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The effects of an upper body training program involving resistance exercise and 

high intensity arm cranking on peak handcycling performance and wheelchair 

propulsion efficiency in able-bodied males 

Abstract 

The aim of this study was to determine the training effects of an upper body training 

program involving resistance exercise and high intensity arm cranking on peak 

handcycling performance, propulsion efficiency and biomechanical characteristics of 

wheelchair propulsion in able-bodied males. The training group (n = 10) received a 4-

week upper body resistance training (RT), 70% of 1RM, 3 sets of 10 repetitions, 8 

exercise stations, 2 times/week, combined with high-intensity interval training (HIIT) 

2 times/week. HIIT consisted of arm crank exercise, 7 intervals of 2 minutes at 80-

90% of HRpeak with 2-minute active rest at 50-60% of HRpeak. The control group (n 

=10) received no training. Both groups performed a pre- and post- incremental 

handcycling test until volitional exhaustion to evaluate fitness, and a 4-minute 

submaximal wheelchair propulsion test at comfortable speed (CS), 125% and 145% 

of CS, to evaluate gross efficiency (GE), fraction of effective force (FEF), percentage 

of peak oxygen consumption (%V̇O2peak) and propulsion characteristics. Repeated 

measures ANOVA was performed (p < 0.05). Training resulted in a 28.2% ± 16.5% 

increase in POpeak, 13.3% ± 7.5% increase in V̇O2peak, 5.6% ± 0.9% increase in HRpeak, 

and 3.8% ± 1.5% decrease in HRrest. No training effects on FEF, GE, %V̇O2peak and 

push characteristics were identified. In conclusion, the combined RT and arm 

cranking HIIT improved fitness. However, it appears that this training did not result in 

improvements in propulsion efficiency and push characteristics. Additional 

wheelchair skill training may be needed to fully benefit from this advantage in daily 

life propulsion. 
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The effects of arm cranking upper body training on peak handcycling 

performance and wheelchair propulsion efficiency in able-bodied males 

 

INTRODUCTION 

A lack of physical fitness is a serious obstacle to the maintenance of function and can 

lead to a loss of independency in wheelchair users (45). In order to prevent wheelchair 

dependent individuals from undergoing functional degeneration, upper body exercise 

is necessary and adequate training programs are essential for optimizing mobility as 

well as health in wheelchair users (46). Because of the lower strain to the upper 

extremity compared with wheelchair training, arm cranking and handcycling exercise 

has been proposed to promote physical endurance in this population. Several studies 

have demonstrated exercise specific improvements of handcycling training programs 

in peak power output (POpeak) and peak oxygen consumption (V� O2peak) after 

continuous as well as high-intensity interval training (HIIT) (22, 43), but a combined 

resistance training and high intensity training protocol has not been investigated. A 

combined protocol making use of standard indoor gym equipment could benefit 

people who are interested in improving upper body performance, such as wheelchair 

users, handcyclists and canoeists The benefit of such a training program compared 

with previous programs is that such a program is time efficient and no specialized 

(outdoor) handcycle is needed: standard gym equipment and an indoor arm crank 

ergometer can be used, allowing training under the supervision of strength and 

conditioning professionals. Expected improvements in peak handcycling performance 

are particularly relevant for improving upper body performance and endurance, but 

combined resistance and arm cranking training might also positively impact on 
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wheelchair mobility, which is highly relevant in rehabilitation settings. The present 

study will be the first to explore effects of a combined training program, not only on 

peak handcycling performance, but also on wheelchair propulsion characteristics and 

mobility. The findings will provide relevant knowledge to strength and conditioning 

professionals working in rehabilitation settings. 

Gross mechanical efficiency (GE) of wheelchair propulsion is low (2 -11%) 

(23, 51) compared with arm cranking or handcycling (up to 15%) (31, 37) and cycling 

(18-23%) (9). The fraction of effective force (FEF), a measure of the effectiveness of 

force application, is relatively low (50-80%) (47) compared with handcycling (79-

83%) (21). The lower GE and FEF of wheelchair propulsion are associated with high 

repetitive and peak loads on the upper extremity leading to upper body strain and 

injury (13). As a consequence, manual wheelchair users have a high prevalence of 

upper extremity injuries (50). Theoretically, GE could increase due to adaptations in 

push characteristics, such as push time (the time duration that the hand applied a 

positive torque on the hand rim) and push frequency, and/or physiological adaptations 

caused by upper body exercise training involving high demands of the muscular and 

cardiorespiratory system (12, 20). 

