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ABSTRACT 

Evidence for the effects of compression garments on sports performance and physiological responses 

to dynamic exercise remains equivocal. Contradictory findings within the sporting literature are 

confounded by methodological heterogeneity in terms of; intensity and modality of exercise, type of 

garment worn, and the interface pressure produced by the garment. The interface pressure applied by 

compression clothing is an important measure in evaluating the bio-physical impact of compression. 

Interface pressure values obtained in vivo with two portable pressure devices (PicoPress and 

Kikuhime) were compared against a reference standard (HOSY). The PicoPress satisfied the a priori 

thresholds for acceptable validity at the posterior and lateral orientation with calf stockings and tights, 

confirming its future use to assess interface pressure. A small, likely beneficial improvement in 

running economy was observed with correctly fitted (95%:5%:0%; η2 = 0.55) but not oversized 

compression tights, indicating that a certain level of interface pressure is required.  

Compression tights improved running economy only at higher relative exercise intensities (77.7 - 

91.5% V̇O2max). The absence of any improvement at lower intensities (67.1 - 77.6 % V̇O2max) suggest 

that changes in running economy from compression are dependent on relative exercise intensity when 

V̇O2max (%) is used as an anchor of exercise intensity.  

Comparing measures from two portable, wireless near-infrared spectroscopy (NIRS) devices 

(PortaMon and MOXY) we found that the low-cost and light-weight MOXY device gave tissue 

oxygen saturation values at rest and during exercise that were physiologically credible and suitable for 

future research. Compression tights did affect ground contact time but not tissue oxygen saturation, 

cardiovascular or other kinematic parameters during running at intensities equivalent to long-distance 

race speed. Compression tights can produce small improvements in running economy, but effects are 

restricted to higher intensity exercise and appear dependent on garment interface pressure. It remains 

unlikely that this small positive effect on running economy, in very specific conditions, is enough to 

result in a meaningful impact on running performance. 
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1 Introduction 

Compression garments apply mechanical pressure to the underlying surface and produce a range of 

physiological responses. In a clinical setting, the aim of compression is to augment venous and 

arterial blood flow and limit the physical space available for swelling to occur. This augmented 

physiological response observed at rest is attractive to the athletic population; however, findings from 

non-active populations are often inappropriately extrapolated into the sporting domain. Furthermore, 

sports compression garments can differ considerably to medical compression garments with regard to 

interface pressure applied, graduated compression design and fabric type (elastic vs. inelastic). 

Despite an increasing proportion of studies reporting interface pressures in the sports compression 

literature, portable pressure measuring devices used to obtain pressure values lack comparison with a 

reference standard. Authors have attempted to assess the reliability of portable devices [1,2], however 

comparison with a medical device is absent in the literature. By assessing criterion validity and 

identifying an appropriate portable pressure monitor, this will assist with interpretation of applied 

pressures in a wider context and enable garment comparison with standardised pressure classifications 

(Chapter 3). 

Evidence that compression garments positively influences exercise performance is limited [3], 

however physiological changes observed during locomotion are often observed. A recent meta-

analysis reported small positive effects of compression clothing on running economy, biomechanical 

variables, blood lactate clearance and rating of perceived exertion [4], however garments included in 

this review vary by fabric composition, limb coverage and interface pressure. A lack of consistency in 

research methodologies has brought about a situation where much of the literature is unique in its own 

right. Comparison of outcomes between studies investigating two different types of compression 

garment (i.e. compression tights and below-knee stockings) should be conducted with caution in light 

of the varied body coverage and subsequent extent of interface pressure applied across a limb.  

Compression tights elicit external pressure across the full length of the leg (hip-to-ankle) and 
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therefore offer greater interaction with the knee and hip joint and upper and lower leg musculature 

compared with below-knee stockings. However, the majority of research investigating the 

physiological influence of compression clothing during running has utilised either compression socks 

or below-knee stockings [4]. Limited focus to date has been directed towards the role of full-length 

tights on the cardiovascular response during exercise (Chapter 4).   

During long-distance endurance exercise, energy provision is primarily derived from aerobic 

metabolism. Three deterministic physiological variables are commonly associated with endurance 

running performance, including maximal oxygen uptake,  lactate threshold/fractional utilisation of 

V̇O2max and running economy [5–7]. Evidence suggests that during dynamic exercise in healthy 

individuals, compression clothing has no effect on maximal oxygen uptake or blood lactate 

concentration [8]. However, mixed results are reported regarding running economy [9,10].  Running 

economy reflects the metabolic cost of sustaining a particular running speed, representing the 

translation of energy turnover into linear running velocity [11]. Should compression tights produce an 

ergogenic effect on running economy, it is conceivable that this may contribute toward enhanced 

endurance running performance. Tightly controlled investigations are warranted to investigate the role 

of garment interface pressure and exercise intensity on measures of running economy with and 

without compression tights (Chapter 5). 

Tissue muscle saturation is typically measured using near-infrared spectroscopy (NIRS). This non-

invasive optical technique reveals in vivo muscle oxygenation and haemodynamic status and may 

provide a mechanistic explanation for the observed changes in running economy with compression 

tights. Wireless, portable NIRS devices offer the opportunity to monitor haemodynamic change in a 

dynamic field setting. However, as smaller and cheaper devices become commercially available, users 

must first be confident in the test-retest reliability and comparative performance of these measurement 

devices (Chapter 6). 

Few studies have attempted to assess the role of compression tights on running economy at speeds 

reflecting an individual’s long-distance competition pace. It is, after all, the exercise intensity most 
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important to the individual and the potential implications of wearing compression tights is of obvious 

interest to athletes, coaches and researchers. As running economy is a composite of mechanical and 

metabolic factors, assessment of substrate utilization, running kinematics and muscle oxygenation at 

competition pace is required. To maximise the likelihood of observing any effect, garments must 

apply a minimal pressure threshold [12] (Chapter 7).  

A schematic of the thesis structure is provided in Figure 1-1.  

 

Figure 1-1 An overview of thesis structure and chapter aims. 
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2 Literature Review 

This chapter provides a brief history and general introduction to the application of compression 

garments (CG). This is followed by a description of the current system used to classify medical CGs 

based on garment pressures. Then follows a critical discussion of sports compression studies, with 

special reference to the measurement of garment interface pressures and inconsistencies between 

methods of assessment.  

The document next discusses performance studies investigating endurance and high intensity exercise 

outcomes when lower body CGs are worn. Physiological responses to exercise with compression will 

then be systematically discussed to critique the evidence for mechanisms thought to evoke a 

physiological response. The summary provided at the end of this chapter offers insight into potential 

future research directions based on current literature. 

 

2.1 Historical context of lower body compression  

The theory of applying local compression to human limbs was initially driven by clinical interest 

towards decreasing deep venous dilation and increasing blood flow velocity [13,14]. The clinical 

complications associated with aging include an increased prevalence of thromboembolic disease. As 

such, methods to minimise symptoms of phlebothrombosis and venous thrombosis were of particular 

interest. Early investigations supported the application of garments providing graduated compression 

in the management of diseases of venous deficiency including; leg ulcers [15], deep vein thrombosis 

[16,17] varicose veins [18,19] and venous thrombosis [20]. For further detail, Clark and Demers [21] 

provide an extensive historical review of the experimental evidence and therapeutic applications of 

lower body positive pressure. 

All CGs apply mechanical pressure upon the body’s surface; stabilizing and providing  support to 

underlying tissues [3]. Mechanical pressure (termed ‘interface pressure’) is the product of the garment 

fabrics and their properties and the garment’s anatomical fit.  The fabric used in manufacturing 
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determines both ‘physical’ and ‘mechanical’ properties of the CG. Physical properties influence the 

CG ability to transfer heat and/or moisture vapour, while mechanical aspects, such as elastic modulus, 

elongation and relaxation time establish the extension and recovery behaviour [22]. CG are typically 

fitted dependent upon generic anthropometric measures including height, body mass and chest 

circumference, highlighting a particular problem when using generalized sizing systems. MacRae et 

al., [3] highlights that individuals in the same dimensional range for a garment size i.e. size ‘large’, 

would likely vary in body morphology, thus vary in the applied pressure from the garment. To 

achieve the desired effect and/or treat a particular medical condition, the correct fit is of paramount 

importance. Undersized or oversized garments may provide levels of compression that are not ideal 

for a specific individual, whether that be too little compression to elicit a physiological influence, or 

too much compression that it inhibits limb movement, blood flow, feel uncomfortable or even cause 

tissue damage [23]. 

 

2.2 Medical compression: classifications 

National standards for compression hosiery have been developed mainly as prerequisites for 

reimbursement. These guidelines set out requirements such as testing methods, yarn specification, 

compression gradient and durability [24]. There are few national standards for compression hosiery, 

i.e. 

• British standard for graduated compression hosiery, anti-embolism hosiery and graduated 

support hosiery BS661210:2018 [25] 

• German standard RAL-GZ for medical compression hosiery 387:1[26], 

• French standard ASQUL [27].  

Each of these standards are not consistent with one another, differing in recommended levels of 

pressure, classification of garments, method of pressure assessment and sizing guidelines. At present, 

there is no accepted International or European standard with regard to medical or sporting 



 

6 

 

compression classifications (mmHg). Attempts were made to produce a European standard (draft 

standard: ENV 12718:2001), but a consensus could not be achieved and the standard was cancelled in 

2005 [28]. 

The US employs a different system of classification for CGs, however this is not unified within any 

specific ‘standards’ documentation (i.e. an FDA regulated classification). Most US compression 

hosiery manufacturers simply state the range of compression expected from their garments.  

The recommendations set out by the regional standards differ between one another in relation to the 

amount of pressure exerted at the ankle and gradient of pressure up the leg. The British standard [25] 

lists three compression classifications and recommends graduated design based upon the nearest 

inferior anatomical landmark i.e. thigh compression as a percentage of calf compression (Table 2-1).   

 

Table 2-1. Pressure and residual pressure ratio according to the BS 661210:2018 standard  

Compression class 

Pressure at ankle 

(mmHg)  

Residual pressure ratio (%) 

Proportion of ankle 

compression at calf 

Proportion of calf 

compression at thigh 

I 6 – 10 < 100 < 100 

II 11 – 18 80 max 85 max 

III > 19 70 max 70 max 

 

The German  standard [26] classifies compression hosiery into four compression classes (Table 2-2). 

The standard also provides predefined pressure ratios (residual pressure ratio), defined as the pressure 

exerted by hosiery at a point of the leg above the ankle, expressed as a percentage based on the 

pressure at the ankle. 
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Table 2-2. Pressure and residual pressure ratio according to the RAL-standard  

Compression 

class 

Compression 

intensity 

Pressure at ankle 

(mmHg) 

Residual pressure ratio (%) 

Upper ankle 
Maximum 

calf 
Mid -thigh 

I Low 18 – 21 70 -100 50 - 80 20 - 60 

II Moderate 23 – 32 70 -100 50 - 80 20 - 50 

III High 34 – 46 70 -100 50 - 70 20 - 40 

IV Very High > 49 70 -100 50 - 70 20 - 40 

 

The European standard (ENV 12718:2001) proposed five compression classifications, of which, these 

replicated the RAL standards closely (Table 1-3). However, this draft proposal also included a lower 

classification, incorporating compression hosiery with a pressure of 10 – 14 mmHg at the ankle (Class 

A). 

Table 2-3. Pressure and residual pressure ratio according to the ENV 12718:2001 standard  

Compression 

class 

Compression 

intensity 

Pressure at ankle 

(mmHg) 

Residual pressure ratio (%) 

Upper ankle 

Maximum 

calf Mid -thigh 

A Light 10 – 14 70 -100 50 - 80 20 - 60 

I Mild 15 - 21 70 -100 50 - 80 20 - 60 

II Moderate 23 – 32 70 -100 50 - 80 20 - 50 

III Strong 34 – 46 70 -100 50 -80 20 - 40 

IV Very Strong > 49 70 -100 50 -80 20 - 40 

 

 

2.3 Medical compression: measurement of pressure 

Classification of the pressure exerted by CG on the lower limbs varies between countries. These 

variations likely impact decisions in clinical practice and possibly the design of research. Pressure is 

defined as a force per unit of surface area, for example Newton/m2 or cN/cm2 [29]. However, the 
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international measurement unit “millimetres of mercury” (mmHg) is favoured [30] and easily 

transformed from force/cm2 to mmHg using the following conversion; 

1 N⁄cm2 = 75.006 mmHg 

The pressure exerted by medical garments is established by dynamometers specific to the regional 

compression standard, i.e. French, British or German standards. These include the IFTH 

dynamometer (French standard; Fig. 2-1), the HATRA Mrk 2 (British standard; Fig. 2-2) hose 

pressure and the HOSY (German standard; Fig 2-3) measurement system.  

 

Figure 2-1. Photograph of the IFTH dynamometer (image courtesy of Cornu-Thenard et al., [29]). 
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Figure 2-2 Photograph of the HATRA Mrk 2 dynamometer (image courtesy of Segar Technology). 

 

 

Figure 2-3 Photograph of the HOSY measurement system.   

 

Each dynamometer measures fabric tension in the garment. Laplace’s Law is then applied to calculate 

the pressure delivered to a cylinder of know radius that is covered with a fabric sleeve [31]: 

𝑃 = 𝑇/𝑅       (Eq. 1) 

Where P is the pressure (Pa), T is the tension (N) and R is the radius of the cylinder (m). However, the 

pressure of CGs is usually expressed as mmHg, fabric tension is measured per unit length and limb 

circumference is measured instead of limb radius; hence, units in equation (1) are usually converted to 

units common within the industry. Equation (2) is a result of unit conversions: 

𝑃 =
𝐾𝑇

𝐶
       (Eq. 2) 
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Where P is the pressure (mmHg), K = 470, the conversion constant, T is the fabric tension (N/cm), 

and C is the cylinder circumference (cm). This equation relates the radial pressure exerted by the wall 

of a distended tube, the circumferential tension in the wall of the tube and its radius of curvature. The 

radius used assumes a circular cross section of the same girth, i.e. a cylinder (Fig 2-4).  

 

 

 

 

Figure 2-4 Graphical illustration of a cylinder with circular cross section of the same girth. The 

fundamental principle of Laplace’s Law. 

 

This assumption is a critical limitation of the larger medical compression devices, in that human limb 

morphology is not a perfect cylindrical shape, and even less so during dynamic movement, therefore 

the cross-sectional shape of the limb is in a constant flux. Pressures calculated using Laplace’s Law 

provide an average pressure applied around the cylinder, however, in reality, these pressures vary at a 

given cross section of a human limb due to the different radius of curvature (Fig 2-5). The different 

radius of curvature around the same cross-section of a limb results in different pressures applied at 

various anatomical orientations. In Fig 2-5, the smaller radius of curvature will result in a higher level 

of pressure, therefore in this example, pressure applied at the anterior aspect of the limb is greater 

than that of the posterior.  
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Figure 2-5 Cross section of the lower leg. Illustration of differing radiuses of curvature at the 

anterior and posterior orientation of the lower leg. 

 

Furthermore, Macintyre et al., [31] evaluated the Laplace’s Law for pressure prediction using 

pressure measurements on a cylinder with different curvature radiuses. The authors demonstrated that 

the Laplace formula significantly overestimated the pressure exerted on small cylinders, however 

those with a greater circumference (>30 cm) were accurately predicted. This finding has implications 

in the theoretical modelling of medical garment pressures because the ankle pressure determines the 

remaining pressures applied upwards of the ankle (residual pressure ranges; see Table 2-1 – 2-3).  It is 

expected that Laplace’s formula will overestimate the ankle pressure due to the relatively low 

circumference  (RAL [26] ankle circumference size guides range from 18 – 30 cm).  As such, the 

limitations of using predictive formulae led researchers and practitioners to look for methods of 

assessing in vivo interface pressure. As a consequence, demand for smaller, more portable measuring 

devices has increased, whereby direct measurements at specific anatomical locations can be measured 

in individuals.  

 

Posterior 

Anterior 

Medial Lateral 
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A
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2.4 Portable pressure measuring devices 

Various small, portable, pneumatic pressure transducers, connected to an air bladder via small tubing 

are available. These are thin, flexible, adjustable and optimised for different applications and different 

measuring regimes.   

Prevalent pneumatic portable devices used to assess interface pressure in compression science include 

the PicoPress (Microlab, Padua, Italy; Fig 2-6), Kikuhime (Meditrade, Soro, Denmark; Fig 2-7) and 

the SiGaT Tester (Ganzoni-Sigvaris, St Gallen, Switzerland) devices. The portable devices work by 

placing a small circular bladder at a defined anatomical location (i.e. maximum calf girth). Once in 

place, a small amount of air is pushed up the tubing into the bladder using the in-built syringe. The 

screen on the device will display the applied pressure as mmHg. When pressure is measured in vivo, 

between garment and the surface of a limb, it is referred to as ‘interface pressure’. 

Partsch and Mosti  [1] investigated the linearity, reliability and accuracy of the aforementioned 

portable pressure devices. Using the legs of human volunteers to assess the reliability, it was reported 

that the PicoPress produced the lowest average coefficient of variation (2.79%), followed by the 

Kikuhime (4.17%) and SiGaT  (8.52%). Device accuracy was determined by comparing the reported 

pressure with the pressure applied via a sphygmomanometer cuff.  At pressures <20mmHg, the 

PicoPress® reported the highest accuracy (<2 mmHg) and the Kikuhime the lowest (6 – 7 mmHg). 

The SiGaT device has also been found to report false-high pressure readings due to the large air 

bladder. When fully inflated, the bladder thickness stretches the garment and subsequently results in 

an artificial pressure increase [32]. Gaied et al., [33] state that results obtained from in vivo devices 

are dependent upon the dimensions of the bladder, with larger bladders being more sensitive to 

variations in limb diameter. In light of these findings, recommendations for the measurement of 

interface pressure [34] suggest that the sensor/bladder should be thin and flexible, and smaller sensors 

used for mapping of a circumferential pressure pattern. Large sensor areas (over 5 cm2) should be 

used for measuring the interface pressure of larger areas, thus taking advantage of the local pressure 
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distribution being averaged because of the changing curvature. Further, Ferguson-Pell et al., [35] 

recommend that the maximal thickness of the sensor/bladders should be 0.5 mm.  

 

 

 

 

 

 

 

Figure 2-6 The PicoPress compression device, showing the unit, pressure bladder and bladder 

dimensions (image courtesy of MediGroup Australia) 

 

 

 

 

 

 

 

Figure 2-7 The Kikuhime compression device, showing the unit and pressure bladder (image courtesy 

of www.ebm-guidelines.com) 

 

Debate is on-going regarding the strengths and weaknesses of either in vitro measures (i.e. HOSY / 

HATRA) and in vivo devices (i.e. portable pneumatic pressure transducers). Portable devices measure 

the dynamic interface pressure and report individual-specific compression values based upon a 

 Size (unit indicated) 

Bladder diameter 5 cm 

Bladder thickness < 0.3 mm 

 Size (unit indicated) 

Bladder diameter 4 x 3 cm 

Bladder thickness > 5 mm  

http://www.ebm-guidelines.com/
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person’s unique limb morphology. However, there is no agreement which device is most accurate or 

the precise anatomical locations that require assessment.  

The combination of different pressure devices and anatomical locations assessed, confounded with no 

agreed industry ‘gold standard’, gives rise to inherent risks when trying to compare outcomes of 

studies when these fundamental methodological aspects differ between studies. 

 

2.5 Sports compression: measurement of interface pressure 

Unlike medical CGs, the optimal interface pressure or compression gradient for athletic purposes is 

unknown. Some sports compression manufacturers have opted for unique garment designs i.e. static 

pressure gradient (same interface pressure throughout the limb) or negative compression gradient 

(increasing interface pressure from the ankle to calf). A bibliographic search began with the collection 

of papers from PubMed to explore the range of interface pressures and devices used for the in-vivo 

assessment of sports compression garments. The keywords sports compression stockings, garments, 

and exercise and the combination of them all were used in the search. Additional articles were 

obtained through cross-references with the initial search. The inclusion criteria were as follows: 

garment covers lower limb, interface pressure reported at ankle and calf location, in-vivo assessment 

performed by researchers. A total of 542 articles were identified by electronic search and 14 of these 

met the inclusion criteria (Figure 2-8). Table 2-4 provides a summary of sports compression studies (n 

= 14) reporting in vivo interface pressure applied at the ankle and calf. The studies listed in this table 

include those reporting interface pressures at the ankle and calf as a minimum and therefore give an 

indication of the pressure gradient. Of the 26 individual garments reported, 58% applied a positive 

compression gradient (higher interface pressure at the ankle) (n = 15) and the remaining 42% report a 

negative gradient. However, the influence of gradient design or interface pressure on sporting 

performance remains to be elucidated. Beliard et al., [36] state that heterogeneity between studies 

may result in conflicting findings and mask any true efficacy of compression.  
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Figure 2-8 Search strategy for the review of in-vivo interface pressure assessment.  

 

Furthermore, interface pressure is often unreported in studies using sports compression and when 

values are stated, the source or method is not always documented. This gives rise to uncertainty 

whether values where independently examined or manufacturers-reported pressures. Macrae et al., 

[37] identified 58 sports compression studies published over a five year period (2011 – 2015), with 

74% reporting the interface pressure, however only 34% of authors measured the pressure.  
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Table 2-4 Published sports compression studies reporting in vivo interface pressure 

Ref. Study Device 
Orientation of 

measurement site 

Garment 

manufacturer 

Interface 

pressure 

(mmHg) 

Ankle Calf 

[38] Scanlan  Kikuhime medial ankle + calf SKINS 19.5 17.3 

[39] Ali (1) Kikuhime lateral ankle + calf Julius Zorn  11 8 

[39] Ali (2) Kikuhime lateral ankle + calf Julius Zorn 26 15 

[40] Sear  Kikuhime medial ankle + calf SKINS 17.8 15.1 

[41] Lovell Kikuhime - Body Science 20 15 

[42] De Glanville  Kikuhime - SKINS 6 14.7 

[43] Hamlin  Kikuhime - SKINS 8.6 13.4 

[44] Reich-Schupke (1) Kikuhime - CEP 17 28 

[44] Reich-Schupke (2) Kikuhime - Falke 11 20 

[44] Reich-Schupke (3) Kikuhime - Sigvaris 15 19 

[44] Reich-Schupke (4) Kikuhime - X-Bionic 11 15 

[44] Reich-Schupke (5) Kikuhime - 2XU 17 28 

[45] Brophy-Williams (1) Kikuhime medial ankle + calf - 9 20 

[45] Brophy-Williams (2)  Kikuhime medial ankle + calf - 15 25 

[46] Sperlich (1)  SIGaT - Sigvaris 21 13 

[46] Sperlich (2)  SIGaT - Sigvaris 31 23 

[46] Sperlich (3) SIGaT - Sigvaris 39 32 

[46] Sperlich (4)  SIGaT - Sigvaris 46 39 

[47] Wahl (1) SIGaT - - 21 13 

[47] Wahl (2) SIGaT - - 31 23 

[47] Wahl (3) SIGaT - - 46 39 

[48] Mosti (1) PicoPress medial ankle + calf Pierre Fabre 25 22 

[48] Mosti (2) PicoPress medial ankle + calf Pierre Fabre 20 31.5 

[49] Faulkner PicoPress achilles + medial calf SKINS 6.2 13.2 

[50] Pruscino Talley Medical - 2XU 19.1 7.2 

[51] Maton  Salzman MKIII medial ankle + calf Innothera 17 14 
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2.6 Sports compression and exercise performance 

Strategies that bring about measurable improvements in performance are highly sought after by 

athletes. Undoubtedly, athletic talent, comprehensive training programmes and optimal dietary intake 

all contribute towards athletic development and peak performance, however, factors such as clothing 

and technological advances, be it advances in electronic devices or fabric properties, are also deemed 

potential ergogenic aids, for which athletes are prepared to invest time and money into.  

World records have been set by athletes donning CGs, reinforcing the link between compression 

clothing and elite performance [52], and whilst these world records are the result of talent and 

training, the decision for the athletes to wear these garments demonstrates the confidence held in the 

garments to aid performance. 

The popularity of compression clothing within a range of sports, particularly endurance athletes, 

continues to increase, with monthly unit sales in the US increasing from 5,399 (value of $285,250 

p/m) in January 2008, to 22,186 in November 2010 (value of $950,712 p/m) [53]. It was predicted 

that by 2019 the global market for compression apparel would grow at a compound annual growth 

rate of 5.1% and have reached $3.4 billion [54]. The increasing sales are a result of both high 

performance and recreational athletes wearing CG, in particular, at endurance events such as running 

and triathlon competitions [47].  

 

2.6.1 Endurance exercise 

Table 2-5 summarizes the research investigating the effects of compression on endurance running 

defined as activity lasting ≥10 min and measured as time trial performance, distance completed or 

time to exhaustion. Of 16 studies identified, five reported positive effects of CG on  running 

performance [40,47,55–57], however evidence appears equivocal, with studies revealing no change in 

performance [47,52,58–65], or even a detrimental effect [66]. Previous meta-analyses have evaluated 

the influence of CG on performance [4,36,67–69]. Born et al., [67] report a small improvement in 

performance when time to exhaustion and time-trial assessments are grouped together  (effect size = 
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0.15). A subsequent meta-analysis was performed on time to exhaustion and time trial performance 

separately [4]. In this instance CG had little or no effect on time trial performance ranging from 400 

m to marathon distance (mean g = 0.03 ± 0.15), however time to exhaustion in incremental or step 

tests or runs to exhaustion revealed small positive effects (mean g = 0.27 ± 0.33).  Mota et al., [68] 

conducted a review of compression stockings and reported a minor number of studies demonstrate an 

improved performance (3 out of 21). In contrast, the authors identified that wearing stockings during 

exercise could benefit muscle function or fatigue indicators immediately after and hours after an 

exercise bout. The conclusions of Mota et al., [68] support those of Beliard et al.,[36] who found 

performance was unchanged regardless of the level of interface pressure. Interestingly, this was the 

first and only review that analysed the relationship between interface pressure and performance 

outcomes. However, it should be noted that the authors obtained similar garments to those used in the 

original investigations conducted 3 – 11 years previous. Clearly, this method assumes that garment 

design remained unchanged between the original investigation and the time in which the review took 

place. Da Silva et al.,[69] conducted a meta-analysis investigating the association of lower limb CG 

and high intensity exercise performance. Analysis of performance outcomes were grouped into three 

distance categories; 50 – 400 m, 800 – 3000 m and >5000 m. Of the four studies included in the 

>5000 m category, the authors report a weighted mean difference of 1.01 s (95% CI; -84.8 – 86.8), 

concluding that lower limb CGs are not associated with improved running performance. 

The varied findings reported in the aforementioned reviews and meta-analyses may be explained by 

different methodological approaches and the grouping of exercise modality. For example, Engel et al., 

[4] focused specifically on running performance whilst three other systematic reviews or meta-

analyses combine running performance with other modalities (i.e. cycling) [36,67,68]. Furthermore, 

only Mota et al., [68] focused on a specific garment type (stockings), whereas the remaining reviews 

include a combination of CG, possibly concealing a garment type effect.  It would appear that some 

limitations of the literature (Chapter 2.8) are also relevant when comparing the findings of systematic 

reviews and meta-analyses. Despite the popularity of CGs among elite and recreational athletes, the 

evidence for enhanced endurance performance remains limited.  
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Table 2-5 Summary of literature investigating the influence of compression garments on endurance running performance 

Author N (Sex) Garment  

Interface Pressure 

(mmHg) 
Exercise Modality  

and Protocol 
Findings 

Ankle Calf Thigh 

Berry & 

McMurray [70] 

6 (M) Below-knee 

stockings 

18 8 - V̇O2max test (2 min stages) ↔  No effect on time to exhaustion (P>0.05) 

Ali et al [65] 14 (M) Below-knee 

stockings 

20 14 - 1) Multi-stage shuttle run ↔  No effect on running distance (P>0.05) 

↔  No effect on 10 km time trial (P>0.05) 

     

2) 10 km time trial run        

Duffield & 

Portus [56] 

10 (M) Long tight and 

long sleeve top 

NR NR NR 30 min repeated 20 m 

sprints and shuttles  

↑  Small increase in total distance covered (d = 

0.2-0.4) 

Higgins et al 

[57] 

9 (F) Long tight NR NR NR 4 x 15 min netball specific 

exercises 

↔  No effect in total distance covered (P = 0.07)  

 

↑  Large increase on distance covered at high 

speed (d=0.86) 

Kemmler et al 

[55] 

21 (M) Below-knee 

stockings 

24 20 - Running  V̇O2max  test (5 

min stages) 

↑  Increase in time to fatigue (P <0.05) 

 

↑  Increase in total work completed (P <0.05) 
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Sperlich et al 

[8] 

15 (M) 1) Below-knee 

stockings 

2) Long tight 

3) Long tight 

and long 

sleeve top 

targeted at 20 mmHg Running to volitional 

fatigue at fixed intensity 

↔  No effect on time to exhaustion (P>0.05) 

Sear et al  [40] 8 (M) Whole body 

garment 

17.8 15.1 13.1 Prolonged high intensity 

intermittent exercise test (45 

min) 

↑  Medium increase in total distance covered (d 

= 0.6) and  

 

↑  Medium increase in distance covered at low 

intensity (d = 0.6) 

Menetrier et al  

[59] 

 

14 (M) Below-knee 

stockings 

15 27 - Running to volitional 

fatigue at fixed intensity 

(100% vV̇O2max ) 

↔  No effect on time to exhaustion (P>0.05) 

Ali et al  [52] 9 (M)  

3 (F)  

Below-knee 

stockings  

15 

21 

32  

12 

18 

23  

- 

- 

-  

10 km running time trial  ↔  No effect on 10 km time trial (P>0.05) 

Wahl et al  [47] 9 (M) Below-knee 

stockings 

21 13 - Running to volitional 

fatigue at fixed intensity 

(70%  V̇O2max) (1% gradient 

increase every 1 min) 

↑  Small increase in time to exhaustion (d = 0.2) 

Barwood et al  

[60] 

8 (M) Long tights NR 20 11 5 km time trial (in 32 °C) ↔  No effect on 5 km time trial (P>0.05) 
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NR= not reported; M= male; F= female. V̇O2max = maximum volume of oxygen uptake; vV̇O2max = velocity at maximum volume of oxygen uptake; P<0.05 = 

statistically significant, d = effect size. ↔ no change with CG, ↑ improvement with CG, ↓ worsening with CG.

Vercruyssen et 

al  [61] 

11 (M) Below-knee 

stockings 

18 18 - 15.6 km trail-running race ↔  No effect on 15.6 km trail-running 

performance (P>0.05) 

Del Coso et al  

[62] 

36 (NR) Below-knee 

stockings 

NR NR NR Half ironman performance 

time 

↔  No effect on half ironman performance 

(P>0.05) 

Bieuzen et al  

[71] 

11 (M) Below-knee 

stockings 

- 25 - 15.6 km trail race ↔  No effect on 15.6 km trail-running 

performance (P>0.05) 

Rider et al  [66] 7 (M) 

3 (F) 

Below-knee 

stockings 

   20          15           - 

(manufacturer claim)    

Running  V̇O2max  test (5 

min stages) 

↓  Decrease in time to exhaustion (P<0.05) 

Areces et al  

[64] 

30 (M) 

4 (F) 

Below-knee 

stockings 

20-25         -            - 

(manufacturer claim) 

Marathon performance time ↔  No effect on marathon performance (P>0.05) 



 

22 

 

2.6.2 High intensity running and sprint performance 

Table 2-6 summarizes the research investigating the effects of compression on high intensity running 

and sprint performance. Studies within this search criterion include those of either single or repeated 

sprint efforts, assessing either time to completion, time to exhaustion at high intensity workloads or 

rate of fatigue over a repeated bout of maximal sprints. Of 14 studies identified, 11 reported no effect 

of CGs on high intensity running and sprint performance [8,10,49,56,72–79], however four studies 

revealed a positive effect [57,79–81], and one observing a detrimental effect [8]. 

Born et al., [80] report a statistically significant improvement with compression clothing. The authors 

report improved 30 m sprint time during the final set of 10 sprints during a 30 x 30 sprint test when 

wearing long compression tights. However, this particular study was investigating a ‘novel’ garment 

design, with adhesive silicone strips placed within the garment, differentiating this particular garment 

with many of the previous studies assessing a ‘traditional’ CG. The authors also report a reduced hip 

flexion angle and increased stride length in their investigation of repeated sprint performance. This 

elegant investigation assessed a number of cardiorespiratory, metabolic, hemodynamic, perceptual, 

neuronal and biomechanical parameters, concluding that the improved repeated sprint performance is 

due to altered sprint mechanics. 

