
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIM.2020.3019849, IEEE
Transactions on Instrumentation and Measurement

IEEE Transactions on Instrumentation and Measurement 

 

 

1 

  

Abstract—The effectiveness of workload identification is one of 

the critical aspects in a monitoring instrument of mental state. In 

this field, the workload is usually recognised as binary classes. 

There are scarce studies towards multi-class workload 

identification because the challenge of the success of workload 

identification is much tough, even though one more workload class 

is added. Besides, most of the existing studies only utilized spectral 

power features from individual channels but ignoring abundant 

inter-channel features that represent the interactions between 

brain regions. In this study, we utilized features representing 

intra-channel information and inter-channel information to 

classify multiple classes of workload based on EEG. We 

comprehensively compared each category of features contributing 

to workload identification and elucidated the roles of feature 

fusion and feature selection for the workload identification. The 

results demonstrated that feature combination (83.12% in terms 

of accuracy) enhanced the classification performance compared to 

individual feature categories (i.e., band power features, 75.90%; 

connection features, 81.72%, in terms of accuracy). With the F-

score feature selection, the classification accuracy was further 

increased to 83.47%. When the features of graph metric were 

fused, the accuracy was reached to 84.34%. Our study provided 

comprehensive performance comparisons between methods and 

feature categories for the multi-class workload identification and 

demonstrated that feature selection and fusion played an 

important role in the enhancement of workload identification. 

These results could facilitate further studies of multi-class 

workload identification and practical application of workload 

identification. 

Index Terms—Mental Workload Identification, Feature Fusion, 

Feature Selection, Graph Metric, Brain Connectivity, Power 

Spectral Density, EEG 

I. INTRODUCTION 

ITH the increase in the pace of people’s lives, 

their mental workload is elevated accordingly. 

The previous study has shown that mental overload 

could lead to errors during decision-making [1], 

which is one of the main causes of 

mistakes/accidents. In contrast, keeping workload 

always low might avoid mistakes/accidents, but it 

would waste mental resource and result in low work 
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efficiency [2]. Therefore, an appropriate workload 

level, ensuring high efficiency but no overloading, is 

desired. To this end, accurate identification of 

workload level is prerequisite. 

In general, the workload can be assessed using 

subjective or objective manners [3]. Subjective 

manner is based on individual's self-estimation of 

task difficulty [4]. In contrast, objective manner is to 

assess workload based on objective metrics such as 

performance score or accuracy. Another critical 

factor affecting workload assessment application is 

real-time. If an assessment is done discretely, it is not 

promising for practical application. Nowadays, 

neurophysiological signals are frequently used to 

monitor mental states as they can be measured 

continuously [5]-[8]. Using such signals, the mental 

workload can be assessed in real-time. To date, 

electroencephalogram (EEG), electrooculogram 

(EOG), and electrocardiogram (ECG) have been 

used in workload assessment [9], [10]. Among these 

signals, EEG is relatively better for assessing 

workload level as it directly reflects brain activity 

[11]. In addition, assessment accuracy could be 

higher using EEG signal compared to ECG signal, 

which was found in the Zhang et al.’s study [12].  

As we know, band power is one of the feature 

categories for the investigation of mental workload. 

For instance, Borghini et al. found that theta band 

power was increased while alpha band power was 

decreased when drivers were under high workload 

[13]. In another study of driver’s workload 

assessment, all five typical frequency bands (i.e., 

delta, theta, alpha, beta, and gamma) were used [14], 
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the results revealed that the band powers could 

provide high accuracy for driver mental workload 

classification. All typical frequency bands were used 

in the above studies, as well as studies in [15], [16]. 

In this study, we, therefore, included all typical 

frequency bands and compared the performance 

among them. Besides power features, functional 

connection features were recently used in workload 

identification [17]-[21]. The functional connection 

features can provide inter-channel information 

representing interactions between brain regions, 

which cannot be captured by power features that are 

derived from individual channels. Gupta et al. found 

that the EEG graph metric features were more 

suitable for emotion classification than traditionally 

used EEG features such as band powers and 

asymmetry index [22]. 

