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ABSTRACT Manual preparation of fungal samples for Fourier Transform Infrared (FTIR) spectroscopy
involves sample washing, homogenization, concentration and spotting, which requires time-consuming
and repetitive operations, making it unsuitable for screening studies. This paper presents the design and
development of a fully automated robot for the preparation of fungal samples for FTIR spectroscopy. The
whole system was constructed based on a previously-developed ultrasonication robot module, by adding
a newly-designed centrifuge module and a newly-developed liquid handling module. The liquid handling
module consists of a high accuracy electric pipette for spotting and a low accuracy syringe pump for
sample washing and concentration. A dual robotic arm system with a gripper connects all of the hardware
components. Furthermore, a camera on the liquid handling module uses deep learning to identify the labware
settings, which includes the number and positions of well plates and pipette tips. Machine vision on the
ultrasonication robot module can detect the sample wells and return the locations to the liquid handling
module, which makes the system hand-free for users. Tight integration of all the modules enables the robot
to process up to two 96-well microtiter (MTP) plates of samples simultaneously. Performance evaluation
shows the deep learning based approach can detect four classes of labware with high average precision,
from 0.93 to 1.0. In addition, tests of all procedures show that the robot is able to provide homogeneous
sample spots for FTIR spectroscopy with high positional accuracy and spot coverage rate.

INDEX TERMS Laboratory automation, robotics, deep learning, ultrasonication, spotting, FTIR

spectroscopy.

I. INTRODUCTION

Characterization, identification and classification of microor-
ganisms (bacteria, yeast, filamentous fungi and algae) has
a high importance in the field of environmental, indus-
trial, medical and agriculture microbiology, and microbial
ecology [1]. There are two principle ways to characterize,
identify and classify microorganisms - by using Genotyp-
ing and/or Phenotyping technologies. Genotyping technolo-
gies are based on PCR/sequence typing and genome typing
approaches, have gone through tremendous developments
in the last decade. This has resulted in Next Generation
Sequencing (NGS) and CRISPR/Cas9 technologies allow-
ing highly precise and robust analysis of DNA and its
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products [2]. As the application of genotyping technologies
reached into new levels of development, academic, biotech-
nological and clinical diagnostics laboratories had to address
the logistics of consistently running the high-throughput
operations - DNA extraction, shearing, cleanup, amplifi-
cation, and sequencing. Considerable progress has been
made on automating these individual elements. Automated,
high-throughput DNA extraction and sequencing was imple-
mented in multiple core sequencing laboratories soon
after NGS was established [3]. As an example, bacte-
rial genotyping was automated in some laboratories soon
thereafter [4]-[6].

While genotyping technologies have been advancing
rapidly and through the integration of robotics, phenotyp-
ing technologies have been for a long time represented
by the conventional microbiological techniques providing
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morphological, physiological and cultural characteristics.
Commonly employed phenotypic methods are protein-based
methods including biotyping, serotyping, bacteriocin typ-
ing, phage typing, antimicrobial susceptibility patterns etc.
These phenotypic methods are associated with several prob-
lems related to reproducibility, discriminatory power, high
variability etc. Such shortcomings of phenotypically based
methods have therefore led to the development of novel
so called Next Generation Phenotyping (NGP) technolo-
gies, represented by two biophysical non-invasive tech-
niques - Fourier Transform Infrared (FTIR) spectroscopy [7]
and Matrix-Assisted Laser Desorption/Ionization Time-off-
Flight (MALDI-TOF) spectrometry (MS) [8]. Both tech-
niques provide, with a high level of precision, a cellular
biochemical phenotype of microbial cells - MALDI-TOF MS
provides protein profile while FTIR provides total biochem-
ical profile (proteins, lipids, polysaccharides). In addition,
it has to be noted that FTIR provides not only cellular pheno-
type in the form of intracellular metabolites, but also extra-
cellular phenotype in the form of extracellular metabolites.
Both techniques are based on the high-throughput platform
with the potential for analyzing up to 159 - 384 samples in a
single analytical run.

