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Abstract

This paper demonstrates consistency for estimators obtained by approximately maximizing a

sequence of stochastic quasiconcave functions on RP that converges in probability pointwise

to a non-stochastic function. In the scalar parameter case all that is necessary for consis-

tency is that the parameter value of interest is a unique maximizer of the limiting function.

However, in the vector parameter case certain further conditions on the limiting function are

necessary to establish consistency. The paper also discusses the relation of these results to

existing results on the consistency of estimators obtained by approximately maximizing con-

cave functions and to the concepts of hypoconvergence and epiconvergence.

Keywords: Consistency; approximate maximizing estimator sequence; quasiconcavity; con-

cavity; hypoconvergence; epiconvergence.

1 Introduction

Many estimators in classical econometrics are obtained as solutions, or approximate solutions,

to optimization problems. One of the main tasks of classical econometric theory has been to

determine conditions under which such estimators are consistent and many results of this type

have been obtained to date; see, for example, Newey and McFadden (1994). One such result is as

follows. Suppose that a sequence of stochastic concave functions defined on a convex subset of Rp

with a non-empty interior converges pointwise in probability to a limiting non-stochastic function
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and that the limiting function achieves a global maximum at a unique point in the interior of

its domain. Then a maximization estimator will exist with probability approaching one and will

converge in probability to that unique point (Newey and McFadden, 1994, Theorem 2.7).1 A nice

feature of this result is that it avoids imposing compactness on the domain of the function, i.e. on

the parameter space.

The intuition which Newey and McFadden give for this result is that concavity prevents the

objective function from “turning up” as the parameter moves a long way from the true parameter

value, i.e. from the maximizer of the limiting objective function (Newey and McFadden, 1994, page

2133). Such a “no turning up” property is not unique to concave functions and, in fact, a little

reflection immediately indicates that concavity is an overly strong requirement for this result. In

particular, this result will still hold if the objective function undergoes a continuous monotonically

strictly increasing transformation. It is clear that pointwise convergence is preserved under such

a transformation as are the existence and location of maximizers. However, concavity is not in

general preserved under such transformations.

One property which is preserved under such transformations is quasiconcavity, i.e. the prop-

erty that all the upper level sets of the function are convex. As is well known, all monotonically

non-decreasing transformations of concave functions are necessarily quasiconcave: hence concave

functions are themselves necessarily quasiconcave. However, not all quasiconcave functions can be

expressed as monotonically non-decreasing transformations of concave functions (Arrow and En-

thoven, 1961). The purpose of the present paper is to examine the extent to which the “no turning

up” intuition can provide the basis for consistency results in the case of sequences quasiconcave

functions.

As in recent treatments of convergence of sequences of stochastic convex functions, such as that

of Geyer (1996), the present paper considers stochastic sequences of extended real-valued functions

defined on Rp rather than stochastic sequences of real-valued functions defined on a fixed subset

of Rp as in Newey and McFadden (1994). By setting the objective function to −∞ at points which

fail to satisfy the constraints, this permits consideration of constrained maximization estimators

when the constraints themselves can be stochastic and vary with the sample size. Furthermore,

since it is often impossible to compute an exact maximizing estimator in a finite number of steps,

the present paper considers approximate maximizing estimator sequences as defined in Section 2

below.

The first result of the paper is that in the case of a scalar parameter, quasiconcavity of each

of the functions in the sequence combined with pointwise convergence and the existence of a

unique maximizer of the limiting function is sufficient to ensure the consistency of approximate

maximizing estimator sequences. Thus in the scalar case the “no turning up” intuition is powerful

enough on its own to drive consistency results for quasiconcave functions.
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The second result of the paper is that these conditions by themselves are not sufficient to ensure

the consistency of approximate maximizing estimator sequences in the case of a vector parameter.

This second result is not surprising since it is possible in the vector parameter case to construct

sequences of concave functions which satisfy these conditions but where approximate maximizing

estimator sequences are inconsistent. However, the standard supplementary conditions used to

ensure consistency in the case of concave functions, namely upper semi-continuity of the limiting

function and existence of an open set on which the limiting function is finite, are not sufficient to

ensure consistency in the case of quasiconcave functions.

The third result of the paper is that in the case of a vector parameter, the conditions used

in the scalar parameter case in conjunction with two other conditions on the limiting function

are sufficient to ensure consistency for approximate maximizing estimator sequences. These other

conditions are implied by the standard supplementary conditions for sequences of concave functions

when the functions are indeed concave and the limiting function possesses a unique maximizer

but not necessarily otherwise. This result can be viewed as a generalization of the result for the

concavity case since the standard assumptions used in that context imply the set of the conditions

used here.

An important point to note is that the proofs provided here for the consistency results do

not involve demonstrating that the sequence of objective functions exhibits some such form of

variational convergence such as hypoconvergence or epiconvergence. Such concepts of variational

convergence were popularized by Attouch (1984) and have subsequently been used in the operations

research literature on stochastic optimization (Zervos, 1999) and in the statistics literature on

Monte Carlo methods (Geyer, 1994). In order to establish consistency for maximizers of concave

functions, Newey and McFadden (1994) apply an intermediate result to the effect that if a sequence

of concave functions on Rp converges pointwise to a function which is finite on some open set then

the sequence converges uniformly on any compact subset of that open set. Uniform convergence

then implies hypoconvergence. The analysis in Geyer (1996) involves showing that if a sequence

of lower semi-continuous stochastic convex functions on Rp converges pointwise in law on a dense

subset of Rp to a lower semi-continuous stochastic convex function then they epiconverge in law

to that function. If the functions in such a sequence are all multiplied by minus one then resulting

functions are upper semi-continuous stochastic concave and hypoconverge in law to an upper

semi-continuous stochastic concave function. Thus in both of these cases, hypoconvergence is

an intrinsic feature of the analysis. In contrast, it is not necessary in the present paper that the

sequence of quasiconcave functions hypoconverges. Indeed, Section 4 below presents an example of

a sequence of continuous quasiconcave functions which converges pointwise to a limiting continuous

quasiconcave function with a unique maximizer but fails to hypoconverge.

The layout of the paper is as follows. Section 2 outlines the framework used in the paper
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and discusses the assumptions which are made. Section 3 presents the consistency results, first

for the scalar parameter case and then for the vector parameter case. Section 4 discusses the

relation of pointwise convergence of quasiconcave functions to hypoconvergence. Section 5 contains

concluding remarks. All proofs are given in the Appendix.