HIIT is the most efficient training type to improve wheelchair propulsion 

capacity (56) as well as upper body sports performance (15, 22, 55). HIIT improves 

anaerobic and aerobic fitness in athletes and healthy individuals as well as in diseased 

populations (19). Accumulating evidence has shown that short-term HIIT with a 

duration of 2-6 weeks improves cardiovascular fitness (15, 16, 25, 44, 55). Moreover, 

this time-efficient HIIT training is known to be superior to moderate-intensity 

continuous training for improving peak aerobic capacity (22, 41, 43, 52). In addition, 

resistance training (RT) is recommended to promote muscle adaptations of strength, 
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power and endurance and optimize wheelchair propulsion capacity (24). A previous 

study showed that combined RT and rowing training improved push characteristics as 

defined by increased propulsive moment and decreased push frequency (40). A recent 

study suggested that adding RT to 4-week HIIT might have greater beneficial effects 

on canoeing performance and aerobic capacity compared with HIIT alone (55). Thus, 

it could be hypothesized that combined upper body training could lead to 

improvements in propulsion efficiency parameters (GE and FEF) and optimization of 

push characteristics in addition to increasing fitness. Therefore, it is important to 

study whether, and to what extent, arm cranking and RT that conform to the training 

guidelines of the American College of Sports Medicine (ACSM) could improve 

fitness and propulsion efficiency in wheelchair performance as well as push 

characteristics. The primary objective of this study was therefore to determine the 

training effects of a combined arm cranking HIIT and RT program on peak 

handcycling performance, cardiorespiratory fitness, propulsion efficiency in 

wheelchair performance and wheelchair push characteristics. From a practical point of 

view, this study will provide insights into effects of a combined training program on 

upper body endurance, as well as on submaximal wheelchair performance, that makes 

use of gym equipment that can easily be accessed and supervised by strength and 

conditioning professionals. 

METHODS 

Experimental Approach to the Problem 

This study was designed to determine the impact of a combined program of arm 

cranking HIIT and resistance training on peak handcycling performance, efficiency 

parameters and push characteristics of wheelchair propulsion as well as 

cardiorespiratory fitness in able-bodied males. The training group (TG) received a 4-
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week upper-body RT and a 4-week arm cranking HIIT. The control group (CG) 

received no training. Before and after the experimental period, participants performed 

an incremental handcycling test until exhaustion to determine peak handcycling 

performance (POpeak) and cardiovascular fitness (V̇O2peak). In addition, a submaximal 

wheelchair test was conducted before and after the experimental period to evaluate 

propulsion efficiency parameters (GE and FEF), percentage of V̇O2peak (%V̇O2peak) 

and push characteristics (push frequency and push time), over three propulsion 

velocities. Post-tests were conducted at the same time of the day, and on the same day 

of the week, four weeks after the pre-tests were completed. All subjects were asked to 

maintain regular daily physical activity pattern during the study period. The 

measurement of height using a stadiometer (Seca, Birmingham, UK), body mass 

using a digital floor scale (Seca Medical 770, German) and percent body fat using a 

bio-impedance analyser (Bodystat 1500, Douglas, Isle of Man, UK) as well as blood 

pressure using an automatic blood pressure unit (MX3 plus, Omron, Illinois, USA) 

were performed pre and post intervention. 

Subjects 

All procedures of this study were approved by the University of Essex Ethics 

Committee. Signed informed consent was gained from the participants (20 able-

bodied males, aged 26 ± 4 years) after receiving a verbal and a written explanation of 

the experiment protocol and its possible risks and benefits. The able-bodied 

individuals were chosen to represent individuals who are naïve to wheelchair 

propulsion and a homogenous group, meaning differences in type & severity of 

disability would not interfere with the data. This group is, to some extent, comparable 

with newly injured persons with intact upper body function. Previous research based 

on the same philosophy and the use of able-bodied participants to simulate the early 
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rehabilitation phase of individuals new to a wheelchair (5, 12-14, 20, 23, 26-28, 50, 

51). Participants were informed that they could withdraw from the study at any time 

without having to give an explanation and without penalty. Inclusion criteria were; 

18-40 years, inexperienced in wheelchair use and absence of any musculoskeletal 

problems. All participants completed a PAR-Q questionnaire (6), then randomly 

assigned to an experimental group: TG (n = 10, mean age: 25 ± 4 years, stature: 1.75 

± 0.09 m, body mass: 71.6 ± 9.9 kg) and CG (n = 10, mean age: 27 ± 5 years, stature: 

1.74 ± 0.04 m, body mass: 72.2 ± 16.0 kg). 

