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2 Joseph D. Bailey, Edward A. Codling

1 Introduction

The analysis and applications of circular statistics to directional data plays
a significant role in the study of many environmental processes from plant
phenology (Morellato et al (2010)) and tree growth (Aradottir et al (1997))
to wind direction (Masseran et al (2013)) and the general movement patterns
of animals and cells (Rivest et al (2016); Landler et al (2018)). Ascertaining
the distribution which most closely describes circular data is important as
characteristics of circular distributions, such as sharper peaks and slow decay-
ing tails, have significant effects on the qualitative and quantitative results of
descriptive and predictive models.

The most common distributions used to describe angular data are the
wrapped normal (WN), von Mises (vM) (or circular normal) and the wrapped
Cauchy (WC) (Jammalamadaka and SenGupta (2001); Mardia and Jupp (2000);
McClintock et al (2012); McClintock and Michelot (2018)). These are defined
by a probability density function (PDF) on the unit circle, and in the case of
the WN and WC distributions, can be formed by ‘wrapping’ the equivalent
one dimensional distributions on the real line around the unit circle (Stephens
(1963); Jammalamadaka and SenGupta (2001); Mardia and Jupp (2000); Abe
and Shimatani (2018)). Although the von Mises and wrapped normal distri-
butions have differing PDF's, the two approximate each other very closely and
produce similar qualitative results (Stephens (1963); Collett and Lewis (1981);
Jammalamadaka and SenGupta (2001); Mardia and Jupp (2000); Codling et al
(2010)). The WC distribution qualitatively differs from the WN and vM as
it has a taller peak around the mean value and heavier tails which decay
more slowly. Hence, many analyses classify angular data as being either hav-
ing a sharp peaks with slow decaying tails (and therefore similar to wrapped
Cauchy) or near normal (and thus either a von Mises or wrapped normal).

In particular, when modelling movement by random walk (RW) or step-
turn processes it is often necessary to understand the distribution of turning
angles and movement directions (Kareiva and Shigesada (1983); Bartumeus
et al (2008); Codling et al (2008, 2010); Parton and Blackwell (2017)). Methods
to determine the distribution which best describes observed directional data
typically involves finding MLE parameters for the model distributions and
choosing between them by the use of a likelihood or distance measure (Nilsen
et al (2013); Li and Bolker (2017)).

Evidence that a WC distribution is the ‘best-fit’ for the distribution of
turning angles or global orientations in a movement path has been found
across a wide range of animals from insects and beetles, such as pea aphids
Acyrthosiphon pisum (Nilsen et al (2013)) and the Baltimore checkerspot but-
terfly Euphydryas phaeton (Brown and Crone (2016)) to larger animals such
as common brushtail possums Trichosurus Vulpecula (Postlethwaite and Den-
nis (2013)), cow elk, Cervus elaphus, (Morales et al (2004)), free-range cat-
tle Nothofagus Antarctica (Seoane (2015)), Florida panthers, Puma concolor
coryi, (van de Kerk et al (2015); Li and Bolker (2017)), California sea lions Za-
lophus californianus (Breed et al (2012)), Giant tortoises Testudinidae (Blake
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Emergence of the wrapped Cauchy distribution in mixed directional data 3

et al (2013)), american lobster Homarus americanus (Bowlby et al (2007))
and seals Erignathus barbatus and Monachus schauinslandi (McClintock et al
(2015)). The studies mentioned above range from high frequency data having
locations given every second to large scale movement with data sent every
24hr.

In comparison the WN or vM distribution has been reported across a sim-
ilarly wide range of animals, from E. coli bacterium (Taylor-King et al, 2015),
Fender’s blue butterfly Icaricia icarioides fender (Schultz and Crone (2001))
and bog fritillary butterfly Proclossiana Eunomia (Schtickzelle et al (2007)) to
larger animals such as red-cockaded woodpecker Picoides borealis (McKellar
et al (2014)), lesser black-backed gull L. fuscus (Taylor-King et al (2015)), king
penguin Aptenodytes patagonicus (Pistorius et al (2017)), reindeer Rangifer
tarandus (Langrock et al (2014)) and southern elephant seal Mirounga leonine
(Michelot et al (2017)).