2 Framework

In what follows all probability statements are made with respect to an underlying probability

space (Ω,F , P ). Before making any assumptions we need to define quasiconcavity. Suppose that

g(·) is a function from Rp (for some p < ∞) to the extended real line R = [−∞,+∞]. Then g(·)

is quasiconcave if:

g(λx + (1− λ)x′) ≥ min{g(x), g(x′)}, (1)

whenever 0 < λ < 1 and neither g(x) nor g(x′) is equal to −∞. This is equivalent to requiring

that all the upper level sets of g(·) are convex, where for any reference value α ∈ R of g(·) the

corresponding upper level set of g(·) is defined as:

ulevα(g) ≡ {x ∈ Rp : g(x) ≥ α}. (2)

Note that allowing −∞ as a value for g(·) permits constrained problems to be treated in the same

fashion as unconstrained problems; allowing +∞ as a value is then mathematically convenient.

Maximizing g(·) over Rp is equivalent to maximizing g(·) over its effective domain given by:

dom(g) ≡ {x ∈ Rp : g(x) > −∞} =
⋃

α∈(−∞,+∞]

ulevα(g). (3)

Also note that allowing functions to take values anywhere in R means that we need to consider

extended real-valued random variables on (Ω,F , P ), i.e. functions from Ω to R such that the

inverse image under the function of any element of the Borel σ-algebra on R is an element of F .

Assumption 1 {Qn(·) : Rp × Ω → R}∞n=1 is a sequence of functions such that:

1. Qn(θ, ·) is an extended real-valued random variable for all θ ∈ Rp and n ∈ N;

2. Qn(·, ω) is quasiconcave on Rp for all ω ∈ Ω and n ∈ N.

Note that we could relax this assumption somewhat. In particular, suppose that the set of real-

izations for which Qn(·, ω) is quasiconcave on Rp is denoted Kn for each n ∈ N. Assumption 1

requires that Kn = Ω for all n ∈ N but all the results established later in the paper would still go

through if there exists a sequence of sets {K∗
n ∈ F}∞n=1 such that K∗

n ⊆ Kn for each n ∈ N and

that limn→∞ P (K∗
n) = 1, although the proofs would be somewhat more complex.
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In this framework, there is no guarantee that the supremum of Qn(·) is achieved at some θ ∈ Rp

for given ω ∈ Ω, i.e. that Qn(·) possess a maximizer. Furthermore, and even if such a maximizer

exists it may be impossible to locate within a finite number of computational steps. Therefore we

use the concept of an approximate maximizing estimator sequence defined as follows. {θ̂n(·) : Ω →

Rp}∞n=1 is an approximate maximizing estimator sequence based on {Qn(·) : Rp × Ω → R}∞n=1 if

there exist sequences of extended real-valued random variables {ζ̂n}∞n=1 and {α̂n}∞n=1 such that:2

1. ζ̂n converges in probability to 0; and

2. α̂n converges in probability to +∞;

3. Qn(θ̂n) ≥ supθ∈Rp Qn(θ)− ζ̂n if supθ∈Rp Qn(θ) < +∞; and

4. Qn(θ̂n) ≥ α̂n if supθ∈Rp Qn(θ) = +∞.

Note that allowing for extended real-valued random variables means that we need to slightly

extend the usual definition of convergence in probability. More generally, suppose that Ω is a

sample space equipped with a metric ρ(·, ·), F is the Borel σ-algebra on (Ω, ρ), and that P is a

probability measure on (Ω, ρ). A sequence of extended real-valued random variables {Xn(·)}∞n=1

on (Ω,F , P ) converges in probability to the extended real-valued constant c if for every ε > 0 there

exists nε < ∞ such that:

1. P (Xn < ε−1) < ε for all n > nε if c = +∞;

2. P (|Xn − c| > ε) < ε for all n > nε if c ∈ R; and

3. P (Xn > −ε−1) < ε for all n > nε if c = −∞.

This notion of convergence in probability for extended real-valued random variables can be viewed

as a special case of convergence in probability for random sequences taking values in metric spaces.

In this particular case, the metric space consists of all real numbers together with the additional

elements +∞ and −∞ and equipped with the metric d(x, y) = |Φ(x)−Φ(y)|, where Φ(·) is a fixed,

bounded, strictly increasing continuous function, e.g. the normal cumulative distribution function,

as in Example 18.4 from van der Vaart (1998).

Observe that approximate maximizing estimator sequences based on {Qn(·) : Rp×Ω → R}∞n=1

will always exist since for any sequence of strictly positive constants {ζn}∞n=1 tending to zero and

any sequence of constants {αn}∞n=1 tending to +∞ we can always find a sequence of functions

{θ̂∗n(·) : Ω → Rp}∞n=1 such that Qn(θ̂∗n) ≥ supθ∈Rp Qn(θ) − ζn if supθ∈Rp Qn(θ) < +∞ and that

Qn(θ̂∗n) ≥ αn if supθ∈Rp Qn(θ) = +∞. However, nothing in the definition imposes a requirement

that such estimators need be random variables.

Assumption 2 There exists a non-random function Q(·) : Rp → R such that for all θ ∈ Rp,

{Qn(θ, ·)}∞n=1 converges in probability to Q(θ).
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Assumptions 1 and 2 are sufficient to ensure the following useful result.

Lemma 1 Under Assumptions 1 and 2, Q(·) is quasiconcave on Rp.

Thus quasiconcavity (like concavity) is preserved under pointwise convergence in probability.

The third assumption specifies that the parameter value of interest is characterized as the

unique maximizer of the limiting objective function.

Assumption 3 There exists θ0 ∈ Rp such that Q(θ) ≤ Q(θ0) for all θ ∈ Rp and Q(θ) = Q(θ0) if

and only if θ = θ0.

This clearly implies that θ0 belongs to the effective domain of of Q(·).

Since, as noted above, the estimators being considered are not necessarily random variables

the consistency results presented in Section 3 require a generalized notion of weak consistency.

This is given as follows. A sequence of not necessarily measurable estimators {θ̃n(·) : Ω → Rp}∞n=1

is weakly consistent in the generalized sense if for each δ > 0 there exists a sequence of sets

{Cn(δ) ∈ F}∞n=1 such that:

1. limn→∞ P (Cn(δ)) = 1; and

2. ‖θ̃n(ω)− θ0‖ ≤ δ for all ω ∈ Cn(δ) and n ∈ N.