As power features and functional connection 

features respectively represent different information 

and they are complementary, we explored both of 

them in our study. In the other classification reports 

other than workload identification, feature fusion and 

feature selection gave a positive role in the 

enhancement of classification performance. In the 

method proposed by Chen et al. [23], significant 

multimodal features were selected respectively by 

two comparative feature selection methods: Fisher 

Criterion Score and Davies-Bouldin index. The 

comparison results showed that accuracy was 

significantly improved. Another study using the 

fusion of wavelet entropy and spectral power 

demonstrated the improvement of classification 

performance [24]. Therefore, we planned to take 

these two strategies (i.e., feature selection and feature 

fusion) to find out the role of them in workload 

identification. Lastly, most of the published studies 

performed binary classification (i.e., high workload 

vs. low workload) [25]-[30]. Towards practical 

application, it is more desirable to classify more 

levels of workload. To this end, we designed an 

aircraft operation simulation experiment to induce 

multiple levels of workload and performed multi-

class workload identification. We compared 

workload identification performance among 

frequency bands, different individual feature 

categories, different combinations of feature 

categories, and feature selection methods. We then 

provided comprehensive results of workload 

identification and performance comparison.  

 

 
 

Fig. 1 The schematic of multi-class workload identification using different methods, different feature categories, and different feature combinations.  
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II. PARTICIPANTS AND METHOD  

A. Experiment 

The experiment for inducing workload is a 

simulated aircraft operation, where an Oculus Rift 

virtual reality headset was used to display virtual 3D 

aircraft and a joystick was provided to participants. 

A total of seven participants were recruited in this 

experiment. All of them had not had any experience 

of EEG experiment and the use of this aircraft 

simulation. They were asked to control the virtual 

aircraft by a joystick and performed three 2-minute 

long tasks, constituting a 6-minute session. They 

completed three identical sessions. For each session, 

they started a low workload task and ended with high 

workload task. During the low workload task, 

participants only monitored autonomous aircraft and 

were not asked to do any control actions. In the 

medium workload task, participants manually 

controlled the aircraft and had to pay more effort. In 

the high workload task, the effort was further 

increased due to more difficult manipulation for 

keeping aircraft balanced because the aircraft had 

malfunctions such as engine failure. During the 

experiment, 62 EEG channels were used to record 

brain activity with a sampling rate of 256 Hz. The 

protocol of the experiment was approved by the 

institutional review board of the National University 

of Singapore. All participants signed the consent 

form before starting the experiment.  

B. Data Processing 

A typical procedure was utilized to mitigate 

artifacts from EEG signals, including bandpass filter 

(0.5~48Hz) and independent component analysis 

(ICA). The EEG signals were partitioned into 2-

second long segments, resulting in 180 segments for 

each level of workload and a total of 540 segments 

for each participant. Power features and functional 

connection features were then extracted for each 

segment. Consequently, individual categories of 

features and their combinations were used to identify 

workload. The schematic is illustrated in Fig. 1.  

C. Feature Extraction 

Fourier transform (FT) and wavelet packet 

decomposition (WPD) were respectively utilized to 

obtain power features in five frequency bands (i.e., 

delta, 1~4 Hz; theta, 4~8 Hz; alpha, 8~12 Hz; beta, 

12~30 Hz; and gamma, 30~45 Hz). The wavelet 

Daubechies 4 (db4) was selected following the 

previous research [31]. There were two power 

features for each frequency band. These were band 

power and relative band power (i.e., the ratio of the 

band power to the total power of five bands). In our 

study, 62 channels were used. Therefore, there were 

620 power features (62×5 band power features and 

62×5 relative band power features).   

The interactions between brain regions could be 

quantified by Phase Locking Value (PLV), which 

describes phase coupling. PLV method estimates the 

phase synchronization among channels. The PLV 

between channel 𝑘 and channel 𝑙 over time span 𝑡 =
{𝑡1, 𝑡2, ⋯ , 𝑡𝑘} can be computed as follows 

 

𝑃𝐿𝑉𝑘,𝑙 = 〈𝑒𝑗(𝜑𝑘(𝑡)−𝜑𝑙(𝑡))〉 (1) 

 

where 〈∙〉 stands for the arithmetic mean over the 

time span, 𝜑𝑘  and 𝜑𝑙  are the phases of channels 𝑘 

and 𝑙. 
PLV is affected by volume conduction. In contrast, 

Phase Lag Index (PLI) is insensitive to volume 

conduction. The PLI is computed by 

 

𝑃𝐿𝐼𝑘,𝑙 = |〈𝑠𝑖𝑔𝑛[𝑠𝑖𝑛(𝜑𝑘(𝑡) − 𝜑𝑙(𝑡))]〉| (2) 

 

Where 𝑠𝑖𝑔𝑛  stands for signum function and |∙| 
indicates absolute value function. 

