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Abstract.
Objective: Magnetoencephalography (MEG) based Brain-Computer Interface
(BCI) involves a large number of sensors allowing better spatiotemporal resolution
for assessing brain activity patterns. There have been many efforts to develop
BCI using MEG with high accuracy, though an increase in the number of
channels means an increase in computational complexity. However, not all sensors
necessarily contribute significantly to an increase in classification accuracy and
specifically in the case of MEG-based BCI no channel selection methodology has
been performed. Therefore, this study investigates the effect of channel selection
on the performance of MEG-based BCI.
Approach: MEG data were recorded for two sessions from 15 healthy participants
performing motor imagery, cognitive imagery and a mixed imagery task pair
using a unique paradigm. Performance of four state-of-the-art channel selection
methods (i.e. Class-Correlation (CC), ReliefF (RF), Random Forest (RandF),
and Infinite Latent Feature Selection (ILFS) were applied across six binary tasks
in three different frequency bands) was evaluated in this study on two state-of-
the-art features i.e. bandpower and CSP.
Main results: All four methods provided a statistically significant increase in
classification accuracy (CA) compared to a baseline method using all gradiometer
sensors, i.e. 204 channels with band-power features from alpha (8-12Hz), beta
(13-30Hz), or broadband (α+β) (8-30Hz). It is also observed that the alpha
frequency band performed better than the beta and broadband frequency bands.
The performance of the beta band gave the lowest CA compared with the other
two bands. Channel selection improved accuracy irrespective of feature types.
Moreover, all the methods reduced the number of channels significantly, from
204 to a range of 1-25, using bandpower as a feature and from 15-105 for CSP.
The optimal channel number also varied not only in each session but also for
each participant. Reducing the number of channels will help to decrease the
computation cost and maintain numerical stability in cases of low trial numbers.
Significance: The study showed significant improvement in performance of
MEG-BCI with channel selection irrespective of feature type and hence can be
successfully applied for BCI applications.
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1. Introduction

Motor disabilities and severe neurological injury re-
quire an extra measure in rehabilitation for active and
effective environmental interaction. Motor Imagery
(MI) practice through brain-computer interface (BCI)
has been found to be useful as a therapeutic sub-
stitute for standard rehabilitation practices for post-
stroke patients [1, 2], and an alternative approach for
interaction with the environment [3, 4, 5, 6, 7] for
people with severe movement disability. For post-
stroke rehabilitation, the patient is required to vol-
untarily practice activities of daily living (ADL) with
very high focus [2, 8, 9, 10]. Advancements in BCI
based technologies have shown promising results in
terms of focused interaction for stroke patients [11].
Current BCI systems may use magnetoencephalog-
raphy (MEG), electroencephalography (EEG), func-
tional magnetic resonance imaging (fMRI) or electro-
corticography (ECoG) approaches for mapping brain
responses [7, 12, 13, 14, 15, 16, 17]. Although the ma-
jority of the available BCI research is focused on EEG,
MEG may provide better performance due to its higher
signal-to-noise (SNR) ratio and spatio-temporal resolu-
tion compared to EEG. Moreover, unlike EEG, MEG
sensors are placed in a dedicated helmet rather than
physically placed on subjects’ scalp resulting in signif-
icant signal attenuation [18].

One of the key challenges of MEG-based BCI
systems is their low accuracy [19, 20, 21]. Previous
studies have focused on either development of novel
feature extraction methods or improvement of current
classification methods. Signal processing methods such
as channel selection have been completely ignored in
the case of MEG. It has been observed that signal
pre-processing methods can improve the performance
of an EEG based BCI system [22]. There is a
substantial literature supporting the effectiveness of
channel selection methods with EEG-based BCIs and
it is thus intuitive to explore their effectiveness with
MEG-based systems.

MEG systems typically have a large number
of channels for very high spatial resolutions e.g.
306 for Elekta Neuromag Triux system. It is
known that classification performance of a BCI
system is dependent upon data pre-processing, feature
extraction, and the use of an appropriate classifier
but by selecting optimum channels, classification
performance can be improved further. Provided with
a large number of MEG channels, the extracted
features can outnumber the trials resulting in an over-
parameterised classification scenario. Dimensionality
reduction can help to select the most important
features without affecting performance [18]. It is
however observed that the use of a large number of
channels can affect the performance in a negative way,

as those channels that are not contributing to feature
separability can make the feature set noisier.

Prasad et al. [2] presented promising results
with 5 stroke patients in their neuro-feedback based
BCI which facilitated motor recovery with moderate
BCI accuracy. Neurorehabilitation, using MEG-based
BCI by extraction of relevant information from brain
activity, is a challenge. Selecting 204 gradiometers
provides a higher signal-to-noise ratio (SNR) as
compared to 102 magnetometers, as gradiometers are
more sensitive to rate of change in cortical activations
nearer to scalp. Hence, it would be more appropriate
in this instance to choose gradiometers instead of
magnetometers for an MI-BCI application. This still
leaves a huge number of channels which will result
in higher computation irrespective of their positive
or negative contribution to the performance of a BCI
system.