Manual preparation of multi-well fungal samples for FTIR
involves sample washing to remove culture medium, homog-
enization by ultrasound, up concentration for FTIR and
spotting on the multi-well infrared (IR) plates. In case of
high-throughput set-up fungi are cultivated in 96-well MTP
plates and the whole process for manual preparation of a
96 microbial samples may take more than 10 hours depending
on the type of fungi and technician experiences. The whole
process also requires highly skilled technicians to oversee the
process [9], especially for sample homogenization and spot-
ting. In addition, manual operation may introduce variation
to the samples due to the subjective nature of visual inspec-
tion [10]. In order to explore the high-throughput potential of
the FTIR techniques, there is a strong need for the implemen-
tation of liquid-handling robotics for the sample preparation
procedures.

In the laboratory automation field, a number of plat-
forms have been developed to automate the sample prepa-
ration procedures. Meier et al. [11] presented an automatic
sampling spotting method using a commercially available
synthetic robot to prepare samples for MALDI-TOF MS.
Nejatimoharrami et al. [12] developed a liquid-handling robot
based on a 3D printer for placing droplets (spotting). The
system used a camera to monitor the droplet size and position.
Kwee et al. [10] described a robotic platform that used a
vision system to identify cells and control a robotic arm
to pick and place the selected cells for cell-based assays.
Cherezov et al. [13] showed a dual-arm system that used
one arm for pick-up and placement of precipitant solutions
and the other arm equipped with a microsyringe for sample
dispensing.

Our previous work [14] attempted to build a robotic
platform for all the procedures of sample preparation for
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FTIR spectroscopy. The system simply used a robotic arm
consisting of two linear motion units for manipulation of
sampling washing, homogenization and spotting without
closed-loop control strategies for monitoring or automated
control. The open-loop feature, however, resulted in insuffi-
cient or excessive ultrasonication and, more important, might
not always provide well-homogenized samples [9]. Also,
due to the low accuracy of the dispensing unit, the spotting
process did not provide reliable sample spots. Moreover,
the washing and spotting used the sample dispensing unit that
may introduce contamination. As a result of these limitations,
we developed a closed-loop control system based on a low-
cost 3D printer for sample homogenization using ultrason-
ication [9]. The robot used machine vision to distinguish
between sample wells and blank wells and measure the homo-
geneity level of cell suspension. The control system enabled
the robot to provide the desired homogeneity level of cell
suspension efficiently. In this paper, we present the design,
development and integration of a complete system to prepare
fungal samples for FTIR spectroscopy. The whole system
is an extension to the ultrasonication robot [9], by adding
a newly-designed centrifuge module and a newly-developed
liquid handling module.

While deep learning as an emerging technology has been
widely used for many applications ranging from vehicle clas-
sification [15] to fruit detection [16] or drug design [17], few
studies have reported the applications in laboratory automa-
tion, especially for the labware identification. In this paper,
we show the method and results of using deep learning based
vision system to identify the labware settings, including the
number and location of MTP plates, IR plates and pipette
tips. This technique has been successfully integrated into the
robotic system forming a fully automated robot.

The proposed system was validated by the preparation
of filamentous fungi but might also be applicable to other
types of microorganisms, such as yeasts, bacteria, and algae.
Also, the developed system was used for the preparation
of samples for FTIR spectroscopy, but might also be use-
ful for MALDI-TOF spectrometry with a different working
sequence.

Il. SYSTEM DEVELOPMENT
A. SYSTEM OVERVIEW

To enable the robot to perform different tasks independently,
such as sample homogenization, sample spotting, washing
and concentration, we used the concept of modular design
for the system development. As shown in Fig. 1, the devel-
oped platform is an integration of three modules, namely
ultrasonication robot module, centrifuge module and lig-
uid handling module. Each module is able to be operated
independently and they can also form a complete system
for the full process preparation of fungal samples for FTIR
spectroscopy. The machine vision system enables the full
automation of the robot without any manually pre-input infor-
mation. Specifically, the camera on the liquid handling mod-
ule uses deep learning to identify the labware information, for
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FIGURE 1. Hardware assembly of the FTIR sample preparation robot.

example detecting the number and positions of well plates and
pipette tips. The machine vision system on the ultrasonication
robot module can distinguish between the sample wells and
black wells and also monitor the homogenization process
of each well, thus ensuring that the robot can provide the
desired homogeneous samples [9]. The left arm (Arm 1) of
the Cartesian-type dual robotic arm system (Cavro Omni
Robot; TECAN, Switzerland) connects all of the hardware
modules. The gripper attached to the Arm 1 picks and places
the 96-well MTP plates (CR1496; EnzyScreen, Netherlands)
between the three modules.