PLV and PLI values are between 0 and 1. A value 

of 0 indicates no coupling and 1 indicates perfect 

phase locking. The stronger this nonzero phase 

locking is, the larger PLV and PLI values are. In our 

case, a connection matrix with the size of 62×62 was 

obtained by either PLV or PLI for each segment. 

Because the connection matrix is symmetric, the 

upper triangle is the same as the lower triangle. We 

also removed entries on the main diagonal as these 

entries are for self-connections. Finally, 1891 

[62×(62-1)/2] connection features were obtained. 

Moreover, we computed the clustering coefficient 

and assortativity coefficient to have graph metric 

features. During the computation of graph metric, a 

sparsity threshold was applied to the connection 

matrix. Since there is no definitive method to 
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determine the sparsity threshold [32], we followed 

previous studies to utilize a series of thresholds to 

eliminate the bias due to only using one arbitrary 

threshold [33]-[37]. A series of thresholds ranging 

from 0.12 to 0.40 with an incremental step of 0.01 

were used in our study and the metric values were 

obtained by taking integral of all values 

corresponding to the thresholds. 

Clustering coefficient describes the connection 

centralization of the connection network. The 

clustering coefficient for channel 𝑖 is defined as: 

 

𝐶𝑖 =
∑ ∑ 𝑤𝑖𝑘𝑤𝑖𝑙𝑤𝑘𝑙𝑙≠𝑖,𝑙≠𝑘𝑘≠𝑖

∑ ∑ 𝑤𝑖𝑘𝑤𝑖𝑙𝑙≠𝑖,𝑙≠𝑘𝑘≠𝑖
 (3) 

 

Where 𝑤 stand for entries in the connection matrix, 

which were either PLI or PLV values, and 𝑖, 𝑘, 𝑙 are 

channel indices.  

The assortativity coefficient can measure the 

overall connecting structure of a network. Supposing 

a network has 𝑀 edges totally and the n-th edge is 

with the degrees of 𝛼𝑛 and 𝛽𝑛  for each end, 

assortativity coefficient (𝑟) of the network can be 

calculated by 

  𝑟 = 

1
𝑀

∑ 𝛼𝑛𝛽𝑛 − [
1
𝑀

∑
1
2𝑛 (𝛼𝑛 + 𝛽𝑛)]

2

𝑛

1
𝑀

∑
1
2𝑛 (𝛼𝑛

2 + 𝛽𝑛
2) − [

1
𝑀

∑
1
2𝑛 (𝛼𝑛 + 𝛽𝑛)]

2 
(4) 

 

The network is assortative if 𝑟 is greater than zero 

and is disassortative if 𝑟 is less than zero. If  𝑟 is zero, 

the network is randomly mixed. The assortative 

networks are likely to consist of mutually coupled 

high-degree channels and to be resilient against 

random failures. In contrast, the disassortative 

networks are likely to have vulnerable high-degree 

nodes. For each frequency band, there were 62 

clustering coefficients and one assortativity 

coefficient, resulting in 315 (62×5+1×5) features. 

D. Feature Selection and Fusion  

High computational demand is needed to process 

high dimensional features and there might be the 

curse of dimensionality. To overcome this problem, 

we used Fisher score (F-Score) [38] and stochastic 

proximity embedding (SPE) [39] to reduce the 

feature dimension. The desired number of features 

has to be set for performing these two methods. We 

explored different feature numbers (power features: 

from 20 to 620 with an incremental step of 50, graph 

metric features: from 5 to 315 with an incremental 

step of 10, connection features: from 41 to 1891 with 

an incremental step of 50) to obtain classification 

accuracies. The desired numbers for each category of 

features were determined when the highest accuracy 

was reached.  