 

Incremental Exercise Test Protocol 

To evaluate the changes in cardiorespiratory fitness, peak physiological parameters 

were determined by a maximal incremental handcycle exercise test, performed on a 

motor-driven treadmill (Saturn, HP-Cosmos, Nussdorf, Germany, 1.0 x 2.7 m) using a 

standard sports wheelchair (Morriën, Morriën BV, Nijkerk, Netherlands) with an 

attached handcycling unit. This test was conducted before and after the training period 

for both groups. 

To measure power output (PO), the cranks of the add-on handcycling unit 

were fixed at the lightest gear and were instrumented with a power sensor SRM-

system (Schoberer Rad Messtechnik, Welldorf, Germany, Rotor 3D+ compact; 

accuracy 0.5%, sample frequency 1Hz). PO was continuously measured by the SRM 

and data were recorded on the SRM power controller 7. The SRM system produces a 

valid and reliable measurement of PO (18). 

The exercise load was increased by adding a load of 0.5% of body weight to 

the pulley system at the back of the handcycle every minute until volitional 
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exhaustion as described in previous studies (11, 22). The peak respiratory exchange 

ratio (RERpeak) and V̇O2peak were derived from an open circuit spirometer (CPX, 

Jaeger, Hoechberg, Germany). The peak heart rate (HRpeak) and POpeak were collected 

from the SRM system. 

Data selected for analysis depended on how long a participant could continue 

in the final minute of the test. If the final stage lasted more than 50 seconds, data 

collected over the 20th – the 50th second of the final stage were averaged to calculate 

peak values. If the final stage lasted between 30-50 seconds, data obtained over the 

final 20-second period were analyzed. If the final stage lasted less than 30 seconds, 

data collected over the 20th – the 50th second of the previous stage were analyzed. 

 

Wheelchair Sub-Maximal Protocol 

In addition to the incremental handcycling test, a submaximal wheelchair test was 

conducted before and after the training period. All participants were tested in the 

same wheelchair of 14 kg total mass. A non-folding ultra light wheelchair (Quickie, 

USA) was mounted with a force- and torque-sensing SMART
Wheel

 (3 Rivers 

Holdings, Mesa, AZ) to the right wheel to collect kinetic data. The characteristics and 

properties of the SMART
Wheel are described in more detail elsewhere (39). No 

individual adjustments relative to anthropometrics of the participants were made.  

Prior to the submaximal wheelchair test, resting oxygen consumption was 

measured breath by breath, using an open-circuit spirometer (CPX, Jaeger, 

Hoechberg, Germany) for 5 minutes. The gas analyzer was calibrated using room air, 

a Jaeger 31-syring and a calibration gas (16.0% O2, 5.0% CO2). Participants 

completed a four x 3-minute familiarization and performed an overground wheelchair 
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test to investigate their preferred comfortable speed using SMART
Wheel

 Standard 

Clinical Evaluation Protocol, a propulsion assessment that requires users to propel a 

manual wheelchair on a level tile floor for 2 x 10 second trials of propulsion at their 

comfortable speed (CS). The average comfortable speed from the 2 trials was used for 

further testing. 

In the present study, 3 propulsion speeds were included and wheelchair 

propulsion efficiency was determined for all three speeds, as described in our 

previous study (5). We adopted a propulsion speed protocol that demonstrated 54%-

64% V̇O2peak and ratings of perceived exertion (RPE) of 7-13 (38). RPE scores were 

obtained using a 15-point Borg scale of perceived exertion, where 6 represents 

‘extremely light’ and 20 represents ‘extremely hard’(3). The RPE scores were 

reported immediately after each trial by nodding when the experimenter was pointing 

to their RPE. CS and 125% of CS were selected to represent typical of everyday 

functional propulsion (38). The speed of 145% of CS was used to represent a 

relatively challenging speed (34, 38). A 4-minute familiarization period was included 

to allow the subject to become accustomed to the set speeds (CS, 125% and 145% of 