This definition is equivalent to requiring that for any δ > 0 the outer measure of {ω ∈ Ω : ‖θ̃n(ω)−

θ0‖ > δ} converges to zero as n tends to infinity. Such a generalized concept of weak consistency is

widely used in asymptotic theory to circumvent measurability issues; see for example Footnote 9

of Newey and McFadden (1994) and Section 18.2 of van der Vaart (1998). The formulation given

here parallels the concept of convergence in probability in the generalized sense given by Amemiya

(1985, p. 340). Observe that if the elements of {θ̃n(·) : Ω → Rp}∞n=1 were random variables then

{ω ∈ Ω : ‖θ̃n(ω) − θ0‖ ≤ δ} would belong to F and hence θ̃n would be weakly consistent in the

usual sense.

As will be demonstrated in Section 3 below, when p = 1 then Assumptions 1–3 are sufficient to

ensure that any approximate maximizing estimator sequence based on Qn(·) is weakly consistent

for θ0 in the generalized sense. However, when p > 1 these assumptions are not sufficient to estab-

lish consistency of such estimator sequences. Two additional assumptions which have been used in

the literature to establish consistency in the case of sequences of stochastic concave functions are

as follows. First, there is a non-empty open set on which the pointwise limiting function is finite.

Second, the realizations of the stochastic objective functions and the pointwise limiting function

are all upper semi-continuous: recall that a function g(·) : Rp → R is upper semi-continuous if for

any θ ∈ Rp:

lim sup
m→∞

g(θm) ≤ g(θ) whenever lim
m→∞

θm = θ. (4)
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Note that this is equivalent to requiring that the hypograph of g(·), given as:

hyp(g) = {(x, α) ∈ Rp × R : g(x) ≥ α}, (5)

is closed. Note that if a concave functions is finite on some open set then it is continuous and hence

upper semi-continuous on that open set. Thus a lack of upper semi-continuity is only important for

a concave function on the boundary of its effective domain. These two assumptions combined with

Assumptions 1–3 and the condition that the Qn(·) are all concave are sufficient to ensure, first,

that the Qn(·) sequence hypoconverges in law to Q(·) and, second, that approximate maximizing

estimator sequences are consistent; see, for example, Lemma 3.1 and Theorem 3.2 of Geyer (1996).

However, as will be demonstrated in Section 3 below, in the quasiconcavity case it is possible

to construct examples of sequences of functions which satisfy Assumptions 1–3 together these two

additional assumptions but where approximate maximizing sequences are inconsistent. Conse-

quently, instead of the upper semi-continuity and finiteness on an open set assumptions we will

make the two other assumptions. The first of these is a supplement to Assumption 3.

Assumption 4 For every δ > 0 there exists η > 0 such that:

Q(θ) ≤ sup
θ′ 6=θ0

Q(θ′)− η, ∀ ‖θ − θ0‖ ≥ δ. (6)

This is closely related to the concept of identifiable uniqueness of maximizers: here θ0 is an

identifiably unique maximizer of Q(·) if for every δ > 0 there exists η > 0 such that:

Q(θ) ≤ Q(θ0)− η, ∀ ‖θ − θ0‖ ≥ δ. (7)

Under Assumption 3 it is clear that supθ′ 6=θ0
Q(θ′) ≤ Q(θ0) and hence Assumptions 3 and 4

jointly imply identifiable uniqueness. However, if supθ′ 6=θ0
Q(θ′) < Q(θ0) then θ0 is necessarily an

identifiably unique maximizer of Q(·) regardless of whether or not Assumption 4 holds.

Assumption 5 Define:

A ≡ {α ∈ R : ∃ θ ∈ ulevα(Q) s.t. θ 6= θ0}; (8)

then A is non-empty and for all α ∈ A, ulevα(Q) has a non-empty interior.

In the case of concavity these two additional assumptions are implied by the upper semi-continuity

and finiteness on an open set assumptions in conjunction with the existence of a unique maximizer,

as can be seen from the following lemma.

Lemma 2 Suppose that g(·) : Rp → R is an upper semi-continuous concave function which satis-

fies Assumption 3 and is finite on some non-empty open subset of Rp; then g(·) satisfies Assump-

tions 4 and 5.
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It should be noted that the assumptions made above do not impose any requirement that the

maximum of the limiting function be achieved in the interior of the effective domain of the limiting

function though Assumption 5 does require that the interior of the effective domain of the limiting

function is non-empty. Thus the framework used here does permit cases in which the parameter

value of interest is characterized as solution to an inequality constrained optimization problems in

which the constraints bind. Furthermore, the constraints may vary depending on the sample size

and realized outcome.

3 Results

3.1 The Scalar Parameter Case (p = 1)

The scalar parameter case is considerably easier to deal with than the vector parameter case for

reasons discussed below.

Theorem 1 (Consistency I) If p = 1 and Assumptions 1–3 are satisfied then any sequence of

approximate maximizing estimators of θ0 based on {Qn(·) : Rp × Ω → R}∞n=1 is weakly consistent

in the generalized sense.

The essence of the proof of consistency for the scalar parameter case (p = 1) is that if one takes

any δ-neighborhood of θ0 then for every element θ′ of Rp which lies outside that δ-neighborhood

there exists an element of the boundary of that δ-neighborhood which is a convex combination of

θ0 and θ′. Hence if Qn(θ0) is at least greater by some positive amount than the supremum of Qn(θ)

over the boundary of that δ-neighborhood then quasiconcavity implies that Qn(θ0) must be at least

greater by that same amount than the supremum of Qn(θ) over the entire subset of Rp in which

‖θ − θ0‖ ≥ δ. It is this property which captures the “no turning up” intuition. The convenient

feature of the scalar parameter case is that the boundary of any δ-neighborhood only has two

elements and thus pointwise convergence in probability of Qn(θ) to Q(θ) immediately implies

convergence in probability of the supremum of Qn(θ) over the boundary of a δ-neighborhood to

the supremum of Q(θ) over the boundary of that δ-neighborhood.

3.2 The Vector Parameter Case (p > 1)

The main result in the vector parameter case is the following theorem.

Theorem 2 (Consistency II) If p > 1 and Assumptions 1–5 are satisfied then any sequence of

approximate maximizing estimators of θ0 based on {Qn(·) : Rp × Ω → R}∞n=1 is weakly consistent

in the generalized sense.
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It is important to observe that in the vector parameter case, Assumptions 1–3 are not sufficient

to establish consistency for sequences of approximate maximizing estimators of θ0 as can be seen

from the following examples.