Common spatial pattern (CSP) and its extended
algorithms like Sparse CSP, have been used for di-
mensionality reduction and show that the channels
can be selected based on large CSP vector coeffi-
cients [23, 24, 25] whilst maintaining a sufficient level
of accuracy. Further, different CSP methods have
been implemented in an attempt to increase the ac-
curacy [19]. A channel selection method was presented
by He et al. [26] based on the Bhattacharya bound
CSP for classification of MI-related signals. It con-
siders the Bhattacharyya bound as an index and pro-
gressively searches for optimized channel combinations.
A 95% classification accuracy was later claimed with
an average of 33 channels, which was a higher accu-
racy than that of any other channel selection method.
Zhang et al. [27] used ReliefF method for EEG sen-
sor selection for emotion classification and reported
approx 9% improvement by using 30 EEG channels.
Roy et al. [18] presented promising results using corre-
lation and ReleifF based channel selection in MEG. A
maximum increase of 24.22% was observed for cross-
validation performance. For a review of other methods
implemented in the field of EEG motor imagery, read-
ers can refer to Alotaiby et. al and Lotte et al. [28, 29].

In this study, our previous work [18] has
been extended, by implementing four state-of-the-art
feature selection methods i.e. class correlation [30],
ReliefF [31, 32], random forest feature ranking [33],
and infinite latent feature selection [34] and evaluating
their performances using a four-class MEG MI BCI
dataset. These methods have been used widely for
image and time-series datasets. To the best of authors’
knowledge, this is the first attempt to evaluate the
effect of channel selection process on performance of
MEG-based MI-BCI system.

The remainder of this paper proceeds as follows:
Section 2 provides details of the acquired data sets,
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experimental paradigm, signal processing pipeline, and
channel selection methods. Next, Section 3 presents
the performance analysis.The outcomes of the study
are discussed in Section 4, and Section 5 summarises
the findings of this study.

2. Materials and Methods

2.1. Experiment and Data Description

Figure 1. Timing diagram of MEG-BCI paradigm.

For this study, an MEG dataset of 15 healthy
participants was acquired using a typical MEG-based
experimental paradigm which can be used for BCI
as well. The participants included 12 males and
3 females with a mean age of 29.3 years ± 5.96,
with 13 right-handed and 2 left-handed as per self-
report. The participants signed a written consent form
before starting the experiments and the experimental
protocol was approved by the ethics committee of
Ulster University. MEG data were acquired over 2
sessions (each session on different days) using the same
experimental paradigm. Figure 1 presents the timing
diagram of the MEG-based experimental paradigm.
Each trial starts with a rest period of 2 s followed by
5 s of imagery task period. The cue remained visible
during the imagery task period. A randomly selected
inter-trial-interval (ITI) of 1.5−2 s was presented after
the imagery task period. Participants were seated on a
comfortable chair approximately 80 cm away from the
projector screen. Elekta Neuromag Triux system was
used for recording the MEG data at a sampling rate of
1kHz.

The experimental paradigm was designed to cover
motor imagery (MI) tasks and cognitive imagery tasks.
The dataset includes four mental imagery tasks: both
hand movement, both feet movement, subtraction,
and word generation. During the MI-related tasks,
participants imagined movement of both hands/both
foot when the cue appeared at the screen. Similarly, for
cognitive imagery tasks, participants either subtracted

two numbers presented as cues or generated words
related to an English language letter presented as a
cue. Each session consisted of 50 trials for each of the
imagery tasks with a total of 200 trials.

2.2. Data Processing

The MEG dataset was acquired from all 306 sensors
(204 gradiometers and 102 magnetometers). However,
for this study, the raw data from only 204 gradiometers
were used before being band-passed into 3 frequency
bands, i.e. alpha(α) band (8-12 Hz), beta(β) band
(13-30 Hz) and alpha and beta combined (α + β)
band (8-30 Hz) using a two pass Butterworth filter.
Selecting 204 gradiometers provides a higher signal-to-
noise ratio (SNR) as compared to 102 magnetometers,
as gradiometers are more sensitive to changes in
cortical activations. Bad channels were discarded due
to extraneous noise, interference or artefacts. For
feature extraction, data were down-sampled from 1
kHz to 500 Hz. After pre-processing, 3.5 s of the
data segment related to imagery activity was selected
from each trial (0.5 s after the cue onwards) and
signal power was estimated for each MEG gradiometer
channel for each task i.e. hand, feet, math and
word generation in each band separately. For the
selection of best channels, four ranking based methods
were used, i.e. Class-correlation (CC), ReliefF (RF),
Infinite Latent Feature Selection (ILFS) and Random
Forest (RandF). These methods were considered for
the evaluation of the effect of channel selection in
MEG in the three frequency bands. Furthermore, a
10-fold cross validation classification accuracy (CA)
was estimated for six binary classification tasks, i.e.
hand versus feet (H-F), hand versus word (H-W), hand
versus math (H-M), feet versus word (F-W), feet versus
math (F-M), and word versus math (W-M) using a
linear discriminant analysis (LDA) classifier (Figure 2).
The performance of each channel selection method
was compared with the baseline condition, i.e. 204
gradiometer channels, in all three conditions.

2.3. Channel Selection

Feature selection, or feature reduction, is a process
of selecting a subset of relevant features based on
positively contributing criteria. This process aims
towards significantly reducing the noise created by
relatively less important features and counter the curse
of dimensionality. In this study, overall signal band-
power was estimated for each MEG channel separately
and the following four methods were applied to find
the best set of channels for each binary combination of
classes.
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Figure 2. Schematic diagram providing the details of signal processing pipeline using bandpower feature for classification.

2.3.1. Class-Correlation Method (CC): The Pearson
correlation coefficient is used to determine the
statistical relationship between two random variables
A and B. The values of the coefficients range from -1
to 1 representing no relation to direct relation i.e. it is
a measure of the linear dependence of the two random
variables [30].