B. ULTRASONICATION ROBOT MODULE

Ultrasonication robot module is used to homogenize fila-
mentous fungal mycelia to get homogeneous cell suspension
for sample spotting on 384-well IR plates (Bruker Optik
GmbH, Germany). In the previous work, we introduced an
ultrasonication robot that can provide desired homogeneity
of filamentous fungal cell suspension [9]. The robot uses
machine vision to screen sample wells and measure the level
of fungi homogeneity. In this work, as shown in Fig. 1 and
Fig. 7, the ultrasonication robot module was integrated into
the sample preparation system for FTIR spectroscopy without
hardware modifications. In order to integrate with the other
modules, the controller of the ultrasonication robot module
(Raspberry Pi 3) was installed with an open-source system
Ubuntu MATE to run the software under the Robot Operating
System (ROS) architecture. A new ROS node in the Pi con-
troller communicates with the main controller via Ethernet
network to call the previously developed functions. In the
meanwhile, this node also listens to the buttons on the user
interface of the ultrasonication robot so that the robot module
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can still work independently. The ultrasonication robot mod-
ule is able to detect the sample well locations [9], so after each
homogenization, the robot sends the sample well locations to
the main controller for sample spotting.

C. CENTRIFUGE MODULE

Fig. 2 shows the design of the centrifuge module. The module
is 400 mm long, 400 mm wide and 390 mm high. The
centrifuge was constructed from 6 aluminum panels to which
other components were mounted. The centrifuge mainly con-
sists of 6 panels, a servo motor to drive a rotor that was
mounted with 2 MTP plate holders and a sliding door mech-
anism. The centrifuge rotor is driven by an 800 W servo
motor (PR-802.8; Servotronix, Israel) with a maximum speed
of 5000 rpm. The servo motor is controlled by a servo drive
(CDHD; Servotronix, Israel), which communicates to the
main controller based on CANopen motion control protocol
via a CANbus to USB converter (PCAN-USB; Peak-system,
Germany). The sliding door mechanism comprises a sliding
door that was attached to a linear motion rail and driven
by a DC motor, a sliding door locker and 2 limit switches.
The sliding door was designed to open or close when the
robot manipulator picks and places the MTP plates. The
sliding door stops at fixed positions in “open” or ‘“closed”
configurations using the two limit switches. For safety and
health reasons, the sliding locker will automatically lock the
sliding door in the closed configuration when centrifugation
is in operation. The DC motor is controlled by an additional
microcontroller, which will be described in Section III. The
designed centrifuge module has a capacity for centrifugation
for two MTP plates. It is specifically designed to be integrated
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FIGURE 2. The 3D model of the centrifuge module (a) and its exploded view which shows the internal components and structure (b).

into the robotic platform and uses a CANbus communication
interface to allow the robot control the rotor.

D. LIQUID HANDLING MODULE

As shown in Fig. 1, the liquid handling module comprises
the right arm (Arm 2) of the dual-arm system, an 8-channel
syringe pump (Cavro XMP 6000; TECAN, Switzerland),
an electronic pipette (P50; Opentrons, USA), an RGB camera
(See3CAM_CU135; e-co systems, USA), a custom-made
wash station and a well plate shaker (MicroPlate Genie;
Scientific Industries, USA). The main function of the liquid
handling module is to provide sample washing, concentration
and spotting, in which the sample washing and concentration
procedures involve centrifuge module.

Sample washing and concentration require aspiration and
dispensing of high volume liquid (we use 800 pL) with
relative low accuracy, whereas sample spotting on IR plates
needs to take a small volume (10 ©L) on each spot with high
accuracy. Based on our test, the syringe pump did not meet
the requirements of sample spotting in terms of accuracy.
Therefore, we used the syringe pump (maximum volume
800 uL for each channel) for sample washing and concentra-
tion, and the electronic pipette (maximum volume 50 ©L) for
sample spotting. Both the syringe tips and the pipette were
mounted on Arm 2. To enable them to work without colli-
sions, a servo (HS-5645MG; Hitec, South Korea) was used
to rotate the syringe tips to either vertical or horizontal to the
ground. When used for sample washing and concentration,
the syringe tips are vertical to the ground, while for spotting,
the syringe tips move to the horizontal position to give the
space for the pipette.