Systematic reviews and meta-analyses provide a collective overview of the available literature. The 

combined analysis of five studies produced an overall small positive effect size (ES = 0.12) for 

improvements in single and repeated sprints of 10 – 60 m [67]. Furthermore, using weighted mean 

differences, Da Silva et al., [69] revealed a 6.1 s (95% CI; -7.2 – 19.4) improvement in running 

performance between 800 – 3000 m. Although not statistically significant, the authors highlight the 

practical relevance, suggesting a 6 s improvement could greatly impact a race over such distances. At 

shorter race distances (50 – 400 m) the weighted mean difference was 0.06 s (95% CI; -2.0 – 2.1), 

revealing that the influence of CG might be intensity specific. The influence of CGs in relation to 

exercise intensity is explored further in Chapter 6. 
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Table 2-6 Summary of literature investigating the influence of compression garments on sprint running performance 

Author N (Sex) Garment 

Interface Pressure 

(mmHg) 
Exercise Modality  

and Protocol 
Findings 

Ankle Calf Thigh 

Doan et al  [74] 10 (M) Shorts NR NR NR 60 m sprint time ↔  No effect on 60 m sprint (P>0.05) 

Bernhardt & 

Anderson  [75] 

10 (M) 

3 (F) 

Shorts NR NR NR 20 m sprint ↔  No effect on 20 m sprint time (P>0.05) 

Duffield & Portus 

[56] 

10 (M) Whole body 

garment 

NR NR NR Intermittent repeated sprint 

exercise protocol (20 m 

sprint every minute for 30 

min) 

↔  No effect on repeated sprint performance 

(P>0.05) 

Duffield et al [77] 10 (M) Whole body 

garment 

NR NR NR 5 x 20 m repeated sprint 

protocol following a 

simulated team game 

↔  No effect on mean sprint time (P>0.05) 

Higgins et al  [57] 9 (F) Long tight NR NR NR 4 x 15 minute netball 

specific circuit including 20 

m sprint at the end of each 

15 min quarter  

↑  Small decrease in 20 m sprint time (d = 

0.23) 

Houghton et al 

[78] 

12 (M) Knee length 

shorts and short 

sleeve top 

NR NR NR 4 x 15 minute LIST 

including 15 m sprint at the 

end of each stage 

↔  No effect on 15 m sprint time (P>0.05) 
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Sperlich et al.,  

[8] 

15 (M) 1)  Below-knee 

stockings 

targeting 20 

 

15 min treadmill run at 

70% V̇O2max  followed by 

time to exhaustion at peak 

running velocity 

↓  Small decrease in time to exhaustion with 

stockings and whole body garments (d = 0.25 - 

0.28) 

 

↔  No effect on time to exhaustion with long 

tights (d = 0.13) 

2) Long tights targeting 20 

 

3) Whole body 

garment 

targeting 20 

 

Dascombe et al   

[10] 

11 (M) 1) Correctly 

fitted tights 

NR 19.2 13.7 Progressive maximal test 

followed by time to 

exhaustion at 90% 

V̇O2max  

↔  No effect on time to exhaustion (P>0.05) 

2) Undersized 

long tights 

NR 21.7 15.9 

Goh et al, [79]  10 (M) Long tights NR 13.6 8.6 Running to volitional 

fatigue at vVO2max (at 10° 

and 32 °C) 

↑  Small increase in time to exhaustion at 32 

°C (d = 0.48) 

 

↔  No effect on time to exhaustion at 10°C (d 

= 0.15) 

Varela-Sanz et al  

[81] 

13 (M) 

3 (F) 

Below-knee 

stockings 

15 - 22 NR - Running to volitional 

fatigue at fixed intensity 

(105% of recent 10 km 

pace) 

↑  Small increase in time to exhaustion (d = 

0.32) 

Faulkner et al  

[49] 

11 (M) 1) Long tights                                       6.2 13.2 7.1 400 m sprint ↔  No effect on 400 m sprint time (P>0.05) 

  

 

 2) Shorts + calf 

stockings 

14.2 19.9 7.6     
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Born et al  [80] 12 (F) Long tights  NR 21.7 17.5 30 x 30 m sprints (1 sprint 

per minute) 

↑  Decrease in final 10 x 30 m sprint time 

(P<0.05) 

Venckunas et al  

[72] 

13 (F) Below knee 

stockings 

17 NR 18 400 m sprint following 30 

minutes steady state (7:30 

min/mile pace for 4km) 

↔  No effect on 400 m sprint time (P>0.05) 

Perez et al [73] 14 (M) 

2 (F) 

Below knee 

stockings 

15-20 NR - 1 km run at maximal speed ↔  No effect on 1 km maximal speed (P>0.05) 

NR= not reported; M= male; F= female. V̇O2max = maximum volume of oxygen uptake; vV̇O2max = velocity at maximum volume of oxygen uptake; LIST = 

Loughborough intermittent shuttle test. P<0.05 = statistically significant, d = effect size. ↔ no change with CG, ↑ improvement with CG, ↓ worsening with 

CG.



 

26 

 

2.7 Sports compression and physiological responses 

Physiological responses to compression originate from mechanical pressure applied to the underlying 

tissue and the stabilizing support offered by the garment (Figure 2-9). External pressure applied by a 

CG increases peripheral tissue pressure [82], and subsequently redirects blood flow to the deep veins. 

The redirected blood and narrowing of veins increases blood flow velocity [13], and in turn, alters 

arterial [83] and venous [82] flow. Increased arterial flow will increase the delivery of oxygen-rich 

arterial blood to the working muscles [84], whilst increases in venous flow enables more rapid 

removal of waste metabolites [85]. In addition, by increasing venous flow, CGs can reduce exercise 

induced limb swelling [86].  

Other physiological responses to CG include augmented mechanoreceptor activation, improved 

proprioception and altered running mechanics. Furthermore, the stabilizing effect of compression 

around a limb is thought to reduce muscle oscillation during exercise tasks that cause excessive limb 

vibration i.e. running [87].  Lower muscle oscillation is associated with reduced muscle fibre 

activation [88] and lower oxygen consumption during exercise [9].   

Conversely, the potential risks or negative effects of compression application are not widely reported 

beyond those associated with excessive interface pressure. During standing, deep veins in the lower 

leg are narrowed by an external pressure of 42 mmHg and nearly occluded at 82 mmHg [89]. 

However, commercially available sports CGs do not typically exceed 30 mmHg and therefore the 

risks associated with prolonged occlusion are unlikely.   Further psychological and physiological 

responses that may be counter-productive to the exercising individual include an increased perceived 

body temperature [72] and elevated skin temperature [78]. During exercise, heat loss is often a 

desirable, however if CGs attenuate the heat loss capacity this may lead to thermal discomfort, 

increased thermoregulatory strain and impaired exercise performance. Furthermore, residual sweat in 

the CG following exercise may lead to thermal discomfort due to unwanted heat loss (‘post-exercise 

chill’) and therefore CGs should have a short drying time [37].  The following chapter discusses many 

of the underlying mechanisms linked with sports compression in relation to exercise performance.   
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 Figure 2-9 A schematic representation of the mechanisms hypothesised in which compression clothing contributes toward athletic performance [9,13,90–

95,80,82–88].  
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2.7.1 Venous blood flow 

The physiological impact of CGs in relation to cardiovascular response has been widely researched, 

with particular attention focused on venous blood flow velocity [82] and venous cross-sectional 

diameter [13]. The mechanism responsible for the increase in venous flow and decrease in venous 

stasis is via a reduction in the cross-sectional area of the vein [96]. Blood stasis is also shown to 

reduce under compression (23-24 mmHg), in both supine and standing participants [97]. This is of 

interest to athletes recovering from exercise induced muscle damage and hope to gain from a 

reduction in swelling and removal of waste metabolites. In a supine or recumbent position, 

compression produces an increase in venous flow velocity in healthy participants [98], however, in an 

upright position, changes in velocity are not reported. Furthermore, during exercise intensities 

reflective of training or competition, there is little evidence to suggest that compression influences 

venous return, cardiac output or stroke volume [3]. These findings indicate that even if changes in 

vein diameter and venous blood velocity are observed in healthy individuals, this does not inevitably 

indicate increases in flow volume per unit of time, and hence, improved venous return [3]. 

2.7.2 Arterial blood flow  

External pressures of ~30 mmHg applied from the ankle to knee brought about an increase local 

arterial flow, increasing pulsatile blood flow by up to 45% when in the supine position [99]. 

Bochmann et al., [82] demonstrated that arterial perfusion was increased by more than 200% in the 

forearm when a CG was worn, concluding that an applied pressure of ~20 mmHg resulted in the 

largest flow increase. Additional studies support the theory that an optimal pressure range may exist 

for blood flow augmentation, showing that pressures too high reduce blood flow and pressures too 

low do not affect flow.   

The application of compression forces on a limb may increase muscle blood flow due to changes in 

arterial flow, rather than venous flow changes. Compression of underlying tissues reduces the 

transmural pressure gradient in local arterioles, thus causing vasodilation and increased blood flow to 

that area (the Bayliss effect) [100] . The reduction of transmural pressure and the myogenic response 
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(vessel relaxation) is the likely mediator for the observed increases in muscle flow and perfusion [82]. 

As previously alluded too, the improvement in arterial flow and consequently oxygen delivery may be 

of greater importance for an athlete compared with venous flow response under compression, or 

indeed alleviating venous stasis. Kemmler et al., [55] stated that the application of a non-graduated, 

static compression stocking (similar interface pressure throughout the length of the garment) would 

bring about a greater benefit for an endurance athlete by way of enhanced arterial perfusion, and 

suggests that the need for graduated CGs within the athletic domain may be less of a concern.  

However, contrary to the speculation, arterial blood velocity under compression stockings remained 

unchanged during plantar-flexion exercise [101]. Future research should be targeted at step-wise 

increments of interface pressure whilst attempting to observe changes in haemodynamic response, 

ideally during a dynamic exercise modality. In light of the potential increase in muscle perfusion due 

to external pressure, a concurrent increase in muscle oxygen saturation would be expected.  

2.7.3 Muscle oxygen saturation 

Depending on body position and the interface pressure, compression clothing elicits a change in 

circulatory parameters such as venous and arterial flow. Furthermore, increased muscle oxygen 

saturation (measured using near infrared spectroscopy) has been observed in participants wearing 

compression [10,84,101]. Near-infrared spectroscopy (NIRS) is a non-invasive technique capable of 

providing valuable functional insights into skeletal muscle oxidative metabolism in vivo during 

exercise, in healthy and clinical populations [102]. The use of NIRS provides an appropriate measure 

of muscle oxygen consumption and blood volume measurement [103].  

Bringard et al., [97] reported an increase in calf muscle oxygenation as a result of compression tights 

in a supine and upright standing position (gastrocnemius pressure = 23 – 24 mmHg). Furthermore, the 

observed increase in calf muscle oxygenation is relative to the amount of interface pressure applied. 

Dermont et al., [104] demonstrated increasing muscle oxygenation in a seated position as interface 

pressure increased from 16.5 mmHg to 36.5 mmHg. These findings suggest compression may 

increase muscle oxygen saturation at rest via its effects on haemodynamics.  
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However, compression induced changes in muscle oxygen saturation during and following exercise is 

less consistent. Vercruyssen et al., [61] investigated the influence of compression stockings (ankle-to-

calf pressure 18-13 mmHg;) on prolonged trail running exercise. As part of this experiment, 

participants muscle oxygen saturation and muscle blood flow was assessed pre and post exercise (~5 

min). The authors reported no difference between conditions (with and without compression 

stockings). However, the five minute delay between cessation of exercise and muscle oxygen 

saturation assessment limits insight into the acute effect of compression during the exercise bout. In 

agreement with Vercruyssen et al., [61], no change in muscle oxygen saturation following a 30 min 

submaximal run was observed [59]. However, noticeably higher oxygen saturation was observed with 

compression at rest (pre-exercise) and following a run to exhaustion at maximal aerobic speed. The 

interface pressure reported in these studies (18 – 27 mmHg) are the values provided by garment 

manufacturers and not measured directly.  

Exercise reduces tissue oxygen; the rate at which oxygenation returns to normal is an index for rate of 

recovery. Increased oxygenation saturation recovery rate in the gastrocnemius medialis muscle was 

reported following two minutes of repeated heel raises [105]. It was identified that the relative slope 

of recovery rate is dependent upon the magnitude of interface pressure exerted, with an increasing 

oxygen saturation recovery rate as pressure increases. At interface pressures from 5-16 mmHg, there 

was a positive correlation in recovery rate; however without further data at increasing pressures, the 

‘optimal’ interface pressure is unknown. It is expected that muscle oxygen saturation would stop 

increasing above a particular external pressure as peripheral and deep circulation will become 

impaired. Correctly fitted (as per garment manufacturers guideline) and undersized compression tights 

were compared with traditional running shorts during a time to exhaustion test (90% vV̇O2max) [10]. 

The undersized compression condition was implemented to provide varied compression levels and 

shed light on a possible interface pressure dose-response. During the time to exhaustion test, both 

compression conditions resulted in a significantly higher deoxyhaemoglobin (HHb) concentration 

when compared with the control. The authors suggest that the changes observed in peripheral muscle 
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circulation are due to increases in venous flow. Both compression conditions also reported a 

significantly lower HR during moderate intensity running (12 – 16 km·h-1), therefore this may be 

associated with the increased venous return and subsequent stroke volume via the Frank-Starling 

mechanism. Despite the circulatory changes observed in this investigation, no improvement in 

performance (time to exhaustion) or pulmonary oxygen uptake was reported.  A possible explanation 

for the observed changes in peripheral circulation, particularly muscle oxygenation measures, may 

relate to the reduced heat-loss capacity when wearing CGs. Studies have reported an increased skin 

temperature of 0.5 - 2 °C under compression clothing [56,74,77,78], however this largely depends on 

the garment properties i.e. fabric composition. Thermoregulatory vasodilation may contribute towards 

an altered peripheral blood flow response [106], therefore changes in NIRS measures may be a result 

of elevated local and whole body temperatures [107]. 

2.7.4 Cardiovascular Function  

If blood flow is augmented through the application of compression, a concomitant change to cardiac 

parameters would be expected. Indeed, compression stockings are reported to alter heart rate (HR), 

stroke volume and cardiac output in a standing position at rest [12]. However, during exercise, HR, 

stroke volume nor cardiac output appear affected by compression clothing at maximal [55,65] and 

submaximal intensities [9,38,39,46,56,77,78,101]. These findings suggest that any improvement to 

haemodynamic flow from external pressure probably reaches optimal function at rest, or at very low 

intensities [108]. It is likely that the exercise induced cardiac and blood flow response outweighs and 

severely diminishes any measurable benefit conferred by compression.  

The donning of lower body compression clothing has no influence on measures of maximal 

[8,9,38,55,70] or submaximal [39,58] aerobic capacity. Despite this, the economy of O2 consumption 

during exercise is shown to improve with compression when reported as per unit of distance (i.e. 

mlO2
. kg-1.km-1).  Bringard et al., [9] reported a 9% reduction in the oxygen cost of running at 10, 12 

and 14 km·h-1 when participants wore compression tights. The observed improvement in running 

economy (RE) was not apparent at a higher intensity (16 km·h-1),  
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More recently, authors have attempted to explore the influence of compression clothing on RE in 

more detail. Varela-Sanz et al., [81] had participants undertake a steady state running protocol at a 

recent half-marathon pace (14.8 ± 2.2 km·h-1) wearing either graduated compression stockings or 

traditional running shorts. Following this, a run to exhaustion at 105% of a recent best 10 km run time 

(17 ± 2 km·h-1) was completed. RE was unchanged at half-marathon pace, however a large 

improvement (d = 0.90) was reported during the run to exhaustion. In addition, the relative heart rate 

experienced (%HRmax) during the run to exhaustion was significantly lower with compression 

stockings. The reduction in cardiac stress could infer that graduated compression stockings are more 

effective at an exercise intensity above that of half marathon pace (~82% V̇O2max) but below that of 

maximal aerobic speed (<100% V̇O2max).  

Additional attempts to clarify the influence of CGs on exercise economy at various exercise 

intensities have demonstrated little benefit. The oxygen uptake during a run of 40 minutes at 80% of 

V̇O2max did not differ between conditions when studying a group of well-trained athletes [39]. 

Stickford et al., [94] assessed running economy and kinematics in highly trained male runners.  

Participants completed 4 min running bouts at 14, 16 and 18 km·h–1. There were no significant 

differences in V̇O2 between clothing conditions, however, the average percentage change in 

submaximal V̇O2 with compression treatment ranged from -4.8% to + 5.1%. Running economy is 

strongly associated with running performance, such that a 5% improvement in RE may translate into a 

3.8% improvement in distance running performance[109]. In light of this, the individual response to 

compression clothing should not be neglected.  

Running economy is a multifactorial measure which reflects the sum of various cardiorespiratory, 

metabolic, biomechanical and neuromuscular characteristics [110]. If compression applied to the 

lower limb brings about a change to running economy, the mechanism(s) responsible may not 

necessarily be a result of haemodynamic change. Other measures that may shed light on the possible 

mechanisms explaining altered running economy include changes to muscle oscillation/vibration, 

running kinematics or proprioceptive ability.  
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2.7.5 Muscle oscillation 

Long term exposure to vibrations that occur as a result of the heel strike during running can have 

detrimental effects on soft tissue. These include pain, loss of function [111] and reductions in muscle 

contractile force [112]. CGs may potentially attenuate soft tissue vibration during dynamic exercise 

such as running and jumping. CGs have been shown to reduce the movement of calf and thigh 

musculature during running [113] and counter-movement jumps [74]. A reduction in soft tissue 

vibration as a consequence of compression may subsequently alter the muscle activity. In support of 

this, CGs have been shown to reduce the cumulative shank muscle activity [114]  and  gastrocnemius 

activity [115]  during submaximal running.  

Compression-induced reductions in muscle activation, brought about by an attenuated soft tissue 

vibration, may have implications for running economy. It follows that if muscle force output can be 

maintained in the presence of lower levels of muscle fibre recruitment, oxygen cost may be reduced. 

However, despite significantly lower levels of soft tissue vibration and muscle activation with 

compression tights, running economy remained unchanged at speeds of 8 – 12 km·h–1 [113]. A 

possible explanation for the discordant effect of compression on running economy in this instance 

may be due to the duration of submaximal running (3 min). Steady-state V̇O2 is typically achieved 

after three minutes of exercise at a constant running speed [116], therefore the duration may have 

been too short to observe any measureable change to oxygen cost. 

2.7.6 Proprioception 

CGs are shown to activate both cutaneous and muscle mechanoreceptors at rest and during movement 

[90]. The altered excitability in the central nervous system may explain the observed improvements in 

joint position sense [91,117,118], one-leg balance (with eyes closed) [119] and reaching accuracy 

[90].  The application of external pressure is shown to assist as a ‘filter function’ of nonspecific 

mechanoreceptor activity, enhancing precision and movement sensitivity around the joint where 

compression is applied [90]. With heightened proprioceptive potential, it raises the notion that CGs 

may enhance kinaesthetic sense during dynamic sporting movement. Only two studies have 
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investigated the role of CGs on task precision during an athletic performance. Wearing an upper body 

CG was shown to improve fastball accuracy in collegiate baseball pitchers and improve driving, 

approach-shot and chipping accuracy in high-level collegiate golfers [120]. However, in contrast, 

throwing accuracy of cricketers is unchanged with full body (long tight and long sleeve top) 

compression clothing [56].  

It is a plausible that pressure induced mechanoreceptor activation may lead to improved joint sense 

position in dynamic exercise, such as running. By improving joint sensing ability, an individual may 

favourably alter technique or gait. The following section will discuss the influence of CGs on running 

kinematics. 

2.7.7 Running kinematics 

CGs covering the hip region (tights and shorts) are shown to decrease active hip-joint range of motion 

at rest [75] and during counter-movement jumps [74], suggesting a potential ‘ergogenic interplay’ 

between compression and biomechanical factors [94]. However, during a time to exhaustion test at 

~17 km·h–1, no differences were reported in running technique kinematics such as contact time and 

flight time with compression stockings [81]. Similarly, compression stockings produced no effect on 

gait variables at running speeds between 14 – 18 km·h–1 [94]. In contrast, changes to aerial time and 

leg stiffness were observed at 12 km·h–1 during a moderately flat 24 km trail run. In the same study, 

lower ground contact time, higher leg stiffness and higher vertical stiffness were also reported during 

an all-out hilly 24 km trail run [84]. Despite these findings, exercise performance did not improve. 

The aforementioned studies all included below-knee compression stockings as the intervention 

condition. In light of the potential hip-joint range of motion interaction with CGs covering the hip, 

investigating the influence of compression tights or shorts on running kinematics is of interest. Stride 

length is reportedly reduced at running speeds of 10 and 14 km·h–1, but not above or below these 

speeds (8 or 18 km·h–1). Furthermore, modification to stride length was only observed in compression 

tights applying a high external pressure (calf = 33 mmHg; thigh = 20 mmHg). No change in stride 
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length was observed with compression tights applying a lower level of external pressure (calf = 23 

mmHg; thigh = 11 mmHg).  

Interestingly, it is suggested that athletes could require an accommodation period for systematically 

experiencing their benefit [81]. In support of the postulated accommodation period, reduced landing 

force during a fatiguing run was later reported following a period of 3 weeks training wearing 

graduated compression stockings (ankle = 24 mmHg; calf = 21 mmHg) [121]. 

2.8 Limitations to literature 

Despite the number of publications, the sports compression category is relatively new, and many 

questions remain unanswered. A lack of consistency in research methodologies has brought about a 

situation where much of the literature is unique in its own right and therefore unable to compare 

outcomes between studies. This is apparent within all areas of compression related scientific evidence, 

however particularly exaggerated in the sports literature.  The literature often fails to detail the type of 

garment worn, garment fabric properties, external pressure exerted, the duration in which the 

garments are worn, and the application of a placebo or control condition. Furthermore, various 

methodological approaches have resulted in different exercise intensities, types and duration [3]. It is 

conceivable to consider that the heterogeneity between studies may mask any true efficacy of 

compression, possibly only apparent with more restrictive experimental conditions implemented in 

future research [36]. 

Hill et al., [92] identify a number of additional limitations with sports compression literature 

including; small sample sizes, lack of placebo and a poorly described method used to randomise 

participants. Additionally, the garments used also vary widely and include upper body and lower body 

garments from a range of manufacturers, which are likely to exert different degrees of pressure. 

Male and female runners exhibit different hip and knee mechanics during running [122]. Despite this 

sexual dimorphism, females are significantly underrepresented in sports and exercise medicine 

research [123] and more specifically within sports compression and running research. Engel et al., [4] 
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included a total of 494 participants in a review of compression clothing and running performance. 

However, only 11% of these were female, highlighting the gender bias present in this domain of 

research. Therefore, care should be taken to account for gender when studying groups of male and 

female recreational runners (Chapter 7). 

2.9 Summary  

Research investigating the effectiveness of CGs during exercise is of particular interest to athletic 

populations.  However, there are several facets of sports compression research that are yet to be 

explored in sufficient detail. The accurate assessment of garment interface pressure is of pressing 

importance. Many studies merely document the manufacturers reported pressures, therefore providing 

little insight into any potential pressure-response relationship. With the development of portable 

pressure monitors, it is possible that future sports compression research will tackle this issue. 

However, given the variety of portable pressure devices, it is critical that pressure monitors are 

assessed for consistency between devices and compared with reference-standard medical devices.  

Meta-analyses report small increases in time to exhaustion [4], and practically relevant improvements 

over specific running distances (i.e. 800 – 3000 m) [69]. These small improvements, when observed, 

are challenging to delineate due to the confounding study methodologies implemented in the sports 

compression literature. Various garment types, different interface pressures applied by CG and the 

disparity in exercise modality, intensity and duration are a few examples of the challenges faced when 

evaluating the literature. However, of interest is the relationship between CG induced improvements 

in running economy and the associated impact this may have on performance [4,9,81,94]. Engel et al., 

[4] indicate a potential small benefit (g = 0.21 ± 0.11) of CG on running economy. However the 

garment type ranged from calf sleeves, socks, long tights and whole body compression in the four 

studies included in the analysis. By pooling various garment types to produce a mean estimate 

illustrates once more the heterogeneity within the sports compression literature.  Despite this, if the 

application of external pressure has the capability to meaningfully alter cardiovascular, biomechanical 
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or neuromuscular systems, these may have an interactive effect upon the energy cost of locomotion 

and subsequently improve running economy. While the findings are inconsistent, the application of 

compression to the hip, thigh, knee, calf and ankle has on occasion, demonstrated an adaptive 

response. Given that compression tights cover the full length of the leg, including the hip and knee 

joint, the use of these garments may provide the greatest opportunity to influence physiological 

parameters during submaximal running. 

2.10 Thesis aim and objectives 

This critical review of the literature has highlighted scope for further investigations that may enhance 

the understanding of CGs in the athletic domain. The aim of this thesis was to provide a 

comprehensive analysis of sports compression tights on the running economy of moderately trained 

runners. Prior to doing so, identification of an appropriate pressure measuring device provides 

confidence in the validity of interface pressures reported throughout the thesis. Subsequently, the 

interaction between compression tights, running economy and mechanisms underlying any potential 

physiological benefit is explored. This was addressed through the following objectives; 

Objective 1) To identify a valid portable pressure device and the optimal in vivo anatomical 

orientation for interface pressure assessment. (Chapter 3) 

Objective 2) To examine the effect of compression tights on running economy using garments of 

varying interface pressure. (Chapter 4) 

Objective 3) To assess the influence of compression tights on running economy and substrate 

utilisation across a range of exercise intensities. (Chapter 5) 

Objective 4) To compare two portable, wireless near-infrared spectroscopy devices under a variety of 

resting and dynamic conditions. (Chapter 6) 

Objective 5) To test the efficacy of compression on running economy, substrate utilization, kinematics 

and muscle oxygenation. (Chapter 7) 
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3 The measurement of interface pressure applied by sports compression 

garments: a comparative study of two portable devices 

3.1 Rationale 

Reporting the interface pressure applied by sports CGs is becoming increasingly common. This offers 

the opportunity to compare study findings and explore the relationship between interface pressure and 

physiological response. However, to achieve this, devices used in the assessment of interface pressure 

must be reproducible and valid. Two portable pressure devices, popular in the sports compression 

literature and also commercially accessible, were selected and compared with a medical reference 

standard. Previous research has investigated the test-retest reliability of these devices in vivo, however 

no study has compared the values obtained in vivo with those calculated using a medical reference 

standard.  Calibration with a medical standard offers the opportunity to identify a portable pressure 

monitor appropriate for future studies.  

 

3.2 Abstract 

The interface pressure applied by compression clothing is an important measure in evaluating the 

efficacy of the bio-physical impact of compression. The aim was to compare two portable pneumatic 

pressure measuring devices (PicoPress and Kikuhime), against a non-portable, Hohenstein System 

(HOSY) reference standard, used by medical regulatory agencies. Interface pressure obtained in vivo 

(calf) by the PicoPress and Kikuhime, were compared with HOSY.  The mean bias and limits of 

agreement indicate the PicoPress satisfies the a priori thresholds for acceptable validity at the 

posterior and lateral orientation with calf stockings (-0.4[-3.3;2.5]; 0.5[-3.4;4.4] mmHg) and tights 

(0.2[-4.7;5.1]; 1.2[-0.3;5.4] mmHg) respectively. The Kikuhime did not satisfy thresholds for 

acceptable validity at any orientation, overestimating the pressure compared with HOSY.  We 

recommend using the PicoPress, specifically at the posterior or lateral aspect of the calf. This is of 
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particular relevance when the garment is applying relatively low levels of pressure, applicable to 

sports compression. 

 

3.3 Introduction 

CGs are popular clothing choices among recreational and professional athletes during and after 

exercise. These garments have been shown to enhance athletic performance and accelerate recovery 

following strenuous exercise [4,92].   

Despite the prospective benefits, little is known regarding the optimal ‘interface-pressure’ a CG 

should apply to a particular limb, to produce the greatest athletic benefit [2].  In contrast, the 

application of pressure to the lower extremities via tight fitting, elastic garments, is extensively 

researched in the clinical field and is part of standard care in patients with chronic venous 

insufficiency and lymphatic disease [124]. Unlike sports CGs, medical compression stockings 

undergo a standardised assessment procedure to quantify the pressure applied; therefore 

recommendations can be made in relation to the treatment protocol including a desired interface 

pressure [125]. Such recommendations cannot be made with regard to athletic performance or 

recovery due to a number of methodological limitations. Heterogeneity of published literature relating 

to research design is commonplace, including but not limited to; variation in garment design, duration 

of wear, type of garment and limb coverage.  Furthermore, authors fail to measure the pressure of 

garments [59] or values are provided by the garment manufacturer and are not directly measured 

[126]. If garment pressure is reported, the measurement devices used by researchers vary greatly, 

ranging from portable units and force-transducers to medical-grade devices. Until the measurement of 

the interface pressure elicited by sports CGs is standardised, developing a consensus and furthering 

the field regarding dose-response will continue to be a challenge. The reporting of pressure, obtained 

directly by research scientists and clinicians would progress the field of sports compression and 
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enable the investigation of optimal interface pressures (dosage) and gradients required for improved 

performance and recovery outcomes [2].   

A critical aspect of effective compression therapy is that the appropriate level of pressure is applied to 

the limb. Portable pressure sensing devices offer quick, low cost, in vivo assessment during dynamic 

movement. Validation of measures made in vivo by these devices is necessary to establish preferable 

devices and inform best practice.  

Current guidelines for the assessment of in vivo interface pressure list 22 portable devices [34], 

including pneumatic, piezoelectric, resistive and capacitive sensors. The authors state that the 

quantification of interface pressure will enable comparisons between clinical trials to assess dosage 

and the correlation with clinical and physiological measurements. However, many of the portable 

devices listed in the guidelines have not been validated nor compared with alternative methods of 

pressure assessment i.e. fixed, non-portable reference devices.  

Portable devices must undergo rigorous assessment to identify if variation exists between units. 

Furthermore, the accuracy of these devices versus a clinically relevant reference standard is necessary 

to provide a comparative assessment of performance. By identifying portable devices with acceptable 

accuracy, guidelines can be developed further and ultimately assist with understanding the bio-

physical impact of interface pressure on physiological response and performance outcomes. 

In light of this, we assessed the criterion validity of interface pressure measures from two 

commercially available devices in vivo by comparing pressure measurements against a reference 

standard. 

 

3.4 Methods 

We compared two portable devices (Kikuhime and PicoPress) commonly used with a ‘reference 

standard’ system (HOSY). The HOSY is a mandatory testing system for interface pressure 
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compliance, required for the classification and certification of medical compression hosiery. Two 

warp knitted compression garments were used, including calf- stockings (Figure 3-1a), covering the 

ankle to below the knee (SkinsTM Men’s Compression MX Calf Stockings, Riverwood, Australia) and 

full-length tights (Figure 3-1b), covering the body from ankle to waist (SkinsTM Men’s Compression 

A400 Long Tights, Riverwood, Australia).  

 

Figure 3-1 Image of SkinsTM Men’s Compression (a) MX Calf Stockings and (b) A400 Long Tights 

(images courtesy of www.skinscompression.com). 

 

The fabric properties of the two CGs were investigated for performance including fabric weight using 

Sartorius balance. Fabric thickness was measured using a Shirley thickness gauge (Mitutoyo, Japan) 

[127]. Fabric count (number of wales and courses) was measured with a simple eye piece lens that 

had 5x magnification.  Stretch and recovery was also evaluated to determine the stretch characteristics 

of fabric in length and cross wise direction using Fryma Extensiometer [128] and 3 kg load was 

applied (Table 3-1). All fabrics were conditioned in standard laboratory conditions (20 ± 2°C, 65 ± 
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0% relative humidity) for 24 h prior to the fabric tests [129]. Garments did not undergo pre-treatment 

washing prior to or between measurements. 

 

Table 3-1 Fabric characteristics of the compression garments. 

3.5 Reference Standard Device 

The Hohenstein System (HOSY, Bönnigheim, Germany) is used to measure interface pressure and 

determine if garments meet the German ‘medical compression hosiery’ standards RAL GZ 387/1 

[26]. The HOSY measures interface pressure (maximum resolution of 0.01 kPa), wear stretch 

(elongation %), tensile force (N/cm) and residual pressure (%). The device (Figure 3-3) comprises 

twenty individual tensile testing ‘rods’, each with a width of 50 mm. The force measurement takes 

place at the fixed clamp rod via short-distance electronic transducers. The measurement principle of 

the HOSY is based on the force exerted by compression fabric in circumferential direction, when 

stretched in a longitudinal direction to a specified length and subsequently in a transverse direction 

according to its size. For further details of the HOSY see the RAL GZ 387/1 standards [26]. 

 

 Weight 

(g/m2) 

Thickness 

(mm) 

Composition Count 

(wpc x cpc) 

Extension  

(%) 

Residual 

extension(%) 

Stockings 

 

Length 

wise  

 

Cross wise  

298  

(2.83) 

 

0.69 (0.00) 

 

 

65% Nylon 

35% elastane 

420 x 250  

 

52.67  

(0.94) 

 

96.67 

(4.71) 

 

 

2.67 

(0.00) 

 

2.00 

(0.94) 

Tights 

 

Length 

wise  

 

Cross wise 

199.33 

(0.57) 

0.57 (0.01) 76% Nylon 

24% elastane 

520 x 500  

 

164.89 

(13.87) 

 

94.67 

 (2.67) 

 

 

8.0 

(3.52) 

 

2.67 

(1.33) 

Number in the brackets indicates standard deviation; cpc – courses per mm; wpc – wales per mm 
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3.5.1 Calibration 

Pressure was measured on both garments at the location that corresponded with the maximum calf 

girth. The maximum calf girth, commonly referred to as ‘location C’ (Figure 3-2) in published 

guidelines [34] and standards [26], was chosen as interface pressures exerted in this region are 

commonly cited in both medical [130] and sports compression literature [10]. Prior to the 

measurement process, the ankle location (also referred to as ‘location B’) was manually identified on 

both garments and subsequently location C is marked at a height of 200 mm above this point. 

Calibration of the HOSY device takes place annually by attaching a 5 kg weight to each of the 20 

tensioning clamps.   

 

 

Figure 3-2 Measuring point for the ankle (Location B) and maximum calf girth (Location C) (image 

courtesy of RAL GZ 387/1 [26]). 
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3.6  Reference Standard Protocol 

A qualified technician attached the garments and operated the HOSY device in a controlled laboratory 

environment (18 ± 0°C, 65 ± 0% relative humidity). Briefly, two clamps held the bottom of the 

garment in place (Figure 3-3a) with the remaining garment placed in each fixed clamp rod (Figure 3-

3b). Once correctly fastened into the HOSY, the distance of location C (Figure 3-3c) from the bottom 

clamps was entered into the operating computer. The garment was stretched (loaded) and relaxed 

(unloaded) six times in the cross-wise direction. Each loading cycle extended the garment to the leg 

circumference. During the final loading phase the tensile force at each clamp was measured.  The 

computer program calculates how far each tensioning clamp moves to achieve the desired 

circumference and the resultant elongation of the garment so that all clamps reach this position 

simultaneously after 20 seconds [26]. A minimum and maximum leg circumference of 370 and 400 

mm at Location C was used for this investigation. Initially, the test-retest reliability of the HOSY was 

determined by measuring the tights twice. Between each assessment, the garment was unclamped and 

removed from the HOSY and reapplied by a qualified technician. The technical error of measurement 

(TEM) and coefficient of variation (CV) reported for the HOSY was 0.5 mmHg and 5.8% 

respectively.  For all data analysis referring to the tights, the mean of the two repeated measures at 

minimum and maximum elongation was used. Calf stockings were measured on one occasion only.  

Compression classification standards vary by country  [131,132] but a unified classification of mild 

(10-19 mmHg) and moderate (20-29 mmHg) compression is proposed. With this in mind, when 

comparing portable devices with the reference standard and determining device validity, a priori 

thresholds are required. The criteria for acceptable validity was defined as a systematic bias of ±2 

mmHg and a limit of agreement ±5 mmHg (of the mean bias). A bias of ±2 mmHg accounts for 

technical error of the HOSY and the resolution of the portable devices. Limits of agreement of ±5 

mmHg identify the variability of the device vs. the reference standard accounting for the 10 mmHg 

classification range. 
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Figure 3-3 The Hohenstein System (HOSY) showing (a) clamps holding the bottom of the garment, 

(b) 20 measuring rods with clamps and (c) measurement tape. 

 

3.7 Portable Devices 

The PicoPress (Microlab, Padua, Italy) is a battery-operated device and comprises a 50 mm circular 

sensor manufactured from 200 µm thick flexible plastic tubing attached to the base unit. The 

Kikuhime (Meditrade, Soro, Denmark) comprises 30 x 38 mm oval sensor made from 3 mm 

polyurethane foam and connected to a transducer via silicone tubing. Both the PicoPress and 

Kikuhime operate through pressure being applied to the sensor, thereby displacing the air and acting 

on the pressure transducer housed in the battery-operated units. The PicoPress can measure pressure 

up to 189 mmHg; and the Kikuhime up to 120 mmHg both with a resolution of 1 mmHg. 