CS) to be employed during the 4-minute test period on the motor-driven treadmill 

(Saturn, HP-Cosmos, Nussdorf, Germany, 1.0 x 2.7 m). After an 8-minute rest period, 

participants propelled the wheelchair on the driven motor treadmill at 3 different 

imposed speeds. Each exercise bout consisted of 4 minutes of exercise following 8 

minutes of rest to allow for heart rate to return close to baseline. Participants did not 

receive specific instructions on wheelchair propulsion style other than to stay in the 

middle of the treadmill using the handrims. The uninstructed practice was used to 

minimize a motor learning bias, which could affect propulsion efficiency and focus 

primarily on the upper body training effects (12). 
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Oxygen consumption and heart rate were continuously collected during the 4-

minute submaximal wheelchair tests and were calculated as an average value over 20 

seconds of the last minute. Participants’ %V� O2peak at each speed pre and post 

intervention was calculated. In addition, push characteristics were determined from 

the torque signal as defined in De Groot et al. (14). Push frequency was defined as the 

number of pushes per minute. Push time was defined as the time duration that the 

hand applied a positive torque on the handrim. 

Using the measured torque and wheel velocity, which were derived from 

SMART
Wheel

, PO on each wheel was calculated as: 

  PO = Mz .Vw . rw-1    (Eq 1) (35) 

where Mz is the torque around the axle, Vw the velocity of the wheel and rw is the 

wheel radius (0.318 m). 

Mean power output (POmean) was calculated from the torque applied to the wheel axis 

(Mz) and angular velocity (ω) (35) and was calculated as an average value over the 

final 20 seconds. 

  POmean (W) = ([∑(Mz (N·m) · ω ( °·s − 1))] · 2)/Samples  (Eq 2)(35) 

As the SMART
Wheel measured the right side only, symmetry was assumed. To 

determine PO, thus, the values of the right wheel were multiplied by 2. The recovery 

period was accounted for with Mz (being ≤1 Nm) and the angular velocity of the hub, 

time averaged from the onset of the first push to the end of the recovery phase. 

Kinetic Measures 

The forces and moments were collected over the final 20 seconds of each trial. 
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Kinetic data were obtained via an infrared wireless transmitter at 240Hz using the 

SMART
Wheel

. Kinetic data were filtered using the SMART
Wheel manufacturer's 32-tap 

finite impulse response (FIR) low-pass digital filter with a cut-off frequency of 20 Hz.  

The beginning and end of the pushes were derived from the Mz and were identified by 

the absolute value of 1Nm. The push started when Mz was > 1 Nm and ended when 

≤1 Nm. Matlabc was used to identify cycles and compute variables. 

The fraction effective force (FEF) on the handrim was calculated from the 

total force applied to the handrim (Ftot) and tangential force (Ft) for each workload 

and expressed as a percentage: 

  FEF = Ft
. Ftot-1 . 100 (%)    (Eq 3)(8) 

The FEF was expressed as the time average FEF over the last 20-second measurement 

period. 

Gross Mechanical Efficiency 

Gross mechanical efficiency (GE) was calculated as the ratio of the external work to 

energy expended during exercise. External work done was determined from the 

POmean values derived from the SMART
Wheel during the handrim wheelchair 

propulsion. The metabolic energy expenditure (En) was calculated by multiply 

oxygen uptake with the oxygen equivalent: 

En (W) = V� O2 (l.min-1) . ((4940) . RER +16040/60)  (Eq 4)(17) 

 The following equation was used to calculate GE 

  GE = POmean 
.En-1 .100 (%)    (Eq 5)(53) 
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Training Protocol 

In the 4-week training period, TG performed 2 RT sessions and 2 HIIT per week. The 

load of RT was 70% of 1 repetition maximum (1RM). 1 RM was determined by 

weight and number of repetitions using Brzyck equation (4). 

1RM = Weight/(1.0278 - (0.0278 × Number of repetitions))  (Eq 6)(4) 

 

 Participants performed RT in accordance with ACSM guidelines. They 

completed 3 sets of 10 repetitions at 8 different exercise stations consisting of 

exercise on machines (Life Fitness, Franklin Park, Illinois, USA) for seated chest 

press, chest fly, lateral pull down, seated row, seated shoulder press, overhead cable 

for triceps extension, and dumbbell exercise for side lateral raise and biceps curl. 

Muscles worked were pectorals, deltoids, biceps, triceps, rhomboids and latissimus 

dorsi (32). 

HIIT consisted of handcycling exercise using an arm crank ergometer (Angio, 

Lode, Groningen, the Netherlands). The HIIT program of exercise intensity, 

frequency and work-rest ratio was based on intervention by Nybo et al (36). 