1) SAMPLE WASHING AND CONCENTRATION
Sample washing includes centrifugation, liquid aspiration
and dispensing. After centrifugation, the fungal mycelia
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formed one or more pellets at the bottom of the wells of
the MTP plate, and the syringe tips aspirated the supernatant
above the mycelia (800 uL). Thereafter, the wells were filled
with the same amount of deionized water as the aspirated
supernatant. The wash station consists of two sinks, one for
wastewater and the other one for fresh water, connecting
to a peristaltic pump (WPL 810; Williamson, UK) and a
wastewater container, respectively. Sample concentration was
performed after ultrasonication to increase the concentration
of homogenized samples for spotting, which contains cen-
trifugation and liquid aspiration. In our case, ultrasonication
requires at least 800 uL of liquid for the selected well plate,
whereas the FTIR spectroscopy needs enough density of sam-
ples for measurement. Therefore, we used the centrifuge to
separate fungal mycelia (pellets) and supernatant at first and
then removed some above supernatant (600 pL) to increase
the sample concentration.

During the aspiration in the sample washing stage,
the syringe tips were easily blocked by the fungal mycelia in
the previous system [14]. To solve this problem, we designed
a filter attached to the end of the syringe tip, which can
prevent the fungal mycelia from entering the syringe tips.
As shown in Fig. 3, the filter has a 90-degree surface that can
be inserted into the square well. The smooth, spherical outer
surface pushes the fungal mycelia to the outer space. During
aspiration, the sample liquid passes through the grooves on
the edge of the filter to the sonicator probe. To avoid blockage
on the filter, the filtering grooves were placed on the edge
instead of having holes inside of the filter. The filter was
3D printed using polylactic acid (PLA) filaments (MP05780;
MakerBot, USA) and glued to the sonicator probe.

2) SAMPLE SPOTTING
Sample spotting was conducted after the sample concentra-
tion, which is the final step for FTIR sample preparation.
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FIGURE 3. Schematic of the new-designed filter.

As shown in Fig. 5e.f, we define the droplet on the IR plate as
spot. The main task of spotting is to dispense homogenized
cell suspension on the black wells of IR plates, in which the
system should guarantee that the sizes and locations of the
dispensed spots are close to the well limit circle on the IR
plates. Fig. 5a shows the labware and the liquid handling
module. As shown in Fig. 4, after concentration, the robot fist
picks up the MTP plate to the shaker to decrease sediments
(Fig. 5b). Thereafter, the system received the tip locations and
sample well locations from the vision system droplet and the
ultrasonication robot module, respectively. This procedure
is an integration of the vision system, ultrasonication robot
module and the liquid handling module, which can ensure
that the system only picks up or processes the locations
with tips or wells with samples and skips blank tip loca-
tion or wells. After that, Arm 2 changed to spotting mode,
which means the servo rotated the syringe tips to horizontal
place and gave the space for pipette to pick up the tips
(Fig. 5c¢).

Before spotting on the IR plate, the system first aspirated
10 nLL sample liquid at the bottom of the well and dispensed
it to the wastewater sink of the wash station (Fig. 5d). This is
because that the bottom of the well may contain some undis-
rupted pieces of fungal mycelia that may result in blockage
and failure spotting. Next, the pipette aspirated 30 uL cell
suspension and dispensed 10 uL on each IR plate well in
the form of three spots - three technical replicates (Fig. 5e).
To avoid the droplets mixing together, the robot skipped a
well between every two droplets. To protect the IR plate,
non-contact dispensing method was utilized, so the pipette
dispensed liquid with a short distance above the IR plate.
Once the size of the droplet was big enough, the droplet
dropped on the IR plate. During spotting, the pipette had a
circular motion inside of the well limit circle (Fig. 5f). The
circular motion can provide homogeneous distribution of the
sample on the spot of the IR plate. In addition, the circular
motion increases the spot coverage rate on the target well.
Due to the positional error, the pipette tip is unable to position
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FIGURE 4. Workflow of sample spotting.

at the center of the target well every time. There may be
some blank regions between the initial spot and the well limit
circle. While the well limit circle can prevent the droplet from
spreading outside of the well area to some extent, the circular
motion of the tip can increase the coverage area of the droplet
on the blank regions obtaining the final spot. For spotting of
every 10 wells, the robot picks up the MTP plate to the shaker
to decrease the sediments.