3.7.1 Calibration  

We calibrated devices according to the manufacturers’ instructions. A self-calibration procedure is 

performed when switching the PicoPress unit on. Digital prompts on the device outline the calibration 

A

B

C
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procedure by inserting 2 ml of air into the sensor, setting the unit to read 0 mmHg when hanging 

freely. In the same position, the Kikuhime requires the user to manually zero the potentiometer. In 

light of the Kikuhime calibration method and unit resolution, there is an inherent calibration offset 

error of up to ± 0.49 mmHg [133]. 

3.8 Portable Device Protocols 

3.8.1 Water-column method 

To certify measurement validity and linearity from air-filled portable pressure systems such as the 

PicoPress and Kikuhime devices, the water column method provides a quick and in-expensive method 

making use of hydrostatic pressure. 

As previously described [2], by placing the pressure sensor flat at the bottom of a water column, and 

filling the column with a specific volume of fluid, a known pressure will be placed on the sensor. 

Water depths were calculated to determine incremental pressures of 5 mmHg, from 5 to 25 mmHg, 

whereby the depth measurement was taken from the lowest point of the meniscus and the middle of 

the sensor. The depth of water (mm) to achieve the target pressures was calculated using the following 

equation, 

a mmHg = b mmH2O x [7.356 x 10-2] 

Five repeated measures were undertaken for each depth, which required the removal of water from the 

column each time, before returning it to achieve the predetermined depth.   

3.8.2 In vivo protocol 

Twelve recreationally active males (mean ± SD: age 19.1 ± 1.0 y, body mass 74.6 ± 4.8 kg, stature 

1.77 ± 0.05 m) gave written informed consent to participate in the study in accordance with 

Declaration of Helsinki. The ethical committee at the University of Essex approved the current 

investigation. 
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All testing was performed in a controlled laboratory environment (18 ± 0°C, 50 ± 2% relative 

humidity). Upon arrival, the circumference of the participants calf was measured (location C = 380 ± 

12 mm). All participants possessed a maximum calf girth between 370 and 400 mm.  To ensure that 

garment Location C was accurately positioned at the correct limb height in-situ, position-markers on 

each garment were aligned with anatomical markings at the maximal calf-girth. The anterior, 

posterior, medial and lateral aspect were identified with a segmometer (Cescorf, Porto Alegre, Brazil). 

Limb width was measured at each orientation and the mid-point marked as the location for the 

portable device sensor. Using the PicoPress and Kikuhime devices, interface pressure at the anterior, 

posterior, medial and lateral aspect around the maximum calf girth was measured. The investigator 

placed the air-filled sensor of each device between the garment and skin, ensuring that the sensor 

remained flat. Participants stood upright with feet shoulder width apart during all measurements. 

Garment order was determined using a balanced two-Latin square design to minimize device and 

orientation order effect. For each anatomical site, three repeated measures were obtained at 30-second 

intervals. 

3.8.3 Portable Devices Data Treatment 

In vivo interface pressures were measured at four anatomical orientations and a fifth value calculated 

as the average of all four measures (i.e. lateral + medial + anterior + posterior / 4 = mean of four 

orientations ( 𝑥 )).  A Pearson’s Product Moment correlation was used to analyse the linearity of the 

PicoPress and Kikuhime against the water column reference values. Data analyses were conducted 

using Graphpad Prism 7 (Graphpad Software, San Diego, California) and reported as mean ± standard 

deviation (SD) unless otherwise stated. 

 

3.9 Data Analysis Agreement 

Prior to comparing in vivo portable devices with a reference standard, interface pressures must be 

established for each participant for the reference device. The HOSY does not measure pressure 
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directly applied to the individual, instead, pressures are determined by elongating the garment to a 

pre-determined length, simulating the circumference of a limb. A simple linear regression was 

calculated to predict interface pressure based on the HOSY pressure values at minimum and 

maximum elongation. As the theoretical circumference increased by 10 mm, interface pressure 

applied by the stockings increased by 0.86 mmHg between 370 and 400 mm (19.3 – 21.9 mmHg; y = 

0.87x - 12.77). The interface pressure of the tights increased 0.62 mmHg for every 10 mm increase in 

circumference (12.5 – 14.4 mmHg; y = 0.62x - 10.32). The regression equation was then used to 

determine individualized pressure from the reference standard by factoring the individuals’ calf 

circumference. Calculation of the estimated HOSY interface pressure for each participant produced a 

mean [95% CI] pressure of 20.1 mmHg [19.5, 20.8] and 13.1 mmHg [12.6, 13.6] for the stockings and 

tights respectively. Having established reference values, comparisons can now be made with the 

portable, in vivo devices. Normalcy was assessed using the Kolmogorov-Smirnov test. The difference 

between the individualised HOSY values and portable device pressures were assessed for significance 

using a one-sample t-test (target value = 0). The method proposed by Bland and Altman [134] was 

used to assess agreement between the HOSY and each portable device at all anatomical orientations 

The difference between devices was calculated as the interface pressure (mmHg) of the HOSY minus 

the portable device (PicoPress or Kikuhime), providing bias values and upper and lower limits (± 1.96 

SD). Difference was plotted as a function of the HOSY reference value [135] and linear regression 

used to calculate slope (B) of the HOSY versus portable device interface pressure. Analyses were 

performed using the Statistical Package for the Social Sciences (SPSS) version 25 (SPSS Inc., 

Chicago, Illinois) and the level of significance was set at α = 0.05.  

3.10 Results 

The PicoPress and Kikuhime interface pressures produced a positive correlation when compared with 

the criterion water pressure. Correlation coefficients calculated to evaluate the linear association 

between the pressure applied by the water column and two portable pressure devices are shown in 

Figure 3-4.  
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Figure 3-4 Linearity and correlation coefficients for the (a) PicoPress and (b) Kikuhime device. 

 

The interface pressures obtained by the reference standard, PicoPress and Kikuhime for the stockings 

and tights are shown in Table 3-2 and 3-3 respectively.  

The PicoPress produced values which agreed with the reference standard when measured at the 

posterior (-0.4 [-3.3; 2.5] mmHg) and lateral (0.5 [-3.4; 4.4] mmHg) orientations (Table 3-2). The 

positive mean bias values for measures at the anterior and medial orientation show PicoPress 

produced systematically higher values when compared with the reference standard, Table 3-2 shows 
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the Kikuhime produced values that were significantly higher (P<0.01) compared with the reference 

standard at all measurement orientations, with a bias ranging from -6.1 - -17.6 mmHg.  

Table 3-3 shows the between-device agreement for tights. When compared with the reference 

standard, the PicoPress (Table 3-3) produced significantly higher values at the anterior orientation 

(P<0.01), but not at the posterior, medial and lateral orientation. Of the orientations, the posterior, 

lateral and mean satisfied the a priori thresholds for acceptable validity, reporting a bias of 0.2 [-4.7; 

5.1], 1.2 [-0.3;5.4] and -0.6 [-4.5; 3.4] mmHg respectively. The Kikuhime produced interface pressure 

values that were higher than the HOSY. Regardless of orientation the Kikuhime had a mean bias >2 

mmHg at all orientations other than the medial aspect. At the medial orientation, the mean bias was 

2.0 mmHg but the limits of agreement were unacceptably wide and did not satisfy the validity 

threshold. 

Of all the measurements obtained using both portable devices, the unstandardized slope coefficient 

produced values ranging from -.02 – 2.4. With the exception of the posterior orientation using the 

Kikuhime with calf stockings, all remaining slopes were positive. At the posterior and lateral 

orientation, the PicoPress satisfied the validity thresholds with both garments, demonstrating a small 

bias, acceptable limits of agreement and a negligible slope. This means the PicoPress, at two specific 

orientations, is an accurate proxy measure for interface pressure when compared with the reference 

standard.  
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Table 3-2 Interface pressure, significance, agreement values (bias and limits) and slope between 

HOSY and portable devices with stockings  

 

Interface 

Pressure (mmHg 

[SD]) 

P-

value 
Bias [95% LoA] B [95% CI] 

Orientation PicoPress    

Anterior 29.3 [3.9] <0.01 -9.2 [-1.8; -0.6] 2.4 [0.0 – 4.8]  

Posterior 20.6 [1.5] 0.35 -0.4 [-3.3; 2.5] 0.5 [-0.4 – 1.4] 

Medial 22.0 [2.1] 0.02 -1.8 [-6.5; 2.8] 1.1 [-0.3 – 2.5] 

Lateral 19.6 [2.1] 0.37 0.5 [-3.4; 4.4] 0.4 [-0.9 – 1.7] 

x̄ 22.9 [1.5] <0.01 -2.7 [-6.4; 0.9] 1.1 [0.1 – 2.0] 

  Kikuhime       

Anterior 37.7 [4.4] <0.01 -17.6 [-26.8; -8.3] 1.7 [-1.2 – 4.6] 

Posterior 26.2 [3.0] <0.01 -6.1 [-11.4; -0.8] -0.2 [-1.9 –1.6] 

Medial 27.0 [3.8] <0.01 -6.9 [-15.0; 1.2] 1.5 [-1.0 – 4.0] 

Lateral 26.5 [3.8] <0.01 -6.3 [-14.3; 1.6] 1.3 [-1.2 – 3.8 

x̄ 29.4 [2.5] <0.01 -9.2 [-14.6; -3.9] 1.1 [-0.5 – 2.7] 

 x̄ = mean of four orientations; SD = standard deviation; LoA = limits of agreement; B = 

unstandardized beta coefficient of regression slope; CI = confidence interval. Mean [95% CI] 

HOSY pressure = 20.1 [19.5, 20.8] mmHg. 
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Table 3-3 Interface pressure, significance, agreement values (bias and limits) and slope between the 

HOSY and portable devices with tights  

 
Interface 

Pressure (mmHg 

[SD]) 

P-value 
Bias     

[95% LoA] 
B [95% CI] 

Orientation PicoPress    

Anterior 16.9 [2.9] <0.01* -3.8 [-10.1; 2.5] 2.0 [-0.6 - 4.7] 

Posterior 12.9 [2.3] 0.82 0.2 [-4.7; 5.1] 1.3 [-0.9 – 3.4] 

Medial 13.0 [2.7] 0.93 0.1 [-5.8; 6.0] 2.2 [-0.2 – 4.6] 

Lateral 11.9 [1.9] 0.07 1.2 [-3.0; 5.4] 1.3 [-0.5 – 3.1] 

  13.7 [1.6] 0.35 -0.6 [-4.5; 3.4] 1.7 [0.3 – 3.1] 

  Kikuhime      

Anterior 21.0 [4.4] <0.01* -7.9 [-16.7; 1.0] 1.2 [-2.9 – 5.3] 

Posterior 15.9 [2.2] <0.01* -2.9 [-7.0; 1.3] 0.2 [-1.8 – 2.2] 

Medial 15.1 [3.4] 0.69 -2.0 [-8.6; 4.7] 0.6 [-2.5 – 3.8] 

Lateral 15.1 [2.6] 0.03* -2.1 [-7.4; 3.3] 1.2 [-1.2 – 3.6] 
 

16.8 [2.1] <0.01* -3.7 [-8.1; 0.7] 0.8 [-1.2 – 2.8] 

𝑥 = mean of four orientations; SD = standard deviation; LoA = limits of agreement; B = 

unstandardized beta coefficient of regression slope; CI = confidence interval. Mean [95% CI] 

HOSY pressure = 13.1 [12.6, 13.6] mmHg. 

3.11 Discussion 

We investigated the validity of two portable pressure measurement devices. First, pressure values 

reported by two portable devices were compared with hydrostatic pressure using a water column 

method. Second, the two portable pressure devices were compared against reference standard values 

analogous to those used to determine the classifications of medical compression hosiery. In agreement 

with previous studies  using the water column method [2,136,137] we confirmed the Kikuhime and 

PicoPress devices produced reliable in vitro measures of hydrostatic pressure (Figure 3-4).  However, 

this method in isolation does not ensure validity in vivo as measurement error is the sum of 

instrumental error and the geometry / mechanical properties of the interface surface. The water 

column method is undertaken with the sensor in a flat position, whereas in vivo measures are 

commonly taken at locations where the surface is curved, potentially impacting upon the pressure 
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sensor performance [133].  At best, this technique offers the user a simple tool to assess unit precision 

and identify if inherent malfunctions with the pressure device exist. However, the water column 

method should not be used in isolation to determine the performance of a portable pressure monitor 

and its comparability with alternative garment pressure sensing devices.  

The present in vivo assessment confirmed the extent to which the point pressures vary at different 

orientations. The results are comparable to that previously reported, in that interface pressure at the 

anterior orientation of the lower leg is greatest [138–140]. This is likely due to variation in the 

anatomic structure and shape of individual human legs. According to Laplace’s law, the pressure 

exerted by a CG is inversely proportional to the radius of curvature at a given location. It follows that 

pressure applied at the tibialis anterior muscle will result in the highest circumferential pressure due to 

a smaller radius of curvature, when compared with the larger radius of the gastrocnemius (medial, 

lateral and posterior location).  

The PicoPress showed acceptable agreement for posterior and lateral measures of interface pressure 

made in both garments. This prominent finding regarding device performance and location of 

assessment is important to advance the standardisation of compression testing. In contrast, the 

Kikuhime overestimated interface pressures in both garments and at all anatomical sites. Under a 

sphygmomanometer cuff at 20 mmHg, the Kikuhime has previously reported a pressure ~25 mmHg 

[141]. The Kikuhime systemic overestimation of interface pressure may misclassify compression 

garments. However, at 30 – 50 mmHg both devices reported accurate and matching values [141].  The 

validity of devices at lower pressures is important when assessing sports CGs which typically produce 

interface pressures of ~10 – 30 mmHg [36,142]. Differences in the size and shape of the air-filled 

sensors used in both devices might explain the observed bias. The PicoPress uses a circular sensor 40 

mm in diameter whereas the Kikuhime uses smaller (38 x 30 mm) oval sensors with a smaller area 

(895 mm2). When placed on a cylindrical shape, a smaller sensor will result in a reduced radius of 

curvature, possibly explaining the higher interface pressures reported by the Kikuhime. 
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The Kikuhime sensor is also 2 mm deeper than the PicoPress when inflated and also includes a foam 

insert. The increased depth of the Kikuhime creates a local protuberance when used in vivo.   Any 

additional protrusion will distend the fabric of tight fitting garments causing an increase in tension and 

the sensor bulge will reduce the radius of curvature and result in a further increase in observed 

interface pressure [143].  

The B slope coefficient is a product of the calculated HOSY values and compared with the interface 

pressure obtained with a portable device. The PicoPress values at the posterior and lateral orientation 

for both garments report a low, positive B slope (<1.5 mmHg). The positive slopes indicate that at the 

lower end of the reference standard interface pressure, the portable devices report a higher value, 

whereas at the higher end of the reference standard pressure, the portable devices tend to 

underestimate interface pressures.  

3.11.1 Limitations 

The current results are a product of the garment and device interaction whereby the specific garment 

fabrics have shown to play a pivotal role in altering the interface pressure. The garments used in the 

present study, whilst commercially available, do not reflect the wide range of fabric compositions 

used for sport and medical compression and therefore caution should be used to extrapolate the 

present findings across alternative fabrics.  

3.11.2 Future Research 

Future research should compare the interface pressure reported by portable pressure devices with CGs 

of a known pressure (i.e. 10, 20 and 30 mmHg). By using the PicoPress at the approved orientations, 

it will provide insight into the variability of pressure when off-the-shelf garments are measured.  

3.11.3 Practical Implications 

The PicoPress and Kikuhime are commonly cited devices in medical literature [144,145], sub-

bandage pressure assessment [146,147], and as reference devices in the development of piezoresistive 

sensors [148]. However, in the current study, and in agreement with previous research [1,133,141], 
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significant discrepancies between the devices are evident. However, this study not only reports 

differences between portable devices, but also compares performance with a reference standard. This 

study contributes towards international standardization by identifying a portable pressure sensor 

(PicoPress) and assessment location (posterior and lateral) capable of replicating pressure values 

established from a reference standard. This is an important finding given the low-cost and speed in 

which garment pressure can be determined using a portable pressure monitor when compared with 

indirect methods. These findings are particularly relevant for researchers, garment designers and 

clinicians monitoring garment pressure, when interpreting the pressure applied in a wider context and 

comparing with the standardised pressure classifications. 

3.12 Conclusion  

Two portable pressure devices were rigorously assessed in order to contribute much needed future 

standardization of pressure evaluations for sports compression. When compared with a reference 

standard, the PicoPress provides a valid measure of interface pressure at the posterior and lateral 

location of the calf. From a practical, in vivo standpoint, we recommend using the PicoPress to assess 

interface pressure, specifically at the posterior or lateral aspect of the calf. This is of particular 

relevance when the garment is applying relatively low levels of pressure, applicable to sports 

compression. 
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4 Assessing the effect of compression tights on submaximal running 

economy.  

4.1 Rationale 

This study intended to explore the influence of compression tights on cardiorespiratory function. 

Having identified a portable pressure monitor with criterion validity when compared with a medical 

reference standard (Chapter 3), the PicoPress was used to assess garment interface pressure. In this 

study, correctly fitted and oversized compression tights where worn by recreationally active male 

runners and compared with running shorts. Assessment of cardiovascular parameters during 

submaximal exercise with two garment size variants provides an insight into a potential dose-response 

regarding interface pressure.  

4.2 Abstract  

Compression tights are the most commonly used sports compression wear, worn by recreational 

athletes globally. Despite their popularity, the influence of commercially available, low-pressure 

compression tights on cardiorespiratory function remains limited.  This study investigated the effects 

of correctly sized and oversized compression tights applying a low interface pressure, on 

cardiorespiratory function, compared with a control garment. Eleven recreationally active participants 

completed a 15 min run at 60% peak aerobic running speed (vV̇O2max) on three occasions. Running 

economy (RE), respiratory exchange ratio, minute ventilation, breathing frequency, heart rate, and 

rating of perceived exertion were measured during the steady state run, with blood lactate collected 

post exercise. A small, likely beneficial improvement (95%:5%:0%; η2 = 0.55) in RE at 60% vV̇O2max 

was observed in the correctly sized compression condition when compared with control. All 

remaining variables reported unclear, trivial or possible differences between garment conditions. The 

findings suggest that wearing non-graduated, low pressure CGs have a likely benefit for submaximal 

RE, however it appears necessary that a certain level of interface pressure is required. 
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4.3 Introduction 

CGs are an popular clothing choice among physically active individuals. As the demand for these 

specialised CGs grows in popularity with professional and recreationally active markets, the benefits 

cited by commercial companies are continually questioned [149]. Medical garments apply 

compression in a graduated fashion, with the greatest pressure applied at the distal location, reducing 

in pressure proximally. This garment design, when worn by patients with chronic venous 

insufficiency or healthy individuals at rest, increases blood flow velocity, reduces swelling and 

minimises venous stasis [150,151][150,151]. If enhanced calf skeletal-muscle pump function, 

improved venous return and lymphatic drainage are physiological responses to the application of 

compression clothing, it is understandable that sportspeople hope for an ergogenic benefit. 

Compression tights, that cover the wearer from the waist to ankle, are the most commonly purchased 

sports compression wear, accounting for more than one-third of compression wear market revenue in 

2015 [152]. However, there is a scarcity of literature assessing compression tights with recreationally 

active runners, despite being the largest consumer group. Of the studies that have specifically 

investigated the influence of compression tights on running performance, a reduced energy cost of 

running, by way of a decrease in oxygen uptake (VO2) slow component [9] has been reported along 

with lower muscle activation in key running-related muscles during distance running [153]. 

Conversely, a detrimental effect of compression tights on running economy at low speeds is reported 

[10], suggesting that this may be a result of additional VO2 required to overcome the resistance to 

movement that may be caused by compression tights. Other authors have reported no change in 

parameters such as time to exhaustion, heart rate [154], rating of perceived exertion [9], oxygen 

uptake or lactate during submaximal running [8] when compression tights are worn. 

The inconsistency in sports compression literature is confounded by varied research methodologies, 

small participant numbers and the type of CG used (interface pressure exerted (mmHg), surface area 

covered and fabric properties). With reference to the interface pressure applied by CGs, standard 
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classifications exist for graduated medical compression hosiery [26]. However, there are no agreed 

interface pressure classifications for sports compression garments, nor an agreed approach as to how 

interface pressure should be measured. Broadly, medical classifications report ‘low’ pressure as 18-21 

mmHg applied at the ankle and decreasing progressively up the leg [26]. However, sports CGs are 

reported to elicit an interface pressure below this minimum threshold [142], indicating that sports 

garments produce lower interface pressures than medical garments.  

The primary aim of the present study was to investigate the impact of sports compression tights on 

recreational runner’s cardiorespiratory function. Our secondary aim was to investigate a possible 

dose-response comparing running economy when wearing correctly fitted compression tights versus 

oversized garments. It was hypothesised that measures of cardiorespiratory function during running 

would be improved with correctly fitted compression, but not oversized garments. 

4.4 Methods 

Eleven healthy, non-smoking, recreationally active (>3 sport specific training sessions per week) 

males (mean ± SD; age 28.7 ± 6.6 years, weight 68.2 ± 5.3 kg, V̇O2max 54.2 ± 4.9 ml·kg−1·min−1, 

vV̇O2max: 19.2 ± 1.4 km h-1 (corrected for 1% gradient)) participated in the study. Participants kept a 3-

day food and activity diary prior to preliminary testing. They were requested to follow the same 

dietary intake the day prior and day of testing for all subsequent testing dates.  Participants were asked 

to refrain from exercise, caffeine and alcohol intake 24 hours prior to testing and refrain from 

strenuous exercise 48 hours prior. Furthermore, participants did not consume any food or fluid 

(excluding water) in the 2 hours prior to testing. Ethical approval was received from the University of 

Essex ethical committee. Participants provided written informed consent in accordance with the 

Declaration of Helsinki. 

The compression tights used in this investigation, shown in Figure 4-1, were Skins TM Men’s 

Compression A400 Long Tights (Riverwood, Australia), and the correctly fitted garment for each 

participant was in accordance with the manufacturer’s instructions. For the oversized garment 
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condition, participants wore two sizes above the manufacturer’s instructions. The garments were 

made from warp knitted fabrics, with the fibre reported as 76% nylon and 24% elastane.  Participants 

were blinded to the garment condition by removing the size label. The pressure exerted by the 

compression tights on the lower limbs were evaluated by the PicoPress® (Microlabs, Italy) pressure 

monitor which has a coefficient of variation of <5% at 20 mmHg,[1] and shown to satisfy criterion 

validity with a reference standard device (Chapter 3). Pressure measures were recorded at 3 

anatomical locations (ankle = 5 cm above superior sphyrion, posterior calf = maximal calf girth and 

anterior thigh = mid-point between mid-trochanterion-tibiale laterale). The control garment consisted 

of loose fitting running shorts, thereby providing a comparison between compression tights and 

garments typically worn by recreational runners. Participants wore the same short-sleeved top and 

running shoes on all occasions.  

 

Figure 4-1 (a) Lateral and (b) anterior view of Skins TM Men’s Compression A400 Long Tights used 

in this investigation.
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The experimental protocol consisted of four sessions, held between 2-4 days apart for all participants. 

Each participant attended their sessions at the same time of day, with similar environmental 

conditions (temperature: 18 ± 1.0° C) to minimise variation in physiological parameters that might 

change with circadian rhythm. A crossover design was incorporated into the study; with garment 

order counterbalanced using a Latin square design. 

The initial session determined individual maximal aerobic capacity (V̇O2max), and peak running speed 

during an incremental treadmill test (vV̇O2max). After a 5 min warm-up at 7 km·h-1 (0% gradient) 

participants completed an incremental exercise test on a treadmill (Saturn, HP-Cosmos, Nussdorf, 

German) wearing the control garments. The initial treadmill speed of 7 km·h-1 was increased by 1 

km·h-1 each minute to a speed of 16 km·h-1. Thereafter treadmill gradient was increased by 2% each 

minute until volitional exhaustion[154]. Gradient increases were converted to equivalent demands of 

change in running velocity assuming an 1.5% increase in gradient of equates to an 1 km·h-1 increase in 

speed of as previously described[155]. To determine vV̇O2max, the speed of the last complete stage 

was added to the multiplication of the speed increment by the completed fraction of the incomplete 

stage. Following the incremental test and a rest period of 10 minutes, participants were familiarised 

with the steady state condition by running on the treadmill for 5 min at 60% of their individualized 

vV̇O2max.  

During sessions 2-4, participants initially provided a urine sample upon arrival to assess urine specific 

gravity (Atago Co., Ltd., Tokyo, Japan) and a 24-hour dietary intake record to confirm dietary and 

fluid recommendations had been adhered to. Participants were equally assigned to the control, 

compression or oversized condition in an attempt to balance any learning effects. For trials that 

required participants to wear compression tights, garment interface pressure was recorded. Following 

this, a standardised warm-up on a cycle ergometer (Monark 818 E, Sweden) of 5 min at 100W was 

undertaken.   
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Subsequently participants underwent a 15 min steady state (SS) running task at 60% vV̇O2max, at a 

gradient of 1%. The mean 60% vV̇O2max between participants was 12.1 ± 1.3 km·h-1. During the SS 

run, breathing frequency (BF), minute ventilation (VE) oxygen uptake (V̇O2) and expired carbon 

dioxide (V̇CO2) were measured constantly with a breath-by-breath gas analyser (Vyaire CPX, 

Mettawa, Illinois, USA). V̇O2 was calculated by linear interpolation between breath-by-breath V̇O2 

data to 1 second values and then averaged over the last 3 min of the SS run task. RE was then 

calculated as the total volume of oxygen needed to run one kilometre relative to body mass (ml·kg-

1·km-1) at 60% vV̇O2max.  Respiratory exchange ratio (RER) was reported as the mean ratio between 

V̇O2  consumed and expired V̇CO2 from the final 3 min of steady state running. Heart rate was 

recorded throughout the run task using a wireless HR monitor (Polar S810i, Polar Electro, Finland). 

Participants reported RPE at 1, 3, 6, 9, 12 and 15 min using Borg’s 6-20 scale [156].  To measure 

blood concentration of lactate ([La-]b), capillary samples from the right earlobe (20μL) were collected 

(Eppendorf AG, Hamburg, Germany) on completion of the SS run.  Samples were analysed using a 

Biosen Lactate analyser (Biosen C-line analyser, EKF Industrie, Elektronik GmbH, Barbelen, 

Germany). 

4.4.1 Data Analysis 

All sets of data in the three conditions (control, compression and oversized) were initially tested for 

normality using the Shapiro-Wilk test. Analysis of CG interface pressure was conducted via a paired 

students t-test to measure potential significant differences between two means. In cases where the 

assumptions of normality were not met, the non-parametric Wilcoxon signed-rank test was used for 

comparisons of two means. VE, BF, RE, RER, HR and [La-]b were analysed by a one-way ANOVA, 

with Bonferroni correction. In cases where the assumptions of normality were not met, the non-

parametric Kruskal-Wallis test was used for comparisons of three conditions. Prior to conducting a 

repeated-measures two-way ANOVA (garment x time point) with RPE data, Mauchly's Test of 

Sphericity was conducted to assess variances of the differences between all combinations of related 
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groups. Subsequently, a Fishers LSD post hoc test was performed when comparisons were made 

across more than two levels.  

RE, RER, RPE and [La-]b was subsequently analysed for practical significance using magnitude-based 

inferences[157]. Statistical analysis of physiological and perceptual measures was performed using a 

specifically designed spreadsheet available for crossover studies[158]. We used a contemporary 

statistical approach because conventional statistics typically omit the magnitude of the effect, which 

could be considered more relevant to a therapeutic prescription than a statistically significant 

result[71]. Physiological data was log-transformed to reduce bias arising from non-uniformity of error 

and back-transformed to obtain changes in means in raw values.  

The standardised effect size, (defined as (difference in mean)/standard deviation, was calculated for 

all variables between each clothing condition. Thresholds for small, moderate and large effects were 

0.20, 0.60, and 1.20, respectively. From the spreadsheet, we used magnitude-based inferences about 

effect sizes (ES) and then to make inferences about true (population) values of the effect, the 

uncertainty in the effect was expressed as 90% confidence limits. Between-trials comparisons 

involved calculating the probability that the true (unknown) differences were lower than, similar to, or 

higher than the smallest worthwhile difference or change (0.2 x between-participant standard 

deviation). Quantitative chances of higher or lower differences were qualitatively ranked as follows: 

<1%, almost certainly not; 1-5%, very unlikely; 5-25%, unlikely; 25-75%, possible; 75-95%, likely; 

95-99%, very likely and >99%, almost certain. If the chances of harm and benefit were of >0.5% and 

<25% respectively, the true difference was assessed as unclear. All statistical tests were processed 

using the statistical package SPSS (Version 18) and Microsoft Excel (Microsoft Corporation TM, 

Redmond, WA, USA). The level of statistical significance was identified by an alpha value of P <0.05 

and data reported as mean ± standard deviation (SD), unless otherwise stated.  

4.5 Results 
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Baseline measures performed to assess the IP (mmHg) applied by the compression and oversized 

garment revealed significantly higher values with compression tights at the ankle (95% CI = 0.98, 

2.72; p = 0.001) and thigh (95% CI = 2.06, 3.71; p = 0.003) compared with the oversized garment 

(Table 4-1). The IP at the posterior calf location was not significantly different (95% CI = -0.60, 3.60; 

p = 0.052) (Compression: ankle = 3.1 ± 1.3; calf =10.5 ± 3.1; thigh = 6.7 ± 0.6 mmHg. Oversized: 

ankle = 1.3 ± 0.9; calf = 9.1 ± 2.7; thigh = 3.8 ± 1.1 mmHg).  

Table 4-1 Interface pressure (mmHg) with oversized (OSG) and correctly sized (CSG) compression 

tights for individual participants. 

Participant no. Ankle (mmHg) Calf (mmHg) Thigh (mmHg) 

OSG CSG OSG CSG OSG CSG 

1 2 3 9 10 3 7 

2 0 2 8 9 3 6 

3 1 4 11 19 6 7 

4 1 4 10 11 3 7 

5 2 5 16 11 3 6 

6 3 3 7 8 5 7 

7 0 1 7 7 3 7 

8 2 2 6 11 4 6 

9 1 5 9 10 4 7 

10 1 2 8 9 3 8 

11 1 4 9 11 5 7 

Mean ± SD 1 ± 0.9 3 ± 0.9 9 ± 0.9 11 ± 0.9 4 ± 0.9 7 ± 0.9 

 

For RPE measures there was a significant main effect for time (F (2.2, 65.7) = 65.4, p = <0.001, η2p = 

.685) but not for garment (F(2, 30) = 0.41, p = 0.960, η2p = .003) or interaction (garment x time) (F 

(4.4, 65.7) = 0.208, p = 0.944, η2p = .014).  

Comparing correctly sized compression tights with the oversized condition, RPE using magnitude-

based inferences revealed a possibly beneficial effect at 1 and 6 min (ES = -0.24 and -0.26 

respectively). After 1 min of exercise, a possible harmful effect was reported for the oversized 

condition when compared with control (ES = 0.04). All further comparisons of RPE between garment 

conditions at each time point reported either trivial or unclear differences (Table 4-2). 
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Table 4-2 Between-trials comparison of rating of perceived exertion (RPE) during treadmill running at 60% vV̇O2max. 
    1 min 3 min 6 min 9 min 12 min 15 min 

 CT (95% CL) 8.6 (7.5; 9.8) 10.1 (8.6; 11.6) 11.0 (9.6; 12.4) 11.6 (10.1; 13.2) 11.9 (10.0; 13.8) 12.6 (10.8; 14.3) 

 OSG (95% CL) 8.7 (7.5; 9.9) 10.1 (8.5; 11.7) 11.1 (9.7; 12.5) 11.6 (10.5; 12.8) 11.8 (10.7; 12.9) 12.4 (11.1; 13.6) 

 CSG (95% CL) 8.3 (7.1; 9.4) 9.8 (8.3; 11.3) 10.6 (8.9; 12.2) 11.6 (10.3; 12.8) 11.9 (10.5; 13.3) 12.5 (10.9; 14.0) 

Oversized - Control                                     

difference in mean (90% CL) a 0.10 (-0.7; 0.9) 0.00 (-0.3; 0.3) 0.10 (-0.3; 0.5) 0.00 (-0.5; 0.5) -0.09 (-0.9; 0.7) -0.18 (-0.9; 0.5) 

effect size  (90% CL) 0.04 (-0.4; 0.5) -0.02 (-0.2; 0.2) 0.04 (-0.1; 0.2) 0.04 (-0.2; 0.3) 0.04 (-0.3; 0.4) -0.01 (-0.3; 0.3) 

effect size rating trivial trivial trivial trivial trivial trivial 

% of chances for oversized values 

to be   higher / trivial / lower than 

control 

25/59/16 2/95/3 6/92/1 10/87/4 19/72/9 11/74/14 

rating oversized vs control b Possibly harmful Likely trivial Likely trivial Likely trivial Possibly trivial Possibly trivial 

Compression - Control                                     

difference in means (90% CL) a -0.40 (-0.9; 0.2) -0.30 (-0.8; 0.3) -0.50 (-1.2; 0.3) -0.10 (-0.8; 0.6) 0.00 (-0.6; 0.6) -0.09 (-0.9; 0.7) 

effect size  (90% CL) -0.20 (-0.5; 0.1) -0.12 (-0.4; 0.1) -0.22 (-0.6; 0.1) 0.00 (-0.3; 0.3) 0.04 (-0.2; 0.2) -0.01 (-0.3; 0.3) 

effect size rating small trivial small trivial trivial trivial 

% of chances for compression 

values to    

be higher / trivial / lower than 

control 

2/47/50 2/69/29 2/44/54 10/79/11 9/88/2 10/77/13 

rating compression vs control b Unclear Unclear Unclear Likely trivial Likely trivial Likely trivial 

Compression - Oversized                                     

difference in means (90% CL) a 0.50 (-1.0; 0.1) -0.30 (-1.0; 0.4) -0.50 (-1.3; 0.2) -0.10 (-0.8; 0.6) 0.09 (-0.6; 0.8) 0.09 (-0.8; 1.0) 

effect size  (90% CL) -0.24 (-0.5; 0.0) -0.11 (-0.4; 0.2) -0.26 (-0.6; 0.1) -0.04 (-0.3; 0.2) 0.00 (-0.2; 0.2) 0.00 (-0.3; 0.4) 

effect size rating 

% of chances for compression 

values to be higher / trivial / lower 

than oversized 

small trivial small trivial trivial trivial 

0/38/62 6/63/31 1/36/63 7/78/16 7/86/2 16/68/16 

 rating compression vs oversized b Possibly beneficial Unclear Possibly beneficial Likely trivial Likely trivial Possibly trivial 

a Between garment mean difference (90% confidence limit); b Qualitative descriptor. CT, control clothing; OSG, oversized garment; CSG, correctly sized garment. 
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Running economy was not significantly different between compression (207.4 ±10.8 ml·kg-1·km-1), 

oversized (211.2 ±10.3 ml·kg-1·km-1) and control (214.2 ±11.6 ml·kg-1·km-1) as determined by one-

way ANOVA (F(2,30) = 1.074, p = 0.35). There was a small and likely beneficial effect of 

compression tights on running economy when comparing compression with control (0:5:95%; ES = -

0.55) during steady state exercise (Table 4-3). The individual response to compression is highlighted 

in Figure 4-2.   No differences in body mass were observed between garment conditions (F(2,30) = 

0.007, p = 0.99), indicating that changes in running economy are not related to the changes in body 

mass. The effect size for running economy between oversized and control, plus compression and 

oversized was small (ES = -0.24 and -0.32 respectively), with unclear inferences. 