Participants carried out a 2-minute warm -up period prior to arm cranking training 

comprising 7 intervals of 2 minutes at 80-90% of HRmax. Between intervals, a 2- 

minute arm cranking active recovery period was performed at 50-60% of HRmax. The 

arm cranking training concluded with a 2-minute cool down period at 50-60% of 

HRmax. Training sessions took place on separate days of the week. 

Statistical Analyses 

The data were analyzed using the Predictive Analytics Software (SPSS for Mac 

Version 19; SPSS Inc., Chicago, USA). Standard descriptive statistics (mean ± SD) 
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were calculated for all physiological and kinetic variables. An independent t-test was 

applied to subject characteristics to detect baseline differences between the groups. A 

repeated measures ANOVA, with time (pre- and post-test) as the within factor, and 

group (TG and CG) as the between factor, was applied to detect significant 

differences over time for efficiency parameters (FEF and GE), push characteristics 

(push frequency and push time), peak exercise parameters and percentage of V̇O2peak, 

at each of the 3 speeds. Significance level was set at p < 0.05 for all statistical 

procedures. Effect size was calculated using partial eta-squared ( ) and interpreted 

as small (≥ 0.01), medium (≥ 0.06) or large (≥ 0.14) (7).  

 

RESULTS 

Subject characteristics in TG and CG 

There was no significant difference in CS between TG (0.92 ± 0.3 m/s) and CG (0.96 

± 0.2 m/s). No baseline differences in body mass, HRrest, body fat and blood pressure 

between groups were detected, see Table 1. A significant main time effect (decrease) 

was found for % body fat. A significant interaction effect was detected for HRrest. 

Training resulted in a 3.8% ± 1.5% decrease in HRrest 

Peak Physiological Fitness 

Training resulted in a 28.2% ± 16.5% increase in POpeak, 13.3% ± 7.5% increase in 

V̇O2peak and 5.6% ± 0.9% increase in HRpeak. Comparisons of peak values obtained 

during maximal incremental tests before and after training are presented in Table 2. 

Significant group x time interactions were found for POpeak, V̇O2peak (l·min-1) and 

V̇O2peak (ml·kg-1·min-1) with greater increases occurring in the TG for each variable. 
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Significant main effects of time  (increases) were found in POpeak, V̇O2peak (l·min-1) 

and V̇O2peak (ml·kg-1·min-1). No significant interactions or main effects of time were 

detected in RERpeak. 

 

Push characteristics and efficiency parameters 

Comparisons of push characteristics, efficiency parameters and % V̇O2peak at 

each speed, pre and post intervention according to group are presented in Table 3. No 

significant interactions were detected in the percentage of push frequency or push 

time at any speed (p > 0.05). However, significant main time effects were found 

showing a decrease in push frequency at CS and 125%. There was no change in FEF 

or GE over time or between groups at any speed (p < 0.05). There were no significant 

main effects or interactions for the change in % V̇O2peak, but moderate effect sizes 

(partial eta squared) of 0.078 and 0.129 at CS and 125% of CS, respectively, were 

found, and a small effect size of 0.016 at 145% of CS. 

 

DISCUSSION 

This was the first study to examine the effects of a 4-week combined upper body RT 

and 7x2 min handcycling HIIT program on handcycling peak performance, 

wheelchair propulsion efficiency, force effectiveness, push characteristics and 

cardiorespiratory fitness. We hypothesized that this combined upper body training 

program would improve peak performance and peak oxygen consumption, and would 

lead to improved submaximal wheelchair performance in able- bodied men. 

The primary outcomes of this study are indeed the significant improvements in POpeak 

(+28.2%), V̇O2peak (+13.3%) and HRpeak (+5.6%) after 4 weeks of training. Our results 

therefore clearly illustrate the effectiveness of the combined upper body training 
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program on peak handcycling performance as well as cardiorespiratory fitness. 

According to previous investigations, upper body training can be categorized into at 

least 3 modes: handcycle or arm cranking training, wheelchair training and RT (46). 