E. VISION SYSTEM - AUTOMATIC DETECTION OF
LABWARE USING DEEP LEARNING

Traditional laboratory robots highly rely on manual input for
labware information, for example, inputting the well plate
number and locations, tip number and locations. This limits
the full automation of laboratory robots. The main challenge
is that when using traditional image processing techniques,
it is hard to segment and identify the labware, especially
for the transparent and small objects, such as the pipette
tips. We introduce to use a convolutional neural network
(CNN) model namely YOLOVv3 [18] for the identification of
labware based on the online images captured by the camera
on Arm 2. The labware in the robot system includes the
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shaker; (c) the pipette is picking up a new tip from the tip plate; (d) the pipette is removing the possible fungal mycelium chunk from the sample well to

the wash station; (e) the spotting action; (f) schematic of the spotting motion.

96-well MTP plates, 384-well IR plates and pipette tips.
Therefore, the first training attempt was to use these labware
as three object classes. We collected a 261 image dataset
using the camera on the robot with different angles of views.
The dataset contains 287 MTP plates, 255 IR plates and
672 tips. The images were annotated using Lableme soft-
ware [19]. The training took 43 hours using GTX 1070 GPU
and i7-8750 CPU.

The first model showed good performance on the detection
of MTP plates and IR plates. However, as shown in Fig. 6a,
many blank tip positions were recognized as tips. One pos-
sible reason is that the blanks have white circles under the
light that looks similar to the tips. Therefore, we trained
a second model that included the blank as the fourth class.
The new training dataset contains 177 blanks and 783 tips
whereas the dataset of MTP plates and IR plates remains the
same.

Fig. 6b,c and d show the detection results of the final
model. It can be seen that the blanks were successfully classi-
fied. The other three classes have very high confidence rate,
over 90% for most of the cases.

To apply the deep learning technique into the robotic
system, we used the Darknet ROS package [20] to run the
model in real time using the camera on the liquid handling
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module. In the network, the confidence threshold was set
to 0.5 and the resolution of network’s input image was
416 times 416. The output of the package is the detected
object bounding boxes with class IDs whose confidences
exceed the threshold. During the identification procedure,
the Arm 2 moved the camera to four different positions that
cover IR plates, tip plates and MTP plates, respectively, as the
views are shown in Fig. 6. The object positions in the camera
view were fixed each time. To detect whether the object is
existing or not, we used Intersection over Union (IoU) to
compare the detected bounding boxes (Bg.) to the ground
truth bounding boxes (B,) under the condition that the class
ID is the same. The ground truth bounding boxes were
labelled manually. Only the object with an IoU higher than
0.5 was considered to be existing. In summary, three cri-
teria to determine an object existing can be expressed as
follow:

Confidence > 0.5
IDge = IDy; (H
IoU > 0.5, IoU = (Bge[ \Bg1)/(Bae|UBgr)

where, IDg, represents the detected class ID of the object
whereas IDg; means the ground truth class ID.
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Ill. SYSTEM INTEGRATION AND CONTROL

A. HARDWARE AND SOFTWARE INTEGRATION

Fig. 7 shows the hardware and software architecture of the
whole system, in which the outside hexagons represent the
hardware components while the inside rectangles are the soft-
ware functions. All of the hardware modules and components
are connected via ROS. The master node is used to coordi-
nate and control all the other sub-functions with a correct
sequence. Except for the communication node of the ultra-
sonication robot module, all other hardware control or servo
nodes run in the main controller (blue dashed box). The
communication node of the ultrasonication robot receives
commands from the master node to start ultrasonication and
returns the sample well locations once the homogenization is
finished.