A Dbasic search on Google Scholar reveals that whilst both types of distribu-
tion have been frequently used and reported in recent animal movement data
analyses, there has been a marked increase in the prevalence of the WC dis-
tribution over the last 10-15 years. A key word search of “animal movement”
and “wrapped Cauchy” returns only 22 articles published before 2008, com-
pared to the equivalent for either “von Mises” or “wrapped normal” returning
81, a four-fold difference. However, since 2008 this ratio has halved with 200
articles mentioning WC and 398 for WN demonstrating a marked increase in
the prevalence of the WC distribution.

One biological interpretation of the presence of a WC distribution is that
the individual mainly travels on a near constant bearing, with the majority of
turns occurring within small deviations from 0 whereas medium to large turns
happen only occasionally but with a similar frequency. This would indicate
the animal has a tendency for sudden large changes in direction of movement,
rather than a gradual change in orientation over a course of a series of larger
turns which would be expected from a normal or Gaussian distribution. Var-
ious RW movement models have shown that observably different qualitative
and quantitative results are produced depending upon whether a WC or vM
distribution has been used (Bartumeus et al (2008); Codling et al (2010)),
demonstrating the importance of accurately determining the underlying dis-
tributions.

If the way in which data is collected, analysed or processed can affect how
well a candidate distribution fits the observed data then this needs to be well
understood and acknowledged. For example it has been shown that errors in
GPS data locations can give rise to spurious large 180° turns, which would
enhance the slow decaying tailed nature of recorded turning angles (Jerde and
Visscher (2005); Hurford (2009)). Other reported issues with data collection
which artificially increased the number of large turns include the effect of
recording data in a restricted area, where edge effects can cause sudden large
turns as the animal encounters a wall. Young et al (2013) found that flour
beetles, Tribolium confusum took smaller steps with larger turn angles closer to
the border of the experimental setup, which resulted in a distribution with slow
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4 Joseph D. Bailey, Edward A. Codling

decaying tails. Similar results relating the experimental setup to artificially
enhancing the presence of distributions with slower decaying tails (such as
a WC) has been recorded in other species such as parasitic wasps, Encarsia
formosa (Drost et al (2000)).

When considering movement behaviour it is known that animals can ex-
hibit different movement modes when travelling (Schtickzelle et al (2007); Gu-
rarie et al (2016); Cagnacci et al (2016); Nicosia et al (2017)), perhaps due
to switching from a foraging/exploration phase to an encamped/feeding phase
which can lead to periods of small turns followed by periods of larger turns
(McClintock et al (2015); Torres et al (2017); Nicosia et al (2017)). Similarly,
changes in the terrain or climate could alter the movement behaviour (Pat-
terson et al (2009); Dahmen et al (2017); Pérez-Barberia et al (2015)). The
qualitative behaviour of each movement phase will be best described by a
specific model and set of parameters and if these strategies are not known a
priori the movement data could be analysed under the assumption of a single
movement strategy resulting in the mixing of the data from the individual be-
havioural states. The simplest example of such multiple movement behaviour is
a two state movement model where one phase is described by large variability
in turning angles between steps relating to highly tortuous movement perhaps
indicative of foraging or encamped behaviour, and another phase with more
directed, straighter movement where the deviation in turning angles from the
mean is smaller, akin to purposeful goal based movement or flight behaviour
(Patterson et al (2010); Langrock et al (2012); Jonsen et al (2013); Nams
(2014); Parton and Blackwell (2017); Nicosia et al (2017); McClintock and
Michelot (2018)).

Here we demonstrate that a single wrapped Cauchy distribution can appear
to fit directional data mixed from two different underlying wrapped normal
distributions. We derive analytical expressions used to calculate the parame-
ter space for which this occurs. Our results show that, in general, when the
two WN distributions forming the mixed distribution have a large difference
in their respective concentration parameters (> 0.5) a WC is the best fitting
single distribution, indicating that a mixed distribution can enhance the ap-
pearance of a slow decaying tails in the distribution of turning angles when
interpreted as a single distribution.