 

Figure 4-2 The individual and mean running economy response with correctly fitted compression 

compared to control during treadmill running at 60% vV̇O2max. 

 

There was no significant difference (F(2,30) = .343, p = 0.71) in mean RER between compression 

(0.91 ± 0.3), oversized (0.90 ± 0.4) and control (0.91 ± 0.3). When compared with the oversized 

garment, compression produces a small and possibly harmful effect (60:31:9%; 0.29) on RER. 

Additional RER comparisons between garment conditions produced unclear inferences. Following 

steady state exercise, there were no significant differences in [La-]b, with trivial effect sizes, and 
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unclear inferences (Table 4-2). Due to signalling interruptions with the HR monitors, complete data 

was only collected for seven participants. Furthermore, data was incomplete and interpolation of VE 

and BF was not possible for one participant.  There was no significant effect of garment condition in 

HR, VE and BF (F(2,15) = .207, p = 0.82; F(2,27) = .0.62, p = 0.94 and F(2,27) = .0.21, p = 0.98, 

respectively). There were unclear or trivial inferences regarding compression on HR, VE and BF 

(Table 4-4). 
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Table 4-3 Between trials comparison of running economy, respiratory exchange ratio (RER) and blood lactate values during treadmill running at 60% vV̇O2max 

  Economy RER Blood lactate c 

  (ml•kg-1•km-1)    (mmol•L) 

CT (95% CL) 214.2 (206.4; 222.0) 0.91 (0.89; 0.93) 2.97 (2.25; 3.69) 

OSG (95% CL) 211.2 (204.3; 218.2) 0.90 (0.87; 0.92) 2.90 (2.23; 3.58) 

CSG (95% CL) 207.4 (200.1; 214.6) 0.91 (0.88; 0.93) 2.86 (2.16; 3.56) 

Oversized - Control 

  

  

  

  

  

      

difference in mean (90% CL) a -3.00 (-8.0; 2.0) 0.01 (0.0; 0.0) -0.07 (-0.4; 0.2) 

effect size  (90% CL) -0.24 (-0.7; 0.2) -0.35 (-0.9; 0.2) -0.11 (-0.5; 0.3) 

effect size rating small small trivial 

% of chances for oversized values to be higher / trivial / 

lower than control 

4/40/56 5/26/69 8/60/32 

rating oversized vs control b Unclear Unclear Unclear 

Compression - Control 

  

  

  

  

  

      

difference in means (90% CL) a -6.80 (-11.1; -2.5) 0.00 (0.0; 0.0) -0.11 (-0.5; 0.2) 

effect size  (90% CL) -0.55 (-0.9; -0.2) -0.06 (-0.6; 0.5) -0.13 (-0.5; 0.3) 

effect size rating small trivial trivial 

% of chances for compression values to be higher /  

 trivial / lower than control 

0/5/95 19/50/32 8/56/37 

rating compression vs control b Likely beneficial Unclear Unclear 

Compression - Oversized 

  

  

  

  

  

      

difference in means (90% CL) a -3.80 (-9.8; 2.1) 0.01 (0.0; 0.0) -0.04 (-0.4; 0.3) 

effect size  (90% CL) -0.32 (-0.8; 0.2) 0.29 (-0.3; 0.9) -0.02 (-0.4; 0.4) 

effect size rating small small trivial 

% of chances for compression values to be higher / trivial / 

lower than oversized 

4/30/66 60/31/9 15/64/20 

rating compression vs oversized b Unclear Possibly harmful Possibly trivial 

a Between garment mean difference ± 90% confidence limit; b Qualitative descriptor; c Assumption of normality not met therefore analysed with Kruskal-Wallis test 
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Table 4-4 Between trials comparison of heart rate (HR), minute ventilation (VE) and breathing frequency (BF) during treadmill running at 60% vV̇O2max  

  HR (n=6) VE (n=10) BF (n=10) 

  (bpm)   L/min (1/min) 

CT (95% CL) 170 (163; 177) 92.8 (79.2; 106.3) 42.8 (36.4; 49.1) 

OSG (95% CL) 171 (164; 177) 90.0 (77.7; 102.2) 43.5 (38.0; 49.0) 

CSG (95% CL) 168 (160; 176) 91.0 (78.3; 103.7) 43.2 (37.7; 48.7) 

Oversized - Control 

  

  

  

  

  

      

difference in mean (90% CL) a -0.26 (-2.0; 2.5) -2.79 (-5.9; 0.3) -0.74 (-1.3; 2.7) 

effect size  (90% CL) -0.03 (-0.2; 0.3) -0.12 (-2.7; 0.0) -0.10 (-0.1; 0.3) 

effect size rating trivial trivial trivial 

% of chances for oversized values to be higher / trivial / 

lower than control 
14/78/08 0/82/18 19/80/1 

rating oversized vs control b Likely trivial Likely trivial Likely trivial 

Compression - Control 

  

  

  

  

  

      

difference in means (90% CL) a -1.94 (-5.1; 1.2) -1.78 (-3.4; -0.2) -0.41 (-1.1; 1.9) 

effect size  (90% CL) -0.25 (-0.6; -0.2) -0.08 (-0.2; 0.0) -0.06 (-0.1; 0.2) 

effect size rating small trivial trivial 

% of chances for compression values to be higher / trivial 

/ lower than control 
4/38/59 0/99/1 7/93/1 

rating compression vs control b Unclear Very likely trivial Likely trivial 

Compression - Oversized 

  

  

  

  

  

  

  

  

  

  

      

difference in means (90% CL) a -2.21 (-4.7; 0.3) 1.01 (-1.3; 3.3) -0.33 (-2.0; 1.3) 

effect size  (90% CL) -0.28 (-0.6; 0.0) 0.05 (-0.0; 0.2) -0.03 (-0.2; 0.1) 

effect size rating small trivial trivial 

% of chances for compression values to be higher / trivial 

/ lower than oversized 
1/30/68 1/98/0 1/95/4 

rating compression vs oversized b Unclear Very likely trivial Likely trivial 

a Between garment mean difference ± 90% confidence limit; b Qualitative descriptor
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4.6 Discussion 

In the present study, we assessed the influence of correctly fitted and oversized, non-graduated 

compression tights on parameters of submaximal running, metabolic response and ratings of perceived 

exertion. The major finding is that during steady state running at 60% vV̇O2max, correctly fitted 

compression tights that elicit an interface pressure <15 mmHg are likely beneficial in improving RE 

when compared with running shorts. We provide new evidence that low-pressure sports compression 

tights, applying the greatest interface pressure at the calf, elicit a small yet beneficial influence on RE. 

Only possible, trivial or unclear differences were observed in all other measures, with either small or 

trivial effect sizes. 

4.6.1 Influence of Compression Tights on Running Economy 

Running at a velocity of ~12 km·h-1 with compression tights produces a mean improvement in RE of 

3.2%.  This improvement is comparable to a 6 week interval or continuous training period[159]. In the 

investigation implementing interval training, a 3.0% improvement in RE was reported when repeated 

4-6 x 4 min bouts at 106% vVO2max was completed (3 d/wk for 6 wk) by recreational runners. In the 

same investigation, a separate group of participants underwent continuous training at 94% vV̇O2max (3 

d/wk for 6 wk) and produced a 3.1% improvement in RE. Interestingly, a third group of participants 

trained at 132% vV̇O2max, yet did not elicit an improvement in RE. However, unlike the current 

study, 6 weeks of interval or continuous training brought about additional physiological adaptations 

such as a reduction in blood lactate and HR when running at ~13.8 km·h-1. In the present investigation, 

the acute donning of compression produced no change in blood lactate, RER, HR, BF or VE, 

suggesting that the observed alteration in running economy is more likely due to biomechanical 

factors than physiological. Had a reduced VE, HR or greater carbohydrate utilisation during oxidative 

phosphorylation been identified, this would have been suggestive of a decreased cardiorespiratory 

cost, however this was not observed in this instance. An alternative theory, whilst not explored in the 

present study, is that compression leads to an alteration in running technique. Compression sleeves 

(ankle to thigh) have been shown to reduce stride length when running at 10 and 14 km·h-1 [160]. 
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However, the pressure applied by the garments to elicit a reduction in stride length was significantly 

higher than those used in the present study (33.4 and 20.4 mmHg at the calf and thigh respectively). In 

the same investigation, garments applying a lower level of pressure, yet approximately twice the 

pressure applied by the compression tights in the present study (23.2 and 10.8 mmHg at the calf and 

thigh respectively) did not elicit a significant effect on stride length compared with the control 

condition. However, despite the lack of statistical significance, a pressure:stride length interaction was 

apparent, with low pressure garments causing a small reduction in stride length (2.2 and 1.7 cm at 10 

and 14 km·h-1 respectively).  It is conceivable that CGs may limit range of motion at the transverse 

and frontal planes of the trunk and hip, thereby stabilising the pelvis at the time of foot impact with the 

ground. A reduction in active range of motion (AROM) during hip flexion with compression shorts 

supports this notion [74,75]. If indeed, the likely beneficial effect of compression tights is due to the 

reduced AROM at the hip and subsequent alteration to stride length, only tight fitting shorts or tights 

will elicit this physiological response. In support of this, compressive calf stockings (ankle to below 

knee) caused no change in stride length, contact time, flight time or stride frequency at 105% of a 

recent 10 km running performance (~17 km·h-1) during a time to exhaustion test [81]. Additionally, 

well-trained distance runners reported no change in running gait variables, nor running economy when 

running at 14, 16 and 18 km·h-1 compared to running shorts [94]. Again, the garments worn were calf 

stockings, therefore no pressure is applied to the hip region, and hence gait is unlikely to be 

influenced. Furthermore, well-trained distance runners would possess a well-developed running 

economy and are less likely to benefit from the application of CGs, already possessing an established, 

economically optimal locomotion style. The participants in the present study were recreationally 

active individuals (V̇O2max = 54 ml·kg−1·min−1), lacking an optimised, highly economical running 

style. As such, compression tights may produce a likely beneficial effect on RE as a result of reducing 

excessive range of motion and metabolically expensive stabilising muscular activity [161].  
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4.6.2 Influence of Compression Tights on Rating of Perceived Exertion 

In the current study, RPE was similar for all garment conditions when running at 60% vV̇O2max. These 

findings are comparable to others when long tights are worn during submaximal running exercise 

[9,126]. Despite some authors reporting a reduced RPE during submaximal running when wearing 

lower body compression clothing [154,162], it is not possible to truly blind participants to the garment 

condition, therefore the role of expectations may influence the perceived experience. CGs have been 

shown to influence perception of exertion during steady state cycling at 60% peak power output [163]. 

Participants were shown a 3 min video clip prior to exercise to influence their expectation of a 

sleeveless compression shirt. When participants had a more positive expectation, a reduced perception 

of exertion was experienced.  

4.6.3 The Role of Varying Interface Pressure 

Correctly sized and oversized garments were used to investigate whether a pressure dose-response 

existed. When compared with medical compression classifications [26], both garments apply low 

pressure at the three anatomical locations. The reduced energy cost observed in the present 

investigation is comparable to that of previous studies [9,81]. However limited information is 

available regarding the interface pressures, with one study failing to report any pressure values [9] and 

the other reporting ankle pressure (15 – 22 mmHg) but fails to document how this information was 

collected [81].  Opposing results demonstrate no change in oxygen consumption during a submaximal 

run at 70% V̇O2max with compression stockings, long tights or compression shorts with a garment 

interface pressure targeted at 20 mmHg [8]. In addition, no change in oxygen consumption was 

reported wearing compression tights during a submaximal run at a speed equivalent to the first 

ventilatory threshold (VT1). The long tights in this study were the same brand as the present study and 

interface pressures were 13.6 and 8.6 mmHg at the calf and thigh respectively; however participants 

exercised in either a cold 10°C, or hot 32°C environment, unlike the ambient conditions implemented 

in the present study. In the absence of a defined, optimal sports compression interface pressure [142], 

a minimum threshold to improve venous return of 17 and 15 mmHg at the calf and thigh respectively 
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is proposed [12]. The compression tights used in the present study did not surpass this minimum 

threshold and as such, without a change in venous return, it is unlikely the current, low-pressure tights 

will influence cardiac parameters. Furthermore, despite statistically significant differences in interface 

pressure reported between the two garments, this difference in practical terms is likely to be 

unimportant. It is conceivable that while the CGs apply similar interface pressures, the oversized 

garment may offer less support around the hip and knee joint, or places on the garment where stitching 

is located and act as anchor points for the garment during dynamic movement. Anecdotally, some 

participants reported the oversized garment felt loose around the crotch. This may have led to 

restricted hip flexion, requiring greater perceived effort to overcome this restriction.  

The varied interface pressure applied by CGs offers a plausible explanation for the conflicting results 

observed in the sports compression literature.  The variation in interface pressure testing and 

measurement devices has previously been discussed (Chapter 3), indicating that even when pressures 

are recorded, the absolute pressure values are dependent on the anatomical location of the 

measurement and the specific type of measurement device. In light of this, caution should be taken 

when directly comparing published interface pressures from varying devices, or from values that are 

‘advised’ by the CG manufacturers.  

The present study demonstrated that non-graduated, compression tights, applying a low interface 

pressure (6 - 15 mmHg), produce a greater benefit compared with an over-sized garment.  This 

suggests that a minimum interface pressure threshold may exist, whereby interface pressure below a 

particular value may not stimulate muscle or skin mechanoreceptors sufficiently. As a result, 

minimally compressive garments may not elicit sufficient afferent feedback to assist with reducing 

excessive range of motion or assisting with optimised proprioception in recreational runners. 

4.6.4 Practical Application  

The running speed at 60% vV̇O2max corresponded to a relative intensity of 79.4 ± 6% VO2max. Previous 

research identified that recreational half-marathon runners typically perform at this relative intensity 

[164] and running at 80% V̇O2max for 90 minutes causes a gradual increase in running economy [165]. 



 

73 

  

Strategies to reduce or attenuate the increase in oxygen consumption over a prolonged submaximal 

run are advantageous for recreational runners.  

Wearing non-graduated, low pressure (<15 mmHg), lower body compression tights during 

submaximal running leads to a reduction in oxygen cost of ~3% in the final 3 min of a 15-minute 

steady-state protocol. The present results provide evidence that compression tights may be beneficial 

to distance runners, since small improvements in running economy become important over long 

distances. A 5% improvement in running economy induced approximately 3.8% increase in distance 

running performance[6]. Future studies are required to elucidate the mechanisms integrating with the 

observed improvement in running economy, plus identify if these physiological changes translate into 

a measurable performance enhancement. 

Despite the likely beneficial effect of compression tights on RE observed in this study, data was 

obtained in a controlled laboratory environment. The applicability of these findings to over-ground 

running requires further exploration. Since air and wind resistance are not a factor during laboratory 

testing, and running technique differ between treadmill and road, transferring treadmill data to over-

ground running requires caution [110]. 

The observed reduction in oxygen cost in the present study was 3.2%. The intra-individual variation of 

running economy is reported to vary between 1.3 – 5% at speeds of 12 – 18 km·h-1 [166,167]. 

Therefore, the reported likely beneficial effect of compression on RE could be due to variation in 

technical and biological variation.  However, Periera et al., [166] revealed a RE coefficient of 

variation of 2.0% with participants of a very similar aerobic capacity and training status to the current 

study. Furthermore, the time of testing, prior exercise, pre-exercise dietary intake, footwear and 

environmental conditions were well controlled with each participant in the current study, thus 

minimising possible variables that might negatively impact the intra-individual variation.  
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4.7 Conclusion 

In conclusion, the results of this study reveal an improved running economy when running on a 

treadmill at ~12 km·h-1 with correctly fitting compression tights, eliciting a non-graduated design with 

low interface pressures (<15 mmHg). It seems possible that wearing compression tights during 

running may positively influence the non-optimised running technique of recreationally active males. 

However, the extent to which compression tights improve running economy requires further 

investigation with reference to alternative running intensities and varying garment interface pressures. 
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5 The influence of compression tights on running economy varies by 

relative intensity 

5.1 Rationale 

Correctly fitted compression tights produce a small yet likely beneficial effect on running economy at 

a specific running intensity. Further investigation is required to explore the role of compression tights 

across a wider spectrum of relative exercise intensities.  Furthermore, an appropriately powered 

investigation will provide the opportunity to build upon the initial findings of Chapter 4. Running 

economy is reported as caloric unit cost rather than oxygen cost, thus offering greater insight into 

potential alterations in substrate utilisation during submaximal running with and without correctly 

sized compression tights. 

 

5.2 Abstract 

The effect of compression tights on running economy (RE) is unclear. The purpose of this 

investigation was to assess the influence of compression tights on RE and substrate utilisation across a 

range of exercise intensities (67.1 – 91.5% V̇O2max). Twenty-six recreationally active males ran for 15 

min with compression tights and a non-compression control condition. Oxygen consumption (V̇O2) 

and expired carbon dioxide (V̇CO2) was measured to determine RE as caloric unit cost, carbohydrate 

oxidation (CHOOX) and fat oxidation (FATOX). No difference was observed between conditions for 

RE, CHOOX or FATOX, however relative exercise intensity (%V̇O2max) correlated with ΔRE (r = -0.501, 

P < 0.01). Receiver operator curve analysis revealed that %V̇O2max is a sensitive and specific predictor 

of altered RE. Above 77.7% V̇O2max, compression led to significantly lower RE (p < 0.05), whereas no 

difference between conditions was observed below 77.7% V̇O2max. These data suggest that 

compression tights influence RE dependant on relative exercise intensity when V̇O2max (%) is used as 

an anchor of exercise intensity.  
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5.3 Introduction 

Running economy (RE) defined as the metabolic cost of travelling a given distance is a useful 

indicator of endurance performance [168]. RE is a stronger predictor of performance than maximal 

oxygen consumption (V̇O2max) within homogenous populations [169] and small differences in 

metabolic cost of running can differentiate performance between elite runners with comparable V̇O2max 

and metabolic potential [170]. RE is modulated by metabolic, cardiopulmonary, biomechanical and 

neuromuscular factors [110].  The effects of compression on metabolic [10,41], cardiopulmonary 

[171], neuromuscular [114] and biomechanical [81,94] systems from CGs may all contribute to 

improvements in RE [4] . 

Data on the effect of compression tights on submaximal RE are limited to just two investigations both 

reporting RE as the volume of oxygen required to run a given distance relative to body mass (i.e. 

ml·kg-1·km-1) [9,10].  There was no difference in economy when running at 10, 14 or 16 km·h-1. 

Compression improved RE only when running at 12 km·h-1 and also reduced the amplitude of oxygen 

uptake at 80%V̇O2max [9]. Dascombe et al., found no difference at running velocities above 8 km·h-1 

[10]. It is suggested that divergent results are due to the training status of participants and the level and 

spatial distribution of pressure applied by compression tights [36]. Furthermore, inconsistencies might 

be due to the relative insensitivity of measures used to report RE. Studies typically report economy as 

the oxygen cost of running per unit distance (ml O2·kg-1·km-1) or per unit of time (ml O2·kg-1·min-

1)[9,10].  However, oxygen cost is less sensitive to changes in relative speed [11,110,168] compared 

with energy cost reported as the caloric unit cost (kcal·kg-1·km-1). Caloric unit cost accounts for 

substrate dependent variations in energy equivalent of a volume of oxygen [11], thereby adjusting for 

different substrate use at submaximal speeds. 

 

In light of the limited evidence, an interaction between exercise intensity and RE is apparent when 

wearing compression tights. This interaction requires further investigation and is the primary goal of 
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the present study. It was therefore hypothesised that at higher relative exercise intensities, RE would 

be improved with compression tights. The aim of the present study was to examine whether 

compression tights modify running economy reported as caloric unit cost and substrate use in 

recreationally trained individuals. The second aim was to investigate the interaction between relative 

exercise intensity and RE with and without compression tights.  

 

5.4 Methods 

5.4.1 Participants 

Ethical approval was received from the University of Essex ethical committee. Participants provided 

written informed consent in accordance with the Declaration of Helsinki.  Sample size estimation was 

based on expected differences in RE either with and without compression tights [10]. The ES in this 

study was 0.76. With an alpha = .05 and power = 0.90, the estimated sample size needed with this 

effect size is approximately n=21. Twenty-six healthy male volunteers provided written informed 

consent before participation in the study (Table 5-1). All participants were physically active, 

participating in sport specific training sessions a minimum of three times per week and free from 

musculoskeletal injury within the one month previous.  

 

Table 5-1 Descriptive characteristics of participants (n = 26) 

 Mean [95%CI] 

Age (years) 27.9 [25.1-30.7] 

Height (m) 1.79 [1.76-1.81] 

Body Mass (kg) 76.1 [72.7-79.5] 

BMI (kg·m-2) 23.8 [23.0-24.6] 

V̇O2max (ml·kg·-1min-1) 54.7 [52.8-56.7] 

vV̇O2max (km-1) 18.7 [18.2-19.2] 
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5.4.2 Compression garments 

The CG used in the investigation were Skins TM Men’s Compression A400 Long Tights (Riverwood, 

Australia).  Garment size was selected in accordance with the manufacturer’s sizing guide. The 

garments were made from warp knitted fabrics, with the fibre reported as 76% nylon and 24% 

elastane. The pressure exerted by the CGs on the lower limbs were evaluated by the PicoPress® 

(Microlabs, Italy) pressure monitor (coefficient of variation = <5% at 20 mmHg [1]). Chapter 3 

revealed the PicoPress is a suitable pneumatic pressure monitor. Pressure measures were recorded at 

two anatomical locations (posterior orientation of the maximal calf girth and anterior thigh at the mid-

point between mid-trochanterion-tibiale laterale). The control condition consisted of loose fitting 

running shorts, thereby providing a comparison between compression tights and garments typically 

worn by recreational runners. The same short sleeve top and running shoes were worn on every testing 

occasion. 

5.4.3 Experimental design 

Participants were required to attend on three occasions separated by at least one week. At visit 1 

participants performed an incremental treadmill test to determine V̇O2max and peak running speed 

(vV̇O2max). This was followed by a 5-min familiarisation at a relative intensity corresponding to 60-

65% vV̇O2max. Compression and control conditions were performed during visits 2 and 3 in a 

randomised, counter-balanced order, during which participants completed a 15 min submaximal 

treadmill task. 

Each participant attended the laboratory (temperature: 18 ± 1.0° C) at the same time each visit to 

minimise variation in physiological parameters that might change with circadian rhythm. In the 24 

hours prior to testing, participants were asked to refrain from exercise, caffeine and alcohol intake.  

Participants were asked to record their diet for the 24 hours before the initial laboratory visit and to 

repeat this for all subsequent visits. To ensure running economy was not influenced by dehydration, 

participants were recommended to consume fluid the night before and the morning of testing in 

accordance with fluid intake recommendations[172] . Participants provided a urine sample on arrival 
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of each session and urine specific gravity (USG) was measured (Atago Co., Ltd., Tokyo, Japan). 

Participants only began exercise when USG indicated euhydration (USG <1.020). Two hours prior to 

testing, no food and only water were consumed. 

5.4.4 Establishing individual aerobic capacity 

Respiratory gases were collected continuously throughout the incremental test. Participants wore a 

dead-space mask with an impeller turbine assembly (Hans Rudolph, Kansas, USA) and gas 

concentrations continuously sampled via a capillary line. Concentrations were determined by 

electrochemical (O2) and infrared (CO2) analysers (Vyaire CPX, Mettawa, Illinois, USA). Prior to 

each test, the gas analysers were calibrated with gases of known concentration (16% O2 and 5% CO2), 

and ambient air. The digital volume transducer was connected to the housing blower and calibrated 

automatically using both high and low flow parameters. 

Participants completed an incremental exercise test on a motorized treadmill (Quasar; HP Cosmos, 

Nussdorf, Germany). The protocol began at 7 km·h-1, after which the speed increased by 1 km·h-1 

every minute up to 16 km·h-1. At 16 km·h-1, workload increments continued by increasing the gradient 

2% each minute until volition exhaustion. To determine vV̇O2max, a gradient increase of 1.5% was 

converted to an equivalent increase in speed of 1 km·h-1 [155]. The calculated speed of the last 

complete stage was added to the multiplication of the speed increment by the completed fraction of the 

incomplete stage. V̇O2max was determined as the highest 30 s average oxygen consumption. 

5.4.5 Submaximal running economy assessment 

Participants ran for 15-min at a speed corresponding to 63 ± 2% vV̇O2max (70-90% V̇O2max) and 

gradient remained at 1% throughout. Participants ran at the same speed in both sessions, with only the 

garment condition changing.  

5.4.6 Data treatment 

Breath-by-breath data were converted to second-by-second data using linear interpolation. Oxygen 

consumption (V̇O2) and carbon dioxide production (V̇CO2) were averaged over the final 3 min of each 
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submaximal exercise test. Second-by-second  V̇O2 and V̇CO2 data were used to  determine running 

economy (RE) as caloric unit cost (kcal·kg-1·km-1), carbohydrate oxidation (CHOOX) and fat oxidation 

(FATOX) (g·kg-1·km-1) using equations for moderate to high intensity (50-75% V̇O2max) [173]. 

Equations for the calculation of energy expenditure and oxidation of carbohydrate and fat from gas 

exchange measurements are displayed below; 

 

Energy expenditure (kcal·min-1) = 0.550·V̇CO2 + 4.471·V̇O2 

Carbohydrate oxidation (g·min-1) = 4.210·V̇CO2 – 2.962·V̇O2 

Fat oxidation (g·min-1) = 1.695·V̇CO2 – 1.701·V̇O2 

 

Expressed to distance (i.e. kcal·km-1) = (kcal·min-1 * 60) / km·h-1 

Expressed to body mass (i.e. kcal·kg-1·km-1) = kcal·km-1 / body mass (kg)  

 

To ensure principally aerobic contribution to energy expenditure, we excluded participants if 

respiratory exchange ratio (RER) >1.00 during the final 3 min of the submaximal run.  

5.4.7 Statistical analysis 

Data are presented as mean and 95% confidence intervals (95%CI) for all dependent variables. 

Normality of distribution was assessed using the Shapiro-Wilk test. Paired t-tests were used to analyse 

mean differences in RE, CHOOX FATOX between conditions.  Cohen’s d was calculated as a measure 

of effect size [174]. We interpreted values of d=0.2, d=0.5, and d=0.8 as a small, moderate or large 

effect size.  

We calculated the difference in RE (Δkcal·kg-1·km-1) between conditions (compression – control) for 

caloric unit cost and used Pearson’s product-moment correlation to examine associations with relative 

(%V̇O2max) and absolute exercise intensity (running speed [km·h-1]). Receiver operator curve (ROC) 
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analysis was used to establish threshold values of %V̇O2max which identify compression tights as 

producing a potential ergogenic outcome on running economy. Youden index (J) was the preferred 

method to determine the optimal cut-off point of the ROC analysis[175]. J is defined as the maximum 

vertical distance between the ROC curve and the diagonal or chance line (J = sensitivity – specificity -

1), therefore the point at which the cut-off threshold is farthest from chance [176]. Statistical tests 

were processed using the statistical package SPSS (Version 18) and Microsoft Excel (Microsoft 

Corporation TM, Redmond, WA, USA). The level of statistical significance was identified by an alpha 

value of P < .05. 

5.5 Results 

Interface pressure applied by compression tights was 8.9 [7.8 - 9.9] mmHg at the calf and 6.8 [6.3, 

7.3] mmHg at the thigh.  During the submaximal RE assessment all participants maintained a RER 

<1.00 and were included in the analysis.   

Table 5-2 shows no difference for %V̇O2max, RE, CHOOX and FATOX (P > 0.05) between the control 

and compression condition.  

 

Table 5-2 Running economy and substrate utilisation data during a submaximal run with and without 

compression tights (Mean [95% CI]). 

 Control Compression P-value d= 

%V̇O2max  77.5 [74.7-80.2] 76.8 [74.5-79.2] 0.33 0.19 

RE (kcal·kg-1·km-1) 1.08 [1.05-1.11] 1.07 [1.04-1.10] 0.38 0.18 

CHOOX (g·kg-1·km-1)  0.19 [0.18-0.20] 0.18 [0.17-0.20] 0.22 0.25 

FATOX  (g·kg-1·km-1) 0.03 [0.03-0.04] 0.03 [0.03-0.04] 0.43 0.16 

d = Cohen’s effect size; RE = caloric unit cost; CHOOX = carbohydrate oxidation; FATOX =fat 

oxidation. Mean [range] running speed the same in both conditions = 11.7 [10.0 - 14.5] km·h-1. 
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The range of relative exercise intensity was 67.1 – 91.5 %V̇O2max during the control condition and 

between 68.6 – 89.9 %V̇O2max with compression. Figure 5-1 shows the difference in RE (Δkcal·kg-

1·km-1) between garment conditions was negatively correlated with relative exercise intensity 

(%V̇O2max).   

 

Figure 5-1 Correlation and 95% confidence interval (shaded area) between relative exercise intensity 

measured during the control condition (%V̇O2max) and ΔRE. 

 

ROC analysis area under curve value was AUC= 0.925, (95%CI: 0.814 – 1.0; J = 0.650).  The cut-off 

value that best determined the presence or absence of a change in outcome was 77.7% V̇O2max.  Table 

5-3 shows group means for RE and substrate utilisation for participants split according to relative 

exercise intensity of </>77.7% V̇O2max. Compression tights improved RE above 77.7% V̇O2max by 

0.028 kcal·kg-1·km-1 (d = 0.93) compared with control values. Whereas no difference in RE or 

substrate utilisation was apparent below 77.7% V̇O2max (difference = 0.014 kcal·kg-1·km-1; d = 0.34).  
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Table 5-3 Comparisons in running economy, carbohydrate and fat oxidation between participants who 

ran above and below 77.7% V̇O2max with and without compression tights (Mean [95% CI]). 

 %V̇O2max <77.7% (n=13) %V̇O2max >77.7% (n=13) 

 Control Compression d Control Compression d 

RE 

(kcal·kg-1·km-1) 

 

1.051 

[1.013-1.089] 

1.065 

[1.022-1.107] 

d=0.34 1.103 

[1.057-1.150] 

1.075 

[1.029-1.121] 

d=0.93 

CHOOX  

(g·kg-1·km-1) 

 

0.176 

[0.156-0.197] 

0.165 

[0.147-0.184] 

d=0.43 0.203 

[0.191-0.216] 

0.202 

[0.185-0.219] 

d=0.06 

FATOX  

(g·kg-1·km-1) 

0.034 

[0.026-0.042] 

0.040 

[0.032-0.048] 

d=0.46 0.028 

[0.023-0.033] 

0.026 

[0.018-0.034] 

d=0.24 

d = Cohen’s effect size; RE = caloric unit cost; CHOOX = carbohydrate oxidation; FATOX =fat 

oxidation. 

 

5.6 Discussion 

The influence of compression tights on running economy varies according to the relative intensity of 

exercise. Expressed as caloric cost of exercise, running economy was improved by compression, but 

meaningful effects were restricted to exercise intensities >77.7% V̇O2max. Our investigation provides a 

new view on the influence of compression tights on RE when reported as caloric unit cost. 

At higher (>77.7% V̇O2max) intensities, compression appears to enhance RE, without altering substrate 

utilisation. The improved RE at a higher relative exercise intensity supports previous findings 

revealing that compression stockings produce a positive effect on RE at 80 and ~90% V̇O2max [9,81].  

In agreement with previous compression studies, no difference in RE or substrate utilisation was 

observed when garment conditions were compared as a whole group (67.1 – 91.5% V̇O2max) [126] or 

below 77.7% V̇O2max [46,47,58].  
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Compression studies typically express economy as oxygen cost per unit of distance (ml·kg-1·km-1). 

Describing the VO2 related to a particular velocity provides a useful measure for within-participant 

comparisons of different conditions. VO2 may lack sensitivity as it does not account for differences in 

substrate use at any given speed[168]. Economy can also be expressed as caloric unit cost (kcal.kg-

1.km−1). This metric is more sensitive to changes in running speed and differences in substrate use [11]. 

Better sensitivity makes it a better choice when investigating interventions known to cause small 

changes in economy such as compression. Unlike oxygen cost, caloric unit cost also provides 

information on substrate utilisation. Despite this, previous compression studies have only reported RE 

as the oxygen cost. The present study is the first to explore the role of compression tights on caloric 

unit cost. 

Above 77.7% V̇O2max, RE in the compression condition was 0.03 kcal·kg-1·km-1 lower compared with 

control. It is important to compare the observed differences in RE with the typical day-to-day variation 

to evaluate the extent in which the observed change is meaningful. The typical error (TE) of energy 

cost (kcal·kg−0.75·km−1) in highly trained runners is 3.14% [177]. We report an improvement in RE of 

2.6% in the compression condition at a relative exercise intensity above 77.7% V̇O2max when scaling 

body mass to a power function exponent of -0.75 (control = 3.250 ± 0.19; compression = 3.169 ± 0.21 

kcal·kg−0.75·km−1). However, the reported TE was observed in the absence of dietary and training 

constraints. It is plausible that the standardisation of clothing, footwear, dietary and training factors in 

the present study would contribute toward a lower TE. Owing to no other comparative TE measures 

available for caloric unit cost during treadmill exercise, interpreting the magnitude of the observed 

difference requires conversion to an alternative unit of energy expenditure (kJ·min-1). By doing so we 

report a difference in energy expenditure of 2.5% between garment conditions above 77.7% V̇O2max. 

The within and between-day coefficient of variation for energy expenditure at 70% V̇O2max is between 

1.7% [178] and 2.2% [179], therefore the improved energy expenditure reported with compression 

tights can be considered real and worthwhile [180].  
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Similar improvements in RE have been observed following 8 weeks of high intensity interval training 

[181], 6 weeks of plyometric training [182] and 4 weeks of living and training at altitude [183]. 