The labware identification node listens to the master node
to capture images when Arm 2 arrives at the target position
and outputs the bounding boxes together with class IDs of
the detected objects. The master node determines the existing
labware using IoU calculation. The dual-arm system has a
controller to control the arm motion and gripper status, which
can be accessed via TCP/IP based on its built-in protocol.

VOLUME 7, 2019

We developed a dual-arm server node running in the main
controller that is able to decode and encode the position,
speed and gripper operation commands and communicate to
the dual-arm system. Furthermore, the server node also can
output the arm and gripper status as ROS topics in 30 Hz.
This includes the arm speed, position, gripper status and the
completion of commands. Once a failure happens, for exam-
ple, an object dropping from the gripper, the master node
stops any further operations immediately. Similar to the dual-
arm system, a syringe server node was developed to decode
and encode the commands of syringe zeroing, aspiration and
dispensing. The syringe pump controller communicates to the
main controller via RS-232 serial bus.

Most of the actuators in the liquid handling module
are controlled by an Arduino microcontroller (Mega 2560;
Arduino.cc, Italy) running with ROS. The Arduino uses the
serial bus to connect to a rosserial node for communica-
tion with other ROS nodes. A motor shield (v2.3; Adafruit,
USA), mounted to the Aruidno, is used to control the stepper
motor of the pipette and also the servo motor. Also, a 4-way
relay module (SainSmart, USA) connects to the Aruidno
controller to control the on/off or open/close operations of the
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FIGURE 7. Hardware and software architecture of the FTIR sample preparation robot: The hexagons
represent the hardware components, while the rectangles are the software functions.

shaker, pump and centrifuge sliding door, respectively. The
servo motor drive of the centrifuge rotor controls the motor
and communicates to the main controller according to the
CANopen protocol. To control it in the high level, we devel-
oped a centrifuge rotor server node to encode and decode
the commands and motor status, which is similar to dual-arm
system. The input commands to the server node are the target
position, speed, stop/run, block/unblock and zeroing whereas
the output feedback includes the motor position, speed and
completion of commands.

B. WORKING SEQUENCE

The working sequence was planned according to the manual
operation protocol of preparing fungal samples for FTIR
spectroscopy [7]. As the system has a modular design, users
can choose to run either the specific functions or the whole
process. As shown in Fig. 8, the whole process @ implements
all the procedures starting from system initialization and
calibration. The labware identification loads labware settings
and determines to use one-MTP mode or two-MTP mode.
Two-MTP mode means the system processes two MTP plates
of samples simultaneously, which can reduce the operation
time. If no pipette tips or MTP plates or IR plates are detected,
the system would not run any further procedures and display
a warning. Once the labware is sufficient for experiments,
the system washes the samples three times using the cen-
trifuge and the syringe pump. After washing, the MTP plate
is moved to the ultrasonication robot module for sample
homogenization. In this stage, if two-MTP mode is selected,
the system would use the liquid handling module to wash one
MTP plate of samples and the ultrasonication robot module
to homogenize the samples in the other MTP plate simul-
taneously. The ultrasonication takes more time compared
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to other stages. Thereafter, we used a concentration step
to increase the density of the homogenized cell suspension
for the better quality of FTIR spectra. The concentration
stage includes centrifugation, aspiration of upper supernatant,
re-ultrasonication and shaking to reduce sediments appear-
ance. The whole process is ended with sample spotting, where
the system would implement spotting for one MTP plate and
ultrasonication for the other MTP plate if it is in a two-MTP
mode.

When running specific functions, the system selects to
implement some procedures accordingly. For instance, when
spotting @ is commanded, the system would skip MTP mode
selection, sample washing, ultrasonication and concentration.
While for sample washing and ultrasonication function (3,
the system executes all the procedures excluding concentra-
tion and spotting.

C. A FEW PUSHING ACTIONS

In the development of the system, we used a few push-
ing actions to make the system more robust. For example,
in Fig. 5b, the gripper is taking a MTP plate to the plate
holder of the shaker. The plate might not fit to the plate due
to the positional error of the arm. This may result in a serious
failure especially for spotting where a fixed position of well
is used for aspiration. To solve this, we used the gripper
inner fingers to push the MTP plate from side to side during
placing. Based on our observations, this small technique can
significantly improve the placing performance. We also used
the gripper to push the MTP plate to the plate holder of the
ultrasonication robot module to make it fit well (Fig. 9a).
In this case, the gripper fingers are in closed status and push
the MTP plate down to the plate holder using the finger tips.
In addition, the pipette uses pushing actions to pick up a tip
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FIGURE 9. A few pushing actions to make the system robust.