Example 1 Suppose p = 2 and that for each n ∈ N, kn(·) : R2 → R is given by:

kn(θ1, θ2) =

 θ1, if 0 ≤ θ1 = nθ2 ≤ 1;

−1, otherwise.
(9)

For each n ∈ N, the upper levels set of kn(·) are then given by

ulevα(kn) =



R2, −∞ ≤ α ≤ −1;

{(θ1, θ2) ∈ R2 : 0 ≤ θ1 = nθ2 ≤ 1}, −1 < α ≤ 0;

{(θ1, θ2) ∈ R2 : α ≤ θ1 = nθ2 ≤ 1}, 0 < α ≤ 1;

∅, 1 < α ≤ ∞,

(10)

and the effective domain of kn(·) is equal to R2. It is straightforward to verify ulevα(kn) is convex

for each n ∈ N and α ∈ R which is equivalent to each of the functions kn(·) being quasiconcave. It

is also easy to verify that each kn(·) satisfies Equation (4) for each θ ∈ R2 and thus that the kn(·)

functions are all upper semi-continuous. Furthermore, they are all finite on R2 which is an open

set.

Next, consider any fixed point (θ1, θ2). If θ1 = θ2 = 0 then kn(θ1, θ2) = 0 for all n ∈ N in which

case limn→∞ kn(θ1, θ2) = 0. If there exists m ∈ N such that 0 < θ1 = mθ2 ≤ 1 then kn(θ1, θ2) = θ1

for n = m and is equal to −1 otherwise in which case limn→∞ kn(θ1, θ2) = −1. Finally, if θ1 6= 0

and θ2 6= 0 but there is no m ∈ N such that 0 < θ1 = mθ2 ≤ 1 then kn(θ1, θ2) = −1 for all n ∈ N

in which case limn→∞ kn(θ1, θ2) = −1.

This establishes that the sequence of functions {kn(·) : R2 → R}∞n=1 converges pointwise to the

function k(·) : R2 → R given by:

k(θ1, θ2) =

 0, if θ1 = θ2 = 0;

−1, otherwise;
(11)

which achieves a unique global maximum at the point (0, 0). The upper level sets of k(·) are given

by:

ulevα(k) =


∅, 0 < α ≤ +∞

{(0, 0)}, −1 < α ≤ 0;

R2, −∞ ≤ α ≤ −1;

(12)

and the effective domain of k(·) is R2. Since these are all convex sets it follows that k(·) is

quasiconcave. In addition, it is easy to verify that k(·) satisfies Equation (4) for each θ ∈ R2, so

that k(·) is upper semi-continuous, and that k(·) is finite on R2 which is an open set.
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However, for each n ∈ N, kn(·) achieves a unique global maximum at the point θn = (1, n−1)

and clearly {θn}∞n=1 converges to (1, 0) as n tends to infinity. Thus in this example, the limit of the

sequence of maximizers and the maximizer of the limiting function both exist and are unique but

are clearly different from each other even though all the functions in the sequence are quasiconcave

and the maximizer of the limiting function is unique.

Note that although this is a deterministic example it would be trivial to create a stochastic

version from it. Careful examination of Example 1 reveals that the limiting function k(·) fails

to satisfy Assumption 4 since although k(·) is uniquely maximized at θ = (0, 0) nevertheless

k(θ) = supθ′ 6=(0,0) k(θ′) = −1 for all θ 6= (0, 0). However, k(·) does satisfy Assumption 5: here

A = (−∞,−1] and it is clear that ulevα(k) = R2 for all −∞ < α ≤ −1. Further examination

of Example 1 reveals that the problem which arises here is closely related to an issue which can

arise when dealing with sequences of concave functions. For each n ∈ N, define k∗n(θ) = kn(θ) if

kn(θ) ≥ 0 and k∗n(θ) = −∞ if kn(θ) < 0. It is easy to see that k∗n(·) is both concave, since it

is linear on a convex set and equal to −∞ everywhere else, and that the maximizer of k∗n(·) is

the same as that of kn(·). Furthermore, k∗n(·) converges pointwise to k∗(·) given by k∗(θ) = k(θ)

if k(θ) ≥ 0 and k∗(θ) = −∞ if k(θ) < 0, and it is easy to see that k∗(·) is concave and that

the maximizer of k∗(·) is the same as that of k(·). However, although k∗(·) and all the k∗n(·) are

upper-semi continuous, there is no open set on which k∗(·) is finite.

However, Assumptions 1–4 are also not sufficient to ensure consistency of approximating max-

imizing estimator sequences as can be seen from this second example.

Example 2 Suppose p = 2 and that for each n ∈ N, kn(·) : R2 → R is given by:

kn(θ1, θ2) =

 nθ2 − θ1, if 0 ≤ θ1 ≤ 1 & 0 ≤ θ2 ≤ 2n−1θ1;

−1, otherwise.
(13)

For each n ∈ N it is clear that {(θ1, θ2) ∈ R2 : 0 ≤ θ1 = 1 & 0 ≤ θ2 ≤ 2n−1θ1} is a compact

convex set and that kn(·) is linear on this set with a supremum over this set equal to 1 which is

achieved at (0, 1) and an infimum over this set equal to −1 which is achieved at (1, 0). Outside of

this set kn(·) is constant with a value of −1 which is thus the global infimum of kn(·). It follows

that all of the upper level sets of kn(·) are convex and hence kn(·) is quasiconcave. Clearly each

kn(·) is finite on R2 which is an open set and it is easy to verify that each kn(·) satisfies Equation

(4) for each θ ∈ R2 and hence is upper semi-continuous.

Now consider any fixed point (θ1, θ2). If 0 ≤ θ1 ≤ 1 and θ2 = 0 then kn(θ1, θ2) is equal to −θ1

for all n and hence converges to −θ1. If θ1 < 0 or θ1 > 1 or θ2 6= 0 then for all n sufficiently large

kn(θ1, θ2) is equal to −1 and hence converges to −1.