However, chronic training interventions that demonstrate an improvement in RE are also likely to 

elicit a number of physiologic adaptations that contribute toward improved distance running 

performance. Conversely, when an improved RE is observed with acute interventions such as the 

donning of compression tights, it is questionable to what extent this may influence distance running 

performance. Whether this improvement in RE translates into meaningful performance benefits is 

equivocal. A limitation of assessing the role of CGs on exercise performance is that it is impossible to 

blind the participants to the clothing condition. Studies that have investigated the role of compression 

tights on distance running performance have demonstrated no effect during a 18.6 km trail run [126] 

or a 5 km time trial in a hot environment [60].  

Improved running economy within the reported exercise intensity range (77.7 – 91.5% V̇O2max) would 

be caused by several factors, including altered biomechanical and neuromuscular systems. In 

particular, previous studies revealed that lower body compression reduced stride length at 10 and 14 

km·h-1 [160].  Altered stride length may limit intra-individual gait variability in recreationally active 

runners[184], maintaining a more consistent gait and contribute toward a lower oxygen cost [185,186]. 

Conversely, reductions in stride length due to CGs were associated with poorer RE in highly trained 

runners; [94]. Novice runners demonstrate greater variability in gait characteristics and therefore the 

physical support offered by compression, or the pressure induced stimulation of mechanoreceptors 

[80] may limit this variability.  Furthermore, RE is related to the stiffness of the propulsive leg, with 

greater stiffness eliciting the best RE [110].While compression stockings were shown to increase leg 

stiffness during flat and hilly trail running [84], they elicited no change during submaximal treadmill 

running [94]. Despite these findings, the influence of compression tights on running leg stiffness is yet 

to be investigated and may shed light on the observed improvement in RE. Surface EMG studies 

report lower activation of leg musculature during sub-max running with compression stockings [114] 

and long tights [153]. Attenuated muscle oscillation may lead to a reduction in recruitment of motor 
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units [74]. Additionally, the semitendinosus muscle is involved in decelerating the momentum of the 

swing limb as the knee extends during the mid and late swing phase. Reduced activation of the 

semitendinosus muscle with compression tights [153] during submaximal running may also be 

associated with an altered stride length, however this remains to be explored. 

5.6.1 Limitations 

There are several limitations to this study design that require consideration. The absence of surface 

electromyography, biomechanical or haemodynamic measures limits the extent in which the observed 

results can be interpreted. Furthermore, previous studies have reported that the optimal pressure range 

under resting conditions is 8-18 mmHg of graduated compression across the lower limb. This level of 

interface pressure is sufficient to significantly increase deep venous velocity and increase venous 

return[12,98]. The interface pressure applied by the compression tights in the present study is 

considered low and therefore we are unable to determine the impact of compression tights eliciting a 

higher interface pressure. Nonetheless, given the present findings, if low interface pressure garments 

can produce favourable improvements in RE, athletes may opt to choose lower pressure garments 

given the increased perception of comfort [39].   

5.7 Conclusion 

This study is the first to identify the influence of compression tights on running economy varies by 

relative intensity. Wearing compression tights improved running economy at relative exercise 

intensities above 77.7% V̇O2max. Conversely, no effect was observed below this threshold. The 

mechanism behind these observations requires further investigation to corroborate the plausible 

explanations presented here. 
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6 Performance comparison of the MOXY and PortaMon near-infrared 

spectroscopy muscle oximeters at rest and during exercise 

6.1 Rationale 

Tissue oxygen saturation is typically measured using near-infrared spectroscopy (NIRS). This non-

invasive optical technique reveals in vivo muscle oxygenation and haemodynamic status and may 

provide a mechanistic explanation for the observed improvement in running economy with 

compression tights. In this investigation, a recently developed low-cost NIRS device (MOXY) was 

compared against an established PortaMon system that makes use of the spatially resolved 

spectroscopy (SRS) algorithm, widely used in sports science and physiology research. This is the first 

study to report the influence of varying external pressure at rest and test-retest reliability at rest and 

during isometric leg extension exercise of the MOXY device.  This study is significant because the use 

of non-invasive methods to track and optimise training intensity, such as NIRS, is of increasing 

interest to coaches, athletes and scientists, yet data is lacking regarding the reliability of the MOXY 

device, nor has its performance been previously compared with alternative NIR systems. 

6.2 Abstract  

The purpose of the study was to compare muscle oxygenation as measured by two portable, wireless 

NIRS devices under resting and dynamic conditions. A recently developed low-cost NIRS device 

(MOXY) was compared against an established PortaMon system that makes use of the spatially 

resolved spectroscopy (SRS) algorithm. The influence of increasing external pressure on tissue oxygen 

saturation index (TSI) indicated that both devices are stable between 2 – 20 mmHg. However, above 

this pressure, MOXY reports declining TSI values. Analysis of adipose tissue thickness (ATT) and 

TSI shows a significant, non-linear difference between devices at rest. The devices report similar TSI 

(%) values at a low ATT (<7 mm) (Portamon minus MOXY difference is +1.1 ± 2.8%) with the major 

subsequent change between the devices occurring between 7 and 10 mm; at ATT values >10 mm the 
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difference remains constant (-14.7 ± 2.8%). The most likely explanation for this difference is the small 

source-detector separation (2.5 cm) in the MOXY resulting in lower tissue penetration into muscle in 

participants with higher ATT. Inter-day test-retest reliability of resting TSI was evaluated on five 

separate occasions, with the PortaMon reporting a lower coefficient of variation (1.8 - 2.5% vs. 5.7 - 

6.2%). In studies on male participants with low ATT, decreases in the TSI were strongly correlated 

during isometric exercise, arterial occlusion and incremental arm crank exercise. However the MOXY 

reports a greater dynamic range, particularly during ischemia induced by isometric contraction or 

occlusion (∆74.3% vs. ∆43.7%; hyperemia MAX - occlusion MIN). This study shows that in this 

participant group both MOXY and PortaMon produce physiologically credible TSI measures during 

rest and exercise. However, the absolute values obtained during exercise are generally not comparable 

between devices unless corrected by physiological calibration following an arterial occlusion. 

Keywords: near-infrared spectroscopy; reliability; muscle oxygen saturation; isometric exercise 

6.3 Introduction 

The use of wearable devices or wearable bio-sensors, which allow the continuous monitoring of 

physiological signals, is important for better monitoring of active lifestyles and the diagnosis and 

treatment of diseases [102].  Near-infrared spectroscopy (NIRS) is a non-invasive technique capable 

of providing valuable functional insights into skeletal muscle oxidative metabolism in vivo during 

exercise, in healthy and clinical populations. NIRS directly measures the oxygen-dependant absorption 

of haemoglobin (Hb) in the microcirculation blood vessels (i.e. arterioles, capillaries and venules) and 

myoglobin (Mb) in the muscle cytoplasm [187]. 

Dependent on the NIRS device and illumination type, it is possible to retrieve absolute and/or relative 

concentration values of oxyhaemoglobin (O2Hb) and deoxyhaemoglobin (HHb), and a derived 

parameter, total-haemoglobin (tHb = O2Hb + HHb) [188]. These values are in a large part 

representative of tissue capillaries, arterioles, and venules because, in larger blood vessels, NIR light is 

fully absorbed by the high haemoglobin concentration [189].  A further measurement, tissue saturation 
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index (TSI) represents the ratio of oxygenated (O2Hb+O2Mb) concentration to total (tHb+tMb) 

concentration, reporting on the dynamic balance between O2 supply and O2 consumption. Taken as a 

whole, the range of muscle NIRS parameters can provide information regarding changes in key 

dynamic physiological indicators, such as blood flow, oxygen extraction and oxygen consumption; 

muscle NIRS studies are therefore relevant in the evaluation of exercise performance, exercise 

tolerance [102] and exercise training adaptation that can influence the balance between muscle O2 

delivery and muscle utilization [190]. 

The use of NIRS as a research tool is well established for studying exercise physiology changes in 

groups of participants [102,191]. Sports science applications could include monitoring changes in 

muscle blood flow and oxidative capacity as a function of training [189]. In support of this, positive 

peripheral muscle oxygenation adaptations have been reported as a consequence of cycling sprint 

interval training demonstrating that NIRS has the potential to assess the effectiveness of training 

interventions at the level of the individual athlete [192]. To be effective outside the research 

laboratory, in an applied exercise environment, there is a requirement for low-cost, portable NIR 

technology with telemetric capability with the ability to withstand the rigours of sporting 

environments such as in swimming [193], short track speed skating [194] and trail running [195] 

Past studies comparing NIRS monitors have highlighted discrepancies in the values obtained at rest 

and during exercise in human [196–199] and animal [200] systems. The differences between monitors 

are likely to be in part associated with the measurement site and spacing of the probes [201,202]. The 

specific optical properties of the system, whether laser, white light or LED based, as well as the 

specific NIR wavelengths monitored, could also contribute to differences between systems. These 

physical properties are most likely reflected in time resolution, signal:noise and reproducibility. 

However, the absolute numbers of the derived parameters are highly dependent on the algorithms used 

in the calculations. In terms of measurements of TSI, these methods attempt to remove or correct for 

the contributions of light scattering and then fit the remaining optical density changes to the known 
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NIR spectra of the hemo(myo)-globin chromophores. Assumptions are also made about light transport 

generally assuming the diffusion model.  

Time of flight or frequency domain measurements can be used to measure absolute chromophore 

concentrations, but such devices are currently unlikely to be cheap enough, or portable enough, to be 

of use for routine physical activity measurements. Manufacturers have therefore focussed on 

developing methods that only require continuous wave light detection, relying on the use of multi-

wavelength or multi-distance analysis to correct for the scattering. Multi-wavelength measures e.g, 

using second derivative spectroscopy [203,204] are now rarely used. However, the use of multi-

distance methods has significantly expanded in recent years.  In a recent review, only one of thirteen 

current devices measured optical density at a single source:detector distance [102].    

In general, multi-distance NIR systems correct for light scattering by one of two methods. The most 

common method used in historical terms is Spatially Resolved Spectroscopy (SRS) This measures the 

slope of the optical density change as a function of multiple distances. Theoretically, the difference in 

these distances should be small compared to the average source:detector separation. This enables the 

calculation of scaled absorption coefficient (μa) measures which can allow absolute values of 

chromophore ratios, such as tissue oxygen saturation [205]. The major commercial incarnations of the 

SRS system historically are the Hamamatsu NIRO and the Artinis OxyMon systems. Alternative 

Spatial Resolution (SR) methods use a larger separation between measurement sites; light transport 

models assuming the shorter distance predominantly measures surface tissues and the longer distance 

deeper tissues, are used to calculate a tissue oxygen saturation for the deeper (muscle/brain) region of 

interest [206]. The predominant commercial incarnation of this SR method historically is the 

Medtronic INVOSTM and, more recently the FORE-SIGHT ELITE® and the Nonin EQUANOXTM 

systems.  

Although one can assume that two different devices both using the SRS measurements will generally 

report similar muscle oxygen saturations, the same cannot be assumed between devices using SR 

methods given the variety of algorithms in use [207], nor of course between an SRS device and an SR 
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device. SRS systems have been widely used in exercise physiology and sports science [102,188].   

Recently, a new low-cost SR based device, the MOXY monitor, has been marketed to athletes as a 

training tool to inform the user of exercise intensity [195,208]. The PortaMon, a widely used, portable, 

SRS oximeter has previously demonstrated a high level of reliability at rest [209] and during isotonic, 

multi-joint resistance exercise [210]. Conversely, no studies investigating the test-retest reliability of 

the MOXY device have been conducted.  

It would be helpful if users of NIRS devices could be confident that the extensive historical SRS 

literature on exercise physiology and sports science can be used to help inform their use of this new 

SR device. The purpose of the study was to compare these two portable, wireless NIRS devices under 

a variety of resting and dynamic conditions.   These conditions include (1) the influence of varying 

external pressure at rest, (2) test-retest reliability and sensitivity at rest, (3) during isometric leg 

extension exercise, (4) during dynamic arm-crank exercise and (5) during an arterial occlusion.  

 

6.4 Methods 

6.4.1 The NIRS devices 

The two NIRS devices used in the assessment of muscle oxygen saturation include the PortaMon 

(PortaMon, Artinis, Medical System) and MOXY muscle monitor (Fortiori Design LLC, USA). 

The PortaMon (Figure 6-1) is a compact (83 x 52 x 20 mm), and lightweight (84 g) NIRS system. It is 

a dual-wavelength (760 and 850 nm), continuous wave system, containing three pairs of LEDs in a 

spatially resolved spectroscopy (SRS) configuration with a source-detector spacing of 30, 35, and 40 

mm. The device simultaneously uses the modified Beer-Lambert law and SRS methods to calculate 

the absolute concentration of tissue oxy(+myo)haemoglobin, (O2Hb), deoxyhemo(+myo)globin (HHb) 

and total hemo(+myo)globin (tHb).  As such, tissue oxygen saturation (TSI) is expressed in % and 

calculated as [O2Hb] / ([O2Hb] + [HHb]) x 100, which is the ratio of HbO2 to tHb. TSI reflects the 

dynamic balance between O2 supply and consumption. During all testing, the system was connected to 
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a personal computer via Bluetooth™ technology for data acquisition (10Hz), analogue-to-digital 

conversion and subsequent analysis. 

 

Figure 6-1 Photograph of the underside (left image) and top (right image) of the PortaMon device 

(image courtesy of Artinis Medical Systems https://www.artinis.com/portamon) 

 

The MOXY (Figure 6-2) is a self-contained, compact (61 x 44 x 21 mm), and lightweight (48 g) NIRS 

system. It employs four wavelengths of NIR light at 680, 720, 760, 800 nm (Schmitz, 2015) and the 

sensor contains a single light emitting diode (LED) and two detectors placed 12.5 and 25.0 mm from 

the source. The MOXY device reports a change in total tissue hemo(+myo)globin (tHb) and tissue 

oxygenation (TSI). During all testing, the system was connected to a personal computer via a 

commercially available software programme (Peripedal ©) to provide a graphic display of the data. 

Data acquisition (2Hz) was obtained from the sensors internal memory. 

 

Figure 6-2 Photograph of the underside (left image) and top (right image) of the MOXY device (image 

courtesy of MOXY Monitor https://www.moxymonitor.com) 

 

https://www.artinis.com/portamon
https://www.moxymonitor.com/
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6.4.2 Testing the Influence of External Pressure 

In order to minimize movement artefacts when fixing NIRS devices to the tissue, a variety of 

supportive bandages or neoprene sleeves are generally used.  These sleeves apply external pressure to 

the device and the surrounding limb area under compression. The influence of external pressure on 

NIRS derived values is largely undiscussed in the literature, yet if found that TSI data differs due to 

varying low external pressure this is of importance for both the research and applied user community.  

A repeated-measures experimental design was used to determine the influence of external pressure on 

the reliability of two portable NIRS devices. Four recreationally active male participants ([mean ± SD] 

age 22.75 ± 5.56 years, body mass 78.03 ± 4.38 kg, height 1.86 ± 0.1 m, vastus lateralis (VL) skinfold 

thickness 8.30 ± 2.51 mm) volunteered to participate in this study. None of the participants had known 

health problems or any lower extremity muscle or joint injury. Participants were asked not to perform 

any strenuous exercise or consume caffeine for at least 24 h prior to visiting the laboratory.  

Participants were required to visit the on one occasion. All testing was performed in a controlled 

laboratory environment  (~20 ºC) at the University of Essex Clinical Physiology laboratory.  Upon 

arrival, following the collection of descriptive measures, participants performed 10 min of supine rest 

on a medical examination bench. The first portable NIRS device was then positioned on the belly of 

the vastus lateralis, midway between the greater trochanter and the lateral epicondyle of the femur. 

NIRS devices were placed precisely on the VL, whereby the mid-distance between the closest emitting 

diode and detector for each device were aligned with the VL location. To ensure the optodes and 

detector did not move relative to the participants’ skin, the device was fixed into position using a 

waterproof adhesive tape. In addition, bodily hair at or around the sensor placement area was removed 

from the skin and participants were asked not to moisturise the area on the day of testing. A portable 

pressure monitor (PicoPress, MircoLabs, Italy) was used to assess the external pressure applied to the 

leg. An air-filled bladder was placed on the medial aspect of the thigh, at the same vertical alignment 

to the NIRS device location. A surgical marker pen was used to mark the position of NIRS  device and 

bladder placement in order to identify any movement during testing and ensure the second NIRS 
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device was placed at the same location [192]. A black neoprene thigh sleeve (Mueller, WI, USA) was 

wrapped around the leg to secure the NIRS device in place firmly against the skin and also ensure that 

no external light would be received by the device detectors.  

Incremental external pressure (mmHg) was applied to the surrounding area, encompassing the NIRS 

device and pressure monitor bladder, using an aneroid sphygmomanometer (Welch Allyn Inc., New 

York, NY, USA) connected to a thigh blood pressure cuff (Accoson Works, Essex, UK). All 

measurements were recorded in a supine position; with the order of NIRS device application 

counterbalanced. Initial external pressure applied was 2 mmHg as a result of the neoprene strapping, 

prior to inflating a blood pressure cuff  in a step-wise manner.  

Initially, the investigator visually observed the live NIRS data on a personal computer until a stable 

value was achieved and collected 60 s of data. Stability was defined as a TSI variation <2% over 30 

seconds [211]. This procedure was repeated for all NIRS devices. After 4 min of baseline data 

collection with the neoprene strap applying 2 mmHg, the sphygmomanometer was inflated to elicit a 

pressure of 5 mmHg, with 5 mmHg increments every 4 minutes thereafter, up to and including 30 

mmHg. The data acquired from the PortaMon system was downsampled from 10 Hz to 2 Hz to allow 

for comparison with the MOXY system. Values are reported as average absolute TSI, calculated from 

the final 60 seconds of each 4 min period. Descriptive statistics are presented as mean (TSI) unless 

otherwise stated. A simple linear regression was then used to calculate slopes of the NIRS device vs. 

external pressure. Subsequently, the TSI of PortaMon minus MOXY at incremental external pressures 

could be fitted by a sigmoid curve. All analyses were performed using Graphpad Prism 7 (Graphpad 

Software, San Diego, CA). 

6.4.3 Comparing Devices at Rest  

Muscle oxygenation of the dominant vastus lateralis muscle of each participant was measured with 

two MOXY (MOXY1 and MOXY2) and two PortaMon (PortaMon1 and PortaMon2) devices to assess 

between and within-device variation. Twenty-one male ([mean ± SD] age 22.33 ± 4.84 years, body 

mass 78.24 ± 10.62 kg, height 1.79 ± 0.1 m, VL skinfold thickness 11.59 ± 5.09 mm) and nine female 
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participants (age 21.67 ± 2.40 years, body mass 65.14 ± 7.44 kg, height 1.69 ± 0.04 m, VL skinfold 

thickness 26.36 ± 4.77 mm)  volunteered to participate in this study. The experimental protocol 

involved a single visit to the laboratory. Upon arrival, participants performed 10 min of supine rest on 

a medical examination bench. The first of four NIRS devices were positioned on the vastus lateralis 

muscle (as described in Sec 2.2) and all measurements were recorded in a supine position. Using a 

portable pressure monitor, care was taken to ensure the same external pressure (~8 mmHg) was 

exerted by the neoprene strapping surrounding the NIRS device, during each condition. Device order 

was counterbalanced using a Latin square design. The investigator visually observed the live NIRS 

data on a personal computer until a stable value was achieved (minimum 2 min) and collected 60 s of 

data. This procedure was repeated for all four NIRS devices.  

Descriptive statistics are presented as mean ± SD unless otherwise stated. A one-way analysis of 

variance (ANOVA) was used to compare mean values of resting TSI between the four NIRS devices. 

A Tukey’s range test was used for post hoc multiple comparisons. Subsequently, an unpaired t-test 

was performed to compare the combined average of two similar devices at rest (Mean TSI (PortaMon 

+ PortaMon) vs. Mean TSI (MOXY + MOXY).  Accuracy was calculated as the mean absolute 

difference, using Bland-Altman agreement plots (±2SD) between resting TSI. A 95% confidence 

interval of the mean (95%CL) is also presented for each case. The difference between devices was 

calculated as the mean TSI of PortaMon minus MOXY. A Pearson’s product-moment correlation 

analysis was used to compare the association between resting values of TSI and quadriceps skinfold 

thickness (adipose tissue thickness (ATT) = 0.5 x mean skinfold thickness). Significance was set at P 

< 0.05. All statistical analyses were performed using Graphpad Prism 7 (Graphpad Software, San 

Diego, CA). 

6.4.4 Test – Retest Reliability and Sensitivity of Devices at Rest 

Five male participants ([mean ± SD] age 21.2 ± 2.7 years, body mass 71.5 ± 7.7 kg, height 1.78 ± 0.1 

m, VL skinfold thickness 11.3 ± 5.3 mm) completed repeated resting measures assessing vastus 

lateralis TSI (%) for a total of five occasions.  Each visit to the laboratory was separated by at least 24 
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hours, thereby providing a method of assessing inter-day test – retest reliability of four NIRS devices 

(MOXY1, MOXY2, PortaMon1 and PortaMon2). Upon arrival on each occasion, participant’s vastus 

lateralis was identified as described in Sec 2.2. Neoprene strapping was carefully tightened around the 

NIRS device to ensure a pressure of 8 mmHg was exerted. The same researcher attached each device 

on every occasion to minimise inter-tester variability. After 10 minutes supine rest, the investigator 

visually observed the live NIRS data on a personal computer until a stable value was achieved 

(minimum 2 min) and collected 60 s of data. This procedure was repeated for all four NIRS devices 

using a Latin square design.  

Descriptive statistics are presented as mean ± SD unless otherwise stated. The mean participant TSI 

for each NIRS device was used as an indicator of test-retest reliability [157]. The coefficient of 

variation (CV) was calculated as a characteristic of the performance of within-participant evaluation 

[212], with a CV below 5-10% considered as acceptable absolute reliability [210].  

 All statistical analyses were performed using Microsoft Excel and GraphPad Prism 7. 

6.4.5 Comparing Devices during Isometric Exercise 

A repeated isometric quadriceps contraction exercise protocol was implemented to compare the delta 

(∆) TSI between four NIRS devices (MOXY1, MOXY2, PortaMon1 and PortaMon2). The same five 

male participants ([mean ± SD] age 21.2 ± 2.7 years, body mass 71.5 ± 7.7 kg, height 1.78 ± 0.1 m, 

VL skinfold thickness 11.3 ± 5.3 mm) who underwent the test-retest reliability assessment at rest (see 

Sec 6.3.4), participated in a quadriceps isometric contraction task. Participants were asked not to 

perform any strenuous exercise or consume caffeine for at least 24 h prior to visiting the laboratory.  

During the initial visit, the participant’s maximal voluntary isometric contraction (MCV) was 

determined. Prior to the isometric contraction task, a nonspecific warm-up on a cycle ergometer 

(Monark, 824E) was completed, before performing a maximal voluntary isometric contraction (MVC) 

of the knee extensors using an isokinetic dynamometer (KinCom, Chattanooga Inc., TN, USA). 

Participants were positioned upright on the dynamometer ensuring the knee joint (lateral femoral 
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epicondyle) and dynamometer axes were accurately aligned and stabilised using leg, waist, and chest 

straps to minimise trunk movement during testing. The seat height and distance from the axis was 

recorded to ensure accurate repeat positioning. The dominant leg was then fixed at a 60º angle and 

three submaximal repetitions of a 5 s continuous quadriceps isometric contraction were performed. 

Participants then performed 3 maximal contractions interspersed with a 60 s rest period. The best of 

the three contractions was considered the maximal isometric force and values for 30% and 50% MVC 

were then calculated.  

During the second visit, after resting data was collected from all four NIRS devices (see Sec 6.3.3), the 

final NIRS device was left attached to the participant’s leg for the duration of the quadriceps isometric 

contraction task. Participants were positioned on the dynamometer (as described above) with no 

warm-up. After a stable pre-test TSI value was attained, the participants were instructed to perform 

two 30 s sustained isometric quadriceps contractions to the previously defined values of their MVC 

(30% and 50%) interspersed by a 3 min rest period. TSI was continuously monitored throughout the 

procedure. This procedure was repeated for visits 3, 4, and 5 using a different NIRS device during the 

isometric contraction task. 

Due to potential differences in resting values for the two devices (Sec. 6.3.3, 6.3.4), TSI was reported 

as a change from pre-test (60 s averaging before each test). Maximum and minimum TSI values were 

calculated as a three-second average surrounding the highest and lowest values during each of the two 

isometric contractions. The Δ in TSI was calculated as the maximum value minus the minimum value 

during each 30 s contraction e.g. TSI Max—TSI Min = ΔTSI [193]. 

Descriptive statistics are presented as mean ± SD unless otherwise stated. A one-way analysis of 

variance (ANOVA) was used to compare mean values of ΔTSI between the four NIRS devices. A 

Tukey’s range test was used for post hoc multiple comparisons. Accuracy was calculated as the mean 

absolute difference, using Bland-Altman agreement plots (±2SD) between resting TSI. A 95% 

confidence interval of the mean (95%CI) is also presented for each case. The difference between 

devices was calculated as the mean TSI of MOXY minus PortaMon. All statistical analyses were 
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performed using Graphpad Prism 7 (Graphpad Software, San Diego, CA).  The studies undertaken all 

received ethical approval from the University of Essex ethical committee and participants provided 

written informed consent before inclusion. 

6.4.6 Comparing Devices during Dynamic Exercise and Occlusion 

An incremental asynchronous arm crank exercise protocol, followed by a 5 minute arterial occlusion, 

was undertaken to compare TSI values between two NIRS devices (MOXY1 vs PortaMon1). Based on 

the effect size observed between NIRS devices during isometric exercise at 50% MVC, a power 

analysis for a dependant sample t-test was conducted using G*Power to determine a sufficient sample 

size using an alpha of 0.05, a power of 0.80, a large effect size (d = 2.9) and two tails [213]. Based on 

the aforementioned assumptions, the desired sample size is 4. We elected to recruit an additional two 

participants to allow for participants terminating the arterial occlusion early due to the sensation of 

pain. Six male participants ([mean ± SD] age 23.7 ± 4.1 years, body mass 73.3 ± 5.2 kg, ATT 2.7 ± 

1.0 mm) completed the exercise and occlusion task, requiring two separate visits to the laboratory, 

separated by 3 -7 days. On arrival, following basic anthropometrical measures, the participant 

confirmed their dominant arm (all participants’ self-reported right hand dominance) and adipose tissue 

thickness was assessed at the muscle belly of the biceps brachii, 8 cm above the mid-arm fold. The 

first NIRS device was positioned on the biceps brachii, where the 8 cm marker was used to determine 

the mid-point between the device emitter and detectors. The biceps brachii were chosen as previous 

literature has reported this muscle eliciting the greatest decrease in tissue oxygenation index during 

arm cranking compared with the triceps brachii, brachioradialis and anterior deltoid [190]. A portable 

pressure monitor was used to ensure a similar external pressure was exerted by the black crepe 

bandage used to hold the device in place. Subsequently the participant’s sat upright, with hands in a 

rested position until a stable TSI value was achieved (minimum 2 min) and a resting baseline was 

obtained over a 5 minute period.  

Prior to arm cranking, participants were positioned with the crank axis aligned to shoulder height, at a 

distance that allowed a slight bend in the elbow when arms were extended. A chest strap was applied 
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to minimise trunk movement during testing and seat/crank height were recorded to ensure accurate 

repeat testing. Participants were required to arm-crank at 60 rpm beginning at 0 Watts (W) and 

increasing by 25 W every 2 min. The exercise end-point was determined when cadence fell below 60 

rpm for 3 consecutive seconds. 

Following completion of the incremental arm-crank exercise task, participants remained seated with 

hands in a rested position for 5 min prior to an arterial occlusion. To enable a physiological calibration 

of raw TSI values by identifying the participant’s notional minimum and maximum TSI, an arterial 

occlusion was applied for 5 minutes using an automated pneumatic cuff inflator (Hokanson, Bellevue, 

USA) positioned at the proximal aspect of the humerus, applying 295-305 mmHg of pressure.  After a 

5 min occlusion, the cuff was released and participant’s continued to rest for a further 5 min period. 

This procedure was repeated for the second visit using the alternative NIRS device. Although we 

cannot be sure that this value exactly corresponds to complete deoxygenation of haemoglobin and 

myoglobin, in all participants this time was sufficient to result in a stable minimum in saturation value 

significantly lower than any observed during exercise.  

Initially, the data acquired from the PortaMon system was down sampled from 10 Hz to 2 Hz to match 

that of the MOXY system.  Following this, both device data-sets were smoothed by calculating the 3 

second moving average at 2 Hz. To normalize the NIRS signal and achieve a physiological calibration, 

the average value of the final 30 seconds was used to determine notional 0% oxygenation (calibration) 

and the 30 second peak hyperemic response upon release of the cuff was used to indicate notional 

100% oxygenation (we use the term “notional” as we cannot be absolutely sure that the lower value 

could not be decreased further by adding an ischemic exercise component, not that the upper value 

could not be increased by hyperoxia and/or methods to increase blood flow or decrease oxygen 

consumption; however, the current physiological calibration has the advantage of being relatively easy 

to implement and in common use in the field). The Δ in TSI during the occlusion task was calculated 

as the maximum value minus the minimum value, identified from the onset of the cuff inflating to the 

period following the hyperemic response upon cuff release. 
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During the incremental test, TSI was established for each power output as the final 30 second average 

for each stage. These values were subtracted from the resting baseline TSI to provide a delta (Δ) raw 

TSI and subsequently converted to a calibrated (% calibration) value. 

Descriptive statistics are presented as mean [95% CI] unless otherwise stated. Paired t-tests were used 

to compare performance outcomes of the arm-crank test and compare device minimum, maximum and 

delta values for raw (TSI) and calibrated (% calibration) data during the occlusion. Furthermore, a 

repeated measure ANOVA was conducted to compare values obtained during the incremental arm-

crank test for each power output. Significant F ratios were examined on a post hoc basis using an 

uncorrected Fisher’s LSD test. Where data was not obtained for all participants at peak power output 

(i.e. only three participants completed the 100 W stage), a paired t-test was conducted on the smaller 

sample size to compare differences between devices. The incremental data is reported as the change 

from resting baseline in both raw (ΔTSI) and calibrated units (Δ calibration %). A simple linear 

regression was then used to calculate slopes of the NIRS device vs. power output. 

 

6.5 Results 

6.5.1 Testing the Influence of External Pressure 

There was a significant correlation between TSI and external pressure for both MOXY and PortaMon 

devices (Fig. 6-3a), in both cases showing a drop in TSI with increasing pressure.  The slope was 

significantly steeper for the MOXY than the Portamon (a slope of -0.38 ± 0.09 % TSI per mmHg for 

the MOXY compared to -0.08 ± 0.03 for the PortaMon).  The PortaMon reports a lower resting TSI 

(%) at low pressure (<20mmHg); with the major subsequent change between the devices occurring 

between 20 and 30 mmHg (Fig. 6-3b).  Therefore to decrease variability the subsequent studies were 

all undertaken at lower than < 20mmHg, with a target external pressure of 8 mmHg when participants 

were supine.  
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Figure 6-3 (a) Linear regression showing TSI as a function of external pressure (mmHg) (mean ± 

SEM), (b) PortaMon minus MOXY (TSI) as a function of external pressure (mmHg). Data fit using 

non-linear regression to a sigmoidal curve for illustrative purposes and (c) Bland-Altman plots of 

resting TSI of males (n = 21) and (d) females (n = 9) using the combined average of MOXY and 

PortaMon devices. Each plot represents the difference versus the average of the two devices. Dotted 

lines represent the ±2SD limits of agreement 

 

 

6.5.2 Comparing Devices at Rest 

Resting TSI of male and female participants for four NIRS devices is provided in Table 6-1. A one-

way ANOVA of mean resting TSI between the four NIRS devices for female participants 

demonstrated a significant difference (P < 0.05), with posthoc multiple comparisons showing a 

significant difference between MOXY and PortaMon devices (MOXY1 vs. PortaMon1; MOXY1 vs. 



 

102 

  

PortaMon2; MOXY2 vs. PortaMon1; MOXY2 vs. PortaMon2 = P < 0.05). Conversely, no difference 

was found between devices for male participants.  

 

Table 6-1 Male and female mean TSI of four NIRS devices at rest. 

  Male TSI (%)   Female TSI (%) 

  
Mean ± SD [95% CI] 

  
Mean ± SD [95% CI] 

                

MOXY1  75.2 ±  13.1 [69.3, 81.2]   92.7 ±  5.0 *  [88.8, 96.6] 

MOXY2  73.3 ±  12.8 [67.5, 79.2]   89.1 ±  6.3 *  [84.3, 94.0] 

PortaMon1 72.8 ±  3.5 [71.2, 74.4]   77.3 ±  2.7     [75.2, 79.4] 

PortaMon2 71.6 ±  3.7 [70.0, 73.3]   76.1 ±  2.8     [74.0, 78.3] 

Combined MOXY 74.3 ± 12.8 [68.5, 80.1] 
 

90.9 ± 5.1** [87.0, 94.9] 

Combined PortaMon 72.2 ± 3.5     [70.6, 73.8]  76.7 ± 2.6 [74.7, 78.7] 

* Significantly different from PortaMon1 and PortaMon2 (P > 0.05);  

** Significantly different to Combined PortaMon (P > 0.001) 

 

As no significant difference was found at rest between either MOXY1 vs. MOXY2 or PortaMon1 vs. 

PortaMon2, the combined mean TSI for MOXY (MOXY1 & MOXY2) and PortaMon (PortaMon1 & 

PortaMon2) at rest for male and female participants (Table 6-1) was compared using an unpaired t-test. 

Mean female MOXY TSI (90.9 ± 5.1 %) was significantly higher than the PortaMon (76.7 ± 2.6 %) 

(t(16) = 7.4, P < 0.05), however no significant difference was observed in male participants between 

the MOXY (74.3 ± 12.8 %) and PortaMon (72.2 ± 3.5 %) devices.  

At rest, Bland-Altman plots of male participants (Fig. 6-3c) suggest the MOXY device reports a 

higher saturation value at higher resting TSI and a lower value at lower resting TSI. So the lack of a 

significant difference of the mean value masks a real measurement difference between the devices 

even in male participants. Bland-Altman plots of resting female participants (Fig. 6-3d) illustrate a 
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consistently higher TSI with the MOXY device vs PortaMon, regardless of average TSI, consistent 

with the difference in the mean values.  

