tasks and has been widely researched [6]–[8]. It is a process
that a robotic gripper grabs the peg and inserts it in a hole. The
positioning inaccuracies and tight tolerances between the peg
and the hole involved in PiH operations require some degree of
online adaptation of the programmed trajectories. Up to today,
a number of robotic assembly systems were proposed to solve
the PiH problem, and most of them use additional specialized
force sensors, markers and/or cameras.



Nemec et . al [9] proposed an approach to acquire not only
trajectories but also forces and torques occurring during the
task demonstration. During the human demonstration phase,
the Cartesian space trajectory and the associated force/torque
profile of the human motion of the PiH task are recorded.
In the reproduction phase, the robot uses admittance or
impedance control law to adapt to the desired forces and
reduce the force/torque error.

Tang et. al [10] introduced Gaussian Mixture Regression
(GMR) to learn the state-varying admittance directly from
human demonstration data. The demonstration data is collected
by a specially designed device, where force/torque sensor is
embedded to collect the wrench information and active makers
are placed to record the corrective velocity that human applies
on the peg.

Instead of learning from human demonstrators, Kramberger
et. al [11] proposed an algorithm to learn geometrical con-
straints between the parts and their final locations from the
experiments executed by a real robot. The robot tries to insert
the available pegs into different holes, if the action is executed
successfully, then the robot learns that the peg fits in the hole.
The judgment of success or failure is accomplished by using
force/torque data and poses extracted by vision.

In addition, the peg would usually occlude the hole when
the robot approaches the hole during the peg-in-hole operation.
Therefore, vision-based pose estimation is not suitable for
the high-accuracy assembly tasks in which two parts occlude
each other. If the camera is mounted on the robotic arm, the
occlude problem can be eliminated, but additional sensory data
is needed to estimate the camera pose [12].

To correct the pose of assembly parts, Xiao et al. devised
a nominal assembly-motion sequence to collect data from
exploratory complaint movements [13]. The data are then
used to update the subsequent assembly sequence to correct
errors in the nominal assembly operation. Nevertheless, the
uncertainty in the pose of the manipulated object should be
further addressed in the future research.

III. METHODS

This section is structured as follows. We begin with the
analysis of object mapping, first explaining how the object is
mapped and how the robot learns effective grasping pose. We
continue by showing how the human demonstrator teaches the
robot to learn the assembly skill.

A. Teaching

The object detection runs on a stock Baxter with a develop-
ment workstation. We map one side of an object with Baxter’s
wrist camera, then use the learned model to detect the object,
localize it and pick it up [14]. The object detection and pose
estimation uses conventional computer vision algorithms like
SIFT and kNN for feature abstraction and object classification.
The object classes are based on the specific object rather than
general categories. Each object has a unique name labeled by
the human.

The learning process is presented in Figure 1. Firstly,
the wrist camera captures images of the object and extract
bounding boxes for the objects. Then extract the features of
the bounding boxes which are used to represent an object class.
Last, the human demonstrator teaches the robot how to grasp
the object from an effective pose by kinesthetic guiding.

Object Detection Object 
Classification Pose Estimation Grasping

Teaching Reproduction

Fig. 1: The mapping of the object.

1) Object Detection: We use the grey background to reduce
the reflective light which introducing noise to the detection of
the object. During detection, the wrist camera moves along a
line over the object at a fixed height. For an input image, the
robot extracts bounding boxes for the object in the workspace.
The smallest bounding box which contains the object is
selected. The extracted object is shown in Figure 2.

2) Object Classification: In the object classification mod-
ule, the bounding boxes are further abstracted with SIFT
features. The k-means algorithm is used to extract a visual
vocabulary of the SIFT feature. Then a Bag of Words feature
is constructed for each image. Next, the Bag is augmented with
a histogram of colors included in the image. The augmented
feature vector is learned by the robot and labeled by the human
with an intuitive name, like RedLegoBlock.

3) Pose Estimation: The robot has learned to detect and
localize the object in Section III-A1 and III-A2. Based on
the learned information, the robot could reach and grasp
the object. However, the grasping pose is optimized and
not efficient enough. We improve the grasping efficiency by
teaching the robot effective grasping poses, i.e., the human
demonstrator guide the robot’s arm to the grasping pose (see
Figure 5a). As an object can be grasped by more than one
pose, the human demonstrator teaches the robot more than
one pose to ensure the robot has more options if it fails the
first time.

B. Reproduction

In the reproduction phase, the robot uses the learned knowl-
edge to reproduce the grasping autonomously, which consists
of three phases as follows:
• First, the robot uses the wrist camera to scan and detects

the object in the workspace. From the input images, the
robot extracts bounding boxes of the object. Then, the
robot uses the bounding boxes to extract the augmented
feature vector as described in Section III-A2. Next, the
vector is incorporated into a k-nearest-neighbors model
which is used to classify objects and output the label.
This label is used to identify the object and refer to other
information about the object for grasping.