2 Background: Circular Statistics and Distributions

A symmetric wrapped stable (SWS) distribution has the density function given
by:
1 e}
Fows(B:p,18) = 5 (1 +2) " cosn(6 — u)) L neN, (1)

n=1

where p € [0,1) is the concentration parameter, y € [—m,m) is the location
parameter around which the distribution is symmetric and a € (0,2], with
0 € [—m, ).
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Emergence of the wrapped Cauchy distribution in mixed directional data 5

In the specific case for a = 1 the SWS distribution returns the WC dis-
tribution and for a = 2 we get the WN distribution (Jammalamadaka and
SenGupta (2001)).

It is well known that for any given WN distribution a vM can be found
as an accurate approximation (Stephens (1963); Collett and Lewis (1981);
Jammalamadaka and SenGupta (2001)). Hence, both give qualitatively sim-
ilar results when used in random walk (RW) models (Codling et al (2010)).
Therefore, we consider only a WN distribution as it allows for easier algebraic
manipulation.

If we let the SWS be centred around 0 or £, (1 = 0, %7), then p"* = a,,,
where «,, is the nth cosine moment of fsys. Note that in this case we need
only consider the cosine moments as the sine moments are 0 (Mardia and Jupp
(2000); Jammalamadaka and SenGupta (2001)).

2.1 Mixed wrapped distributions

One can also consider distributions formed by mixing two circular distribu-
tions, fmd, where random variables are drawn from one of the two distributions
according to a certain probability, w. Defined as,

Jma(O;w) = wfi() + (1 —w) f2(0),

where f; and fy are SWS distributions and w € [0,1] is defined as the
mixing parameter of the two initial distributions. Note that the trivial cases
for w = 0,1 are equivalent to fi,q = f2 and fiq = f1 respectively.

Lemma 1 Let f,,4(0;w) be a distribution formed by mizing two SWS distri-
butions centred around zero (= 0), then fnq itself is a wrapped distribution

) ) 4.
with cosine moments, a;{lm }, given by

o = ol + (1 - w)al?),

where a{ }, av{L Y are the nth cosine trigonometric moments of f1 and fo

respectively.

Proof Lemma 1 follows directly from the definition of f,q and feys-
As both f; and fy are SWS distributions with g = 0, we have

fmd()—w* (1"‘22@{1}008719)4-(1— <1+22a{}005n6>

217r (1 +2 Z [wa{l} + (1 —w)a {2}] cos(n6’))

n=1

This is the form of a general SWS given in (1) centred around 0 with
trigonometric moments wa,{ll} + (1 - w)ar{?} as required. Note, as fmq is a
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6 Joseph D. Bailey, Edward A. Codling

wrapped distribution, symmetric around g = 0 the trigonometric sine mo-
ments are all 0 and hence the trigonometric moments of f,q are purely the
cosine moments.

2.2 Determining between best-fit circular distributions

When calculating a measure of the distance between two given PDF's, one can
consider many statistical measures (Gibbs and Su (2002)). However one of
the simplest is to consider the sum of the squares of the differences between
the distributions across their domain; equivalent to finding the L2-distance.
Hence, we will consider the distance, d(-, -) between two continuous probability
functions, f and g, over the finite domain X as

d(f.g) = / @) g(o) da

We use the L? distance throughout this study as it allows for simple alge-
braic manipulation, however Online Resource 1 (Figs. S1-S4) detail the results
of using other metrics, found using simulations and show they are qualitatively
similar to those found using the L? distance (Figure 1). Therefore, when com-
paring between multiple PDFs we infer the closest fitting distribution as the
one which minimises, d, the L? distance.

3 Fitting individual wrapped distributions to a mixed distribution
3.1 Statement of main claim

Here we consider a mixed distribution formed from two WN distributions
and demonstrate the parameter space for which it is best described by either
a single WN or single WC distribution. By considering the L? distance we
derive expressions for calculating the best-fitting WN and WC distributions
as functions of the parameters of the mixed distribution. Subsequently we
determine the parameter space for whether a WN or WC best describes the
mixed distribution, by selecting the distribution with the smallest L? distance.