Vastus lateralis skinfold thickness (mm) and resting TSI (%) are highly correlated using the combined 

mean TSI MOXY (r =.70, P < 0.01) and PortaMon device (r =.73, P < 0.01). Linear regression of VL 

skinfold thickness and TSI (Fig. 6-4) show the difference between the slopes (MOXY vs PortaMon) 

are significantly different (F(1,54) =  11.97, P = 0.001). The MOXY device shows a regression slope 

(y = 1.12*x + 61.22), steeper than that of the PortaMon (y = 0.34*x + 68.16). This indicates that as 

skinfold thickness increases, the rise in TSI is greater with the MOXY. The difference between the 

two values is non-linear with respect to ATT (Fig. 6-5). The PortaMon and MOXY devices report 

similar TSI (%) values at a low ATT (<7 mm); with the major subsequent change between the devices 

occurring between 7 and 10 mm; at ATT values >10 mm the difference remains constant. The data fit 

well to a sigmoidal dose-response relationship. At the lowest ATT the (Portamon minus MOXY) 

difference is +1.1 ± 2.8%; (Mean + SEM), at the highest ATT the difference is -14.7 ± 2.8%; the 50% 

change occurs at 8.5 ± 0.6 mm ATT.  

 

Figure 6-4 Relationship between mean TSI and vastus lateralis skinfold (mm) using the combined 

average of MOXY and PortaMon devices 
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Figure 6-5 PortaMon minus MOXY (TSI) as a function of adipose tissue thickness (mm). Data fit 

using non-linear regression to a sigmoid dose-response curve. 

 

6.5.3 Test – Retest Reliability of Devices at Rest 

The CV for all NIRS devices are listed in Table 6-2. The mean CV values were lower for the 

Portamon (<2.5%) when compared with the MOXY devices (5.7 – 6.2%), however, both devices were 

below the acceptable threshold of 10%. The SD of the individual devices highlights a smaller 

measurement variation when using the PortaMon, suggesting that the inter-individual variation across 

repeated measures is less than the MOXY device.  
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Table 6-2 Test-retest measures of device reliability (TSI) at rest. 

  MOXY1 MOXY2 PortaMon1 PortaMon2 

Participant 

number  Mean  ± SD 

CV 

(%) Mean  ± SD 

CV 

(%) Mean  ± SD 

CV 

(%) Mean  ± SD 

CV 

(%) 

1 52.9 ± 4.4 8.4 52.7 ± 3.5 6.7 67.9 ± 1.0 1.5 66.6 ± 1.2 1.7 

2 87.8 ± 4.8 5.4 82.9 ± 4.9 5.9 74.7 ± 1.9 2.5 73.8 ± 1.3 1.8 

3 56.9 ± 5.5 9.6 53.7 ± 4.9 9.2 66.0 ± 1.1 1.7 64.7 ± 2.6 4.1 

4 87.2 ± 3.1 3.6 84.9 ± 3.3 3.9 71.3 ± 0.8 1.1 70.0 ± 1.6 2.3 

5 71.8 ± 2.7 3.8 70.1 ± 1.9 2.7 72.7 ± 1.6 2.2 71.1 ± 1.8 2.6 

Grouped Data                               

CV (%)    6.2 [2.8, 9.5] 5.7 [2.5, 8.8]  1.8 [1.1, 2.5] 2.5 [1.3, 3.7] 

CV, coefficient of variation [95% confidence interval];  

 

6.5.4 Comparing Devices during Isometric Exercise 

Mean torque of 30 and 50% MVC was 256.9 ± 43.5 and 428.2 ± 72.5N respectively. A one-way 

ANOVA of ∆TSI during 30 and 50% MVC between the four NIRS devices demonstrated a significant 

difference (P < 0.05), with posthoc multiple comparisons showing a significant difference between 

MOXY and PortaMon devices (MOXY1 vs. PortaMon1; MOXY1 vs. PortaMon2; MOXY2 vs. 

PortaMon1; MOXY2 vs. PortaMon2 = P < 0.05). Table 6-3 displays the ∆TSI values.  
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Table 6-3. ∆ change in TSI (%) values during 30 s quadriceps isometric contraction task at 30% and 

50% maximal voluntary contraction (MVC) of each NIRS device Mean ± SD (range). 

 
MOXY1 MOXY2 PortaMon1 PortaMon2 

∆TSI 30% MVC (%) 
36.5 ± 7.3 a             

(28.4 – 47.7) 

37.9  ± 14.4 a         

(15.2 – 55.2) 

9.4  ± 4.4            

(5.0 – 16.3) 

8.3 ± 4.8                 

(2.9 – 15.7) 

∆TSI 50% MVC (%) 
57.3  ± 14.9 b           

(41.3 – 77.2) 

60.8  ± 13.7 b            

(42.3 – 75.9) 

14.2  ± 2.3            

(11.7 – 16.7) 

14.8  ± 4.3              

(9.9 – 19.7) 

a = significant difference from PortaMon1 and PortaMon2 at 30% MVC (P > 0.05); b = significant 

difference from PortaMon1 and PortaMon2 at 50% MVC (P > 0.05). 

 

No significant difference was found during the isometric quadriceps exercise between either MOXY1 

and MOXY2 or PortaMon1 and PortaMon2.  As such, the combined group averaged data (n = 5) for 

MOXY (MOXY1 & MOXY2) and PortaMon (PortaMon1 & PortaMon2) during the quadriceps 

isometric contraction task is shown as a composite graph in Figure 6-6a. The general trend was similar 

for all five participants between devices. For both systems, an immediate decrease in TSI at the onset 

of isometric contraction (30% MVC) was observed. This recovered rapidly following contraction 

cessation, and in some cases overshooting (a hyperaemic response). A larger decrease in TSI was 

observed at 50% MVC and returning to resting at task cessation. Bland-Altman plots indicate that the 

MOXY reports consistently higher ∆TSI at both 30 (Fig. 6-6b) and 50% (Fig. 6-6c) MVC, with a 

trend showing the greater the average ∆TSI, the greater the difference. 
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Figure 6-6 (a) Group changes in tissue saturation index (∆TSI) during 30 and 50% isometric MVC 

tasks and (b) Bland-Altman plots of ∆TSI at 30% MVC (n = 5) and (c) 50% MVC (n = 5) using the 

combined average of MOXY and PortaMon devices. Each plot represents the difference versus mean 

∆ value measured as the average of the two MOXY devices compared to the two PortaMon devices. 

Dotted lines represent the ±2SD limits of agreement. 

 

6.5.5 Comparing devices during dynamic exercise and occlusion 

Peak performance measures, adipose tissue thickness, external pressure applied by the NIRS devices 

and TSI data during the incremental arm crank test and subsequent arterial occlusion are presented in 

Table 6-4. No significant differences were observed for peak power output or time to exhaustion 

between trials and external pressure was applied between 9 – 13 mmHg. During the arterial occlusion 
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and the following reactive hyperaemia, significant differences were observed between NIRS devices 

for minimum, maximum and delta TSI. The MOXY device repeatedly reported a greater delta TSI 

when compared with the PortaMon (p <0.01).  

During the incremental arm crank test, between-device TSI differences were observed at 25 W when 

comparing raw TSI values. In the post-exercise hyperaemic period, the MOXY device also reported a 

significantly greater maximum value compared with the PortaMon (p <0.01). However, these 

differences were not observed when the TSI range of the devices was calibrated to the min and max 

TSI associated with the arterial occlusion.  

Despite the lack of significant differences seen at individual power values using the calibrated values, 

when the data is taken as a whole, a subtle distinction can be observed. Figure 6-7 demonstrates the 

relationship between increasing power output and a progressive decrement in TSI. The regression 

slope was not significantly different (P = 0.18) between the MOXY and the PortaMon device for the 

raw TSI values (Fig. 6-7a) (a slope of -0.16 ± 0.02 % TSI per 1W for the MOXY compared to -0.12 ± 

0.005 for the PortaMon), however the lines are not identical due to a significant difference in the 

intercepts (F(1,7) =  47.06, P = <0.01. A similar result is present when comparing the regression 

slopes of the calibrated values (Fig. 6-7b) between devices (P = 0.45), reporting similar decrements in 

TSI (% calibrated) per 1W increase (MOXY = -0.23 ± 0.03 %; PortaMon = -0.26 ± 0.006 %), yet a 

statistically significant difference in the intercepts (F(1,7) =  12.95, P = <0.01). The difference in the 

intercepts appears to be due to a lower value of the MOXY after warm up compared to baseline (the 

0W point is arm cranking with zero resistance compared to complete rest).  

Figure 6-8 shows the raw and calibrated TSI traces during incremental arm cranking and the 

subsequent arterial occlusion for individual participants.  It is evident from these figures that both 

devices follow a similar trend within individuals between both MOXY and PortaMon devices. 

Interestingly, following a rapid desaturation during the initial two stages of the arm crank test (0 and 

25 W), the TSI trace for participant 3 increased from 50 W to the end of the test. This physiological 

observation was reproduced by both devices for this individual on separate testing occasions.  
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Table 6-4 Physiological responses during arm cranking and subsequent arterial occlusion. 

  MOXY PortaMon P-value 

ATT (mm)                                     2.7 [1.6, 3.7]  

External pressure (mmHg) 10.8 
 

[8.7, 13.0] 
 

11.5 
 

[9.5, 13.5] 0.60 

TTE (s) 589.7   [538.1, 641.3] 584.7   [515.5, 653.8]     0.64 

PPO (W) 97.85   [87.1, 108.6] 96.81   [82.4, 111.2] 0.64 

                      

Arterial Occlusion                     

Min (TSI) 12.9   [7.7, 17.9]   36.6   [28.7, 44.4]    <0.01 ** 

Max (TSI) 87.2   [85.3, 89.0] 80.2   [77.4, 83.0]    <0.01 ** 

Delta (TSI) 74.3   [68.9, 79.8] 43.7   [37.7, 49.7]    <0.01 ** 

                      

Baseline (resting)                     

Raw (TSI) 61.5   [54.1, 68.9] 64.4   [60.9, 67.9] 0.34 

Calibrated (%) 66.5   [55.0, 77.9] 63.6   [54.2, 73.0] 0.43 

                      

Incremental Test                      

Raw (∆ from baseline)                 

0W -2.1   [-7.6, 3.5] 0.2   [-4.0, 5.4] 0.50 

25W -9.6   [-14.4, -4.8] -2.5   [-4.8, 9.3]    0.04 * 

50W -11.1   [-16.5, -5.7] -5.6   [-10.4, 7.9] 0.12 

75W -14.3   [-22.8,-5.8] -8.3   [-16.2, 7.1] 0.09 

100W (n = 3) -19.1   [-25.8, -12.5] -12.3   [-23.8, -0.8] 0.22 

                      

Calibrated (∆ from baseline)               

0W -4.2   [-11.8, 3.5] -0.3   [-14.6, 14.0] 0.55 

25W -14.3   [-21.7, -7.0] -6.9   [-24.5, 10.7] 0.27 

50W -16.0   [-25.0, -7.0] -13.9   [-26.2, -1.5] 0.74 

75W -20.9   [-34.1, -7.6] -19.1   [-31.5, -6.7] 0.80 

100W (n = 3) -29.7   [-44.2, -15.3] -25.8   [-44.4, -7.3] 0.59 

                      

Post Ex. Hyperemic Max:                     

Raw 85.5   [80.4, 90.5] 80.7   [75.6, 85.9]    <0.01 ** 

Calibrated 97.8   [93.0, 102.6] 101.3   [92.7, 109.8] 0.12 

                      

* P = < 0.05; ** P = < 0.01;                



 

110 

  

 

Figure 6-7 (a) Relationship between power output and raw ∆ TSI and (b) calibrated (%) values 

during incremental arm cranking (mean ± SEM) 
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Figure 6-8 (a) Individual participant TSI traces for raw and (b) calibrated values during arm cranking and arterial occlusion (MOXY = black line; 

PortaMon = grey line). 
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6.6 Discussion 

This current study compared two portable, wireless NIRS devices. Whilst the measurement of muscle 

oxygen saturation correlated between the MOXY and PortaMon under a variety of resting and 

dynamic conditions, significant differences were noted, both with respect to device reliability and 

absolute values of saturation.   

6.6.1 Comparing Devices at Rest 

Light entering the surface above the vastus lateralis will pass through skin and adipose tissue layers 

before entering the muscle. It is generally assumed that NIR light reaching a detector has an effective 

penetration depth of approximately 50 – 60% of the inter-optode distance [214]. The PortaMon 

(maximum source:detector separation of 40mm) would be expected to detect more light from the 

deeper muscle tissue than the MOXY (maximum source:detector separation of 25mm). Even in the 

absence of differences in the measurement algorithm (discussed later), one would therefore not 

necessarily expect identical muscle oxygen saturation values for the two systems.  

Whilst the two devices did provide similar values for male participants, in female participants, the 

PortaMon reported a lower resting TSI when compared with the MOXY. We showed that this 

difference appeared to be consequent to the gender difference in adipose layer. Optical density is 

greater in participants with a thin layer of adipose tissue [215]. In SRS systems the increased adipose 

layer results in a higher apparent %TSI in female participants [216]. This effect is exaggerated in the 

MOXY. The smaller source:detector separation in the MOXY biases the light detected in favour of 

more surface tissues. It seems that the SR algorithm used is unable to completely correct for this 

effect. It is therefore even more important than usual in NIRS to measure and report on local body fat 

composition when using the MOXY, especially when comparing between participants.  

6.6.2 Testing the Influence of External Pressure 

There were significant effects of the applied pressure on resting TSI, especially for the MOXY. At low 

external pressures (2 – 20 mmHg), the PortaMon reported a lower resting TSI (~8%) compared with 
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the MOXY. As external pressure was increased above 20 mmHg, the difference between the two 

devices diminished. This difference was predominantly due to changes in the MOXY value, not the 

PortaMon. In particular, MOXY values showed a sharp decrease between 20 and 30 mmHg. As 

external pressure is applied to the skins surface, arteriole, venule and capillary intravascular 

hydrostatic pressure are equal in relation to the distance from the surface of the skin [217] , occluding 

the flow of blood to the periphery. As a larger proportion of light detected in the MOXY comes from 

surface tissue it is likely that the MOXY is more sensitive to pressure-induced changes in the dermis 

and subcutaneous oxygenation and blood flow. Again, the SR algorithm used to measure muscle TSI 

is less effective than the SRS method in the PortaMon in correcting for the effects of differences in 

blood flow and oxygenation in surface tissues. This finding has an important implication for 

researchers when undertaking repeated measures using the MOXY device, particularly when the 

removal and re-application of the NIRS device is required. Furthermore, athletes using similar devices 

to inform training intensity should standardise the external pressure applied to hold the instrument in 

place.   

6.6.3 Test – Retest Reliability of Devices at Rest 

This is the first study to report reliability data of the MOXY device. In the current study, we report 

absolute (the similarity between repeated measures (CV)) reliability. Previous CV of various NIRS 

monitors report resting TSI of the vastus lateralis between 2.3 – 5.8% [209,218–220]. These baseline 

TSI values are similar to that observed in the MOXY devices in our study (5.7 -6.2%). Interestingly, 

the present CV for the PortaMon devices are lower than that previously reported 1.8 - 2.5 vs. 4.7% 

[209]. However this variation may be due to differences in the precise anatomical location the device 

is placed, leg position (supine vs. seated), gender (male vs male and female) and health status of the 

participants (healthy vs chronic heart failure).  

The acceptable test-retest reliability can be partially attributed to the homogenous group of 

participants used in the present study, with an adipose layer of < 7 mm. Caution is advised if using the 

devices on participants with greater adipose thickness and or when taking NIRS measures from an 
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alternative anatomical location. Furthermore, small differences in ambient and muscular temperature 

may influence day-to-day variability [189], as may slight changes in posture [97]. It is likely that in 

the present study, controlled environmental conditions, abstinence of exercise between testing days 

and a supine body position attenuated the variation observed, contributing towards the very strong 

test-retest reliability of the devices.   

Resting TSI values in the brain are used as threshold values for clinical hypoxia in SR devices such as 

the INVOS 5100C, EQUANOX Classic 7600 and FORE-SIGHT Elite [221] although this has been 

criticised given the differences in patient skull geometry and consequently light transport. In muscle, 

the InSpectra used 2nd derivative spectroscopy to calculate a resting TSI in muscle that was suggested 

to report on tissue dysoxia in shock states [222]. This used the thenar (base of thumb) muscle due to 

the very small layers of overlaying adipose tissue in this area. In muscle groups more relevant to 

exercise physiologists and sports scientists, resting TSI values have been reported in calf muscle in 

compression clothing studies [97] and in the gastrocnemius during normobaric hypoxia [223]. When 

subjected to a normobaric hypoxic environment, the mean SRS-measured TSI change at rest, 

compared with the normoxic condition, was -2.5%. The authors report this finding to not statistically 

differ between conditions.  

6.6.4 Comparing Devices during Isometric Exercise 

There is no difference in ∆TSI between two models of the same device during isometric exercise. 

However, significant differences in ∆TSI are apparent when comparing MOXY vs. PortaMon. The 

MOXY devices report a greater absolute ∆TSI change when compared with the PortaMon at both 30 

and 50% MVC. The ∆TSI observed with the current PortaMon devices is similar to that of a previous 

study, also utilising a PortaMon device [193], reporting a ∆TSI reduction of ~6 and 11% from baseline 

at 30 and 50% MVC respectively. Very few studies have utilised the MOXY device, however, of 

those available, the present ∆TSI at 30% MVC is similar to that observed in the gastrocnemius by 

supine individuals undertaking a plantar flexion exercise against a 6kg weight (~37% vs. ~38%) [224] 

.  
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Both devices report appropriately that there is a decrease in muscle oxygenation during isometric 

exercise. However, unlike the situation for male participants at rest, there are significant differences in 

the extent of desaturation observed during exercise. Is it possible to determine which one is likely to 

be “correct”? In one sense there is no single “correct” value as, given the differences in 

source:detector separation, the NIRS and PortaMon are reporting on different regions of the muscle 

(and having to correct for different amounts of surface tissue). However, some limits can be set by 

more invasive methods.  Comparing oxygen saturation differences between femoral venous and radial 

arterial blood with the ∆TSI changes observed in the present study may identify whether one device is 

more comparable to direct methods than the other. In trained participants femoral venous oxygen 

saturations of 21% and arterial oxygen saturation of 96% were measured following maximal leg 

extensions [225]. Assuming the NIRS signal is an approximately equal contribution of arterial, 

capillary and venous saturation, one would expect the absolute muscle oxygen saturation to be no 

lower than 55% in this case. Even allowing for the fact that femoral venous oxygen saturation 

represents the sum of all blood returning from the exercising leg, whereas the NIRS signal originate in 

the exercising muscle only [226], the almost 60% drop  in TSI in the MOXY device at only 50% 

MVC seems rather high. On the other hand, as has been noted [227], the lack of a correction for the 

adipose layers can result in an underestimation of TSI changes using SRS methods. The variation 

between devices during the MVC exercise could be explained by the muscle contraction causing 

interference to the arterial inflow, therefore an increasing intramuscular pressure inducing ischemia. 

As such, the need to assess the devices during dynamic exercise provides an opportunity to understand 

the dynamic TSI range of the devices without the potential complication of ischemia.  

6.6.5 Comparing Devices during Dynamic Exercise  

During the incremental arm cranking task, both NIRS devices demonstrated a continuous decline in 

TSI as power output increases until volitional fatigue.  Whilst some previous investigations have 

reported an early decline in muscle oxygen saturation during incremental arm exercise followed by a 

plateau at ~50% V̇O2max [228], the general trend in TSI of the current study (Table 6-4) is closer to 
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studies where the biceps brachii TSI progressively decreases throughout arm cranking exercise [190]. 

Interestingly the continuous decline in mean TSI at each stage of the test (Table 6-4), masked 

significant individual variation; in one person (participant 3) an increase in TSI was seen following the 

initial fall. The fact that both devices showed the same unusual trend lends confidence to the idea, both 

that this individual has differences in the balance between flow and metabolism as exercise proceeds 

and that both Portamon and MOXY can detect this effect. By selecting participants and an anatomical 

location with very low ATT, and controlling external pressure at ~10 mmHg, variables previously 

identified to influence TSI values between devices were controlled. Nevertheless, we still observed a 

larger dynamic range in the study in the MOXY compared to the Portamon.  

6.6.6 Comparing Devices during Occlusion/Reactive Hyperemia and the effect of physiological 

calibration 

In an attempt to further explore the remaining differences we performed a “physiological calibration” 

of the two devices, comparing the dynamic exercise data from the biceps brachii to an individual 

participant and machine-specific 0-100% range determined by a nominal 0% following arterial 

occlusion and a nominal 100% following the reactive hyperemia after that occlusion.  During the 

arterial occlusion (Fig. 6-7) both devices fell to a fixed low level below baseline within the first three 

minutes following occlusion and both showed reactive hyperemia following cuff release with the TSI 

rising above baseline. This contrasts with a recent study measuring TSI following three minutes 

arterial occlusion comparing in older adult patients (66 ± 9 year) scheduled for elective coronary 

artery bypass grafting surgery [207]. In these older patients three minutes occlusion was not enough to 

decrease TSI to a stable fixed baseline, probably due to a decrease in muscle oxygen consumption in 

this group compared to ours.  

Despite choosing participants with a similar baseline TSI, significant differences were seen in 

ischemia and reperfusion between the Portamon and the MOXY. The range (Hyperemia MAX minus 

Occlusion MIN) in the Portamon was ∆43.7 % whereas in the same participants the MOXY change 

was ∆74.3%. However, when calibrated against the physiological range observed during and post 
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ischemia, there is now no statistically significant difference between devices during the arm crank 

exercise, nor the maximum value obtained during reactive hyperemia post exercise. This suggests that 

both methods are equally good at measuring muscle oxygenation changes in males with low ATT.  

6.6.7 Comparing Algorithms 

The PortaMon uses the well-established modified Beer-Lambert method for measuring changes in 

chromophore concentrations [229] and SRS for measuring absolute tissue oxygen saturation [205]. 

The MOXY uses Beer-Lambert and a proprietary SR algorithm based on a US patent [230]. 

Pathlength data is generated from a Monte Carlo Model, smoothed and used to generate a matrix of 

diffuse reflectance data at discrete values of tissue and sensor optical properties. This matrix is then 

used to convert the measured diffuse wavelength data to tissue optical properties, from which the 

oxygen saturation measure can be calculated. In their basic form, neither SRS nor SR algorithms take 

into account prior knowledge about individual differences in, for example, adipose layer thickness, 

resulting in some of the variability seen in this study. Some simple NIRS devices, such as the ASTEM 

NIRSRS have incorporated adipose layer measurements to improve the accuracy of their algorithms 

[231]. In principle, both PortaMon and MOXY methods described in this paper could make similar 

adjustments. Previous authors have incorporated adipose tissue thicknesses of individual participants 

as measured by ultrasound combined with SRS measurements in a two layer (adipose/muscle) Monte 

Carlo model to directly calculate muscle μa [227]. A similar individualized measure should be possible 

for the MOXY device, decreasing the dependence of the TSI value on adipose layer thickness.  

The MOXY device reports a significantly larger dynamic range when an arterial occlusion is applied, 

despite a shorter source:detector length when compared with the PortaMon. It has been suggested that 

the ischemic stimulus is more extensive in the muscle compared with the sub-dermal tissue [201], 

therefore, the greater dynamic range reported by the MOXY may be related to the spatial resolution 

method enabling a greater muscle contribution than the SRS despite the smaller source:detector 

separation in the MOXY. However, it is also likely in part a function of algorithm optimisation and 

specialisation. The MOXY is designed to be used on muscle and could reasonably be expected to have 



 

118 

  

been optimised for this system. The Portamon, although designed to be used on muscle, makes no 

concessions or alterations to the basic SRS algorithm compared to similar Artinis devices used to 

measure brain function.  

The minimum and maximum raw TSI values reported for the PortaMon (∆43.7%) are similar to that 

previously reported for the NIRO 200-NX [207] following an arterial occlusion applied at the upper 

arm (∆33%).  This finding is unsurprising given that both the NIRO 200-NX and PortaMon both use 

SRS methods. However, the larger dynamic range reported by the MOXY (∆74.3%) surpasses that of 

alternative SR devices such as the FORE-SIGHT elite (∆ 46%) and INVOS5100C (∆ 36%) [207]. 

This illustrates the difficulty in comparing different SR devices which use different algorithms and are 

likely sensitive to differences in the source:detector separation even when determining basic 

calibration ranges. The INVOS (3cm and 4 cm) and FORESIGHT (2.5cm and 5 cm) use significantly 

larger source:detector separations than the MOXY (1.2cm and 2.5cm) and, given their clinical 

interests, their algorithm development has likely focused more on brain than muscle measurements. 

However, in the absence of devices from these manufacturers with similar source:detector separations 

and the proprietary nature of the individual algorithms, it is impossible to speculate further as to the 

cause of these differences.  

6.6.8 Real world applications  

The MOXY is designed to be of use to individuals in a variety of sporting environments. There have 

been suggestions as to how NIRS might be of use for individual athletes and coaches in, for example, 

tracking and optimising training. However, in many cases, these have merely sought to mimic 

currently available tools, such as lactate thresholds, albeit with the benefit of being non-invasive 

[232,233]. Even then, differences in optical properties of individuals make these measurements 

unreliable in many cases [234]. No one has yet been able to demonstrate a specific benefit of using 

muscle NIRS to track training in an individual. What is required is a proper randomised trial 

comparing the use of NIRS to optimise training with current standard methods. The advent of 

relatively low-cost devices, such as the MOXY, makes such a trial more accessible. However, this 
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work here suggests that, even if successful, the results of such a trial might remain specific for the NIR 

device used and not necessarily transferable to other spectrometers. This present study has focused 

solely on the TSI values produced by the MOXY and PortaMon devices. Future studies could address 

the tHb values reported by the MOXY device and compare these with the (rarely reported) scaled tHb 

that can be derived from SRS methods.   

Subcutaneous fat is known to have a large impact on NIRS signal. Whilst high ATT results in less 

light absorption and therefore a stronger signal, the metabolically inactive fat tissue, coupled with 

lower haemoglobin levels will result in less signal change [235] i.e. a blunted dynamic range. Given 

the observed influence of high ATT on resting TSI in the MOXY device and the small source:detector 

separation used, it is not clear how valid the current algorithm is for use in athletes with higher ATT; 

this includes a significant number of female athletes. In order to fully utilize the MOXY device in 

individuals with ATT >7 mm, the source-detector distance should be increased accordingly. 

Commercial muscle NIRS devices with larger source-detection distances are widely available [191].    

Future studies should measure TSI trend during dynamic exercise of those with ATT between 7 - 15 

mm and determine whether the influence of ATT can be removed by applying an ischemic calibration 

as has been shown previously for muscle oxygen consumption measurements previously [236]. 

6.7 Conclusion 

This study shows that both MOXY and PortaMon devices produce acceptable TSI measures during 

supine rest and demonstrate a similar trend during dynamic exercise under appropriately controlled 

conditions in specific participant groups. During ischemia (arterial occlusion and isometric 

contractions) the MOXY device reports a greater raw dynamic range when compared with the 

PortaMon However, by applying a physiological calibration following an arterial occlusion, the 

MOXY and PortaMon devices report similar changes from baseline during arm crank exercise. Due to 

the limitations of calibrating NIRS, it is not possible to determine which device is a more accurate 

measure of absolute muscle oxygen saturation; Although the PortaMon demonstrates a greater 
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repeatability at rest, this may simply be reflective of the smaller dynamic range observed. The MOXY 

is marketed at athletes and coaches and priced accordingly (< $1,000), whereas the higher priced 

PortaMon (< $10,000) tends to be used primarily by research scientists. For the researcher, the 

PortaMon has the advantage of measuring and reporting more NIRS parameters. At least in the case of 

vastus lateralis measurements, the PortaMon also appears to be less sensitive to variations in adipose 

layer thickness and applied external pressure. We recommend the application of the MOXY device 

primarily on individuals with a low adipose tissue thickness, and that the external pressure applied to 

hold the device in place is either standardised upon each application or kept below 20 mmHg.  
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7 Compression tights have no effect on economy of treadmill running at 

race pace. 

7.1 Rationale 

The capacity for compression tights to aid running economy at particular relative exercise intensities 

(Chapter 5) and when the interface pressure is above a particular threshold (Chapter 4) has been 

reported.  However, their capacity to influence running economy at race speed is unknown and 

arguably of most relevance to endurance athletes. Moderately trained distance runners were assessed 

at running speeds associated with their most recent race performance, with and without compression 

tights. Multiple physiological parameters were collected, including tissue oxygen saturation using the 

MOXY device (Chapter 6). The decision to use the MOXY device rather than the PortaMon was 

primarily driven by its lighter weight, thus less likely to impact running gait during submaximal 

exercise.  

 

7.2 Abstract 

 

The aim of the present study was to examine whether compression tights modify running economy 

(RE), kinematics and muscle oxygenation (SmO2) in recreational runners. Thirteen males and five 

females completed two RE tests at a speed corresponding to a recent race time (10k, half marathon or 

marathon distance) during a single laboratory session. Test order was randomised between the 

treatment trial of compression tights and control trial with running shorts. RE was determined by 

oxygen consumption and carbon dioxide expiration during the final three minutes of each fifteen 

minute running task on a treadmill. SmO2 was measured using portable, wireless near-infrared 

spectroscopy devices positioned on the calf and thigh. Vertical oscillation and ground contact time 

were determined from a tri-axial accelerometer device. Skin temperature at the calf and thigh were 
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measured continuously. Ground contact time was shorter with compression (238 ± 20 ms) compared 

with control (243 ± 19 ms) trials (P = 0.03), however no differences in RE, SmO2, vertical oscillation, 

HR or skin temperature were revealed. Gait variability was calculated as the intra-individual standard 

deviation of kinematic variables during the last 3 min of running.  Wearing compression tights 

decreases ground contact time but does not alter the energetics of running at a competitive race pace. 

It appears the individual response to compression tights is most improved in participants with a low 

vertical oscillation and exhibit less stride-to-stride variation in vertical oscillation. 

7.3 Introduction 

 

Wearing CGs during exercise has gained popularity within the last two decades [237]. World records 

have been set by athletes donning compression garments, reinforcing the link between compression 

clothing and elite performance [52]. Although the world records are undoubtedly the result of talent 

and training, athletes choose to wear these garments in the belief they will aid performance.  

Despite the popular use of CGs among elite and moderately trained athletes, the prevailing consensus 

indicates only small improvements in time to exhaustion tasks (Hedges g = 0.27 ± 0.33) [4] or during 

middle distance running (800 – 3000 m) (weighted mean improvement = 6.1 s) [69]. Wearing 

compression garments during 5 and 10 km runs [52,60], 15 km trail running [71] and a marathon [64] 

resulted in no ergogenic benefit. The type of garment used in these time-trial performance tests 

included either stockings or socks and have not included full length tights. Compression tights have 

been shown to improve variables related to running performance such as running economy [9], muscle 

oxygenation [10] and running kinematics [80]. Intriguingly, when compression tights have produced a 

positive effect, the recorded garment pressure was ~20 mmHg at the calf and 13 – 18 mmHg at the 

thigh. Perhaps this is indicative of a required pressure threshold to elicit physiological and 

biomechanical changes during endurance running. In support of this observation, a minimum pressure 

threshold required to improve venous return of 17.3 mmHg at the calf and 15.1 mmHg at the thigh  
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was proposed [12]. At or above this pressure, compression may narrow superficial blood vessels and 

modulate haemodynamic factors [142].  

Running economy (RE) defined as the metabolic cost of travelling a given distance is a useful 

indicator of endurance performance [168].  Referred to as a multifactorial measure, RE is influenced 

by biomechanical, cardiopulmonary, metabolic and neuromuscular systems [110]. In heterogeneous 

populations with varying V̇O2max values, a strong positive relationship exists between V̇O2max and 

running performance. However, RE is an important determinant of performance among runners who 

possess similar V̇O2max values [168]. The benefit of possessing a good RE is evident for elite [167] and 

moderately trained individuals [238]. Marginal improvements in RE are directly associated with better 

distance running performance and therefore strategies to improve energy cost are of great interest to 

runners [238]. Compression tights are shown to elicit a positive effect on RE in recreationally trained 

individuals above a relative exercise intensity of 77.7% V̇O2max (see Chapter 5). However, whether 

compression tights improve RE at competitive running speeds requires further investigation.  

The aim of the present study was to examine whether compression tights modified RE, substrate 

utilization, kinematics and muscle oxygenation of moderately trained runners. Garment pressure was 

targeted to achieve the minimal pressure threshold and RE assessment was completed at a speed that 

corresponded to an individual’s most recent race time over 10k, half marathon or marathon distance.  

 

7.4 Methods 

7.4.1 Participants 

Ethical approval was received from the University of Essex ethical committee. Participants provided 

written informed consent in accordance with the Declaration of Helsinki.  Thirteen male and five 

female volunteers provided written informed consent before participation in the study (Table 7-1). All 

participants were moderately trained runners and had completed a 10,000-m, half marathon or full 

marathon within the previous 12 months.  A moderately trained runner was defined as a runner who 
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had engaged in a systematic training program of endurance running for at least one year and 

completing between 10 – 45 km·week-1. At the time of investigation, all participants were completing 

≥3 training sessions a week and free from musculoskeletal injury within the one month previous.  

 

 

Table 7-1 Descriptive characteristics of participants, training volume and best race performances in 

previous 12 months (Mean ± SD). 

 Males (n=13) Females (n=5) 

Age (years) 37.6 ± 10.0 39.2 ± 7.7 

Height (m) 1.77 ± 0.07 1.65 ± 0.08 

Body Mass (kg) 72.0 ± 8.5 59.8 ± 6.1 

Weekly training distance in past 6 months (km) 

Event average time 

42.9 ± 18.4 27.4 ± 8.7 

      10,000 m (min:s) 41:33 ± 4:58 (n=9) 49:49 ± 3:30 (n=4) 

       Half marathon (hr:min) 1:38 ± 0:12 (n=10) 1:47 ± 0:12 (n=3) 

       Marathon  (hr:min) 3:33 ± 0:20 (n=6) 3:35 (n=1) 

Note: some participants (n=11) reported personal bests in more than one event 

 

 

7.4.2 Compression Garments 

Full-length compression tights covering the body from ankle to waist were used in the investigation 

(Skins TM A400, Riverwood, Australia). Participants were required to wear two compression tights on 

top of each other to achieve a target interface pressure of ~20 and ~15 mmHg at the calf and thigh 

respectively. Garment size for both tights was selected in accordance with the manufacturer’s sizing 

guide. The garments were made from warp knitted fabrics, with the fibre reported as 76% nylon and 

24% elastane, fabric thickness as 0.57 ± 0.01 mm and fabric weight 199.33 ± 0.57 g/m2 (See Chapter 3 

for fabric specification). The interface pressure exerted by the CGs were evaluated by the PicoPress® 

(Microlabs, Italy) pressure monitor (coefficient of variation = <5% at 20 mmHg [1]). Pressure 

measures were recorded at two anatomical locations (posterior orientation of the maximal calf girth 
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and anterior thigh at the mid-point between mid-trochanterion-tibiale laterale). The control condition 

consisted of loose fitting running shorts, thereby providing a comparison between compression tights 

and garments typically worn by recreational runners. 