• Next, to estimate the pose, the robot requires a crop of
the image gradient of the object at a specific and known
pose. The robot rotates the training image and find the
closest match to the image currently learned in Section
III-A1 and III-A2.

• Last, once the grasping pose is determined, the robot need
to identify the grasping point. The grasping module is
a linear model that estimates the grasping success. The
module takes the 3D pose of the object as input and
outputs the grasping point (x, y, θ). The (x, y) is the 2D
position in the plane of the table. The accurate height
of the gripper does not matter, as the gripper always
start from 38 cm over the table and approaches the table
gradually until hitting the table, triggering the grasping.
The θ is the angle which the gripper assumes for grasping.

(a) (b)

(c)

Fig. 2: Object detection in different views: (a) the discrepancy
view shows differences between the observed scene and the
background, i.e., the object; (b) the standard deviation view of
the object shows the edges of the object; (c) the object in the
wrist camera view.

C. Pseudo Code

In this section, we give a brief outline of the robot program
to implement the proposed approach described above. It is
presented here in the format of pseudocode, see Algorithm 1.

In the grasping part of the pseudocode, Oi is the new
object to be mapped; Zc is the “components zone”. During
the teaching of grasping skill, it should be noted that the
pose P (x, y, θ) is relative to the camera’s orientation, which
is recorded in θ. When the robot reproduces the grasping,
the robot rotates the camera to find the closest match to the
learned image and pose. Vf,i is the feature extracted in the
III-A2 Object Classification step.

In the assembly part of the pseudocode, Sk is the sequence
motion of assembly task demonstrated by the human.

In the reproduction part of the pseudocode, O′i is the learned
object; Za is the “assembly zone”; O′m is the former detected
object to be grasped; O′n is the later detected object to be
assembled; Fp is the pressing force that the arm applies on
the two objects; F0 is the threshold force, which controls the
insertion movement.

Algorithm 1 Pseudocode of the robotic assembly using LfD

1: initialize
2: /* line 3 - 10: learning from demonstration: grasping */
3: for Oi in Zc; i ∈ [1, N ] do
4: detect the bounding box Bi;
5: extract feature vector Vf,i from Bi;
6: for all demonstration Dj ; j ∈ [1,M ] do
7: human demonstrates the grasping pose P (x, y, θ);
8: robot maps pose P (x, y, θ) and feature Vf,i;
9: end for

10: end for
11: /* line 12 - 13: learning from demonstration: assembly*/
12: human demonstrates the assembly;
13: robot learns the motions and sequence Sk, k ∈ [1, 3];
14: /* line 15 - 31: robot reproduces assembly task*/
15: for O′i in Zc; i ∈ [i,N ] do
16: detect and classify the object O′m;
17: grasp object O′m;
18: break;
19: end for
20: assembly sequence S1: move object O′m to zone Za;
21: for O′i in Zc; i ∈ [i,N ] do
22: detect and classify the object O′n;
23: grasp object O′n;
24: break;
25: end for
26: assembly sequence S2: move object O′n to zone Za;
27: assembly sequence S3: assemble object O′n with object

O′m;
28: while Fp < F0 do
29: Fp++;
30: end while
31: aseembly done;

IV. EXPERIMENTAL RESULTS

In this section, the object recognition and LfD-based robotic
assembly systems are both evaluated. Figure 3 shows three
kinds of Lego blocks used for the evaluation of object recog-
nition and grasping performance of the system: namely Yellow
Lego block, Red Lego block, and RedBlue Lego block. The
Red Lego block and the Yellow Lego block are same in
dimension, i.e. 2 1

2 ×
1
2 ×

7
16 inch. The RedBlue Lego block

is composed of a group of red and blue Lego blocks. The
dimension is 2 1

2 × 3 1
8 ×

13
16 inch.

Figure 4 shows the Baxter research robot used to conduct
the experiments for all the research work in this paper. The



Fig. 3: Evaluation objects from left to right: Yellow Lego
block, Red Lego block, and RedBlue Lego block.

camera built-in wrist of the Baxter robot can capture images
at the maximum resolution of 1280× 800. However, we only
used an effective image resolution of 640×400 with the same
field of view. Baxter’s arms are also loaded with Infrared
Range (IR) Sensors which has the maximum range of 0.4m
and minimum range of 0.04m. The arm of Baxter has seven
degree-of-freedom (DOF), but the arm always keeps crane
pose to capture consistent views of the object and makes the
picking problem simple.

Fig. 4: The dual-arm Baxter Robot built by Rethink Robotics.