10



This establishes that the sequence of functions {kn(·) : R2 → R}∞n=1 converges pointwise to the

function k(·) : R2 → R given by:

k(θ1, θ2) =

 −θ1, if 0 ≤ θ1 ≤ 1 & θ2 = 0;

−1, otherwise;
(14)

which achieves a unique global maximum at the point (0, 0). The upper level sets of k(·) are given

by:

ulevα(k) =


∅, 0 < α ≤ +∞

{(θ1, 0) : 0 ≤ θ1 ≤ −α}, −1 < α ≤ 0;

R2, −∞ ≤ α ≤ −1;

(15)

and the effective domain of k(·) is R2. Since these are all convex sets it follows that k(·) is

quasiconcave. In addition, it is easy to verify that k(·) satisfies Equation (4) for each θ ∈ R2, so

that k(·) is upper semi-continuous, and that k(·) is finite on R2 which is an open set.

However, k(·) is uniquely maximized at (0, 0) while each of the kn(·) is uniquely maximized at

(1, 2n−1) which converges to (1, 0).

Careful examination of Example 2 reveals that the limiting function k(·) satisfies Assumption

4: here k(0, 0) = supθ 6=(0,0) k(θ) = 0 and for any δ > 0, supθ:‖θ‖≥δ k(θ) = max{−1,−δ}. However,

k(·) does not satisfy Assumption 5: here A = (−∞, 0) and it is clear that ulevα(k) is contained

in a linear subspace for all −1 < α < 0. Further examination of Example 2 reveals that again the

problem which arises here is closely related to an issue which can arise when dealing with sequences

of concave functions. For each n ∈ N, define k∗n(θ) = kn(θ) if 0 ≤ θ1 ≤ 1 and 0 ≤ θ2 ≤ 2n−1θ1

and k∗n(θ) = −∞ otherwise. It is easy to see that k∗n(·) is both concave, since it is linear on a

convex set and equal to −∞ everywhere else, and that the maximizer of k∗n(·) is the same as that

of kn(·). Furthermore, k∗n(·) converges pointwise to k∗(·) given by k∗(θ) = k(θ) if 0 ≤ θ1 ≤ 1

and θ2 = 0 and k∗(θ) = −∞ everywhere else, and it is easy to see that k∗(·) is concave and that

the maximizer of k∗(·) is the same as that of k(·). However, although k∗(·) and all the k∗n(·) are

upper-semi continuous, there is no open set on which k∗(·) is finite.

Examples 1 and 2 thus indicate that even exact maximizing sequences can fail to be consistent

if either Assumption 4 or Assumption 5 fails to hold. However, if we assume both Assumption 4

and 5 in conjunction with the assumptions made in the scalar parameter case then we can ensure

that all approximate maximizing estimator sequences are consistent as indicated above in Theorem

2.
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4 Discussion

There are a number of points of interest to note about the results obtained in Section 3 above.

First, as observed in the Introduction, concavity is a special case of quasiconcavity since any

monotonically non-decreasing transformation of a concave function is quasiconcave. Since conver-

gence in probability is preserved under continuous transformations it follows that if a sequence of

stochastic concave functions converges pointwise in probability then applying a given continuous

monotonically non-decreasing transformation to each member of that sequence will result in a se-

quence of stochastic quasiconcave functions which converge pointwise in probability. Furthermore,

the location of any maximizer of the original function is preserved under such transformations.

Thus the existing results on consistency of maximization estimators based on concave functions

imply consistency of maximization estimators based on at least some sequences of quasiconcave

functions. However, as is well known from Arrow and Enthoven (1961), not all quasiconcave func-

tions can be obtained monotonically non-decreasing transformations of concave functions. Hence

the results obtained in Section 3 cannot be reduced simply to the application of the consistency

result for concave objective functions in combination with continuous increasing transformations.

A second point to note is that, unlike the usual practice for concave functions, we have not

assumed that the functions of interest are upper semi-continuous. In maximization theory it is

often convenient to impose that the function being maximized is upper semi-continuous as this

ensures that the supremum of the function over any given compact set is actually achieved at some

point belonging to that set. A concave function on Rp is necessarily continuous, and thus upper

semi-continuous, on the interior of its effective domain. Hence imposing upper semi-continuity

on a concave function on Rp only really affects the behavior of that function on the boundary of

its effective domain. However, a quasiconcave function on Rp need not be upper semi-continuous

everywhere in the interior of its effective domain. Hence imposing upper semi-continuity on a

quasiconcave function on Rp may affect the behavior of that function on the interior as well as

the boundary of its effective domain.

A third point to note is that the proofs of Theorems 1 and 2 do not involve showing that

the sequence of stochastic quasiconcave objective functions exhibits any form of variational con-

vergence such as continuous convergence, i.e. uniform convergence to a continuous function, or

hypoconvergence. This is on contrast to the existing literature on convergence of optimization

estimators based on concave (or convex) functions which makes heavy use of such forms of vari-

ational convergence. For example, the proof of Theorem 2.7 from Newey and McFadden (1994)

involves using a result to the effect that if a sequence of concave functions on Rp converges point-

wise on a dense subset of an open set on which the limiting function is finite then it converges

uniformly to that limiting function on any compact subset of that open set (Rockafellar, 1970,
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Theorem 10.8).3 Newey and McFadden combine this with the well-known results that the point-

wise limit of a sequence of concave functions is itself concave and that concave functions over Rp

are continuous on open sets on which they are finite to establish that the sequence of functions

exhibits continuous convergence to the pointwise limit on compact subsets of the interior of the

parameter space.

The arguments presented by Kall (1986) indicate that such continuous convergence only mat-

ters because it implies hypoconvergence. Recall that a sequence of functions {gn(·) : Rp → R}∞n=1

hypoconverges to the function {g(·) : Rp → R}∞n=1 at the point x ∈ Rp if:

lim sup
n→∞

gn(xn) ≤ g(x) for all {xn}∞n=1 s.t. lim
n→∞

xn = x; and (16)

lim inf
n→∞

gn(yn) ≥ g(x) for some {yn}∞n=1 s.t. lim
n→∞

yn = x; (17)

see Attouch (1984, p. 30). Hypoconvergence is useful in analyzing the behavior of maximizers

because of the following result implied by Kall (1986, Corollary 3). Suppose that {gn(·) : Rp →

R}∞n=1 hypoconverges to g(·) : Rp → R at every point x ∈ Rp, that the effective domain of g(·) has

a non-empty interior, that the maximum of g(·) over Rp is finite and is achieved at least one point,

and that {x̂n}∞n=1 is a sequence of maximizers of {gn(·)}∞n=1; then any point of accumulation of

{x̂n}∞n=1 must be a maximizer of g(·).