Proposition 1 Let f,,q be a mized wrapped distribution formed by mizing two
wrapped normal distributions, defined as

fmd(e;ﬂ()aplvp%w) = wfum(e;ﬂmpl) + (1 - w)fum(e;ﬂOapZ)v (2)
for 8 € [—m,m), with po € [—m,7), p1,p2 €[0,1) and w € [0,1]. Define
Aum(pv H) =d (fum(g; P, ,U')a fmd(e; Mo, P1, P27w)) ;
Aye(p, 1) =d (fue(0;p, 1), fina(0; po, p1, p2,w)) -

Let pun, Pwn minimise Ayp and pye, fwe minimise Aye.. Then there always
exists p1, P2, w:
ch(pww :LLUJC) < Awn(pwn: N'UJ'VL)‘
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Emergence of the wrapped Cauchy distribution in mixed directional data 7

As Ay, and Ay, give the values of the L? distance for each distribution
compared to fi,q, the smaller value of Ay, and Ay, indicates the closer fitting
distribution.

Note, as both distributions forming the mixed distribution, f,q4, are from
the same family of distributions (2) without loss of generality we can consider
the distribution with concentration parameter p; to be the distribution which
has the smaller probability of being chosen and, therefore, by symmetry we
need only consider w € [0,1/2].

We only consider the distributions within the mixed distribution fy,q to
be WN rather than WC as the latter leads to the mixed distribution always
being classified as a single WC and our main concern is determining when a
slowly decaying tailed distribution fits data from distributions with normal
type tails (see Online Resource 2 for a complete discussion of this along with
the results of having a WC and a WN as the initial mixed distributions).
More generalised cases, such as when one distribution is centred at +7 and
having a mixed distribution formed of multiple underlying distributions, are
commented upon in the Discussion (sect. 6) as well as in Online Resources
4-5.

To demonstrate this proposition we give an analytical method for calcu-
lating the specific parameter values which minimise Ay, and Ay, for fixed
p1, P2, w. By directly comparing these minimised values we show the parameter
space for which the WC distribution (or WN) is the closest fitting distribution
when the L? distance metric is used.

3.2 Demonstration of main claim

First we note that if we assume both underlying WN distributions are centred
around the same value, here p = 0, then clearly fiq is centred around the
same value also, fmg = 0, and we must have fiyn = fiwe = mda = 0 (Mardia
and Sutton (1975)).

Using Lemma 1 we can write f,q from Prop. 1 as

Jmd = QL (1 +2 Z afmd} cos(n@)) )
s

n=1

with

(Y?{‘Lmd} — W(Y,,{ll} ¥+ (1 _ (d)()(,,{12}7
where ozr{Ll} and a,{f} are the nth cosine moments of the WN distributions with
concentration parameters p; and py respectively.
2
Recalling that o)™ = pi,,, we have

oA = wpt® 4 (1 w)p.
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8 Joseph D. Bailey, Edward A. Codling

We now show that when considering the L? distance between two zero cen-
tred SWS distributions it suffices to calculate the sum of the squares of the
differences between their respective cosine moments.

Lemma 2 Let f1(0) and f2(0) be SWS distributions centred around 0 with
{2}

. 1
cosine moments a,{l ¥ and oy

d(fh f2) = %i (a;{Ll} - a;{LQ}>2

n=1

respectively, then

Proof As f1(0) and f2(0) are zero-centred SWS distributions, the square of
the difference between the distributions at any given value of § € [—m,7) is
given by

2
[f1(0) = f2(0)]" = llw ( a;{bl} Cos(n9)> (1 +22a{2} cos(nb) )]
2
IS () ng] ’
S CIE) P

integrating over [—m, ) with respect to 0 gives

oo 2
/_7T [£1(0) = f2(0))* db = / Llr Z (a,{ll} - a,{f}) cos(nH)] dé.