ρ(A,B) =
1

N − 1

N∑
i=1

(Ai − µA)(Bi − µB)

σA.σA
(1)

where µA is the mean and σA is the standard
deviation of A. Similarly, µB is the mean and σB
is the standard deviation of B. A represents the
bandpower feature vector and B represented labels
of corresponding class , i.e. 1, −1. The values of
the correlation coefficients were calculated by creating
a dummy label corresponding to the observations of
each of the features. The dummy class label had a
numeric value which indicated (L=1) for class 1 and
(L=−1) class 2. As per the coefficients, the channels
were ranked in decreasing order keeping the highest
correlated channel at the top and were stored for
further evaluation. The computational complexity of
CC method is O(n) and running time is 0.10 sec.

2.3.2. ReliefF Method (RF): The ReliefF (RF)
algorithm is an extension of Relief algorithm proposed
by Kira et al. [31, 32]. The RF algorithm differs
from Relief algorithm on the basis of the selection of
nearest hits (same class) and misses (other class) and
also on the update of attributes [32, 35]. The RF
method firstly initialises a random instance Ri and
then searches for K nearest hits (Hj) and k nearest
misses(Mj(C)). The weights W [A] are updated based
on the values of Ri, Hj and Mj(C) as shown in
Algorithm 1. Using the RF method feature importance
along with weights was found by 2 inputs, i.e. feature
vector and their corresponding labels of 1 or −1 and
was stored in an array after sorting according to their
weights for further evaluation. The size of the nearest

Data: For each training instance, obtains
vectors of attribute values and
corresponding class value

Result: For computing the vector W of
estimations of the qualities of
attributes

initialise the weights: W[A] ← 0 ;
for i← 1 to m do

randomly select an instance Ri;
find k nearest hits Hj ;
for each class C 6= class(Ri) do

from class C find k nearest misses
Mj(C);

end

end
for A← 1 to a do

W[A] = W[A] -
k∑

j=1

diff(A,Ri,Hj)
m.k +

∑
C 6=class(Ri)

P (C)
1−P (class(Ri))

k∑
j=1

diff(A,Ri,Mj(C))

m.k

end
Algorithm 1: Pseudocode for ReliefF algorithm

neighbours (i.e. k) was set to 25. The computational
complexity of ReliefF method is O(iSnC) and running
time is 0.47 sec, S is the number of samples, n is the
number of initial features, i is the number of iterations
in the case of iterative algorithms, and C is the number
of classes.

2.3.3. Infinite Latent Feature Selection (ILFS): This
feature selection method was proposed by Roffo et al.
[34] where a training set is represented by a feature
distribution set P = {P1, P2, ..., Pm}. Each n x 1
vector Pi, is considered as the distribution of values
assumed by the ith feature concerning n samples to
build an undirected graph G, where nodes correspond
to features and edges model relationships among pair
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of nodes. Edges are represented weights as aij which
is an element of A, 1≤i, j≤n, and which model the
pairwise relationship between features, assuming that
feature xi and xj are good candidates. Weights can be
associated with a binary function of graph nodes;

aij = φ(~xi, ~xj) (2)

where φ(., .) is a real valued potential function
learned by the proposed approach in a probabilistic
latent semantic analysis (PLSA)-inspired framework.
Considering a weighted graph G, ILFS represents a
subset of features as path connecting them. Similarly,
like other methods, a feature vector of 2 classes
were fed along with corresponding labels using the
method developed by Roffo et al. [34, 36, 37]. The
computational complexity of ILFS method is O(n2.37+
iN + S +C) and running time is 0.26 s. Here S is the
number of samples, N is the number of initial features,
i is the number of iterations in the case of iterative
algorithms, and C is the number of classes.

2.3.4. Random Forest Based Ranking (RandF): This
is a permutation technique presented by Breiman to
measure the importance of features in the prediction
[33] referred to as an out-of-bag (OOB) importance
score. At each node t in a decision tree, a split is
determined by the decrease in node impurity ∆R(t).
The node impurity R(t) is the gini index. If a subset
in node t contains samples from c classes, Gini(t) is
defined as,

Gini(t) = R(t) = 1−
c∑

j=1

â2j (3)

where â2j is the relative frequency of class j in
t. After splitting into two child node t1 and t2 with
sample size N1 (t) and N2 (t), the gini index of split
data is defined as:

Ginisplit(t) =
N1(t)

Nt
Gini(t1) +

N2(t)

Nt
Gini(t2) (4)

The feature providing the smallest Ginisplit (t)
is chosen to split the node. The importance score of
feature vector Xj in a single decision tree Tk is

Ik(Xj) =
∑
t∈Tk

∆R(Xj , t) (5)

where I is the importance of feature X of class j and t
represents node. The same is computed over all k trees
in a random forest, defined as

I(Xj) =
1

k

k∑
k=1

Ik(xj) (6)

Feature vector of 2 classes was used to create an
ensemble along with their corresponding labels. The

minimum number of observations per tree leaf was
set to 5. The time complexity for constructing a
complete decision tree is O(a∗nlog(n)), where n is the
number of records and a is the number of attributes.
While constructing the Random forest, it is required
to define the number of trees needed to build (ntree)
and number of the attributes wished to sample at
each node (mtry). Since only mtry variables will be
used at each node the complexity to build one tree
would be O(mtry ∗ nlog(n)). Hence, for building a
random forest with ntree, the complexity would be
O(ntree∗mtry ∗nlog(n)) and running time is 1.81 s in
our case. This is the worst case scenario, i.e., assuming
the depth of the tree is going to be O(log(n)).