The magnitude of improvement in POpeak and V̇O2peak after our combined upper body 

training was higher than average change values found in spinal cord injured persons 

performing RT and aerobic exercise with the use of a rowing machine (40). Weight 

lifting combined with handcycling or other aerobic exercises has been evaluated, as 

well as handcycle training or wheelchair exercise only, demonstrating mean values of 

26.1% for POpeak (ranged from 10.1% to 57.2%) and 17.6% for V̇O2peak (ranged from 

5.1% to 33.5%) across these training modes (46). However, improvements in the 

current were lower than found after a 7 week handcycling HIIT protocol in which 

participant complete a very demanding 4x4 HIIT protocol 3 times per week. In that 

study, also using able-bodied subjects, large improvements in POpeak (+47.1%) and 

V̇O2peak (+22.2%) were noted (43). When compared to the equivalent HIIT protocol 

of 4 weeks, 2 times per week by Yang et al. (55), our combined RT and HIIT protocol 

showed greater improvements. Yang reported a small increase in V̇O2peak (+7%) and 

POpeak (+15%) after training. Our findings support the notion that adding RT to a 

standard HIIT program could have greater beneficial effects on peak canoeing 

capacities and performance compared to HIIT alone (55). From a practical viewpoint, 

the present combined protocol using indoor gym equipment and arm crank ergometer 

improved peak physiological outcomes, indicating the effectiveness of the combined 

upper body training strategy in the design of an optimal strength and endurance 

training program for upper body exercise. These findings are particularly applicable 

to wheelchair racers, handcyclists and canoeists, who require high values for both 

maximal aerobic and anaerobic capacities as well as a high level of upper body 
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muscle strength. Similarly, athletes who are interested in ‘off-feet conditioning’, due 

to injury or periodised rest will find these findings valuable. 

The mechanisms underlying the improvements in aerobic power and peak 

oxygen uptake of arm cranking HIIT programs have been explained through 

peripheral adaptations as well as central factors. Mitochondrial oxidative capacity is 

improved following training due to increases in PGC-1α and Ca2+ reuptake into the 

sarcoplasmic reticulum, resulting in a reduction exercising muscle fatigue (29). These 

oxidative adaptations enhance muscle function and contribute to the improvement in 

cardiorespiratory fitness (52). Also, central factors are likely to underlie the 

improvement in V̇O2peak following arm cranking HIIT. It has previously been found 

that myocardial contractility and ejection fraction are improved with HIIT (54). The 

upper body HIIT may result in different physiological response compared with lower 

body training due to the differences in muscle size, strength, relative mean repetition 

velocity and oxygen uptake kinetics (42). 

The limited data available on combined training suggested that RT combined 

with aerobic training on a rowing machine at 60% of maximal heart rate reserve for 

30 minutes 3 times weekly for 6 weeks improved propulsion (defined by a decreased 

push frequency and increased propulsive moment) (40). In the current study, no force 

or push adaptations were found as a result of training. The difference with previous 

literature may be due to the different subject groups participating in the various 

studies. Subjects in previous studies frequently had clinical conditions and experience 

using a manual wheelchair, compared with novice able-bodied users in the present 

study. However, improvements in peak physiological capacity in the study of Rodgers 

et al. (40), whose participants were experienced wheelchair users with spinal cord 

injury or lower limb dysfunction, were lower (14.6+% for POpeak and +6.8% for 
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V̇O2peak.) than the improvements reported in the present study, As there are 

differences in physiology between able-bodied and disabled individuals (2), the effect 

of the training on the clinical population may differ. Some level of caution must be 

used when transferring data to wheelchair users. However, it is important to evaluate 

how data collected in able-bodied individuals compares with individuals with 

different disabilities. The use of a homogenous group of able-bodied participants 

allowed us to better understand the training effect of the concurrent upper body 

training. This provided useful data to be able to interpret any deviations from this 

able-bodied pattern due to disabilities. Previous evidence showed that able-bodied 

individuals are to some extent comparable with newly injured individuals with intact 

upper body function (30). Therefore, our findings could be, at least, transferable to the 

newly injured population with intact upper body function in the initial stages of 

rehabilitation. 

The improvements in peak handcycling performance are particularly relevant 

for improving upper body health and endurance (22, 43), but whether combined 

resistance and arm cranking training also impact on wheelchair propulsion, is of 

interest in rehabilitation settings. Results of the present study showed that training 

adaptations after handcycling training were exercise specific, since no improvement 

in the propulsion efficiency, force application or push characteristics during 

wheelchair exercise were found. This may be due to the differences in the nature of 

arm cranking/handcycling and wheelchair propulsion. An arm cranking/handcycling 

exercise does not reproduce the pushing movements required for propelling a 

wheelchair. This speculation could be supported by previous work by Hettinga et al., 

which highlighted the importance of specificity of training to improve upper body 

performance and physiological capacity (22). Arnet et al. (1) indicated that compared 
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with wheelchair propulsion, peak relative muscle forces and glenohumeral contact 

forces were lower during handcycling. The peak relative muscle forces of 

supraspinatus, infraspinatus and biceps were 3.3 times, 2.8 times and 2.3 times, 

respectively, higher during wheelchair propulsion compared with handcycling. In 

addition, the nature of force application between handcycling and wheelchair 

propulsion is different. During handcycling, continuous force is evenly applied 

throughout the full motion cycle with the peak forces observed at the end of cycle. 