- n=1

Expanding the right hand side gives

e 2
Z (a,{ll} - a;{f}) cos?(nf)
n=1

+ Zi i <al{1} - 0%{2}) (043{.1} - aj{.z}) cos(i0) cos(j@)] dé,
i=1 j=i+1
= % ni::l (a;{ll} - a;{f})z /_: cos?(nd) dd

+2§: i (agl} _ ap}) (a§1} _ a}ﬂ) / " cos(i0) cos(j6) d@],

i=1 j=i+1

noting that the integral in the first term yields 7 and the integral in the second
gives 0, this expression reduces to
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Emergence of the wrapped Cauchy distribution in mixed directional data 9

IR

For a more complete derivation including the intermediary steps see Online
Resource 3

Therefore, we can re-write Ay and Ayn as

(oo}

AWC(/), 0) :% Z (a;{ZWC} _ a;{Lmd}>2 _ %Z |:pn _ (wp?z n (1 B w)pgg)}Q ,
n=1 n=1
3)
1 2 1 2 2 2\ 72
Aun(p0) == 3 (™ —afm )" = =37 [ = (wpt” + (1 —w)ps”)]
n=1 n=1
(4)

As pywe and pyy, are the values which minimise Ay, and A,,, respectively, they
can be found by differentiating (3) & (4) with respect to p and equating for 0.
Hence, we require

d 1 = n—1 n n? n?
0= 7dpAWC = 321 2np [P — (wpt + (1 —w)py )} ) (5)
0= LA, = EOC 22 [ = (wpt + (1= w)py )] (6)
dp~ " w — ! 2

The precise values of p which satisfy (5) & (6) will therefore be the values for
Pwe and pyy respectively, and can be found via numerical methods. Substitut-
Ing pwe and pyn back into the expressions for Ay and Ay, in (3) & (4) yield
the respective minimum values. We can now determine the parameter space
of p1, p2,w for which a WC distribution is favoured over a WN distribution
when compared to fig by considering when Age(pwe, twe) < Awn(Pwns twn)-
Therefore, calculating

DA = ch(pwmo) - Aum(pwnvo)>

will give us an indication, not only of which distribution is favoured (negative
in the case of a WC and positive for a WN), but also the relative ‘strength’;
that is the larger the absolute value, the larger the difference in the L? distance
between the distributions, and thus the closer the preferred distribution is to
the mixed distribution.

%%Figure 1 here%%
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10 Joseph D. Bailey, Edward A. Codling

4 Results

Fig. 1 shows the results of plotting D across the parameter space of p1, p2, w
with the areas in yellow (areas bounded by the dashed line) representing com-
binations for which the WN distribution is considered closer to the mixed
distribution f,q and blue areas showing where a WC is considered closer; the
darker the colour the stronger the preference.

In the simplest case where the mixed distribution is formed by mixing the
two underlying distributions equally (w = 0.5; Fig 1K) the plot is symmetric
about the lead diagonal (corresponding to p; = p2) as expected, with the WN
favoured whenever |p; — p2| is small. The areas for which the WC is favoured
occur predominantly when the difference between p1, po is large (|p1 — p2| >
0.5). However, in the case when both concentration parameters are greater
than 0.5, the area for which a WC is favoured is much smaller occurring now
only if 5p1 — pa > 4 (or 5ps — p1 > 4).

In general the plots remain almost unchanged across 0.35 < w < 0.5 (Figs
1H-J). In particular, the areas of the plots above the lead diagonal (correspond-
ing to p1 > pa) remain remarkably unchanged for 0.1 < w < 0.5. However, as
w — 0 the area favouring the WC (blue) begins to vanish (demonstrated in
Fig 1B with w = 0.05) and disappears entirely when w = 0 (Fig 1A) due to
the the definition of the mixed distribution, fma (2) (w = 0 is equivalent to
fmda = fo and since fo was chosen to be WN it will never be best classified as
WO).

Considering now the areas of the plots below the lead diagonal (correspond-
ing to p2 > p1), as w decreases below 0.3 (Fig. 1A-G) the area favouring the
WC shrinks and only exists for large values of ps (> 0.8). And for w < 0.15,
corresponding to distributions where the majority of angles are drawn from
the distribution with parameter ps, the plots indicate that there is no combi-
nation of parameters for which the WC will be favoured when ps > p; (Figs

1A-C).