The methods discussed above have been used for
ranking of channels for session one and session two
data individually. But to calculate the final set of
channels, a forward elimination approach is used. The
forward elimination approach helps to select a subset
of channels that positively contribute towards accuracy
from the set of all ranked channels. Let X be a set
of 204 MEG channels. After the ranking of channels,
the top-ranked channel is selected and added to an
empty set X ranked which is used for calculating CA. If
the second-ranked channel positively contributes to the
first ranked channel, then it is added to the set Y else
the next channel is tested for its accuracy contribution.
The process terminates after the addition of a channel
that does not contribute positively to CA. At the
end of the process, Y has only positively contributing
channels. The classifier used in this instance is LDA.

2.4. Common Spatial Patterns (CSP)

CSP is an efficient tool to analyze multichannel
data such as EEG/MEG for binary classification and
provides a supervised method for decomposition of

signals parameterized by a matrix W ∈ R
{
C×C

}
(C:

number of channels). The matrix is used to project the
original sensor space E into the surrogate sensor space,
using eq.(7)

Z = WE (7)

where, E ∈ R

{
C×T

}
is the MEG measurement

of a single-trial and T is the number of samples per
channel. W is the CSP projection matrix. The rows
of W are the spatial filters and the columns are the
common spatial patterns. A small number of spatially
filtered signals are used as features for classification
purposes. These are generally the first and last m rows
of Z, i.e. Zt, where t ∈

{
1, ..., 2m

}
. In our case, m= 1,

which implies that the first and last component were
considered. The feature vector is derived from Zt by
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eq.(8) as,

xt = log

(
var(Zt)

2m∑
t=1

var(Zt)

)
(8)

After the temporal filtering in mu([8-12] Hz) and
beta([13-30] Hz) bands and spatial filtering as shown
in Figure 3, and finally taking the log variance using
(8), we obtain the feature vector.

MATLAB 2018b was used for creating scripts
for building learning models and evaluating their
performance. For statistical analysis, paired-sample t-
test was used. The system used Windows 10 with an
i7 8th gen processor, and an NVidia RTX2080 Ti.

3. Results

3.1. Performance comparison using a band power
feature

Figs 4, 5, 6 show bar plots of the mean CA obtained
using 10-fold cross-validation of individual sessions
under the five experimental conditions (i.e. baseline,
CC, RF, RandF and ILFS) and six binary classification
tasks for α, β and α+β frequency bands. For all
three frequency bands, CC, RF, RandF, and ILFS
provided statistically significant improvement (p <
0.05) as compared to the baseline in terms of CA for
all the six binary classification tasks. Moreover, for
all combinations, the mixed imagery task pairs (H-
W, H-M, F-W & F-M) provided higher separability
as compared to the H-F and W-M task pairs.

In reference to Figure 4, the RandF method
performed better than ILFS with an increased
performance of 1.82% on average across all subjects
over 6 binary classification tasks. RandF provided
a statistically significant improvement over ILFS
in H-F, H-M, W-M, F-W and W-M task pairs
(p < 0.05). RandF did not provide a statistically
significant improvement over other methods. RF and
CC provided statistical significant improvement over
Randf in just two task pairs i.e. for F-W and F-M
respectively. The overall mean CA across subjects
using RandF is 81.11% (±6.02), ILFS is 79.30%
(±6.51), CC is 81.72% (±6.25), and RF is 81.14%
(±6.22) for session 1 whereas baseline was 65.32%
(±8.09). Similarly, for session 2 mean CA across
subjects were 81.87% (±6.59) for RandF, 79.57%
(±7.30) for ILFS, 81.99% (±6.25) for CC, and 81.24%
(±6.86) for RF for the α frequency band.

Figure 5 shows the mean CA obtained using the β
frequency band (12-30 Hz). This figure shows the same
behavior as Figure 4, where RandF has performed
better than other channel selection methods. However,
a point worth highlighting is the drop in accuracy

compared to the α frequency band. The overall mean
accuracy for session 1 using RandF is 75.65% (±5.59),
ILFS is 73.33%(±6.09), RF is 74.02%(±5.77), CC is
72.40%(±5.85) and for baseline is 59.88% (±5.72).
Similarly, for session 2 mean CA is 75.70%(±5.74)
for RandF, 74.83%(±6.67) for ILFS, 75.28%(±6.05)
for RF, 72.93%(±6.05) for CC and 59.88%(±5.72) for
baseline.

Figure 6 shows the mean CA obtained using α+β
frequency band (8-30 Hz). RandF and RF have both
performed better than any other channel selection
method. The overall mean accuracy for session 1 using
RandF is 79.99% (±6.36), ILFS is 78.08%(±7.15),
RF is 78.93%(±5.92), CC is 77.28%(±7.20) whilst for
baseline is 64.31% (±7.41). Similarly, for session 2
mean CA is 79.58%(±7.22) for RandF, 77.68%(±7.39)
for ILFS, 79.04%(±7.35) for RF, 78.32%(±7.83) for CC
and 65.84%(±8.07) for baseline. CA is significantly
higher in the α band as well as the α+β band compared
to the β band alone. However, after performing
channel selection the grand mean accuracy of the α
band at 79.30% (±6.51) is higher than in the α+β band
at 78.08% (±7.15).

Figure 7 shows the CA in the three bands when the
classifier was trained on session 1 data and tested on
session 2. For this experiment, the channels selected for
session 1 using each ranking method, were considered
for evaluation in session 2. Since the session 2 is unseen
data, the accuracies drop as compared to the cross-
validation CAs shown in Fig 4, 5 and 6. However,
overall the α band (64.24% ± 8.34) performed better
than the β (57.88% ± 7.34) and α+β (63.67% ± 7.85)
bands. Similarly, in the cross-session evaluation, the
H-W group showed higher accuracy than the motor
imagery (H-F) group.