Conversely, wheelchair propulsion is a discontinuous motion (actively work around 

30-40% of the cycle), with peak forces found in the middle of the push phase (90° 

vertical) with smaller peaks at the early and late of the recovery phase (1). Further, 

since the most effective direction of exerted forces is tangential to the pushrim, both 

agonistic and antagonistic muscles of shoulders and arms are required for an 

optimally directed force during the propulsive phase with the need for coupling-

uncoupling actions in handrim propulsion (48). Muscle activity and force application 

differences between arm cranking/handcycling and wheelchair propulsion may be 

responsible for the lack of improvement in wheelchair propulsion characteristics after 

arm cranking training in the present study. 

Interestingly, at the 3 speeds, % V̇O2peak of the TG reduced in response to the 

intervention compared with CG, who demonstrated an increase in % V̇O2peak.  Even 

though there were no significant interactions, moderate to large effect sizes were seen 

in several cases. The training group worked at a lower (not significant) percentage of 

V̇O2peak after intervention compared with the control group. Though they were not 

significantly different, the relative exercise intensities varied between subjects and 

between conditions. At lower % V̇O2peak, as seen in TG post, GE is usually lower 

because of the relatively large contribution of basal metabolism (33). GE in our study 
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ranged between 4-6%, and the FEF ranged between 60-75%, ranges that are 

consistent with previous studies (2%-11% and 57%-80% for GE and FEF 

respectively) (10, 49, 51). The present study also found that the efficiency parameters 

increased, associated with increasing speed in both groups in agreement with previous 

studies (5, 13, 49). 

The lack of adaptation in wheelchair push characteristics after arm cranking 

training might result in a lack of improvement in muscle work which relates to 

efficiency parameters (28). It has been suggested that an optimal push frequency at 

CS correlated with oxygen consumption and GE (20). Consistent with previous 

studies, push frequency in this study ranged from 42-57 pushes/minute at CS (27) 

with a similar push time to that reported in the literature (0.27s- 0.31s) (26). Lower 

push frequency provides adequate time to generate higher force and apply to the 

handrim, which results in higher propulsive moments (27, 40). Consequently, this 

would allow wheelchair users to improve their propulsion economy. It could be 

suggested that a longer push time as well as lower push frequency could improve 

efficiency. 

 

PRACTICAL APPLICATIONS 

In the current intervention, 4-weeks of combined upper body training improved peak 

handcycling performance as well as cardiorespiratory fitness expressed as V̇O2peak, 

which could practically benefit people who are interested in improving upper body 

sports performance e.g. experienced wheelchair racers, handcyclists and canoeists. 

For individuals who are new to wheelchair use, however, intervention did not 

translate into an improved wheelchair propulsion efficiency or effect push 

characteristics. Strength and conditioning professionals working in rehabilitation 
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settings may consider additional wheelchair skill training during rehabilitation to fully 

benefit from this advantage in daily life propulsion. 
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Table 1. Body mass, resting heart rate, body fat and blood pressure for the two groups in pre- and post-test. Significance values for main effects 

of time, and group x time interaction are shown (Mean  ± SD).* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* HRrest = resting heart rate; SBP = systolic blood pressure; DBP = diastolic blood pressure; TG = training group, CG = control group. †significant 
main time effect (p < 0.05). ‡significant interaction effect (p < 0.05).  

Variable 
TG  CG P 

pre- post-test 

P 

Group x Time Pre-test Post-test  Pre-test Post-test 

Body mass (kg) 71.6±9.9 71.6±9.3  72.2±16.0 72.4±14.6 0.899 0.761 

HRrest (bpm) 73.6±12.0 70.8±17.2  73.4±7.5 83.0±8.6 0.117 0.008‡ 

Body fat  (%) 15.2±3.1 13.3±2.9  15.6±5.6 15.1±5.6 0.007† 0.120 

SBP  (mmHg) 122.7±17.6 118.6±10.7  118.1±2.6 126.5±10.5 0.481 0.051 

DBP  (mmHg) 71.3±14.5 68.7±9.3  71.1±7.2 70.9±4.5 0.590 0.644 
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Table 2. Peak exercise parameters using handcycling incremental submaximal test for the two groups in pre- and post-test (Mean  ± SD).* 

 

 

 

 

 

 

 

 

 

 

 

 

 

*TG = training group; CG = control group; POpeak = peak power output; HRpeak = peak heart rate; V̇O2peak = peak oxygen consumption; RERpeak = peak 
respiratory exchange ratio. †significant main time effect (p < 0.05). ‡significant interaction effect (p < 0.05). 