5 Example: analysis of elephant movement

As an example of data which is well-fitted by a single WC and after a simple
analysis appears to be better fitted by a mixed distribution, we use tracking
data from bull African elephants Loxodonta africana previously published in
Wall et al (2014b)). Here, location data were recorded for two elephants, we
consider the data for the elephant id: Habiba which had locations recorded
every 15 minutes for a period of over 4 days giving 1522 data points (data
from Movebank data repository; Wall et al (2014a)). Turning angles were
found by calculating the difference in bearings for subsequent pairs of locations.
Visual inspection of the movement path (Fig. 2A) appears to show segments of
high tortuosity where the movement path includes large variations in turning
angles, along with periods of more straight-line behaviour with mainly small
deviations in direction and fewer larger turns. Simply pooling the turning
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angles across the entire path gives the distribution shown in Fig. 2B. Using the
standard practice of best fitting a WN and WC distribution using the packages
in R (in this case CircStats) reveals that a WN (black dotted, py, = 0.3558)
is a poor fit, whereas a WC (black dashed, pwe = 0.4385) is a close fit (Fig
2C). If instead, we assume turns are drawn from two distinct distributions,
we can consider the observed data to be a mixed distribution (as in (2)).
Further assuming that the underlying distributions are WN, the best fitting
mixed distribution can be found by simply comparing the density distribution
of the observed data (calculated using the circular package in R (R Core
Team (2018)) with all possible mixed distributions formed with parameters
p1,p2,w at 0.01 intervals, selecting the specific combination of parameters
which minimises the L? distance. In this case we find that the best fitting
mixed distribution is one with p; = 0.20,p2 = 0.91,w = 0.71 (Fig 2D). In
calculating the continuous density curve for the discrete observed data, the
bandwidth used was the automatic selection from R as would be the case for
a simple initial analysis, however, fixing this width at other values did not
change the qualitative results.

When comparing this mixed distribution with the best fitting WC we see
that both are close matches (Fig 2C & 2D), however, as the visual inspection
of the movement path indicated more than one movement behaviour, then
one could conclude the mixed distribution is the better for describing the
movement as it implies that the turning angles across the elephant’s path
came from two distinct distributions. With the value of w indicating that 29%
of angles were drawn from a highly peaked distribution and 71% from a flatter,
more uniform distribution.

The possible presence of a mixed distribution could indicate two distinct
movement behaviours over the path, with one behaviour admitting turning
angles drawn from a distribution tightly peaked around 0 and the other be-
haviour with angles taken from a flatter distribution. However, it should be
noted that one cannot use this analysis as a method of predicting such multi-
ple state behaviour, as it provides no information of the movement state any
given part of the path is likely to be in, neither does it provide a ‘switching’
parameter which determines the likelihood of switching between states; as is
expected in behavioural state analyses although w acts as a proxy for this
(Johnson et al (2008); Patterson et al (2009); Parton and Blackwell (2017);
McClintock and Michelot (2018)). Similarly, it does not consider any other
covariates or parameters of the movement path typically used in CRW move-
ment models, such as step-length or bout distribution, nor any correlation
between these parameters (i.e. having smaller step lengths when the variation
in turning angle is large and vice-versa). All of which can be considered by the
use of cylindrical distributions (Abe and Ley (2017); Imoto et al (2019)).

A method of analysis which does consider switching parameters and other
covariates to predict behavioural states is the momentuHMM package in R
which was introduced in McClintock and Michelot (2018) and used to analyse
the companion elephant dataset from Wall et al (2014a). The results found by
applying this analysis to these data gives the best-fitting mixed distribution
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formed from WN distributions to be one with concentration parameters p; =
0.11, po = 0.80 and a mixing parameter of w = 0.56 (The package requires
using von Mises rather than WN distributions, however, as has been discussed
these distributions are known to be similar).

Whilst the results found considering a mixed distribution and those found
using the momentuHMDM package are qualitatively similar, they are not equiv-
alent since the HMM method of McClintock and Michelot (2018) specifically
attempts to identify periods of distinct behaviour taking into account var-
ious aspects of the movement path, whereas, our results simply looked for
the distribution which best described the distribution of turning angles. The
observation that the outcomes are similar indicates that this analysis on the
distribution of turning angles can give credible results for the underlying dis-
tributions of turning angles and identifying the presence of multiple movement
behaviours. Also, in the specific case where HMM techniques wish to be used
to analyse movement behaviour, using the mixed analysis approach to provide
an initial parameter selection for the concentration and switching parameters
could be beneficial due to HMMs sensitivity to the set of initial conditions.