The effect of the addition of the top channels can
be seen on CA as it starts to fall after a certain number
of channels (Figure 8). The result was calculated on
session 1 data for each participant using the motor
imagery paradigm (H-F) in the α frequency band. As
observed, the CA tends to rise up to a certain number
of channels, i.e. 15 and then starts decreasing with
further addition of channels. A few channels can also
be observed to contribute negatively before reaching
the peak accuracy. Therefore, by using a forward
elimination approach the CA accuracy was calculated
and the maximum CA was achieved with just nine
channels (Figure 8(b)).

Table 1 gives an overview of the total number of
channels involved for achieving the maximum CA for
session 1 (S01) and session 2 (S02) based on the RandF
method for the α+β frequency band. The number of
channels contributing to a maximum CA using forward
elimination using all the 4 ranking methods in the
respective bands, ranged from 1 to 23. It is to be
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Figure 3. The data processing pipeline using CSP. The raw MEG signals are first passed through bandpass filters in mu (8-12 Hz)
and beta (13-30) Hz. Then these bandpass filtered signals are spatially filtered with their respective CSP weight matrices. After
spatial filtering the feature vector is formed and subsequently classified by the LDA classifier. The CSP weight matrices and the
LDA classifier was trained using the session 1 data.

noted that the mean of the number of selected channels
across the subjects for session 1 and session 2 looks
more or less similar, although there were variations in
the number of selected channels for individual subjects
between session 1 and session 2..

3.2. Performance evaluation using a CSP feature

Figure 9 shows the classification performance after
channel selection using common spatial patterns (CSP)
in all the three bands i.e. α, β, and α+ β. Firstly, all
the channels were ranked using RandF method with
data from session 1. Then the ranked channels were
added block by block starting from 15 in intervals of
10 till 125. Then the ordered channel blocks were used
to train a classifier on session 1 data and test on session
2 data. This figure contains the global mean of all the
binary classification tasks. A steady rise in accuracy
can clearly be observed before either saturation or
drop. Going by the trendlines shown in Figure 9, for
the band α+β, the CA hits a plateau at NoC=75 with
72%, for α the CA hits the plateau at NoC=85 with
69.3%, and for beta it is NoC=95 near the plateau
where the CA is 65.7%. It is to be noted that the
performance of the beta band is much lower than the
other two bands. This can be due to the fact that
the event related desynchronization is more consistent
during inter-trial and inter-session transitions in alpha
frequency range between 8 and 12 Hz. This was
found in our previous study on EEG-EMG correlation
where the desynchronization in 8-12 Hz gave more
consistent correlation with the EMG activity than for
beta band [38]. In the same study, ERD distribution
for alpha band showed significantly less inter-trial
variability than for beta band from the data across 8
healthy participants. This could be a possible reason
why alpha band performed better than beta band.
Consequently, alpha+beta band also performed better
than beta because the addition of alpha band led to
more consistent pattern in the sensori-motor rhythm
than for beta band only. Suppression of alpha band
power around 10 Hz is also a popular marker for

movement planning, execution and imagery than beta
band [39]. These findings indicates that the alpha band
may have more impact on classification performance
in the context of motor imagery. However beta band
is more related to the longitudinal changes in motor
behaviour, as revealed by a study on post stroke
rehabilitation [40]. CSP is a spatial filtering technique
which needs larger number of channels to optimize the
CSP projection matrix. The CSP projection matrix
transforms the signals in such a way that it maximizes
the variance of one class and minimizes the variance
of the other class [41, 42]. Providing larger number
of channels to the bandpower features may overfit the
data due to high dimensionality as they do not have the
ability to maximize the discrimination between the two
classes unlike CSP. Hence, a feature vector with lesser
dimension works better in case of bandpower. On the
other hand, if we feed the CSP with a larger number
of channels it can optimize the CSP projection matrix
very well which could lead to higher discriminability
between the two classes. However, it is also true that
the performance of CSP saturates and drops beyond
a certain number of channels (as evident in Figure 9)
which may be due to the inclusion of lower ranking
MEG channels as which contribute very little or no
useful information but primarily noise.

As can be seen from Figure 9, the performance of
the α+β band is clearly higher than the alpha or beta
band in the case of CSP features with channel selection,
hence we further show the comparison between the CA
at optimal channel set and at all channels in Figure
10. Hand vs. feet shows a significant (p < 0.05)
increase in performance of motor imagery task when
the optimal channel set was chosen as compared to
selection of all the channels. The mean accuracy by
all subjects is 70.67%(±12.69) at optimal channel set,
while the mean CA is 55.8%(±13.44) when all the
channels are considered. The mean of the optimal
channel set length contributing maximum accuracy in
hand vs. feet is 64.33 (Table 2). In hand vs. word
the mean CA is 81.80%(±13.63) and mean number
of channels contributing to this accuracy is 47. For
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[4a] [4b]

Figure 4. Mean classification accuracies obtained with the five experimental conditions ( baseline, CC, RF, RandF and ILFS)
and six binary classification tasks for the α frequency band (8-12 Hz) for session 1 (4a) and session 2 (4b) using 10-fold
cross-validation.

[5a] [5b]

Figure 5. Mean classification accuracies obtained with the five experimental conditions ( baseline, CC, RF, RandF and ILFS)
and six binary classification tasks for β frequency band (12-30 Hz) for session 1 (5a) and session 2 (5b) using 10-fold
cross-validation.