E. Classification 

Random Forest (RF) is a nonlinear classifier [40], 

belonging to the family of ensemble methods. Such 

methods have good generalization [41] and are more 

robust to overfitting than individual trees because 

each node does not see all features at the same time 

[40]. It has been shown that random forest performed 

well for workload classification [42]. We, therefore, 

adopted random forest in this study. For the 

performance evaluation, 2-second long segments 

were considered as samples, resulting in 180 samples 

for each workload level and each participant. The 

total number of samples for each participant was 540. 

The accuracies were separately obtained for each 

participant using five-fold cross-validation. The 

accuracies averaged across all participants were 

reported in this paper.  

III. RESULTS 

We first compared the performances between FT 

and WPD. We used FT and WPD to extract 

frequency bands separately and obtained 

classification accuracies using the features extracted 

from these frequency bands. The mean classification 

accuracy averaged across all subjects was used for 

performance assessment. The performance was 

better when using FT compared to WPD (see Fig. 2). 

In the cases of the single feature category, the highest 

accuracies under FT method was 77.99% (Graph 

Metric (PLV)) and the highest accuracy under WPD 

method was 68.60% (Band Power). The best 

accuracies were elevated by 0.61% and 2.60% for FT 

and WPD, respectively, when combining feature 

categories of power and graph metric (PLV). Overall, 

the accuracy obtained by using FT was significantly 

greater than that of using WPD (Wilcoxon signed 

rank tests, p<0.01, see Fig. 3). These results 
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suggested that FT gave rise to a better performance 

of workload classification in our case. Therefore, we, 

hereafter, compared classification accuracies 

obtained by using FT.   

 
Fig. 2 Accuracies averaged across all subjects for each case. The accuracies 

obtained using Fourier Transform (FT) were higher than that of using Wavelet 

Packet Decomposition (WPD). In the cases of using the single feature category, 

the highest accuracies are 68.60% (Band Power) and 77.99% (Graph Metric 
(PLV)) for WPD and FT, respectively. When combining features of band power 

and graph metric (PLV), the accuracies are improved by 0.61% and 2.60% for 

the conditions of FT and WPD, respectively. The Wilcoxon signed rank test was 

utilized to check how significant the differences in the accuracies. This statistical 

evaluation generated p-values. The smaller p-value is, the more significantly 

different the accuracies are. The cases showing significant differences in the 

accuracies among feature categories of the same method (i.e., FT or WPD) and 

between FT and WPD for the same feature category are marked in the figure. * 
stands for p<0.05 and ** stands for p<0.01. 
 

 
Fig. 3 The overall accuracy comparison between FT and WPD. The accuracies 

for WPD and FT were 68.20% and 74.77%, respectively. ** stands for p<0.01 

(Wilcoxon signed rank test). 

All connection feature-based classification 

accuracies averaged across all subjects in each 

frequency band and each condition are shown in 

Table I. Based on the results, the gamma band shows 

the best performance (accuracy of 80.41% averaged 

across all cases). Using the gamma band, the 

accuracy exceeded 80.00% for 5 out of 6 cases. 

Therefore, the connection features used in the feature 

combination were from this frequency band. F-score 

improved classification accuracies, while SPE 

reduced classification accuracies. The accuracy was 

enhanced by using feature selection of F-score.  

 

TABLE I 
Accuracies averaged across all subjects when using connection features 

Band 

Accuracy 

PLV PLI 

Mean 
Standard 

Deviation 

No 

Feature 

Selection 

Stochastic 

Proximity 

Embedding 

Fisher 

Score 

No 

Feature 

Selection 

Stochastic 

Proximity 

Embedding 

Fisher 

Score 

Delta 

(1-4Hz) 
55.45 55.00 56.69 54.81 53.47 55.26 5511 0.95 

Theta 

(4-8Hz) 
59.58 55.93 60.16 58.60 56.77 60.26 58.55 1.66 

Alpha 

(8-12Hz) 
66.61 62.83 67.17 65.87 64.05 66.51 65.51 1.55 

Beta 

(12-30Hz) 
80.56 78.04 80.63 78.47 76.27 79.02 78.83 1.50 

Gamma 

(30-45Hz) 
81.72 80.24 82.17 80.26 77.46 80.61 80.41 1.51 

 