7.4.3 Experimental Design 

Participants completed a single experimental session in a controlled laboratory environment 

(temperature: 18 ± 1.0° C). In the 24 hours prior to testing, participants were asked to refrain from 

exercise, caffeine and alcohol intake.  As participants could not be blinded to wearing CGs, a 

questionnaire was completed defining their a priori beliefs and experiences regarding compression 

garments [94]. Two separate running tests took place during the session to assess the impact of 

compression tights on energy cost, muscle oxygenation, running kinematics, heart rate and skin 

temperature. Participants wore compression tights and control garments for each test in a randomised 

and counterbalanced manner (Figure 7-1).  

Body mass and stature was initially recorded using digital platform scales (SECA, Model 813, 

Birmingham, UK) and a stadiometer (SECA, Model 213, Birmingham, UK). Skinfold thickness was 

measured at the vastus lateralis and gastrocnemius of the dominant leg using skinfold callipers 

(Harpenden HSK-BI, British Indicators Ltd, UK). Participants were then fitted with a heart rate 

monitor, skin thermistors and two portable muscle oxygenation sensors. Participants performed 15 

min supine rest on a medical examination bench prior to the exercise task. Each run test consisted of a 

15 min run on a motorized treadmill (Quasar; HP Cosmos, Nussdorf, Germany) at a speed 

corresponding to the individuals most recent 10 k, half marathon or marathon time. The calibrated 

treadmill gradient remained at 1% throughout. Convective airflow was provided throughout the 

running task by a fan (~400 mm diameter,~2 m·s-1) at a distance of 1 m in front of the treadmill. 

Between each test, participants remained seated for 15 min followed by a further 15 minutes supine 

with water available to consume ad-hoc. During each 15 min run test, heart rate, ground-contact time, 

vertical oscillation, skin temperature, respiratory gases and indices of muscle tissue oxygenation were 

measured continuously. 
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Figure 7-1 Schematic representation of experimental design. NIRS, near-infrared spectroscopy; HR, 

heart rate; V̇O2, oxygen consumption; V̇CO2, expired carbon dioxide; GCT, ground contact time; Vert, 

vertical. 

7.4.4 Experimental Procedures 

Cardiovascular measures 

Throughout each run test, participants wore a dead-space mask with an impeller turbine assembly 

(Hans Rudolph, Kansas, USA) and gas concentrations continuously sampled via a capillary line. 

Concentrations were determined by electrochemical (O2) and infrared (CO2) analysers (Vyaire CPX, 

Mettawa, Illinois, USA). Prior to each test, the gas analysers were calibrated with gases of known 

concentration (16% O2 and 5% CO2), and ambient air. The digital volume transducer was connected to 

the housing blower and calibrated automatically using both high and low flow parameters. Mean 

oxygen consumption (V̇O2) and carbon dioxide production (V̇CO2) were averaged from second-by-

second data over the final 3 min of each run test. Second-by-second V̇O2 and V̇CO2 data were used to 

determine running economy (RE) as caloric unit cost (kcal·kg-1·km-1), carbohydrate oxidation 
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(CHOOX) and fat oxidation (FATOX) (g·kg-1·km-1) using equations for moderate to high intensity (50-

75% V̇O2max) [173]. To ensure principally aerobic contribution to energy expenditure, we excluded 

participants if respiratory exchange ratio (RER) >1.00 during the final 3 minutes of the submaximal 

run. Both RE (kcal·kg-1·km-1) and V̇O2 (ml·kg-1·min-1) are reported, enabling comparison with 

previously published data. 

Heart rate (HR) was continuously monitored using a Garmin HR monitor (Forerunner 720XT, Garmin 

Ltd, Schaffhausen, Switzerland). Mean HR was averaged from second-by-second data across the final 

3 min of each run test. 

Near-infrared spectroscopy 

Muscle oxygenation was assessed using near-infrared spectroscopy (NIRS). The MOXY monitor 

(Fortiori Design LLC, USA) reports physiologically credible changes in tissue oxygenation (SmO2) 

and total haemoglobin (tHb), providing insight into the balance between oxygen supply and 

consumption [239]. The MOXY employs four wavelengths of NIR light at 680, 720, 760, 800 nm 

[230] and the sensor contains a single light emitting diode (LED) and two detectors in placed 12.5 and 

25.0 mm from the source.  

One device was positioned on the belly of the vastus lateralis midway between the greater trochanter 

and the lateral epicondyle of the femur, the other at the maximal calf girth on the posterior aspect of 

the gastrocnemius. To ensure the optodes and detector did not move relative to the participants’ skin, 

the devices were fixed into position using a waterproof adhesive tape. In addition, bodily hair at or 

around the sensor placement area was removed from the skin and participants were asked not to 

moisturise the area on the day of testing. In the compression condition, 6 cm diagonal incisions were 

made in the garments to expose the NIRS devices. Black crepe bandage was wrapped around the leg 

to secure the NIRS devices and ensure that no external light would be received by the device 

detectors.  A portable pressure monitor (PicoPress, Microlabs, Italy) was used to ensure the pressure 

applied by the bandage was equal to the pressure initially applied under the CGs (~20 mmHg = thigh; 
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15 mmHg = calf), thereby minimising the influence of additional unwanted pressure applied by the 

bandage (Figure 7-2). In the control condition, bandage pressure was maintained at 8mmHg to 

minimise ischemia induced changes in SmO2 and tHb [239].  During all testing, the system was 

connected to a personal computer via a commercially available software programme (Peripedal ©) to 

provide a graphic display of the data. Data acquisition (2 Hz) was obtained from the sensors internal 

memory and data-sets were smoothed by calculating the 3 second moving average. Due to potential 

differences in resting values between run tests, SmO2 was reported as a change from baseline. Baseline 

SmO2 and tHb were established as the final 30 seconds of the 15-min supine rest period prior to each 

run test.  During each run test, the minimum SmO2 and tHb in the initial 1 min was identified (10-s 

average) in addition to the final 1 min average at the end of the 15 min treadmill run. These values 

were subtracted from the baseline to provide a delta (Δ) 1 min and Δ15 min value. The difference 

between Δ1 min and Δ15 min value was calculated (Δdiff) to determine the muscle oxygenation 

response for the final 14 minutes of the run task. To ensure sufficient optical density penetrating the 

adipose layer, participants with an adipose tissue thickness (ATT) <15 mm were excluded from 

analysis [240]. ATT was calculated as 0.5 × mean skinfold thickness. 
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Figure 7-2 Method to ensure interface pressure of garment is maintained despite cutting an incision 

into fabric. Image for illustrative purposes showing NIRS device positioned at the vastus lateralis, 

prior to crepe bandage application. 

 

Running kinematics 

Participants wore a heart rate strap equipped with a tri-axial accelerometer (HRM-Run; Garmin Ltd, 

Schaffhausen, Switzerland). The strap was placed on the xiphoid process of the sternum. Output was 

sent wirelessly to a wristwatch (Forerunner 920XT, Garmin International Inc., Olathe, KS) via a 2.4 

GHz ANT+ system.  Vertical oscillation and ground contact time (GCT) were calculated using the 

proprietary algorithms of the Garmin Connect software [241], previously reported as valid and reliable 

measures [242] compared with a motion-analysis system. Mean vertical oscillation (cm) and GCT 

(milliseconds) were averaged from second-by-second data over the final 3 min of each run test. 

Vertical oscillation and GCT variability was calculated as the standard deviation for an individual 

during the final 3 min of the submaximal run. 
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Temperature measurement 

Skin temperature (Tsk) was recorded throughout the run test by taping temperature sensors (Libra 

medical Ltd, Model ET402, Ascot, Berks, UK) adjacent to the NIRS devices at the gastrocnemius 

(calf) and vastus lateralis (thigh). Tsk was recorded each minute and 3 min averages calculated and 

used for data analysis. 

Subjective Questionnaire 

Participants were asked seven dichotomous questions and answers were summed to give an overall 

belief score [94]. Lower scores would indicate little or no experience with and negative opinions on 

the effectiveness of CGs. 

7.4.5 Statistical Analysis 

Data are presented as mean and 95% confidence intervals (95% CI) for all dependent variables. Paired 

differences between conditions for dependant variables were initially tested for normality using the 

Shapiro-Wilk test.  Analysis of RE, HR, SmO2, vertical oscillation and GCT was performed by a 

paired samples t-test to measure potential significant differences between two means. To assess 

differences in Tsk at different time intervals, a 2 x 5 repeated-measures ANOVA was conducted. 

Fishers LSD test was used for post hoc pairwise comparisons. In addition, the magnitude of the 

differences between each condition was calculated using Cohen’s d effect size with thresholds for 

small, moderate and large effects as 0.2, 0.5, and 0.8 respectively. Pearson’s product-moment 

correlation analysis was performed to examine the association between belief score and RE 

differences between garment conditions. Statistical tests were processed using the statistical package 

SPSS (Version 18) and Microsoft Excel (Microsoft Corporation TM, Redmond, WA, USA). The level 

of statistical significance was identified by an alpha value of P < .05. 
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7.5 Results 

The pressure applied by the compression tights was 17.8 [95% CI; 15.9 - 19.7] mmHg and 13.1 [95% 

CI; 11.8 - 14.3] mmHg at the calf and thigh respectively. One participant recorded an RER > 1.00 

during the 15 min treadmill run. As a consequence, all data acquired from that individual was removed 

prior to analysis.  

No difference was found for cardiovascular measures of RE, RER, V̇O2, HR (Table 7-2). In addition, 

correlation analysis revealed no association between belief scores and changes in RE (r = .29; P = 

0.27) (Figure 7-3). Figure 7-4 displays the change in running economy for each participant as a violin 

plot.   A difference was observed between garment conditions for GCT (t (16) = 2.34, P = 0.03), 

indicating participants exhibited a shorter contact time with compression tights, however vertical 

oscillation remained unchanged. 

 

Table 7-2 Cardiovascular responses and running kinematics data during 15 min run with and without 

compression tights (Mean [95% CI]). 

 Control Compression P-value d= 

Cardiovascular parameters    

RE (kcal·kg-1·km-1) 1.05 [1.01-1.10] 1.05 [1.02-1.09] 0.91 0.03 

RER  0.92 [0.90-0.95] 0.92 [0.90-0.95] 0.69 0.10 

V̇O2  (ml·kg-1·min-1) 41.9 [39.4-44.4] 42.1 [39.2-44.9] 0.69 0.10 

CHOOX (g·kg-1·km-1)  2.60 [2.28-2.91] 2.59 [2.28-2.90] 0.88 0.04 

FATOX  (g·kg-1·km-1) 0.37 [0.23-0.51] 0.38 [0.25-0.51] 0.62 0.12 

HR (bpm) 153 [145-160] 155 [150-160] 0.30 0.26 

Running kinematics     

Vertical oscillation (cm) 9.9 [9.0-10.8] 10.2 [9.2-11.1] 0.29 0.27 

GCT (ms) 243.1 [233.0-253.2] 237.7 [228.0-247.3] 0.03* 0.57 

Values shown as mean [95% CI]. * = statistically significant difference between conditions (P<0.05); 

d = Cohen’s effect size; RE = caloric unit cost; RER = respiratory exchange ratio; V̇O2  = Oxygen 

consumption; HR = Heart rate; GCT = Ground contact time. Mean [range] running speed the same in 

both conditions = 11.9 [10.3 - 14.8] km·h-1. 
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Figure 7-3 Change in running economy (ΔRE) as a function of belief score. ΔRE calculated as control 

minus compression. 95% confidence interval indicated by shaded area. 

 

 

Figure 7-4 Violin plot showing the effects of compression tights on running economy (ΔRE). ΔRE 

calculated as control minus compression.  Median (dashed) and quartile (dotted) ranges displayed for 

whole group. Individual data points presented for male (black) and female (grey) participants. 

 

Compression produced heterogeneous responses in terms of ΔRE (ΔRE range -5.6 – 3.8%) (Figure 7-

4). Post hoc secondary analysis was conducted using participants with the greatest improvements 
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[responder] (n = 4; ΔRE range 1.9 – 3.8%) and decrements [non-responder] (n = 4; ΔRE range -5.6 – -

3.6) in RE to identify whether kinematic variables (vertical oscillation and GCT) explained the 

individual response to compression tights. Table 7-3 shows responders had less vertical oscillation (d 

= 1.30) and less variability in stride-to-stride vertical oscillation (d = 0.86).  However, such large 

differences were not observed with GCT between participants who improved RE and those who 

worsened (Table 7-4). Intriguingly, participants with improved RE reported small increases in GCT (d 

= 0.21) and stride-to-stride GCT variability (d = 0.42). 

Table 7-3 Comparison of vertical oscillation (cm) and intra-individual variability (SD) during the 

compression trial between responders and non-responders. 

 Responders 

(n=4) 

Non-responders  

(n=4) 

P-value d= 

Vertical oscillation (cm) 9.6 ± 1.6 11.7 ± 1.8 0.12 1.30 

Vertical oscillation variability 0.3 ± 0.1 0.5 ± 0.4 0.28 0.86 

Values are mean ± SD 

 

Table 7-4 Comparisons of ground contact time (ms) and intra-individual variability (SD) during the 

compression trial between responders and non-responders. 

 Responders 

(n=4) 

Non-responders  

(n=4) 

P-value d= 

GCT (ms) 232.4 ± 27.4 228.1 ± 10.2 0.78 0.21 

GCT variability 3.5 ± 1.0 3.1 ± 1.0 0.58 0.42 

Values are mean ± SD 

 

Due to data signal drop out, SmO2 and tHb data were available for 14 participants at the vastus lateralis 

and for 15 participants at the gastrocnemius. There were no differences in SmO2 and tHb between 

garment conditions at any of the time points or the change (ΔDiff) between 1 and 15-min (Table 7-5 + 

7-6).  
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For Tsk at the calf and thigh, there were significant main effects for time (p < 0.001) but not garment (p 

= 0.11 and p = 0.62) or their interaction (p = 0.47 and p = 0.80) (Fig 7-5). 

Table 7-5 SmO2 (%) data during 15 min run with and without compression tights. 

 Control Compression P-value d 

Gastrocnemius (n=15)     

Baseline  70.0 [62.8-77.3] 63.8 [55.3-72.3] 0.34 0.25 

Δ1 min  -45.9 [-52.9- -39.0] -44.7 [-53.6- -35.9] 0.84 0.06 

Δ15 min -26.7 [-36.4- -17.1] -24.8 [-36.7- -12.9] 0.74 0.09 

Δdiff  19.2 [12.0-26.4] 19.9 [13.0-26.8] 0.75 0.09 

Vastus Lateralis (n=14)     

Baseline  70.5 [63.9-77.1] 67.9 [61.3-74.5] 0.42 0.22 

Δ1 min  -35.0 [-39.7- -30.3] -30.5 [-35.9- -25.1] 0.15 0.41 

Δ15 min -30.4 [-38.3- -22.5] -23.7 [-30.7- -16.6] 0.14 0.43 

Δdiff  4.7 [-0.5-9.8] 6.8 [2.0-11.7] 0.31 0.28 

Δdiff = difference between Δ1-min and Δ15-min value. Values are mean [95% CI]. 

 

 

 

Table 7-6 tHb (arbitrary units) data during 15 min run with and without compression tights. 

 Control Compression P-value d 

Gastrocnemius (n=15)     

Baseline  12.5 [12.2-12.8] 12.6 [12.3-12.8] 0.36 0.24 

Δ1 min  0.0 [-0.12-0.12] -0.07 [-0.23- 0.09] 0.80 0.07 

Δ15 min  -0.08 [-0.23-0.07] -0.15 [-0.34- 0.04] 0.63 0.13 

Δdiff  -0.08 [-0.17-0.02] -0.08 [-0.19-0.02] 0.84 0.05 

Vastus Lateralis (n=14)     

Baseline  12.7 [12.5-12.9] 12.7 [12.5-13.0] 0.66 0.12 

Δ1 min  -0.11 [-0.21-0.0] -0.14 [-0.21- -0.08] 0.36 0.25 

Δ15 min -0.07 [-0.21-0.07] -0.08 [-0.17- 0.01] 0.84 0.05 

Δdiff  0.04 [-0.02-0.09] 0.07 [0.01-0.12] 0.12 0.44 

Δdiff = difference between Δ1 min and Δ15 min value. Values are mean [95% CI]. 
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Figure 7-5 The effects of compression garments on skin temperature of the calf (A) and thigh (B) 

during 15 min race pace running. a Significantly Different to 3 min (P<0.05). b Significantly Different 

to 6 min (P<0.05). c Significantly Different to 12 min (P<0.05). 

 

7.6 Discussion 

The current study investigated the influence of wearing compression tights on physiological 

parameters during submaximal running at long-distance race speed.  In the present investigation, no 

difference in any cardiovascular, NIRS or skin temperature measure was revealed between garment 

conditions. GCT was shorter with compression tights however vertical oscillation remained 

unchanged. 

Analysed as a whole group, RE was unaffected by wearing compression tights and consistent with 

previous findings. Dascombe et al., [10] reported no change in RE or V̇O2 at speeds between 10 – 18 

km·h-1 with well-trained middle-distance runners. The interface pressure reported at the calf (19 

mmHg) and thigh (~14 mmHg) appear comparable with the present study; however pressure 

assessment was conducted with the Kikuhime pressure monitor. Chapter 3 identifies a systemic bias in 

the interface pressures reported by the Kikuhime, overestimating the values in comparison to the 

PicoPress and a medical reference standard. It is likely that the garments applied an interface pressure 

similar to that of the tights used throughout this thesis as the same brand (SKINS) were worn. It is 
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worthwhile noting that in the present study, two garments were worn simultaneously to achieve the 

desired pressure threshold previously postulated [12]. However, adherence to this threshold did not 

reveal changes in any cardiovascular parameter measured. Similarly, in well-trained runners and 

triathletes, there was no effect of compression tights targeting an interface pressure of 20 mmHg on 

V̇O2 during a 15 min run at 70% V̇O2max[58]. However, in this instance, interface pressure was not 

directly measured so it remains unknown whether the targeted pressure of 20 mmHg was achieved. 

The current findings support the literature regarding compression tights having no effect on RE or any 

other cardiovascular measures in moderately trained runners. Participants were required to run at a 

pace of their recent best time in 10,000 m, half marathon or marathon distance. It is conceivable that 

this competition pace is a speed that participants regularly train at and therefore athletes are already 

“most” economical at this intensity[243]. In support of this, Varela-Sanz et al.,[81] reported no change 

in V̇O2 at half-marathon pace with compression stockings, suggesting that athletes already select the 

most economical locomotion style at competition pace and deviating from this style will likely result 

in significant decrements in RE. 

7.6.1 Variation in Running Economy 

Small improvements in RE are associated with better running performance. As little as 1% change in 

submaximal V̇O2 is reported to have significant performance implications [6,109]. The present study 

included both male and female participants grouped together. Interestingly, when analysed separately, 

males report a mean increase of 1.2% in V̇O2 with compression tights, whereas the five female 

participants reduced V̇O2 by 2.4% (Figure 7-2). Previously reported intra-individual variation of 

oxygen cost in moderately trained runners at 88% of the lactate breakpoint was 2.0% [166]. 

Furthermore, female distance runners reported a variation in V̇O2 between 1.4 – 2.2% at speeds 

between 11.2 – 14.8 km·h-1 [244]. The change observed among female participants in the present 

study is greater than previously reported intra-individual variation.  This suggests that the observed 

change may be of practical benefit and requires further investigation with an adequately powered 

study. If the influence of compression tights on running economy differs between male and female 
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runners, this could be associated with gender differences in lower extremity mechanics during running 

[122].  

7.6.2 Fabric Considerations 

It is widely reported that CGs can positively influence physiological parameters such as blood flow 

velocity [3] and proprioceptive capability [237]. However, an overlooked area associated with 

compression clothing is the additional mass of garments, thereby adding an increased metabolic cost. 

The additional weight of a garment may negate any potential benefit caused by increased transmural 

pressure and stimulation of mechanoreceptors brought about by compression. Previous studies show 

an added shoe mass of ~100g per shoe increases metabolic rate by 1% [245,246]. It is conceivable that 

the total mass of the two garments (~350g) worn in the present study may have degraded running 

economy.  

7.6.3 Subjective Measures 

The participants perception of CGs may influence the individual response [163]. Belief in sports 

compression did not influence ΔRE. This is unsurprising given the majority of participants (n = 13) 

reported positive belief scores (score range 3 – 7), with only one participant showing negative 

responses (score range -7 – -3) and three exhibiting neutral responses (score range -2 – 2). In contrast, 

Stickford et al.,[94], reports an inverse correlation between belief scores and changes in V̇O2, 

revealing that highly trained distance runners reporting more positive feelings about CGs produced 

greater decrements in submaximal V̇O2 when compression stockings were worn. Dramatic placebo 

effects have been previously reported with athletic footwear, influencing vertical jump 

performance[247] and following an induced expectation, a sleeveless compression top reduced 

participants perception of exertion during a cycling task. It remains unknown whether an induced 

expectation or treatment expectation can bring about changes in RE. 

7.6.4 Cardiac Parameters 

No significant garment effect on heart rate during submaximal exercise was observed in the present 

study. This observation is in agreement with previous investigations, who reported that heart rate is 
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unaffected by compression tights when running at 110% V̇O2max [248], or with compression stockings 

during a 10km time trial [52]. In addition, a recent meta-analysis revealed that CGs have little to no 

influence on cardiac parameters such as heart rate, cardiac output or stroke volume (g = 0.08 ± 0.37) 

[4]. Despite reported increases in venous flow velocity and venous return when compression is applied 

at rest, increased cardiac output due to exercise is likely to supersede minor changes to flow velocity 

caused by compression. This is perhaps indicative of the effectiveness of skeletal muscle pumps and 

venous valves during continuous dynamic exercise [93]. 

7.6.5 Skin Temperature 

Skin temperature was not different between garment conditions at the gastrocnemius or vastus lateralis 

at any time point during the exercise task. This is of particular interest considering participants wore 

two compression tights and previous investigations have reported higher skin temperatures under 

single layer CGs [72,93].  A noteworthy increase in skin temperature (~1°C; d = 0.48) was observed 

at the gastrocnemius after three minutes of exercise; however the between-garment difference 

diminished as the duration of exercise continued. Elevated skin temperatures associated with 

compression clothing are traditionally attributed to lower air circulation and convection, thereby 

reducing heat dissipation. However it is plausible that the convective air-flow and fabric properties 

mitigate potential changes in skin temperature. Indeed, in the present study, the skin thermistors were 

placed at an anterior (vastus lateralis) and posterior (gastrocnemius) orientation. The convective air 

flow delivered by the fan may explain the difference in skin temperature between measuring locations. 

It is suggested that thermal effects may be more pronounced during prolonged high-intensity or 

intermittent exercise, without constant air-flow, however further research is required to substantiate 

this theory [93]. 

7.6.6 Muscle Oxygen Saturation 

This is the first study to investigate the influence of CGs on muscle oxygen saturation at two locations 

simultaneously. In doing so, it is possible to report on specific oxygenation differences that are not 

detectable by a single NIRS measure or global oxygenation assessment. The pattern of muscle oxygen 
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saturation followed a similar pattern at both locations to those previously reported [105]. A rapid 

decrease in muscle oxygenation was observed following the onset of exercise, followed by a slow 

linear increase.  However, in agreement with earlier studies [10,61], no differences between clothing 

conditions were observed in muscle oxygen saturation during exercise. During a 15.6 km trial run, 

Vercruyssen et al., [61] showed no effect of compression stockings on vastus lateralis oxygen 

saturation, however the NIRS probe was not positioned where compression was applied, therefore 

the authors could only conclude that compression stockings have no effect on systemic measures 

of muscle blood flow and oxygen saturation. Furthermore, Dascombe et al, [10] report no 

difference in vastus lateralis muscle oxygenation at running speeds of 12 and 14 km·h–1 when 

compression tights are worn, but do report an increased oxygen saturation at 10, 16 and 18 km·h–1. 

Several studies have reported positive effects of compression clothing on measures of muscle 

oxygen saturation [10,38,105], however these studies include heel-raise exercise [105] or 

measures are only obtained during rest periods [59]. Muscle oxygen saturation is determined by 

two predominant factors; the oxygen delivery rate and oxygen consumption. Measures of tHb 

obtained by NIRS provide a surrogate measure of tissue blood flow [249] and reflect changes to 

local blood volume. In the present study, compression tights did not alter total haemoglobin, 

indicating that muscle blood volume is unchanged at rest and during exercise between clothing 

conditions. However, obtaining NIRS measures during an arterial occlusion of the leg would 

provide a greater insight into muscle blood flow.  It is not feasible to perform repeated arterial 

occlusions during exercise; therefore assessment of local oxygen delivery and consumption has 

previously been conducted immediately post-exercise, assuming the metabolic demand is the 

equivalent to the final stages of an exercise protocol [250]. Future investigations should implement an 

arterial occlusion protocol during brief rest intervals throughout steady state exercise to elucidate on 

flow and consumption changes with compression tights. 
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7.6.7 Running Kinematics 

The present study was the first to investigate the influence of compression tights on running 

kinematics. Previous studies have included compression stockings only [81,84,94] or a combination of 

calf and thigh sleeves [160] and reported higher leg stiffness, lower contact time and lower stride 

length during constant rate running [84,160]. The present study revealed no differences in vertical 

oscillation, however in support of Kerherve et al., [84], a shorter GCT was observed with 

compression. Cardiovascular parameters during submaximal running are affected by various factors, 

including running kinematics, such as vertical oscillation and GCT [251,252]. However, evidence 

appears equivocal regarding the association between GCT and RE, with several authors reporting 

either no relationship [253–255], improved RE with longer GCT [256] or improved RE with shorter 

contact time [257]. In the current study, a shorter GCT with compression tights caused no measurable 

change in RE.  The change in contact time may be a result of decreased range of motion at the hip or 

knee joint, reducing stride length and contact time. Compression shorts decreased the range of motion 

(ROM) at the hip joint at rest, laying supine [75] and during a 60 m sprint [74]. Logically, decreases in 

ROM are only observed at the joints covered by the garment. By compression tights covering both the 

hip and knee joint, garments of this type offer the greatest opportunity to alter running gait. However, 

future research is required to explore whether decreases in ROM are observed at submaximal running 

speeds with compression tights. 

No changes in mean vertical oscillation were revealed. However, there was substantial inter-individual 

variation in the metabolic response to compression that warrants further investigation. Post hoc 

analysis was conducted to determine if any characteristics of running mechanics may explain the 

individual response to compression tights. When participants are grouped according to changes in RE, 

those with the greatest improvement in RE had a lower overall vertical oscillation and vertical 

oscillation variability.  A reduction in vertical oscillation and stride-to-stride variability may improve 

RE due to a lower vertical impulse and the body performing less work against gravity [258,259].   

7.6.8 Interface Pressure Considerations  
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Target interface pressures were selected in accordance with recommendations associated with 

improved venous return [12], whereas garments pressures shown to influence running mechanics 

appear to be higher. Future investigations should assess the influence of compression tights on running 

economy applying an interface pressure of ~23 – 33 mmHg around the calf and ~20 mmHg around the 

thigh [84,160]. Fortunately, both studies used to inform this target threshold utilised the PicoPress 

pressure monitor, providing greater confidence in the precision of the pressure values proposed.  

7.6.9 Limitations 

The current study was designed to investigate the influence of compression tights at competition 

speed. However, in doing so, the participants running speed was determined from recent performances 

over 10 km, half- or full marathon. In Chapter 5 a relationship between the influence of compression 

tights and relative exercise intensity was reported. Yet, by asking participants to run at speeds 

associated with race performance of three varying distances, it is likely that the relative exercise 

intensity of participants was varied and possibly fell outside the previously observed range purported 

to respond positively to compression.  Despite this, the current study confirms compression tights do 

not improve running economy at speeds associated with long distance races. 

7.7 Conclusion 

This study shows for the first time that wearing compression tights while running at speeds associated 

with competition pace reduces ground contact time. However, running economy, skin temperature, 

muscle oxygen saturation and vertical oscillation are not modified.  There is evidence that the 

individual response to wearing compression tights varies greatly and could be associated with 

kinematic variables such as vertical oscillation. In order to explore the relationship between changes in 

running economy with compression tights and running gait parameters, future studies should select 

garments with interface pressures previously shown to alter running kinematics (~20 – 33 mmHg) 

rather than pressure thresholds that may influence blood flow (15 – 17 mmHg).   
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8 Summary  

Lower limb graduated compression garments are an effective adjunct in the management of diseases 

of venous deficiency [89], with evidence to suggest that mechanically increasing transmural pressure 

causes a reduction in venous stasis, hypervolemia and cross-sectional vein diameter [96,260]. Since 

these early investigations, interest in the efficacy of sports compression garments has grown. Despite 

the number of sports compression studies, the absence of a common consensus of how to measure 

garment interface pressure limits the cross-study comparisons that can be made regarding garment 

performance. Establishing a preferred pressure measuring device and assessment method is crucial for 

the progression of sports compression literature. Chapter 3 investigated the criterion validity of 

portable devices capable of measuring interface pressure, identifying a suitable device for the 

subsequent intervention studies.  

The literature review revealed few reproducible findings in support of acute performance 

improvement. The equivocal results previously reported may be linked to the heterogeneity of 

garments investigated [3,36,67,68]. It became evident that compression garments may produce small 

improvements in some performance measures (time to exhaustion [4]; 800 – 3000 m [69]) and 

physiological parameters (running economy [4]). Given the heterogeneity of the garments 

investigated, and the small yet notable improvement in running economy, it is plausible that factors 

such as garment type, interface pressure, exercise modality and exercise intensity influence the 

efficacy of CGs. This thesis focuses on the influence of compression tights, intentionally selecting a 

garment that covers the full leg musculature and the hip and knee joints. In doing so this provides the 

greatest opportunity for the garment to interact with various physiological systems (cardiovascular, 

haemodynamic, mechanacoreceptive and biomechanical).  The influence of compression tights on 

running economy was investigated, exploring the effect of garment interface pressure in Chapter 4 and 

relative exercise intensity in Chapter 5. Chapter 7 explored the influence of compression tights on 

running economy at a competitive race speed. Within this investigation, a NIRS device validated in 
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Chapter 6 was used to monitor muscle oxygen saturation. The main findings of the thesis were as 

follows; 

1) When compared with a medical reference standard, the PicoPress pneumatic pressure 

measuring device satisfied a priori thresholds at the posterior and lateral orientation with 

lower limb sports compression garments. Conversely, the Kikuhime did not satisfy 

thresholds for acceptable validity at any orientation, overestimating the pressure compared 

with a reference standard. These findings indicate that practitioners and researchers can 

confidently compare interface pressures obtained with the PicoPress against values reported 

with medical compression hosiery. The study also reports the physical properties of the 

compression tights used throughout this thesis (Chapter 3). 

2) Correctly fitted compression tights applying a low level of interface pressure (ankle = 3.1 ± 

1.3; calf =10.5 ± 3.1; thigh = 6.7 ± 0.6 mmHg) caused a small, likely beneficial improvement 

(95%:5%:0%; η2 = 0.55) in running economy at 60% vV̇O2max. In contrast, oversized 

compression tights applying a lower level of interface pressure (ankle = 1.3 ± 0.9; calf = 9.1 ± 

2.7; thigh = 3.8 ± 1.1 mmHg) did not improve running economy. These results indicate that 

compression tights applying a specific interface pressure produce a meaningful improvement 

in running economy of moderately trained individuals (Chapter 4).  

3) The extent in which compression tights improve running economy is dependent on relative 

exercise intensity (r= -0.501, P<0.01). Expressed as caloric unit cost, running economy was 

improved by compression tights (d=0.93) at high relative exercise intensities (77.1-91.5% 

V̇O2max), whereas no effect was observed below this intensity range. This further elucidates 

the specific exercise conditions whereby compression tights might improve running economy 

(Chapter 5).   

4) A recently developed low-cost NIRS device (MOXY) produced physiologically credible and 

comparable measures during rest and exercise against an established PortaMon system. The 

MOXY is most suited for individuals with a small adipose layer thickness (<7 mm) and when 
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the external pressure holding the device in place is below 20 mmHg. When these conditions 

are met, the MOXY produces reliable resting measures of muscle oxygen saturation 

(coefficient of variation = 5.7 - 6.2%). Furthermore, decreases in saturation during isometric 

exercise, arterial occlusion and dynamic arm crank exercise are strongly correlated between 

devices. The MOXY provides a lightweight option to monitor muscle oxygen saturation 

during dynamic exercise (Chapter 6). 

5) Wearing compression tights decreases ground contact time (P = 0.03) but does not alter 

running economy (P = 0.91), SmO2 (P = 0.15-0.84), vertical oscillation (P = 0.29), HR (P = 

0.30) or skin temperature (P = 0.47-0.80) at a competitive race pace. It appears the individual 

response to compression tights is most improved in participants with a low vertical oscillation 

and exhibit less stride-to-stride variation in vertical oscillation (Chapter 7).  

8.1 Empirical and practical implications of the findings  

8.1.1 Measuring interface pressure with a portable pressure device 

Reporting garment interface pressure is critical to enable comparative assessment of study findings. In 

order to further understand the bio-physical impact of interface pressure on physiological parameters 

and sports performance, optimal methods to measure in vivo pressure must be established. There are 

many measuring instruments (HOSY, PicoPress, Kikuhime, etc.) and methods (in vivo, assessment of 

fabric properties, etc.) that can be used to obtain the pressure profile of a compression garment. 

Despite guidelines published in 2006 alluding to a range of suitable portable pressure devices for in 

vivo assessment [34], the comparison of the PicoPress and Kikuhime device in this thesis is the first 

study to compare multiple portable devices with a medical reference standard (HOSY). Indeed, the 

concluding remarks of Hegarty et al., [261] drew attention to this, stating that ‘future research must 

include the HOSY or other methods of measuring pressure. This will allow the point measurements 

from different devices to be matched and verified using an independent, continuous data-set, and 

correction factors’. Additionally, the authors suggest that ‘discrepancies between the predicted 
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pressures and on-body techniques need to be further studied. This should include testing at different 

points along the circumference of the limb with different sensor geometries.’ 

Chapter 3 found clear discrepancies between the interface pressures reported by two common devices. 