[6a] [6b]

Figure 6. Mean classification accuracies obtained with the five experimental conditions ( baseline, CC, RF, RandF and ILFS) and
six binary classification tasks for α and β frequency band (8-30 Hz) for session 1 data (6a) and session 2 (6b) using 10-fold
cross-validation.
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[7a] [7b]

[7c]

Figure 7. Mean classification accuracies (CAs) obtained with the five experimental conditions ( baseline, CC, RF, RandF and
ILFS) and six binary classification tasks for α (8-12Hz), β (13-30 Hz) and α and β frequency band (8-30 Hz), a, b, and c
respectively, for a classifier trained on session 1 data and tested on session 2 data.

[8a] [8b]

Figure 8. 8a and 8b show the classification accuracy for a subject in a single session for the hand vs feet category calculated from
the sequential addition of ranked channels and channels obtained by forward elimination method respectively using RandF method
for motor imagery.



Assessing Impact of Channel Selection on Decoding of Motor and Cognitive Imagery from MEG Data 10

Table 1. Number of channels contributing to maximum accuracy using RandF method for session 1 and 2 data in α + β frequency
band using bandpower feature.

Participants Hand vs Foot Hand vs Word Hand vs Math Feet vs Word Feet vs Math Math vs Word
S01 S02 S01 S02 S01 S02 S01 S02 S01 S02 S01 S02

P01 7 7 14 5 16 5 9 7 14 19 11 12
P02 13 11 14 4 23 12 15 12 6 15 9 9
P03 10 8 10 13 10 12 9 9 8 8 14 13
P04 14 11 5 13 8 14 14 16 17 1 12 10
P05 9 9 14 9 7 21 5 6 8 6 16 9
P06 14 6 24 15 11 15 18 17 14 9 18 6
P07 16 6 19 11 14 10 11 10 6 9 14 6
P08 13 12 13 14 9 14 13 10 8 12 10 21
P09 22 12 18 9 13 13 16 9 13 2 13 9
P10 4 13 9 16 10 12 15 18 10 16 18 6
P11 16 11 9 12 14 14 19 18 14 7 12 14
P12 9 19 2 12 3 7 17 12 7 12 9 6
P13 13 11 16 7 10 13 10 11 3 8 5 4
P14 7 5 12 8 15 14 10 5 6 20 7 2
P15 11 18 16 8 9 11 16 18 8 13 11 11
Mean 11.87 10.6 13 10.4 11.47 12.47 13.13 11.87 9.47 10.47 11.93 9.2

hand vs. math mean CA is 74.20%(±14.4), and mean
number of selected channels is 61.67. For feet vs.
word, feet vs. math and word vs math, mean CAs are
76.47%(±15.28), 75.07%(±12.19) and 74.20%(±9.93)
respectively. Clearly mixed imagery has performed
better than motor imagery.

Table 2 describes the maximum CA attained by
each subject using the respective number of channels
(NoC) in a binary classification task in α + β band
using CSP. The channels were selected from session 1
data and tested in the same order on session 2.

Figure 9. Mean between-sessions accuracy averaged over all
classification tasks classification performance with the channels
selected using CSP in all the three bands.

3.3. Selected Channels

Figure 11 displays the contributing channels giving
maximum accuracy in binary tasks classification in α
+ β frequency band (8-30 Hz) using RandF method.
There are three images for every task, i.e. Left
Hemisphere (LH) view, Right Hemisphere (RH) view
, and Top View. For generating Figure 11 fieldtrip
brain template was used along with SPM toolbox. The
channel locations on the template are matched to the
list of optimal channels obtained from the analysis via
MEG channel labels and these channels are shown as
markers on the head template. The plot shows the
approximate location of channels with respect to the
helmet. Figure 11 displays the common contributing
channels for subject’s binary classification tasks in α+β
frequency band. The channels which are contributing
positively and are common to minimum of 3 subjects
are plotted. First, the channels were ranked by RandF
feature importance method and then they were selected
using forward elimination approach. The first triplet
represents selected channels in the case of Hand vs Feet
task using the left hemisphere view, right hemisphere
view and top view respectively. The total number
of contributing channels are shown in Table 1 for all
the subjects and for all binary classes. The red dot
represents the common channel in session 1 and the
green diamond represents common channels for session
2. The channels can be observed in motor areas for
hands and feet. Some shift in channel location can
also be observed. The next triplet represents the Top,
LH, and RH view of the hand vs word imagery task,
respectively. Channels in motor imagery are selected
in frontal, parietal lobe, and occipital lobe. The next
triplet presents the channels for hand vs math tasks.
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Figure 10. Classification accuracy comparison after channel selection in α+β band vs all the channels when CSP was used. The
classification accuracy is obtained after training on session 1 and testing on session 2. NoC : number of channel, opt: optimum

Table 2. Number of channels contributing to maximum accuracy using RandF method for model trained on session 1 and tested
on session 2 data in α + β frequency band using CSP.

Participants Hand vs Foot Hand vs Word Hand vs Math Feet vs Word Feet vs Math Math vs Word
NoC Acc(%) NoC Acc(%) NoC Acc(%) NoC Acc(%) NoC Acc(%) NoC Acc(%)