Variable 
TG  CG P 

pre- posttest 

P 

Group x Time Pre-test Post-test  Pre-test Post-test 

POpeak (W) 81.8 ± 24.9 104.9 ± 29.5  95.2 ± 29.5 89.5 ± 30.7 0.006† <0.001‡ 

HRpeak (bpm) 152.3 ± 13.7 160.8 ± 14.1  165.8 ± 12.2 164.9 ± 17.0 0.068 0.027‡ 

V̇O2peak (l·min-1) 1.7 ± 0.5 1.9 ± 0.5  1.8 ± 0.4 1.7 ± 0.4 0.040† <0.001‡ 

V̇O2peak  

(ml·kg-1·min-1) 
24.2 ± 5.7 27.4 ± 6.2  25.3 ± 5.5 24.4 ± 5.4 0.040† <0.001‡ 

RERpeak 1.15 ± 0.07 1.19 ± 0.08  1.17 ± 0.09 1.14 ± 0.08 0.767 0.172 



HANDCYCLE UPPER BODY TRAINING 

 

45 

Table 3. Wheelchair push characteristics, levels of FEF, GE and % V̇O2 Peak for the two groups in pre- and post-test (Mean  ± SD).* 

*TG = training group; CG = control group; FEF = fraction of effective force; GE = gross mechanical efficiency; % V̇O2peak = percentage of peak oxygen 

consumption; CS = comfortable speed. †significant main time effect (p < 0.05). ‡significant interaction effect (p < 0.05). 

Variable Speed 
TG  CG P 

pre- posttest 

P 

Group x Time Pre-test Post-test  Pre-test Post-test 
Push 

frequency 

(pushes/min) 

CS 57.0 ± 9.6 49.5 ± 15.8  59.4 ± 11.6 42.6 ± 12.9 0.001† 0.169 

125% 59.1 ± 12.8 51.0 ± 18.5  55.5 ± 15.5 47.4 ± 16.4 0.007† 1.000 

145% 68.4 ± 22.7 62.1 ± 21.4  57.9 ± 17.4 48.0 ± 13.7 0.070 0.674 

Push time (s) 

CS 0.30 ± 0.08 0.28 ± 0.12  0.33 ± 0.09 0.30 ± 0.06 0.262 0.927 

125% 0.27 ± 0.27 0.28 ± 0.08  0.25 ± 0.06 0.26 ± 0.06 0.366 0.744 

145% 0.25 ± 0.11 0.25 ± 0.06  0.23 ± 0.06 0.24 ± 0.05 0.882 0.472 

FEF (%)  

CS 70.0 ± 14.0 62.3 ± 12.9  65.5 ± 15.2 60.8 ± 14.1 0.137 0.707 
125% 68.7 ± 12.7 63.9 ± 13.4  69.6 ± 10.7 68.4 ± 15.1 0.457 0.660 
145% 74.4 ± 10.3 66.6 ± 15.2  72.8 ± 12.5 75.7 ± 16.2 0.485 0.124 

GE (%) 

CS 4.8 ± 1.3 4.0 ± 1.0  4.9 ± 2.0 4.6 ± 1.9 0.118 0.620 
125% 5.2 ± 1.6 4.6 ± 1.3  5.5 ± 1.7 5.1 ± 2.2 0.173 0.771 
145% 5.9 ± 1.3 5.4 ± 1.3  6.0 ± 1.7 5.8 ± 2.3 0.364 0.700 

% V̇O2 Peak 

(%) 

CS 40.4 ± 5.1 38.1 ± 2.8  36.4 ± 5.1 42.0 ± 2.8 0.624 0.232 

125% 43.0 ± 3.8 41.6 ± 3.2  40.5 ± 3.8 48.5 ± 3.2 0.265 0.121 

145% 46.9 ± 3.1 46.3 ± 4.1  48.1 ± 3.1 50.4 ± 4.1 0.761 0.599 