A. Object Recgonition and Picking Task

The object recognition and picking task assess the ability of
the robot to learn efficient picking pose from human demon-
strations. The robot arm was set at crane pose and kept this
pose during the whole experiment. In the beginning, the robot
arm located at the height of 38 cm above the table. Before
recognition, the object to be recognized was placed under the
robot’s wrist camera for scanning. The features of the object
were abstracted by Line Scan. The robot moved its arm 28 cm
back and forth above the object to make a synthetic photograph

during the line scan. Next, the object’s position was estimated
by using image matching in the synthetic photograph.

Then, the object was labeled by the human, like RedLegoB-
lock. The robot knew the position of the object and could plan
a grasp trajectory using inverse kinematics solver. However,
for some objects, the best grasp point is not the geometry
centre. For example, the RedBlue Lego block (see Figure 3)
can only be gripped from the edge as the object is too big
for Baxter’s gripper to grip around the object’s centre. In this
paper, we implemented the LfD in the learning of the picking
task, see Figure 5. The human demonstrator teaches the robot
to grip the RedBlue Lego block from the edge by kinesthetic
guiding. The robot learns the successful picking pose.

For each trial, we placed the object at a random location
on the table within approximately 25 cm of the wrist camera’s
view centre. In this paper, we evaluated the recognition ability
with three different objects, see Figure 3. Each object was
tested for 30 times, the result is listed in Table I. From the
Table, we can see that the performance of the picking ability
is generally good. The failure of the RedBlue Lego block is
due to the gripper’s motor noise during grasping.

TABLE I: Object Recognition and Picking Experiments

Picking Performance
Picking Objects Picking Successful Successful

Times Times Rate
Red Lego Block 30 29 96.7%

Yellow Lego Block 30 30 100%
RedBlue Lego Block 30 27 90%

B. Lego Blocks Assembly Task

In the assembly task, we used the same Lego blocks as
described in the recognition and picking experiments the Red
Lego block and the RedBlue Lego block. The Lego block
has multi pegs on one side and multi holes on the opposite
side. Therefore, the assembly task is the Peg-in-Hole task,
i.e., insert the pegs into the holes. Figure 6a shows the human
demonstrator teaches the robot to pick up the RedBlue Lego
block from the “components zone” to the “assembly zone”
by kinesthetic guiding. Then the demonstrator teaches the
robot to pick up another object (Red Lego block) from the
“components zone” and moves to the “assembly zone”, finally
assemble the two objects, as shown in Figure 6b.

To validate that the robot was able to assemble by itself, we
placed the RedBlue block under the wrist camera within the
“components zone”. The robot inferred a good grasping pose
and grasped the RedBlue block successfully. After the robot
placed the RedBlue block in the “assembly zone”, we placed
the second workpiece, the Red block, at a random location.
The robot found a successful grasping pose and assembled the
two blocks successfully at last (see Figure 6c).

It should be noted that the assembly movement is controlled
by a force threshold. When the robot is executing the assembly
movement, the force increases gradually until it reaches the
threshold. The threshold is manually adjusted according to



(a)
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Fig. 5: Robot learns the skill of picking. 5a) Human demonstrates how to pick a Lego block from an effective position and
orientation by kinesthetic guiding. 5b) Robot reproduces picking skill with the learned object in arbitrary positions.

(a)

(b)

(c)

Fig. 6: Robot learns the skill of assembly. 6a) The human demonstrator teaches the robot to pick the first workpiece to the
assembly location by kinesthetic guiding, waiting for the following assembly steps. 6b) The human demonstrator teaches the
robot to pick the second workpiece to the assembly location and assemble the second workpiece into the first workpiece. 6c)
The robot reproduces the assembly task autonomously.



experience data. In this paper, the threshold is set at 14N . In
the teaching process, the human demonstrator taught the robot
the grasping point and orientation, as well as the assembly
sequence. It speeded up the learning progress of robotic
assembly.

V. CONCLUSION

In this paper, we proposed a new method for learning
grasping pose used in an assembly task. Kinesthetic guiding
is used for the learning. Force control is implemented for con-
trolling assembly movement. The key target was to simplify
the teaching process of the assembly task.

Experiments from the Lego Blocks assembly task show
that the proposed method can be used in teaching robots to
do assembly tasks through simple demonstrations. However,
further experiments are needed to study the robustness of the
system over different assembly tasks, such as slide-in-the-
groove, bolt screwing, and finally chair assembly.

In the future, we will extend the single arm manipulation to
dual-arm manipulation. The additional arm and wrist camera
enable the transfer of more assembly skills to robots. During
the assembly phase, the force control strategy needs to be
optimized to ensure a smooth motion and correct the assembly
positions.
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