P01 55 58 25 50 45 53 15 52 85 67 55 55
P02 95 50 25 93 25 70 15 93 75 79 55 77
P03 55 93 55 99 35 98 65 93 35 91 55 84
P04 55 82 35 90 105 57 25 71 55 62 65 73
P05 65 85 35 97 35 99 75 91 65 89 35 83
P06 105 72 15 77 35 80 15 63 55 65 35 66
P07 75 61 65 81 65 64 85 96 55 75 25 71
P08 45 62 15 81 65 79 85 85 55 88 75 67
P09 15 58 35 75 75 59 75 58 55 52 25 82
P10 65 86 65 85 75 82 45 74 35 84 65 74
P11 85 71 85 89 75 71 45 67 75 81 65 83
P12 65 61 55 61 105 70 55 52 95 56 35 54
P13 75 86 65 91 85 88 45 87 105 77 75 80
P14 85 61 85 65 65 56 75 71 95 70 25 75
P15 25 74 45 93 35 87 95 94 35 90 85 89
Mean 64.33 70.67 47.00 81.80 61.67 74.20 54.33 76.47 65.00 75.07 51.67 74.20
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Channels are primarily in motor areas. The next triplet
is for the feet vs word classification task. Again the
majority of channels are in the motor areas. The
next triplet is for word vs math imagery tasks where
channels are evenly distributed over all areas of the
brain. The last triplet represents contributing channels
for feet vs math. Channels in the motor areas as well as
the occipital lobe can be observed. It is worth noticing
that in all the categories, channels in the occipital
region are selected for motor imagery classification.
As the experimental paradigm involved presentation
of a cue (an image) to the participants, the visual cue
may result in positive contributions from the occipital
region channels due to visual display/processing.

4. Discussion

This paper provided an empirical assessment of
the impact of channel selection on MEG based
BCI performance. MEG-based BCI recordings are
conducted using spatially fixed sensor array, and
since participants’ heads are positioned inside helmet,
which is of not exactly same as a participant’s head
size, it is possible to have slight head movements,
which is unintentional. The head movements are not
wanted during any MEG experiment (participants were
advised to keep their head still during the experiment),
but there are unintentional head movements and also
different positioning in the different sessions causes
change in activated sensors. Unintentional head
movements and variable positioning across sessions
may thus cause non-stationarity in the acquired MEG
data and may result in change of optimal selection
of channels across different sessions (for the same
participant) and across different participants. Any
movement in the initial head positions results in lower
accuracy. There is a statistically significant effect
of head movement on the dipole reconstruction as
reported by Stokes et al. [43], which can also result in
lower accuracy from session-to-session transfer. Also,
the number of channels in MEG is much higher
compared to EEG. Fewer trials in MEG based BCI
demands dimensionality reduction, hence there is a
need for the selection of a minimum number of sensors
which contributes positively in the classification of
different mental tasks. Different participants have
different head sizes and it would be difficult to acquire
MRI of all subjects, thus a head template provided
by fieldtrip has been used for this study. This
paper provides an approach to improve classification
accuracy in real-time with the existing MEG system
by accounting for low accuracy due to head movement
and head position in the helmet. The performance
is evaluated with binary CAs across four different
classes. Channel ranking was performed using state-of-

the-art feature selection methods i.e. CC [30], RF [31],
RandF [33], and ILFS [34] followed by the selection
of a set of best channels based on improvement of
CA using a forward elimination method. The impact
of channel selection was studied with two feature
types i.e. power in various frequency bands (α, β,
and α + β) and CSP. Furthermore, the analysis was
performed within-session (10-fold CV) and across-
session conditions (training on S01 and testing on S02).
The study provided several outcomes. Firstly, all
four methods significantly improved the performance
as compared to a baseline method wherein all channels
were included in both within-session and cross-session
conditions. Secondly, the RandF method provided
more stability and overall better CA than the rest of
the ranking methods i.e. CC, ILFS, and RF. Thirdly,
MEG-based imagery BCI performed better with mix-
imagery classification tasks (i.e. combinations of CI
and MI classes e.g. H-W, H-M, and F-M) as compared
to motor-imagery tasks (i.e. H-F). Fourthly, the MEG-
BCI system performed better for the within-session
condition as compared to the across-session condition.
Lastly, the number of best channels selected varies a lot
both across sessions and subjects. Moreover, the list of
best channels for a particular binary classification task
changes across sessions and the pattern is consistent
across all classification comparisons.

Using bandpower as a feature and the RandF
method for channel selection, on average the accuracy
improved by 15.79% using the α band, 15.77% using
β band and 15.67% using α + β band in 10-fold cross
validation over the corresponding accuracies obtained
with all the channels in the respective bands. There
was a marginal increase in CA in the α band compared
to α+β band but there was no statistically significant
improvement overall. It was also observed that ranking
and selecting positively contributing channels helped
to improve the accuracy. From the results it is evident
that the performance of CSP for between-session
accuracy is higher than the bandpower based approach
and the improvement is also statistically significant
(p <0.05, paired-sample t-test). The power of CSP
to minimize the inter-session inconsistencies in feature
distribution is well evident in previous literature [44,
45].However, the use of CSP in this study is two-
fold: first of all using two different features (bandpower
and CSP) we showed that the application of channel
selection algorithm is feature agnostic. This means
that if we use channel selection on top of any feature
extraction technique popular in BCI domain we should
get higher performance than without channel selection;
the second objective was to enhance the between-
session accuracy to a level sufficient for practical
uses such as issuing neurofeedback for rehabilitation
purposes. Due to the presence of a large number



Assessing Impact of Channel Selection on Decoding of Motor and Cognitive Imagery from MEG Data 13

H-F H-W

H-M F-W

W-M F-M

Figure 11. Plot of channels common for minimum of 3 participants for six binary classification imagery tasks for 8-30 Hz using
RandF method. • represents channels in session 01 and & represents selected channel in session 2.
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of channels in MEG data acquisition it is hard to
avoid overfitting even after using CSP. Therefore,
further channels selection was used to reduce the
number of channels, possibly close to a typical EEG
data acquisition settings using the forward elimination
procedure.