Analysis revealed the PicoPress is a suitable pneumatic pressure monitor, whereas the Kikuhime 

systemically overestimates interface pressure regardless of anatomical orientation. Interestingly, this 

investigation also revealed that the water-column method previously used to assess device accuracy 

and reproducibility [2] is insufficient at identifying systemic bias during in vivo assessments. Chapter 

3 informs future research and international standardization, revealing a valid measurement device and 

assessment location(s).  In light of the results, the PicoPress device was used throughout the thesis, 

featuring in all subsequent chapters.  

8.1.2 The comparison of wireless NIRS devices 

NIRS is a simple, non-invasive method for measuring the presence of oxygen in muscles and other 

tissues in vivo [262]. In Chapter 6, a recently developed low-cost NIRS device (MOXY) was 

compared against an established PortaMon system that makes use of the spatially resolved 

spectroscopy (SRS) algorithm, widely used in sports science and physiology research. The 

development of new NIRS device technology has taken near-infrared physiological monitoring out of 

the laboratory and into an applied sport setting. However, prior to widespread use, researchers and 

practitioner must be confident in the validity, reliability and accuracy of new technology. This is the 

first study to report the influence of increasing external pressure on measures of muscle oxygen 

saturation. Importantly, it was found that above a pressure threshold (>20 mmHg), the MOXY device 

reports lower SmO2 values. It is likely that the MOXY is more sensitive to pressure-induced changes 

in the dermis and subcutaneous oxygenation and blood flow due to a smaller source:detector 

separation and the proprietary spatial resolution algorithm. This novel finding is the first to provide 

specific guidance regarding the application of the MOXY to minimise test-retest variation. Subsequent 

to the publication of Chapter 6, the manufacturers of the MOXY developed a ‘light shield’ capable of 

not only preventing unnecessary light from interfering with the measurements, but also providing a 
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means of controlling the pressure applied once attached to an individual.  Furthermore, the 

investigation reports the test-retest reliability at rest and during isometric leg extension exercise of the 

MOXY and PortaMon device.  This study is significant because the use of non-invasive methods to 

track and optimise training intensity, such as NIRS, is of increasing interest to coaches, athletes and 

scientists, yet data is lacking regarding the reliability of the MOXY device, nor has its performance 

been previously compared with alternative NIRS systems. Collectively, the results of Chapter 6 reveal 

the MOXY monitor is capable of producing valid measures of muscle oxygen saturation at rest and 

under a range of dynamic conditions. Given that the MOXY produces physiologically credible 

measures and is ~43% lighter than the PortaMon, the device was used in Chapter 7 as a means of 

measuring muscle oxygen saturation during submaximal running.  

8.1.3 The influence of compression on running economy 

The fundamental contribution of running economy to endurance running performance is widely 

acknowledged [238,246]. Strategies to enhance an athletes RE should be a primary objective for 

individuals who compete at distance running, including both moderately trained ‘weekend warriors’ 

and elite athletes alike. Current literature suggests that enhancing RE is achieved through the inclusion 

of 6-14 weeks of explosive strength and plyometric training [167,263], however contrary to popular 

belief, these findings are equivocal and highlight that such interventions are far from robust [263]. 

Chronic training interventions require time and the partial replacement of endurance training sessions. 

If acute strategies are capable of improving running economy, this would be of significant interest to 

athletes and coaches as they would require little to no time or replacement of training sessions in order 

to implement. Lower limb compression garments are an example of an acute strategy previously 

shown to cause small improvements in running economy [4,9,81,94]. However there was little 

evidence to indicate the specific garment type or applied interface pressures required to achieve 

meaningful improvements in RE. In Chapter 4, small, likely beneficial improvements in RE are 

reported with low-pressure sports compression tights, applying the greatest interface pressure at the 

calf. Additionally, it appears that tights must apply an interface pressure above a particular threshold 
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to elicit the observed improvement in RE. Previous studies have identified a dose response 

relationship with physiological [10,12] and kinematic variables [160], however this was the first study 

to find compression tights improved RE, while also reporting interface pressures obtained in vivo. 

Wearing non-graduated, low pressure (<15 mmHg) compression tights during submaximal running 

leads to an improved RE (+3.2%) at a relative intensity of ~80% V̇O2max.  

Chapter 4 identified garment type, pressure gradient and associated interface pressures capable of 

improving RE. Chapter 5 demonstrated that the influence of compression tights on RE was dependant 

on relative exercise intensity. Furthermore, in this chapter, RE is reported as energy cost (caloric unit 

cost; kcal·kg-1·km-1), which accounts for substrate dependent variations in energy equivalent of a 

volume of oxygen [11]. This is the first study to reveal that CGs improve RE at high relative exercise 

intensities but not lower (</>77.7% V̇O2max), reporting a mean improvement of 2.8% between 77.7-

91.5% V̇O2max.  

During a marathon, participants perform at a speed equivalent to approximately 60 – 75% V̇O2max 

[264]. Furthermore, recreational runners are reported to complete a half marathon at a relative exercise 

intensity  between 75 - 85% V̇O2max [164]. Perhaps the most practically relevant question of the thesis 

is whether compression tights can alter RE at competitive long distance race speeds which runners 

frequently train at. Despite increasing the interface pressure applied to the lower limbs in accordance 

with recommendations associated with improved venous function, no difference was reported in RE 

between clothing conditions (Chapter 7).  It is plausible that moderately trained runners are already 

‘most’ economical at race speed and therefore casts doubt on the usefulness of compression tights 

acutely benefiting an endurance runner. Chapter 7 represents the first study to investigate the influence 

of compression tights on running kinematics, revealing a shorter ground contact time during the final 3 

min at competition speed. Furthermore, substantial inter-individual variation in running economy was 

observed with compression (ΔRE range -5.6 – 3.8%), indicating that individuals who possess a lower 

overall vertical oscillation and stride-to-stride variability may benefit from compression tights.  

Throughout chapters 4, 5 and 7 the typical improvement in RE with compression tights is between 2 – 
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4%. Acute interventions that potentially augment RE are important, as small changes in RE are 

associated with improvements in running performance [246]. Nevertheless, intra-individual variation 

of RE ranges between 1.9-3.1% in well controlled studies using moderately trained participants 

[166,265]. Only when changes in running economy exceed the typical error can we confidently 

interpret a meaningful change [177]. The thesis reveals that only in specific garment and exercise 

intensity conditions can compression tights improve RE. However, the magnitude of this improvement 

is likely to be small. In addition, the improvements in RE are likely to only be observed at unfamiliar 

running speeds. Pereira et al., [166] stated that optimum stride length is easier to identify and more 

consistent at a familiar speeds. Indeed, Chapter 7 confirms that compression tights produce no 

improvement in RE when participants ran a competitive race pace.   

8.2 Limitations  

A number of limitations within the present work must be acknowledged. Chapter 3 compares two 

portable pressure monitors with a medical reference standard. The comparisons made throughout this 

investigation were focused on the garment pressure applied at the calf. It is unknown how the devices 

perform at any other location such as the ankle or thigh. Thomas [133] revealed that sensor accuracy 

of both the PicoPress and Kikuhime are proportional to the circumference of the cylinder to which it is 

applied. At smaller circumferences, the portable devices overestimate the pressure applied, due to the 

sensors undergoing greater deformity to conform to the curvature.  In light of this, it is expected that 

ankle interface pressure obtained by the PicoPress and Kikuhime will be higher than that reported by 

the HOSY. Conversely, measures at the thigh location should align closer with values obtained using a 

medical reference standard due to the larger circumference.  

Throughout the thesis the same type of compression garment has be investigated (SKINS, A400 long 

tights). Lee et al., [266] found that subtle changes to the level of interface pressure and fabric 

composition were capable of influencing the kinematics and kinetics during drop jump landing.  Given 

that biomechanical responses are garment specific, extrapolating the current results across alternative 
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compression garments should be conducted with caution. Furthermore, the compression tights in the 

thesis delivered non-graduated pressure, with the highest interface pressure recorded at the calf. The 

medical compression literature clearly indicates that graduated compression is required to have the 

greatest benefit on minimising venous stasis and increasing venous blood flow velocity. It is plausible 

that graduated compression may influence haemodynamic parameters to a greater extent than non-

graduated during exercise. Sports compression garments often apply low interface pressures at the 

ankle, increasing upwards and peaking at the maximum calf girth [36]. This is most likely a 

commercial decision driven by consumer demand for garment comfort and ease of donning.   

Chapter 5 reveals the influence of compression tights on running economy varies by relative exercise 

intensity. This finding was established by analysing the participants RE response at a speed equivalent 

to 60-65% vV̇O2max. Retrospective analysis revealed the reported relationship between exercise 

intensity and RE response. In this instance, data was not obtained by implementing a repeated 

measures design, requiring participants to run at multiple relative exercise intensities i.e. 60, 70, 80 

and 90% V̇O2max. By conducting a research design in this manner, it will be possible to elucidate the 

present findings. 

In Chapter 7 the individual response to wearing compression tights when running at a competitive race 

speed varied greatly, yet when analysed as a group, no improvement in RE was observed. It is possible 

that the individual response was related to the relative exercise. However, it was not possible to 

explore this relationship as participants did not complete a preliminary V̇O2max assessment to establish 

relative V̇O2 uptake. 

 

8.3 Future research directions 

A vast majority of the sports compression literature has been conducted with male participants. 

Chapter 7 revealed that changes in RE among female participants (n=4) was greater than previously 

reported intra-individual RE variation. However, this observation lacks statistical power and future 
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research should look to investigate the female response to compression tights with an adequately 

powered study. This is particularly relevant due to sex differences in lower extremity mechanics 

during running [122].  

Lower limb compression garments applying an interface pressure between 20 – 30 mmHg change 

running gait variables to a greater extent than those with lower pressures [160]. Chapter 7 reveals a 

possible interaction between running kinematics and RE economy changes with compression. This 

raises the question whether compression tights with a higher interface pressure (20 – 30 mmHg) would 

produce a greater improvement in RE than that observed in the thesis. To achieve these pressures, it is 

recommended that single layer garments are identified rather than layering garments on top of one 

another as was performed in Chapter 7. This would minimise the additional garment weight thought to 

possibly hinder the ergogenic potential of compression on running mechanics.   

8.4 Conclusion 

The work contained in this thesis has progressed three distinct areas.  

(1) The PicoPress provides a valid measure of interface pressure at the posterior and lateral location of 

the calf. This finding contributes towards international standardization by identifying a portable 

pressure sensor and assessment location capable of replicating pressure values established from a 

reference standard. This is an important finding given the low-cost and speed in which garment 

pressure can be determined using a portable pressure monitor when compared with indirect methods. 

(2) The MOXY and PortaMon NIRS devices produce physiologically credible measures of muscle 

oxygen saturation during supine rest and demonstrate a similar trend during dynamic exercise. 

However, the use of the MOXY device should be limited to individuals with a low adipose tissue 

thickness and the external pressure applied to hold the device in place is either standardised upon each 

application or kept below 20 mmHg. 

(3) Sports compression tights produce small improvements in RE when garments are correctly fitted, 

apply a low level of interface pressure and relative exercise intensity is high. The benefits of 
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compression appear diminished when participants run at a competitive race pace and therefore it is 

questionable to what extent compression tights can meaningfully contribute toward improved RE and 

ultimately better endurance running performance.  
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Appendix 2: Participant information packs (Chapters 3 – 7)  
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Participant Information Sheet 
 

What is the purpose of this study? 

This study aims to compare two hand-held devices which measure the pressure applied by 
compression garments. 

How will the study be conducted? 

The research will require you to attend the Human Performance Unit once for no longer than 
30 minutes. After some basic measurements (calf circumference) you will be asked to wear 
two compression socks and two compression tights. The pressure applied by these garments 
on the front, back and side of your calf will be measured. No exercise is required. Please 
wear shorts to the testing session. 

Where will the research take place? 

At the Human Performance Unit located in the Centre for Sport and Exercise Science, 
University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ. 

By taking part in this study, please be aware that: 

 I am free to withdraw from the study at any time without giving reason and without 
penalty 

 All information collected during this research will remain anonymous 

 The person in control of the test will explain the nature and purpose of the test and 
will inform me of any foreseeable risk to my health as a result of my participation  

Do I have to take part? 

No, it is your choice whether or not to take part. Please talk to others about the study if you 
wish and ask us if anything is not clear.  If you decide to take part, you can leave the study at 
any time without giving a reason.  

What will happen to me if I take part?  

When you are recruited you will be shown some of the equipment that will be used during 
your participation.  You will be able to ask any questions that you may have at this point 
before deciding you are interested in taking part. 

Will I be paid for my participation? 

You will not be paid for taking part in this study. 

Why might you be not able to take part in the study?  
If you have a history of venous insufficiency, heart disease (including irregular heartbeats), 
high blood pressure, problems with the nervous system or taking medicine that alters the 
cardiovascular system or the nervous system you will not be able to participate. In addition, if 
you have any muscle or joint problems that prevent you from standing for a prolonged period 
(60 minutes) we ask that you do not take part. 
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What if relevant new information becomes available? 

If additional information becomes available during the course of the research, it will mainly be 
conveyed in the form of e-mail. E-mail or text messages will be used for reminders for you 
depending on your preference. 

What will happen if I don’t want to carry on with the study?  

If you decide to take part, you can still leave the study at any time without giving a reason. 
Identifiable data already collected with consent would be retained and used in the study. No 
further data would be collected or any other research procedures carried out on or in relation 
to you. 

Who is organising the research? 

The University of Essex is organising this study. The research team are employees and 
students of the University of Essex. The principle investigator is Mr Chris McManus (details 
below). Other members of the research team include undergraduate students from the 
School of Sport, Rehabilitation and Exercise Sciences. 

Will my taking part in this study be kept confidential? 

If you decide to take part in this study, any information collected about you as part of this 
project will remain confidential and your identity will not be revealed outside the research 
team. Hardcopy data will be digitized within four weeks of collection. Once digitized, 
hardcopy data will be destroyed by the principle investigator. Digitized data will be stored on 
password protected computers and on a GDPR approved EU cloud-based repository. The 
dataset will be stored on a password protected computer; only accessible by the named 
investigators. No personally identifiable data/markers (name, address, email address etc.) 
will be recorded on the same digitized dataset. 

A separate, password protected file, that links your name, address and email address to the 
identifier code will be kept, enabling us to contact you for future reassessments. This file will 
be password protected, securely stored on a password protected computer, on a password 
protected GDPR approved EU cloud-based repository. 

Anonymous, digitized data will be stored indefinitely on the approved cloud repository as the 
results will contribute toward an ongoing analysis of health and performance changes of 
University students. 

What will happen to the results of this study? 

Any information collected about you will only be used for the purposes of this project.  The 
anonymous results may be published in scientific journals, undergraduate reports and used 
for teaching. You will not be personally identified in any report or publication. You can 
request a copy of the findings. You will also be given individual feedback after completion of 
the study.  

 

What if there is a problem or you are unhappy with the conduct of this study?  
If you have any concerns about any aspect of the study or you have a complaint, in the first 
instance please contact the principal investigator of the project Chris McManus (contact 
details below).  If are still concerned or you think your complaint has not been addressed to 
your satisfaction, please contact the Director of Research in the principal investigator’s 
department (Dr Matthew Taylor, tel 01206 872818; email  mtaylor@essex.ac.uk) , If you are 
still not satisfied, please contact the University’s Research Governance and Planning 
Manager, Sarah Manning-Press, Research and Enterprise Office (tel 01206 87-3561; e-mail 
sarahm@essex.ac.uk). In the event that something does go wrong and you are harmed 
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during the research and this is due to someone being at fault, you may have grounds for a 
legal action for compensation but you may have to pay your legal costs.  
 
Ethical Approval 
This project has been reviewed on behalf of the Science and Health Ethics Sub-Committee 
and has been given approval. 
 
For further information about this project please contact 
Mr Chris McManus, 
University of Essex  
Telephone: 01206 874475 
e-mail cmcman@essex.ac.uk 

 

If you do decide to take part, you will be given a copy of this information sheet to keep and will 
be asked to sign a consent form.    

 

Thank you for taking time to read this Participant Information Sheet. 
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‘The influence of lower body clothing on sub-maximal running’ 

Are you...? 

• Male  

• Aged 18 or over 

• Physically active / Runner 

• Typically completing at least 2 training sessions per week 

• Currently uninjured and without lower limb injury for 4 weeks 

• Without illness or circulatory complaints of the lower limbs 

Number of Visits: 

You will be required to attend the University of Essex for 3 visits. Visit duration will last 

approximately 45 min for VISIT 1 and 90 min for VISIT 2 and 3. The table below outlines the 

possible dates for participation.  

 Date Date Date Date  

Visit 1 

(Maximal 

Run Test) 

Tuesday 28th 

July 

Wednesday 

29th July 

Thursday 

30th July 

Friday 31st 

July 

 

Select 1 date 

from this row 

Visit 2 

(Experimental 

Trial) 

Monday 3rd 

August 

Tuesday 4th 

August 

Thursday 6th 

August 

Friday 7th 

August 

 

Select 1 date 

from this row 

Visit 3 

(Experimental 

Trial) 

Monday 10th  

August 

Tuesday 11th 

August 

Thursday 

13th August 

Friday 14th 

August 

 

Select 1 date 

from this row 

 

Time Availabilities for Visit 2 + 3: 

• 9:00 – 10:30 

• 11:00 – 12:30 

• 13:00 – 14:30 

• 15:00 – 16:30 

• 17:00 – 18:30 

 

• Timings can be discussed and arranged around your schedule for Visit 1; however, both visits 

2 + 3 must occur at the same time of day. Please contact us to discuss this. 

Visit 1: Preliminary visit = VO2max run test (7-15 minutes) and familiarisation with running at 

designated sub-maximal intensity (5 minutes) 
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Visit 2 + 3: Intervention testing (1) Clothing garment 1 (compression), (2) Clothing garment 2 

(running shorts) 

 

Protocol: 

Visit 1: Upon arrival a physical activity readiness questionnaire and consent form will be provided to 

you and a researcher will discuss the protocol verbally. Subsequently, height and weight will be 

recorded, prior to undertaking a warm-up on the treadmill of 5-10 minutes. Prior to beginning the 

maximal test to exhaustion, a mask will be fitted to your face to allow collection of respiratory gases. 

The treadmill will begin at a low-moderate intensity and progressively increasing in speed and incline 

until a point of volitional fatigue. After a rest period, the treadmill will be set at 60% of the speed 

achieved during the maximum test to act as a familiarisation session (and cool-down) for 5-10 

minutes.  

Visit 2+ 3:  6 anatomical landmarks will be marked with a small washable pen on your lower leg 

(alcohol swabs will be provided to wipe pen off) when undertaking the compression trial. The level of 

compression will be measured using a small inflatable bladder between your skins surface and the 

compression garment. 

Following this, you will undertake the following protocol; 

1) 20 minute run at 60% VO2max  

2) 60 minute recovery period with blood lactate measures at 0, 5, 10, 15, 30 and 60 minutes (you are 

requested to remain seated throughout this period. We can provide laptop / internet access to assist 

with occupying time) 

• You are asked to record your food consumption and activities during the 24 hours prior to your 

first visit. Following this, you are requested to repeat the same food consumption and activities 

protocol before all remaining tests. Additional documentation and information will be provided to 

aid with this. 

 

• Do not exercise 24 hours before test, we require you to be completely rested for the test. Do no 

‘hard’ training or competition for 48 hours before. 

• It is imperative that you do not consume alcohol, caffeine or beetroot juice 12 hours before each 

trial. This includes tea, coffee, decaf coffee, energy drinks containing caffeine, medication 

containing caffeine or any other caffeine containing products. Furthermore, no food should be 

consumed in the 3 hours prior to visiting the University. 

 

What feedback do I get and can I have my results? 

Upon completion of the 3 visits you can request feedback regarding your performance and data 

associated with this. Data that is of likely interest includes; 

• Your response to the intervention measured 

• VO2max (Maximum oxygen uptake) 

• Max heart rate 

• Running economy  

• Debrief outlining intervention differences 

Do I have to take part? 
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It is up to you to decide whether or not to take part. If you decide to take part you will be asked to sign 

a consent form. If you decide to take part you are still free to withdraw at any time and without giving 

a reason. 

What if something goes wrong?  

If you wish to complain or have any concerns about any aspect of the way you have been approached 

or treated during the course of this study, please contact Dr Dave Parry, Director of the Human 

Performance Unit, University of Essex, Wivenhoe Park, CO43SQ, Essex.  

Will my taking part in this study be kept confidential?  

All information which is collected about you during the course of the research will be kept strictly 

confidential so that only the researcher(s) carrying out the research will have access to such 

information. All data will be stored on a personal computer and backed up to a safe storage device and 

stored in a locked office.  

Who may I contact for further information?  

If you would like more information about the research before you decide whether or not you would be 

willing to take part, please contact:  

Chris McManus at the Human Performance Unit, University of Essex, Wivenhoe, Essex, CO4 3SQ. 

Email: cmcman@essex.ac.uk    

Phone: 01206 873290 or 01206 874475 
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University of Essex 
Department of Biological Sciences 

 

 

Wivenhoe_Park 
Colchester CO4 3SQ 

Telephone: 01206 873333 

Facsimile: 01206 872592 

URL:http://www.essex.ac.uk/ 

January 2015 

 

Study Title: Assessment of the inter-day reliability of a wireless near-infrared spectroscopy device 

during rest and exercise 

 

Dear Participant, 

We would like to take this opportunity to invite you to participate in a research project which will take 

place during Monday 26th January – Friday 27th February 2015.  Before you decide, we would like 

you to understand why the research is being done and what it would involve for you. Part 1 of this 

Participant Information Sheet tells you why we are doing this research and what will happen to you if 

you take part. Part 2 gives you more details about how the study will be conducted. 

 

Background to this research 

The aim of the project is to assess the inter-reliability of two different muscle oxygen saturation 

devices: (1) Portamon and (2) Moxy at rest and during a repeat isometric quadriceps contraction test 

and compare these values between devices. Muscle oxygen saturation and haemoglobin variables will 

be measured non-invasively by a wireless optical device that is attached to the participant’s leg.  

PART 1 OF THE INFORMATION SHEET 

 

How have I been selected?   

You have been invited to take part in this study because you are student of the Colne Rugby Academy 

and you have indicated that you are happy to participate in the study. 

 

Do I have to take part? 

No, it is your choice whether or not to take part. Please talk to others about the study if you wish and 

ask us if anything is not clear.  If you decide to take part, you can leave the study at any time without 

giving a reason.  

 

What will happen to me if I take part?  

When you are recruited you will be shown some of the equipment that will be used during you 

participation.  You will be able to ask any questions that you may have at this point before deciding 

you are interested in taking part. 
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What will I have to do? 

The study involves five visits to The University biomechanics lab. Firstly, to measure your height, 

weight and lower limb skin fold thickness and to familiarise you with the data collection procedures 

for the exercise testing on your second visit. The first visit will also involve an assessment of maximal 

quadriceps voluntary contraction (MVC) upon an isokinetic dynamometer. This first visit should take 

no longer than 30 minutes. 

The remaining four visits will take no longer than 30 minutes each.  You will be required to perform 

two thirty second isometric holds at 30 and 50% MVC, while blood oxygen saturation of your leg 

muscle will be measured using a non-invasive portable device. The blood oxygenation test is a 

completely painless test that uses near infrared light to detect changes in muscle oxygenation in the 

tissue. 

 

You will be asked to follow some simple rules prior to attending for your testing: 

1. No intense physical exercise for 24 hours before visits  

2. No alcohol or caffeine for 24 hours before the test 

3. No heavy meal in the last 4 hours before test (have some breakfast with a drink) 

 

How will we contact you about visits? 

We will ask you your preferred method of communication such as e-mail to remind you about your 

visits. 

 

Will I be paid for my participation? 

You will not be paid for taking part in this study. 

 

Why might you be not able to take part in the study?  

If you have a history of heart disease (including irregular heartbeats), high blood pressure, problems 

with the nervous system or taking medicine that alters the cardiovascular system or the nervous system 

you will not be able to participate. In addition, if you any lower limb muscle or joint problems you 

will not be able to participate in the study. 

 

What if there is a problem? 

Any complaint about the way you have been dealt with during the study or any possible harm you 

might suffer will be addressed. The detailed information on this is given in Part 2 of this sheet. 

 

Will my taking part in the study be kept confidential? 

We will follow ethical and legal practice and all information about you will be handled in confidence. 

The details are included in Part 2. 

 

This completes Part 1.  If the information in Part 1 has interested you and you may want to join the 

study, please read the additional information in Part 2 before making any decision. 
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PART 2 OF THE INFORMATION SHEET 

 

What if relevant new information becomes available? 

If additional information becomes available during the course of the research, it will mainly be 

conveyed in the form of e-mail or by letters if you have no access to e-mail (through internal post). E-

mail or text messages will be used for reminders for you depending on your preference. 

 

What will happen if I don’t want to carry on with the study?  

If you decide to take part, you can still leave the study at any time without giving a reason. Identifiable 

data already collected with consent would be retained and used in the study. No further data would be 

collected or any other research procedures carried out on or in relation to you. 

 

Who is organising and funding the research? 

The University of Essex is organising this study. The research team are employees of the University of 

Essex. 

 

What if there is a problem or you are unhappy with the conduct of this study?  

If you have any concerns or issues with the study please speak to Chris McManus in the first instance, 

unless you feel it more appropriate to speak to the Head of the Department of Biological Sciences (tel 

01206 87-3337; e-mail craines@essex.ac.uk), or to Sarah Manning-Press, Research Governance and 

Planning Manager, Research and Enterprise Office (tel 01206 87-3561; e-mail sarahm@essex.ac.uk). 

In the event that something does go wrong and you are harmed during the research and this is due to 

someone being at fault, you may have grounds for a legal action for compensation but you may have 

to pay your legal costs.  

 

All research is looked at by independent group of people, called a Research Ethics Committee, to 

protect your interests.  

 

If you do decide to take part, you will be given a copy of this information sheet to keep, and will be 

asked to sign a consent form.    

 

Will my taking part in this study be kept confidential? 

If you decide to take part in this study, any information collected about you as part of this project will 

remain confidential and your identity will not be revealed outside the research and medical team. Any 

information about you which is collected will have your name and address removed so that you cannot 

be recognised. Information may be looked at by regulatory authorities to check that the study is being 

carried out correctly. However, your name and address will not be disclosed as your identity will be 

allocated a code and in this way will remain anonymous. Data will be handled, processed and stored in 

accordance with the Data Protection Act 1998 

http://www.opsi.gov.uk/acts/acts1998/ukpga_19980029_en_1 

 

What will happen to the results of this study? 

http://www.opsi.gov.uk/acts/acts1998/ukpga_19980029_en_1
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Any information collected about you will only be used for the purposes of this project and will be 

disposed of securely when research is complete.  The results may be published in scientific journals, 

undergraduate reports and used in presentations to healthcare and other interested parties. You will not 

be personally identified in any report or publication. You can request a copy of the findings. You will 

also be given individual feedback after completion of the study. This is NOT a clinical diagnosis. 

 

What will happen to any samples I give?  

The blood samples you give will be analysed within 24 hours to investigate blood lactate levels. After 

this analysis the samples will be destroyed and will not be used for any other research. Prior to 

disposal, samples will be stored with no personal details on them just a participant number. 

 

For further information about this project please contact 

Chris McManus at the University of Essex (Telephone: 07787259096, e-mail cmcman@essex.ac.uk) 

 

Thank you for taking time to read this Participant Information Sheet. 
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University of Essex 
Department of Biological Sciences 

 

 

Wivenhoe_Park 
Colchester CO4 3SQ 

Telephone: 01206 873333 

Facsimile: 01206 872592 

URL:http://www.essex.ac.uk/ 

August 2017 

 

Study Title: Performance comparison of the MOXY and PortaMon near-infrared spectroscopy muscle 

oxygenation monitors during dynamic arm-crank exercise 

 

Dear Participant, 

 

We would like to take this opportunity to invite you to participate in a research project which will take 

place during August 2017 – September 2017.  Before you decide, we would like you to understand 

why the research is being done and what it would involve for you. Part 1 of this Participant 

Information Sheet tells you why we are doing this research and what will happen to you if you take 

part. Part 2 gives you more details about how the study will be conducted. 

 

Background to this research 

The aim of the project is to assess two different muscle oxygen saturation devices: (1) Portamon and 

(2) MOXY at rest and during an incremental arm crank exercise and compare these values between 

devices. Furthermore, we wish to investigate the devices when blood flow to the muscle being 

assessed is stopped (via an occlusion). Muscle oxygen saturation and haemoglobin variables will be 

measured non-invasively by a wireless optical device that is attached to the participant’s leg.  

Portamon Device    MOXY Device 

 

 

 

 

 

 

 

 

 

 

PART 1 OF THE INFORMATION SHEET 

 

How have I been selected?   

You have been invited to take part in this study because you have responded to an advert, email or 

alternative form of communication. 
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Do I have to take part? 

No, it is your choice whether or not to take part. Please talk to others about the study if you wish and 

ask us if anything is not clear.  If you decide to take part, you can leave the study at any time without 

giving a reason.  

 

What will happen to me if I take part?  

When you are recruited you will be shown some of the equipment that will be used during you 

participation.  You will be able to ask any questions that you may have at this point before deciding 

you are interested in taking part. 

 

 

What will I have to do? 

The study involves two visits to The University, Clinical Physiology Lab. Firstly, to measure your 

height, weight and bicep skinfold thickness and to undertake an incremental arm crank exercise 

followed by a 5 minute period of blood flow occlusion to your dominant arm.  

The second visit will be a repeat of the first; however, an alternative device will be placed on your 

bicep to that used in the first visit.. The measure of muscle oxygenation is a completely painless 

process that uses near infrared light to detect changes in muscle oxygenation in the tissue. 

 

The arm crank exercise will cause some mild feeling of discomfort that is typically associated with 

maximal exercise to exhaustion. 

 

The blood flow occlusion may also cause discomfort, tingling feeling in the arm and a sensation of 

numbness. These feelings quickly return to normal upon releasing the cuff. 

 

You will be asked to follow some simple rules prior to attending for your testing: 

1. No intense physical exercise for 24 hours before visits  

2. No alcohol or caffeine for 12 hours before the test 

3. No food consumed in the last 2 hours before test  

 

How will we contact you about visits? 

We will ask you your preferred method of communication such as e-mail to remind you about your 

visits. 

 

Will I be paid for my participation? 

You will not be paid for taking part in this study. 

 

Why might you be not able to take part in the study?  
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If you have a history of heart disease (including irregular heartbeats), high blood pressure, problems 

with the nervous system or taking medicine that alters the cardiovascular system or the nervous system 

you will not be able to participate. In addition, if you any lower limb muscle or joint problems you 

will not be able to participate in the study. 

 

What if there is a problem? 

Any complaint about the way you have been dealt with during the study or any possible harm you 

might suffer will be addressed. The detailed information on this is given in Part 2 of this sheet. 

 

Will my taking part in the study be kept confidential? 

We will follow ethical and legal practice and all information about you will be handled in confidence. 

The details are included in Part 2. 

 

This completes Part 1.  If the information in Part 1 has interested you and you may want to join the 

study, please read the additional information in Part 2 before making any decision. 

 

 

PART 2 OF THE INFORMATION SHEET 

 

What if relevant new information becomes available? 

If additional information becomes available during the course of the research, it will mainly be 

conveyed in the form of e-mail. E-mail or text messages will be used for reminders for you depending 

on your preference. 

 

What will happen if I don’t want to carry on with the study?  

If you decide to take part, you can still leave the study at any time without giving a reason. Identifiable 

data already collected with consent would be retained and used in the study. No further data would be 

collected or any other research procedures carried out on or in relation to you. 

 

Who is organising and funding the research? 

The University of Essex is organising this study. The research team are employees of the University of 

Essex. 

 

What if there is a problem or you are unhappy with the conduct of this study?  

If you have any concerns or issues with the study please speak to Chris McManus in the first instance, 

unless you feel it more appropriate to speak to Sarah Mumford, School Manager for the School of 

Sport, Rehabilitation and Exercise Science (tel 01206 87-3348; e-mail smumfo@essex.ac.uk), or to 

Sarah Manning-Press, Research Governance and Planning Manager, Research and Enterprise Office 

(tel 01206 87-3561; e-mail sarahm@essex.ac.uk). In the event that something does go wrong and you 

are harmed during the research and this is due to someone being at fault, you may have grounds for a 

legal action for compensation but you may have to pay your legal costs.  
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All research is looked at by independent group of people, called a Research Ethics Committee, to 

protect your interests.  

 

If you do decide to take part, you will be given a copy of this information sheet to keep, and will be 

asked to sign a consent form.    

 

Will my taking part in this study be kept confidential? 

If you decide to take part in this study, any information collected about you as part of this project will 

remain confidential and your identity will not be revealed outside the research and medical team. Any 

information about you which is collected will have your name and address removed so that you cannot 

be recognised. Information may be looked at by regulatory authorities to check that the study is being 

carried out correctly. However, your name and address will not be disclosed as your identity will be 

allocated a code and in this way will remain anonymous. Data will be handled, processed and stored in 

accordance with the Data Protection Act 1998 

http://www.opsi.gov.uk/acts/acts1998/ukpga_19980029_en_1 

 

What will happen to the results of this study? 

Any information collected about you will only be used for the purposes of this project and will be 

disposed of securely when research is complete.  The results may be published in scientific journals, 

undergraduate reports and used in presentations to healthcare and other interested parties. You will not 

be personally identified in any report or publication. You can request a copy of the findings. You will 

also be given individual feedback after completion of the study. This is NOT a clinical diagnosis. 

 

For further information about this project please contact 

Chris McManus at the University of Essex (Telephone: 01206 874475, e-mail cmcman@essex.ac.uk) 

 

 

Thank you for taking time to read this Participant Information Sheet. 

 

 

 

 

 

 

 

http://www.opsi.gov.uk/acts/acts1998/ukpga_19980029_en_1
mailto:vglad@essex.ac.uk
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Appendix 3: Preliminary survey and compression belief questionnaire  
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Name: 

Age: 

Average days run per week over the last 6 months: 

Average miles per week over the last 6 months: 

Best race times in the past year (fill out one or more of the following): 

 

 10,000 m: 

 Half marathon: 

 Marathon: 

 

Most recent race times in the past year (fill out one or more of the following) 

 

 10,000 m: 

 Half marathon: 

 Marathon: 

 

Please circle Yes (Y) or No (N) 

Are you familiar with (have you heard about) sports compression tights/sleeves or socks?      Y         N 

Have you seen runners wear sports compression tights/sleeves or socks?           Y         N 

Do you personally know anyone who has worn sports compression tights/sleeves or socks?    Y         N  

Have you ever worn sports compression tights/sleeves or socks?           Y         N 

Do you believe sports compression tights/sleeves or socks aid in any of the following; 

 Training       Y         N 

 Competition         Y         N 

 Recovery          Y         N 
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Appendix 4: Published work  
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