(Fig. 5c) and the syringe tips push to the wall of the wash
station to remove droplets when moving up (Fig. 9b).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. PERFORMANCE OF LABWARE IDENTIFICATION

We used a test image dataset that contains 70 MTP plates,
60 IR plates, 270 tips and 82 blanks to evaluate the per-
formance of the labware identification method. The objects
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FIGURE 10. Precision-recall curves for the performance evaluation of the
labware identification.

TABLE 1. Average precision of the labware identification method.

Class name MTP plate | IR plate | Tip | Blank
Average Precision 1.0 0.97 0.98 0.93

in the images were manually labelled with bounding boxes
and class IDs. Similar to Xiong et al. [21], the correct and
incorrect detection were defined as True Positive (TP) and
False Positive (FP), respectively. Undetected objects were
marked as False Negative (FN). Then, precision is defined
as TP over the sum of TP and FP, while recall is TP over the
sum of TP and FN.

By varying confidence threshold, the precision-recall
curves of the four classes are obtained and shown in Fig. 10.
The IoU threshold for the evaluation is the same to the real
application (Eq. 1, 0.5). All the four classes show both high
precision and recall. High precision and recall represent that
most of the objects have been detected and most of the
detection results are correct. Further, the average precision
of the detection is shown in Table 1, where the average
precision is the area under the precision-recall curve. The
detection of MTP plates, IR plates and tips show close-to-
perfect results, while the average precision of blank is slightly
lower, which may be relevant to the relative smaller training
dataset. Overall, the labware identification system using deep
learning shows significant high performance and has been
successfully integrated into the robotic system. The reason of
the high performance might be due to the fact that the identi-
fication environment is relatively simple and unchanged.

B. SAMPLE SPOTTING ACCURACY

To evaluate the performance of the whole system, we con-
ducted a test of the entire process for both one MTP plate
and two MTP plates of fungal samples. The fungal sam-
ples are filamentous fungi - namely, Mucor circinelloides
V104473 (Norwegian School of Veterinary Science, Norway)
using the same cultivation method as it was described in the
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previous work [9]. There were 24 wells of samples for each
MTP plate, so it created 72 spots on the IR plates. After
spotting, the IR plates were dried and scanned to measure the
spotting accuracy. Fig. 12 shows the scanned picture of the
IR plates and the accuracy measurement method. Generally,
the dried samples of fungi on the spots are homogeneous
and the spots are located in the center of the well limit circles
on the IR plates. As it can be seen in the right enlarged picture,
we manually labelled the inner circle of the well limits as
red circles (ground truth) and the actual spot boundaries as
blue circles. The distance between the centroid of the blue
circle and the centroid of the nearest red circle relates to
the positional error of the pipette tip. To find the nearest
red circle, each blue circle was compared to all the red
circles and the minimum distance value returns the nearest
circle. The measurement results of two IR plates are shown
in Fig. 11a. It can be seen that the positional error test revealed
a near normal distribution, indicating that the results seem
reliable. Most of the positional errors are located between
0.3 to 0.5 mm, with a mean of 0.36 mm and a 0.15 mm
standard deviation. The positional error is mainly caused by
the picking up of the pipette tips, because the orientation of
the tips remains uncertainty when pushed into the pipette.
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FIGURE 13. Processing time for both one-MTP and two-MTP modes (unit:
minute): The first letter in the blocks represents procedures: a - labware
identification, b - sample washing of two MTP plates for two MTP mode,
one MTP plate for one-MTP mode, ¢ - ultrasonication of MTP 1,

d - concentration of MTP 1, e - spotting of MTP 1, f - ultrasonication of
MTP 2, g - concentration of MTP 2, h - spotting of MTP 2; the number is
the processing time.