TABLE II 
Accuracies averaged across all subjects for single feature categories and 

combinations of feature categories 

Features Category 

Accuracy 

Fourier Transform 

No 

Feature 

Selection 

Stochastic 

Proximity 

Embedding 

Fisher 

Score 

Power 75.90 69.81 76.59 

Graph Metric (PLV) 77.99 68.04 79.55 

Graph Metric (PLI) 74.71 68.94 75.16 

Power& Graph Metric (PLV) 78.60 70.69 79.10 

Power& Graph Metric (PLI) 77.70 70.29 78.49 

Power& Connection (PLI) 81.69 78.68 82.49 

Power& Connection (PLV) 83.12 80.90 83.47 

Power& Graph Metric (PLV) & 

Connection (PLI) 
82.25 77.99 82.96 

Power& Graph Metric (PLI) & 

Connection (PLI) 
81.83 78.31 82.62 

Power& Graph Metric (PLV) & 

Connection (PLV) 
82.91 80.77 84.34 

Power& Graph Metric (PLI) & 

Connection (PLV) 
82.78 80.74 83.54 

 

Table II lists the workload classification 

accuracies for single feature categories and 

combinations of feature categories. In single feature 

categories, the performance of graph metric features 

under the condition of PLV (77.99%) was higher 

than that of power features (75.90%). Taken Table I 

and Table II together, we can see that the accuracy 

obtained using connection features in the gamma 
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band (81.72%) was higher than that of using power 

or graph metric features (75.90% and 77.99%, 

respectively) under the condition of PLV and no 

feature selection and fusion. In combinations of 

feature categories, the classification accuracies were 

generally improved compared to that of single 

feature category. The highest classification accuracy 

was 83.12%, which was obtained by using the 

combination of power and connection features 

(under the condition of PLV). After using feature 

selection and fusion (F-score), classification 

accuracies were improved for all cases. The highest 

accuracy of 84.34% was achieved when using the 

combination of features of band power, graph metric 

(PLV), and connection (PLV) and feature selection 

of F-score. Its confusion matrix is shown in Fig. 4. In 

this case, the identification of the low workload level 

was better than the identification of the other 

workload levels. 

 
Fig. 4 Confusion matrix for the case of the best classification performance using 

the combination of features of band power, graph metric (PLV), and connection 
(PLV) and feature selection of F-score. Columns in the confusion matrix 

represent predicted classes and rows represent ground truth classes. The entries 

in the diagonal show correctly classified percentages in each class. 
 

The detailed statistical results obtained by 

Wilcoxon signed rank tests are shown in Fig. 5. It 

depicts whether or not the accuracies were 

significantly different when using different 

categories of features. We can see that the 

performance was better when using connection 

features compared to that of using graph metric 

features. The combination of feature categories 

significantly benefited the classification of workload.   

IV. DISCUSSION 

This study aimed to improve the performance of 

multi-class workload classification using the fusion 

of different kinds of features and feature selection. 

We comprehensively explored different cases and 

compared their performances in terms of accuracy. 

This is the first attempt to fuse single-channel 

features and inter-channel features for classifying 

three levels of workload. In the case of the single 

feature category, the performance was higher when 

using functional connection features compared to 

band power features. The result demonstrated that 

the connection features were effective for workload 

classification. Among the five typical frequency 

bands, the highest classification performance was 

achieved when the connection features in the gamma 

band were used. It has been found that the gamma 

rhythm originated from the interneurons with the 

mediation by pyramidal cells [43]. A greater number 

of studies using EEG recorded from either human 

(e.g., [44]) or animals (e.g., [45]) have shown that the 

gamma oscillation was related to cognitive ability. 

For example, Tallonbaudry and Bertrand [46] 

revealed that the gamma band played a key role in 

working memory, showing a high correlation 

between the enhanced gamma power and the 

maintenance of cognitive task. According to our 

study, the accuracy was lower when using graph 

metric features compared to connection features. We 

speculated that the aggregated features of graph 

metric might be too abstract to be as informative as 

the connection features. This finding informed us 

that high-level features might be not better than low-

level features for the aim of workload classification. 