When the classifier was trained on session 1 data
and tested on session 2 data there was a sharp decrease
in CA with or without channel selection. However, an
overall increase in CA of 4.64% was observed in the
α band including all experimental conditions. With
regards to binary classification an increase in CA was
observed of 1.8% (H-F), 8.73% (H-W), 4.73% (H-M),
6.27% (F-W), 1.13% (F-M) and 5.20% (W-M) in the α
band (p < 0.05). There was no statistically significant
improvement in H-F and F-M binary classification
categories. By examining the top-ranked channels in
Table 1, it is clear that the numbers of channels are
different between session 1 and session 2. But if the
mean across all subjects is observed, it will be noticed
that there is not a statistically significant difference
overall. Taking the same participant, and the same
activity in two different sessions, a clear reduction
in the channel number is seen. Also if Figure 11 is
observed, a substantial shift in the selected channels’
pattern can be seen in H-F(LH). A similar pattern
can be observed in W-M(LH). Unintentional head
movements and variable positioning across sessions
may cause non-stationarity in the acquired MEG
data and may result in change of optimal selection
of channels across different sessions (for the same
participant) and across different participants. Since,
this conclusion is drawn on a low number of trials, so
the study provides a foundational base for classification
methodology for data with a low trial count.

It is to be noted that positively contributing
channels appear over all brain areas (Figure 11) but
there are some definite changes in selected optimal
channels in cases of mixed imagery and motor imagery.
The plots, show the channels common to 3 or
more subjects which might include variability among
participants. This can be one of the plausible causes
of channels spread over multiple brain areas. The
density of channels is however higher in the functional
brain area of specific activity. For example the density
of channels in motor task is more for motor area
compared to other brain regions. Additionally, it is
now widely known the brain connectivity networks
can be altered while performing imagery tasks which
might contribute towards involvement of channels
from other brain regions. Several studies indicated
significant changes within the fronto-parietal brain
networks during cognitive and motor tasks. Thus,
some additional channels may appear due to brain
region connectivity changes contributing positively for

classification [46, 47]. The contribution of frontal
and occipital areas during hand vs feet classification
is likely to be because the tasks involve imagination
of different real life actions which may activate the
frontal area while occipital channels may be relevant
due to activation of visual processing of different visual
cues [48, 49]. The contribution of fronto-temporal
reason for feet-vs-word task classification is likely to
be because tasks involving word generation and motor
action may activate Broca’s areas which is language
center in human brain [50]. An interesting application
for the outcome of this study would be for a real-
time BCI. For instance, it may be possible to design
a machine learning model that determines the best
channels during the initial trials of an experiment, as
part of calibration. Over the complete session, this
should result in higher classification accuracy. It was
also observed that channels contributing positively to
an MI-based classification remain almost the same for
good participants. Also, it can be observed that mixed
imagery classification performance is significantly
higher than motor imagery; this observation can be
used to design an enhanced paradigm.

Using the forward elimination approach, in some
cases, there were just two channels contributing
positively which would make the application of CSP
techniques problematic as CSP can only be used
on three or more channels. So, in this case CSP
channels were ranked using a RandF method and
then a minimum of the first 15 channels were selected
to calculate accuracy. Then a block of 10 channels
was added to see the change in performance. It
was noticed that the accuracy improved up to 75-85
channels overall and then plateaued or dropped as
seen in Figure 9. Now, as per the previous literature,
researchers have used only sensori-motor area channels
to reduce the total number of channels for motor-
imagery classification. But even when these channels
are selected manually, the number is still in the region
of 80. Channels selected in the frontal and occipital
lobes can also be observed. Similarly for cognitive
tasks, a higher number of channels must be used
for classification. Thus, reliance upon the classical
brain areas may not yield the best results. Using
feature importance helps in improving the classification
performance with a minimum number of channels. As
the trend can be observed from Figure 8, by addition
of channels the CA increases and after a certain point
it either falls or saturates. Though channel selection
helps to improve accuracy, head movement needs to
be accounted for. Channel selection not only reduces
the dimensionality of data but also helps in online BCI
as the computational cost will be lower. Using channel
selection, the number of channels was reduced from 204
to a range of 1-25 using bandpower and 15-105 using
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CSP. This method is also helpful in handling data if
the ratio of trials to number of channels is low, as in
this case, it was 50:204.

From the results it can be concluded that mixed
imagery (i.e. H-W, H-M, F-W or F-M) has shown
better classification accuracy than motor imagery
tasks. For making an effective BCI a blend of channel
selection and mixed imagery can be used. In order
to incorporate channel selection in a real-time MEG
BCI implementation, the minimum number of trials
needed to perform a numerically stable optimal channel
selection was investigated. It was observed that the
order of the ranked channels remains almost the same
after 15 trials. Thus in practice, an optimal channel
selection can be implemented in two ways for a real-
time BCI using MEG: (1) a classifier can be trained
on session 1 data and selected channels from session 1
can be used for session 2 classification using bandpower
and/or CSP; (2) channels can be selected, based on the
first few (mixed) trials (e.g. 15) based on bandpower
or the first n number of channels can be considered
for CSP, where n will be decided by observing data
from same session.Using the second method, improved
performance can be observed in the same session.

5. Conclusion

This paper analysed the effect of channel selection
in improving classification performance for MEG for
the first time. It has been observed, that using
positively contributing channels reduces the channel
count dramatically while the classification accuracy
can be significantly improved both in the case of
bandpower and CSP features, which was consistent
across all the 6 binary classification tasks. However,
CSP requires more channels to perform better than
the bandpower feature. There was a statistically
significant increase (p < 0.05) in performance in all
cases. Additionally, it is also observed that mixed
imagery (e.g. H-W) performed significantly better
than pure MI (e.g. H-F) and CI tasks (e.g. W-M),
which can be helpful in designing a paradigm where
performance is the priority.
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