Hypoconvergence is closely related to upper semi-continuity. Thus if {gn(·)}∞n=1 hypoconverges

to g(·) at every point x ∈ Rp then g(·) must be upper semi-continuous on Rp. Furthermore, if

gn(·) ≡ g(·) for all n ∈ N then {gn(·)}∞n=1 hypoconverges to g(·) at every point x ∈ Rp if and

only if g(·) is upper semi-continuous on Rp. However, in the context of quasiconcavity, there

are two drawbacks to making use of hypoconvergence. First, even if a sequence of upper semi-

continuous quaisconcave functions converges pointwise to a function whose effective domain has

a non-empty interior, that limiting function need not be upper semi-continuous on the interior of

its effective domain and hence the sequence of functions need not hypoconverge to the pointwise

limiting function.4 Second, even a sequence of continuous quasiconcave functions which converges

pointwise to a continuous quasiconcave function with a unique argmax need not hypoconverge at

every point.

Example 3 Suppose that:

fn(x) = n−1 − |x− n−1|, for all x ∈ R and n ∈ N, (18)

hn(z) =


2nz, if z ≥ 0 & n = 2k for some k ∈ N;

nz, if z ≥ 0 & n = 2k + 1 for some k ∈ N;

z, z ¡ 0.

(19)
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Then set gn(x) = hn(fn(x)) and observe that:

gn(x) =



2n−1 − x, if x ≥ 2n−1;

4− 2nx, if n−1 ≤ x < 2n−1 & n = 2k for some k ∈ N;

2− nx, if n−1 ≤ x < 2n−1 & n = 2k + 1 for some k ∈ N;

2nx, if 0 ≤ x < n−1 & n = 2k for some k ∈ N;

nx, if 0 ≤ x < n−1 & n = 2k + 1 for some k ∈ N;

x, if x < 0.

(20)

Since fn(·) and hn(·) are continuous with respect to x ∈ R for each n ∈ N then so to is gn(·).

Furthermore, since each fn(·) is concave and each hn(·) is continuous and strictly increasing in

x ∈ R for all n ∈ N then each gn(·) is quasiconcave x ∈ R for all n ∈ N. For any given x̄ ∈ R if

x̄ ≤ 0 then gn(x̄) = x̄ for all n and hence limn→∞ gn(x̄) = x̄. If x̄ > 0 then gn(x̄) = 2n−1 − x̄ for

all n ≥ 2x̄−1 and hence limn→∞ gn(x̄) = −x̄ as limn→∞ n−1 = 0. Putting these together implies

that gn(x) converges pointwise to −|x|.

However, this sequence of functions fails to hypoconverge at x = 0. Observe that for each

n ∈ N, gn(x) possesses a unique maximizer at x = n−1 since this is the value of x at which fn(x)

is maximized and since hn(z) is monotonically strictly increasing in z. In addition, observe that

gn(n−1) = 2 if n = 2k for some k ∈ N while gn(n−1) = 1 if n = 2k − 1 for some k ∈ N. Let

x∗n = n−1 for each n ∈ N; then lim x∗n = 0 and lim supn→∞ gn(x∗n) = 2. However, for any sequence

yn such that lim yn = 0 it is easy to see that:

lim inf
n→∞

gn(yn) ≤ lim inf
n→∞

gn(xn) = 1 < 2 = lim sup
n→∞

gn(x∗n), (21)

since gn(yn) ≤ gn(x∗n) for any yn ∈ R and n ∈ N, and hence gn(x) fails to hypoconverge at x = 0.

This example is somewhat pathological in that, although the sequence of functions fails to

hypoconverge, nevertheless the sequence of maximizers converges to the maximizer of the pointwise

limiting function. However, one benefit of Theorem 2 is precisely that it does not require the

imposition of assumptions which exclude such cases.

5 Conclusion

This paper has demonstrated the consistency of approximate maximizing estimator sequences

for stochastic extended real-valued quasiconcave functions which converge pointwise and satisfy

certain other conditions. In the scalar parameter case, the only such condition which is needed is

that the pointwise limiting function has a unique maximizer which occurs at the parameter value

of interest and is finite at this parameter value. In the vector parameter case, somewhat stronger

conditions on the pointwise limiting function are needed. The paper demonstrates that these
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stronger conditions are automatically satisfied when the conditions used in the scalar parameter

case are met and the limiting function is an upper semi-continuous concave function which is finite

on some non-empty open set. However, these stronger conditions do not require that the limiting

function be either concave or upper-semi continuous. In addition, the assumptions made in the

present paper do not imply that the sequence of functions hypoconverges and thus hypoconvergence

is not crucial to the theory of consistency presented here.

Appendix

Proof of Lemma 1. Select any θ, θ′ ∈ dom(Q) and 0 < λ < 1; then set θλ = λθ +(1−λ)θ′ and

define:

ζn(ω) ≡ Qn(θλ, ω)−min{Qn(θ, ω), Qn(θ′, ω)}, (22)

ζ ≡ Q(θλ)−min{Q(θ), Q(θ′)}. (23)

Assumption 1 implies that P (ζn ≥ 0) = 1 while Assumption 2 implies that ζn converges in

probability to ζ since min{·, ·} is a continuous function. It follows that ζ ≥ 0. But this implies

that Q(·) is an extended real-valued function on Rp such that:

Q(λθ + (1− λ)θ′) ≥ min{Q(θ), Q(θ′)} (24)

for arbitrary θ, θ′ ∈ Rp such that Q(θ), Q(θ′) > −∞ and 0 < λ < 1 and hence is quasiconcave as

desired. �

Proof of Lemma 2. First, let θ0 denote the unique value of θ ∈ Rp at which g(θ) is maximized

by Assumption 3. Since g(·) is finite on some open set then we can find θ′, θ′′ ∈ Rp and 0 < λ < 1

such that g(θ′), g(θ′′) ∈ R and θ′′ = λθ′+(1−λ)θ0. But since g(·) is concave it follows that g(θ′′) ≥

λg(θ′) + (1− λ)g(θ0) which then implies that g(θ0) ∈ R. Now define θm = m−1θ′ + (1−m−1)θ0

for m ∈ N; it is clear that g(θ0) ≥ g(θm) ≥ m−1g(θ′)+ (1−m−1)g(θ0) for all m ∈ N which implies

that limm→∞ g(θm) = g(θ0) and since θm 6= θ0 for all m ∈ N it follows that g(θ0) = supθ 6=θ0
g(θ).