Another important factor is the coverage rate of the spot.
The FTIR analysis requires that the sample spot covers the
well limit circle as much as possible. As mentioned above,
to avoid spots mixing together, the size of the droplets should
not be too large. The coverage rate can be defined as:

Coverage = Syeq ﬂSblue/ Sred @)

where, the equation means that the coverage is the overlap
area between the blue circle (Sp;,.) the nearest red circle
(Sreq) over the red circle (Syq). The coverage rates of two
IR plates are shown in Fig. 11b, which indicates that most
of the coverage rates are around 0.97 (mean ) with minimum
value at 0.81. Our practical experience on the coverage rate
suggests a minimum value of 0.8, which means that the
system can provide desired samples spots for FTIR analysis.

C. SYSTEM OPERATION TIME

We also recorded the execution time of each procedure for the
two tests (one MTP plate and two MTP plates). The work-
ing sequence together with the processing time is displayed
in Fig. 13. For two MTP plates (blue blocks), the whole
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processing time was 942 minutes, during which ultrasonica-
tion (c and f) took up most of the time (78.6%) followed by
washing of the two MTP plates (12%). In two-MTP mode,
the final stage of sample washing (b) and ultrasonication of
MTP plate 1 (c) have been processed simultaneously. The
overlap happened at aspiration and dispensing of MTP plate
2 of the sample washing. Due to the vibration of the centrifuge
module, the robot cannot perform other operations during
centrifugation in the washing procedure. The other overlap
is spotting of MTP plate 1 (e) and ultrasonication of MTP
plate 2 (f), wherein the entire process of e can be operated
simultaneously with f. The robot saved a total of 32.5 minutes
in two-MTP mode. For one-MTP mode (green blocks), all
the five procedures were processed one after another with-
out overlapping. It must be mentioned that the ultrasocan-
ition time for each MTP plate is different. This is due to
the variation of fungal biomass in each well that results in
the difference of homogenization time. The ultrasonication
robot homogenizes the entire MTP plate of samples until the
desired homogeneity of samples are obtained [9].

D. ANALYSIS OF FTIR

We finally performed a FTIR measurement on one of the
IR plates of samples using a high-throughput screening
spectrometer (HTS-XT; Bruker Optik GmbH, Germany).
We extracted the Amide I (using wavenumber of 1650 cm™!)
absorbance data from the spectra. According to the OPUS
Quality Test (OPUS QT) - a standard quality test for FTIR
spectra, the absorbance at Amide I band should be in a range
0.3 - 1.2. As shown in Fig. 14, 46% of the absorbance in the
raw spectra (blue line) is below 0.3. By using the Extended
Multiplicative Signal Correction (EMSC) method [22],
we can correct the differences in absorbance and obtained the
red line. With comparison to the spot coverage rate (green
line), we did not find the spot coverage rate has significant
influence on the absorbance. The main reason for the dif-
ferences is that the absorbance at Amide I is highly related
to the concentration of the sample spotted on the IR plate.
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The results indicate that all the obtained spots on the IR plate
could be used for FTIR analysis, but for the future work the
droplet concentration should be controlled more precisely to
provide higher quality of spectra.

V. CONCLUSION

In this paper, we show the design and development of a
laboratory robot that fully automates the preparation of fungal
samples for FTIR spectroscopy. We extended the previously-
developed ultrasonication robot module to the new system
by adding a newly-designed centrifuge module, a newly-
developed liquid handling module and additional electronics.
The liquid handling module uses a high accuracy electric
pipette for spotting and a low accuracy syringe pump for
sample washing and concentration. A camera on the liquid
handling module uses deep learning to identify the labware
settings, which includes the number and positions of the well
plates and pipette tips. We also present the development of the
software under ROS architecture in low level for controlling
each components and in high level for integration of all
modules. The software was modular designed, so the robot
is capable of performing each procedure of the operation
independently, such as sample washing and spotting. The
robot is able to process up to two 96-well MTP plates of
samples simultaneously. Vision system evaluation indicates
that labware identification using deep learning can achieve
high average precision due to the simple environment. Tests
of all procedures show that the obtained sample spots have
high positional accuracy (mean 0.36 mm) and can cover most
of the desired region (mean 97%). In addition, the FTIR
measurement indicates all the obtained spots of one IR plate
could be used for FTIR analysis, but future work is required
to control the concentration of the droplets to provide higher
quality of spectra.
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