We were surprised to observe that the best 

performance was achieved when the gamma band 

was used, which was not accordance with our initial 

expectation that the theta and alpha bands should 

mostly contribute to the workload classification [47]-

[50]. This might be partially due to that the 

movements during aircraft operation introduced 

discriminative artifacts into the gamma band of EEG 

signal. However, this effect should not be significant 

if any. Because we did not see obvious movement-

related artifacts after the procedure of artifacts 

removal. Further studies are required to elucidate the 

relationship between the gamma band and mental 

workload. 
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The comparison results of classification 

performance demonstrated that the feature fusion of 

different kinds of features outperformed individual 

feature categories. Feature fusion enhanced 

classification accuracy, achieving the highest 

classification accuracy of 84.34% when the features 

of band power, PLV graph metric and PLV 

connection were fused. This suggested that different 

feature categories were complementary to each other 

in terms of discriminative information.  

 

 

 
Fig. 5 The results of Wilcoxon signed rank test in performance comparisons between feature categories. Most of the compared cases were significantly different (p < 

0.05).  
 

According to the results of feature selection and 

fusion, F-score and SPE have different performances. 

F-score improved the classification accuracies for all 

cases, while SPE reduced the classification 

accuracies. F-score was better for the feature 

selection according to the obtained results. The 

advantage of F-score was also found in the Ren et 

al.’s study, showing the better performance 

compared to principal component analysis (PCA) 

[51]. Fig. 6 shows the average accuracies for 
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different feature dimensions with F-Score and SPE. 

The results show that classification accuracies were 

increased quickly to a local peak and then slightly 

increased to a balanced level for most cases.  

 
Fig. 6 The classification accuracies for different dimensions with F-Score and 

SPE. 

 

Based on the current study, the SPE reduced 

classification accuracy, which was different from our 

previous results [52], indicating that the same 

method has different performance on the different 

classification tasks and different datasets. It is worth 

noting that the FT was better than WPD based on the 

results of this study, which is not in agreement with 

the findings in other studies. This might be due to the 

selection of wavelet since the wavelet dramatically 

affects the WPD performance. In our study, we did 

not explore all wavelets and selected the widely used 

wavelet (db4) according to previous research [31]. 

Therefore, the selected wavelet might not fit the data 

in this particular case.   

This study demonstrated that workload 

classification was well improved using the fusion of 

power and functional connection features. Although 

the study was informative for the workload 

classification, there were a few limitations. First, this 

study constructed functional connections using PLV 

and PLI. Other methods such as Partial Directed 

Coherence (PDC) and Directed Transfer Function 

(DTF) [53] were not included in the study. Second, 

in this study, we did not discuss brain regions 

relevant to mental workload because the SPE 

compressed feature dimension as a whole, which did 

not enable us to trace relevant regions. Third, 

workload identification was not assessed in real-time. 

Therefore, the results reported in this paper could not 

reflect that derived in a real-time practical 

application. However, the majority of findings 

reported in this paper should be retained when 

converting to a practical application since the 

practical application is similar to the experiment to a 

large extent. Fourth, the repetition of tasks in our 

experiment might introduce learning effect on 

participants’ behaviour of aircraft operation. This 

effect probably causes bias in the behaviour 

investigation, but its effect is not critical for the 

purposes of classification. In addition, the length of 

a session (a cycle of the low, medium, and high 

workload tasks) is only 6 minutes. The total time for 

the three sessions is 18 minutes. The duration is not 

long so that the learning effect should not be 

significant if any.      

V. CONCLUSION 

In summary, the current study designed an 

experiment of aircraft operation simulation to 

explore workload identification performance among 

frequency bands, different individual feature 

categories, different combinations of feature 

categories, and feature selection and fusion methods. 

The study had shown that using the connection 

features in the gamma band achieved the highest 

accuracy (81.72%) among individual features. The 

combination of band power features and connection 

features (gamma) outperformed individual feature 

categories, obtaining the classification accuracy of 

83.12%. With feature selection using F-Score, the 

accuracy was further enhanced to be 83.47%. When 

the features of graph metric were fused with the 

features of band power and connection, the 

classification accuracy was reached to 84.34%. The 

results showed that feature selection and fusion gave 

a positive role in the multi-class workload 

classification. 
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