Now, let {θ′m}∞m=1 denote any sequence of elements of Rp such that limm→∞ g(θ′m) = g(θ0),

fix an arbitrary δ > 0, and for each m ∈ N define:

θ′′m =

 θ′m, if ‖θ′m − θ0‖ ≤ δ;

θ0 + δ
‖θ′

m−θ0‖ (θ
′
m − θ0), if ‖θ′m − θ0‖ > δ.

(25)

From concavity it follows that g(θ′′m) ≥ g(θ′m) for all m ∈ N and hence that limm→∞ g(θ′′m) = g(θ0).

Since ‖θ′′m − θ0‖ ≤ δ for all m ∈ N it follows that {θ′′m}∞m=1 must possess at least one point of

accumulation. Denote such a point of accumulation by θ′′∞. Upper semi-continuity then implies

15



that g(θ′′∞) ≥ limm→∞ g(θ′m) = g(θ0) which is only possible if θ′′∞ = θ0. But any bounded

sequence in Rp which possesses only one point of accumulation must converge to that point and

thus limm→∞ θ′′m = θ0. This implies that ‖θ′m− θ0‖ ≤ δ for all m sufficiently large and since δ > 0

was arbitrary this implies that limm→∞ θ′m = θ0. But this in turn implies that θ0 is an identifiably

unique maximizer of g(θ) which combined with the earlier result that g(θ0) = supθ 6=θ0
g(θ) implies

that Assumption 4 holds.

Second, it is well-established that if a concave function of Rp is finite on some open set than it

is continuous on that open set. Let M denote a non-empty open set on which g(·) is finite and let

K1 a compact subset of M with a non-empty interior; then g(·) must achieve its minimum over

K1 at some point belonging to K1. Let r1 denote the maximum value achieved by g(·) on K1. For

any 0 ≤ λ ≤ 1 define:

K(λ) = {θ ∈ Rp : ∃θ′ ∈ K1 s.t. θ = λθ′ + (1− λ)θ0}, (26)

so that K1 = K(1) and {θ0} = K(0). Clearly K(λ) is compact for all 0 ≤ λ ≤ 1 and has a

non-empty interior for all 0 < λ ≤ 1. In addition, by concavity the maximum value of g(·) over

K(λ) must be greater than or equal to λr1 + (1− λ)g(θ0) which can be made arbitrarily close to

g(θ) by selecting λ sufficiently close to zero. Hence for any α ∈ A, as defined in Assumption 5,

there exists a value 0 < λα ≤ 1 such that K(λα) ∈ ulevα(g) which implies that ulevα(g) has a

non-empty interior and hence that Assumption 5 is satisfied. �

Proof of Theorem 1. From Assumption 4 it follows there exists δ0 > 0 such that [θ0−δ, θ0 +δ]

belongs to the interior of the effective domain of Q(·) for all 0 < δ ≤ δ0. Fix 0 < δ ≤ δ0 and set

η = Q(θ0)−max{Q(θ0 + δ), Q(θ0 − δ)}; from Assumption 4 it is clear that η > 0. Next for each

n ∈ N define:

Dn ≡ {ω ∈ Ω : |Qn(θ, ω)−Q(θ)| ≤ (η/4), θ = (θ0 − δ), θ0, (θ0 + δ)}, (27)

which clearly depends on δ, and observe that Assumption 2 implies that limn→∞ P (Dn) = 1.

Equation (27) then implies that:

max{Qn(θ0 − δ, ω), Qn(θ0 + δ, ω)} ≤ Qn(θ0, ω)− (η/2) ≤ Q(θ0)− (η/4), ∀ ω ∈ Dn, n ∈ N, (28)

which combined with the quasiconcavity of Qn(·, ω) on Rp for all ω ∈ Ω implies that:

sup
θ∈Rp:|θ−θ0|≥δ

Qn(θ, ω) ≤ Qn(θ0, ω)− (η/2) ≤ Q(θ0)− (η/4), ∀ ω ∈ Dn, n ∈ N. (29)

Now suppose that {θ̂n(·) : Ω → Rp}∞n=1 is a sequence of approximate maximizing estimators of

θ0 based on {Qn(·) : RP → r}∞n=1. Fix ε > 0 such that ε ≤ η/4 and ε−1 ≥ Q(θ0) and observe

that there exists a sequence of measurable sets {An}∞n=1 such that limn→∞ P (An) = 1 and that
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|ζ̂n| ≤ ε and α̂n ≥ ε−1 for all ω ∈ An and n ∈ N. Define Bn = {ω ∈ Ω : supθ∈Rp Qn(θ, ω) < +∞}.

If ω ∈ An ∩Bn ∩Dn then:

Qn(θ̂n(ω), ω) ≥ Qn(θ0, ω)− (η/4) > sup
θ∈Rp:|θ−θ0|≥δ

Qn(θ, ω), (30)

while if ω ∈ An ∩Bc
n ∩Dn, where Bc

n denotes the complement of Bn, then:

Qn(θ̂n(ω), ω) ≥ Q(θ0) > sup
θ∈Rp:|θ−θ0|≥δ

Qn(θ, ω), (31)

and thus |θ̂n(ω) − θ0| < δ for all ω ∈ An ∩ Dn. But clearly limn→∞ P (An ∩ Dn) = 1 which

establishes that θ̂n is weakly consistent in the generalized sense as desired since 0 < δ ≤ δ0 can be

chosen arbitrarily close to zero. �

Proof of Theorem 2. First, for any θ ∈ Rp and γ > 0 let S(θ, γ) denote the open ball of radius

γ centered on θ, given by:

S(θ, γ) = {θ∗ ∈ Rp : ‖θ∗ − θ‖ < γ}, (32)

let S(θ, γ) denote the closure of S(θ, γ), and let ∂S(θ, γ) denote the boundary of S(θ, γ). Now fix

any δ > 0. Then Assumption 4 implies that there exists η > 0 such that:

sup
θ∈S(θ0,δ)c

Q(θ) = sup
θ∈Rp: θ 6=θ0

Q(θ)− η. (33)

Now select α ∈ R such that supθ∈S(θ0,δ)c Q(θ) < α < supθ∈Rp: θ 6=θ0
Q(θ). Clearly ulevα(Q) ⊆ {θ ∈

S(θ0, δ)c} for all such α. Assumption 5 implies that there exist θ′ ∈ Rp and 0 < δ′ < δ such that

S(θ′, δ′) ⊆ ulevα(Q). Thus together Assumptions 4 and 5 imply that for any δ > 0 there exist

θ′ ∈ Rp and δ′ > 0 such that:

S(θ′, δ′) ⊂ S(θ0, δ), (34)

sup
θ∈S(θ0,δ)c

Q(θ) < inf
θ∈S(θ′,δ′)

Q(θ). (35)

Furthermore, it is clear that S(θ0, δ) ⊂ S(θ′, 2δ) and hence that there exists 0 < η′ < +∞ such

that:

sup
θ∈S(θ′,2δ)c

Q(θ) ≤ inf
θ∈S(θ′,δ′)

Q(θ)− η′. (36)

Second, for any θ ∈ Rp and γ > 0 let C(θ, γ) denote the closed cube centered on θ whose facets

are perpendicular to the axes of Rp and whose edges have length 2γ, and let V (θ, γ) denote the

set consisting of the vertices of C(θ, γ): clearly V (θ, η) then has 2p elements. It is then easy to

show that there exist ρ1, ρ2 > 0 such that:

S(θ, ρ1ρ2γ) ⊆ C(θ, ρ1γ) ⊆ S(θ, γ), ∀ γ > 0 & θ ∈ Rp, (37)
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and thus that:[
sup

θ∈S(θ′,2δ)c

Q(θ)

]
≤

[
inf

θ∈C(θ′,ρ1δ′)
Q(θ)

]
− η′ ≤

[
inf

θ∈V (θ′,ρ1δ′)
Q(θ)

]
− η′. (38)

Third, since ∂S(θ′, 2δ) is a compact subset of S(θ′, 2δ)c it follows that there exists a finite

collection of elements of ∂S(θ′, 2δ)c, denoted H(θ′, 2δ), such that for any θ ∈ ∂S(θ′, 2δ) there

exists θ∗ ∈ H(θ′, 2δ) satisfying ‖θ∗ − θ‖ ≤ ρ1ρ2δ
′. It thus follows that Q(·) satisfies:[

sup
θ∈H(θ′,2δ)

Q(θ)

]
≤

[
inf

θ∈V (θ′,ρ1δ′)
Q(θ)

]
− η′. (39)

Furthermore, since Qn(·) converges pointwise to Q(·) and since H(θ′, 2δ) and V (θ′, ρ1δ
′) only

contain a finite number of points it follows that there exists a sequence of measurable sets Dn

(which depend on δ) such that limn→∞ P (Dn) = 1 and that:[
sup

θ∈H(θ′,2δ)

Qn(θ, ω)

]
≤

[
inf

θ∈V (θ′,ρ1δ′)
Qn(θ, ω)

]
− (η′/2), |Qn(θ′, ω)−Q(θ′)| ≤ (η′/4), (40)

for all n ∈ N and ω ∈ Dn. Note that Q(θ′) ∈ R in view of Assumption 3 together with Equation

(36).

Fourth, since C(θ, γ) is the convex hull of V (θ, γ) for any γ > 0 and θ ∈ Rp it follows that all

the elements of S(θ′, ρ1ρ2δ
′) can be expressed as convex combinations of the elements of V (θ′, ρ1δ

′)

and hence that the value of Qn(·, ω) at any element of S(θ0, ρ1ρ2δ
′), including therefore the value

of Qn(·, ω) at θ = θ′, must be at least as large as the minimum value which Qn(·, ω) takes on the

set V (θ′, ρ1δ
′). This then implies that:[

sup
θ∈H(θ′,2δ)

Qn(θ, ω)

]
≤

[
inf

θ∈S(θ′,ρ1ρ2δ′)
Qn(θ, ω)

]
− (η′/2) ≤ Qn(θ′, ω)− (η′/2), (41)

for all n ∈ N and ω ∈ Dn.

Fifth, take any θ ∈ S(θ′, 4δ)c; then there exists θ′′ ∈ ∂S(θ′, 2δ) and 0 ≤ λ ≤ 1 such that

θ′′ = λθ + (1 − λ)θ′ and hence θ′ = θ + (1 − λ)−1(θ′′ − θ). But then there exists θ′′′ ∈ H(θ′, 2δ)

such that ‖θ′′′ − θ′′‖ ≤ ρ1ρ2δ
′. Now let θ∗ = θ + (1− λ)−1(θ′′′ − θ) and observe that (θ∗ − θ′) =

(1− λ)−1(θ′′′ − θ′′) and hence that ‖θ∗ − θ′‖ ≤ ρ1ρ2δ
′ since 0 ≤ λ = ‖θ′′ − θ′‖/‖θ − θ′‖ ≤ (1/2).

But this establishes that there exist θ′′′ ∈ H(θ′, 2δ), θ∗ ∈ S(θ′, ρ1ρ2δ
′) and 0 ≤ λ ≤ 1 such

that θ′′′ = λθ + (1 − λ)θ∗ and hence that Qn(θ′′′, ω) ≥ min{Qn(θ, ω), Qn(θ∗, ω) in view of the

quasiconcavity of Qn(·). This combined with Equation (41) then implies that:

Qn(θ, ω) ≤ Qn(θ′, ω)− (η′/2), ∀ n ∈ N, ω ∈ Dn, θ ∈ S(θ′, 4δ)c, (42)

and thus that:

sup
θ∈S(θ′,4δ)c

Qn(θ, ω) ≤ Qn(θ′, ω)− (η′/2) ≤ Q(θ′)− (η′/4), ∀ ω ∈ Dn, n ∈ N. (43)

The remainder of the proof then follows the same lines as the proof of Theorem 1 from Equation

(29) onwards but with 4δ in place of δ, θ′ in place of θ0 and η′ in place of η. �
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Notes

1 The earliest result of this type, namely on the consistency of optimization estimators based on stochastic

convex (or concave) objective functions, seems to be Corollary II.2 from Andersen and Gill (1982) which establishes

the consistency of such a maximization estimator but not its existence. Similar results can be found in Haberman

(1989), Niemiro (1992), and Pollard (1991).

2This is a slight generalization of the concept of an approximate maximizing sequence, as used by Geyer (1996),

in which ζ̂n and α̂n are non-random.

3 The stochastic version of this uniform convergence result from Rockafellar (1970) appears to have been estab-

lished first by Andersen and Gill (1982, Theorem II.1).

4Note that even in the case of a sequence of upper semi-continuous concave functions which converges pointwise

to a function whose effective domain has a non-empty interior there is no guarantee that the pointwise limiting

function is upper semi-continuous on the boundary of its effective domain though it will be upper semi-continuous

on the interior of its effective domain.
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