%%Figure 2 here% %

6 Discussion

Accurately identifying parameters of movement models is clearly crucial when
analysing, predicting and understanding animal behaviour. Identifying the
most accurate distribution in turning angles is important as differing distribu-
tions can result in noticeably different predictive outcomes (Bartumeus et al
(2008); Codling et al (2010)). In movement data analyses it is often assumed
that angles are drawn from a single underlying distribution, here we have
demonstrated the parameter space for when a mixed distribution can be best
described by a single distribution with either a normal type, WN, or a sharply
peaked and slowly decaying tailed distribution, WC; two distributions com-
monly associated with the analysis of directional movement.

Our results indicate that a mixed distribution formed from two WN dis-
tributions will, in general, be best fitted by a WC distribution when the dif-
ference between the concentration parameters of the underlying initial WN
distributions is large (|p1 — p2| > 0.5). This has been reported when analysing
and classifying animal movement behaviour into two movement states, such
as “foraging” and “exploratory” (Langrock et al (2014); Nicosia et al (2017);
McClintock and Michelot (2018)) The characteristic distributions found in
such movement include a flat almost uniform distribution attributed to the
“foraging” stage, and would be equivalent to a low concentration parameter
in a SWS distribution, along with another much more peaked distribution
for the “exploratory” phase, given by a distribution with a concentration pa-
rameter close to 1. Evidence of such results after model fitting have been
observed in a range of animals including American lobster, Homarus amer-
icanus, (Bowlby et al (2007)), African elephants (McClintock and Michelot
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(2018)), Cataglyphis desert ants (Dahmen et al (2017)), caribou (Nicosia et al
(2017)) and elk, C. elaphus, (Parton and Blackwell (2017)). Specifically, Lan-
grock et al (2014), found that reindeer in a 2 state model exhibited angular
distributions described by a von Mises distribution with £ = 0.246 (approx-
imately equivalent to a WN with p = 0.1218) for the “foraging” behaviour
and k = 3.517 (approximately equivalent to a WN with p = 0.8389) for the
“exploratory” behaviour.

Here we assumed that the mixed distribution was formed from underlying
distributions both centred at 0, however, it has been observed that the un-
derlying distributions may be centred at 0 and +x. This has been found in
the movement of female wolves (Mastrantonio et al (2019)), muskox (Pohle
et al (2017)), American bison (Langrock et al (2012)) and elk (Patterson et al
(2016)). It can be shown that, similar to the the results found here, both the
WN and WC distribution are the single favoured distribution in certain cases
(see Onmline Resource 4). However, in general, detection of such mixed be-
haviour is more readily observable as the resulting mixed distribution would
appear bimodal, with a peak (usually higher) at 0 and another (generally
lower) at +m. This bimodal behaviour would be the indicator that a mixed
distribution, rather than one single distribution, should be considered. In con-
trast, when both distributions are centred at the same value, determining the
presence of multiple underlying distributions is not usually clear. Similarly, the
case for when one of the underlying distributions is centred at a point other
than 0 or +7, would be expected to demonstrate bimodal behaviour. This case
is not considered here and as in terms of animal movement it would imply an
animal had a preference for consistent turning regardless of the direction faced,
giving a helical movement path. However, this is not uncommon, and has been
observed in movement data including; sunfish (Drucker and Lauder (2001)),
thrushes (Da Silveira et al (2016)), elk (Fryxell et al (2008)) and wolves (Mas-
trantonio et al (2019)).

That this relatively straight forward approach of analysing movement data
revealed results consistent with those using more complex methods is interest-
ing as it relies solely on the angular data. However, as it gives no information
as to which distribution any particular part of the movement path belongs,
it cannot be used as an indicator of states of behaviour. Discovering when
a period of movement comes from a particular state with prescribed model
and parameter set is an active area of research, and as such there has been
much work on behavioural change point analysis (BCPA) utilising a range of
methods from hidden Markov models (HMMs) (Michelot et al (2016); Jonsen
(2016); McClintock and Michelot (2018)), Markov chain Monte Carlo processes
(McClintock et al (2012); Parton and Blackwell (2017)) and switching Markov
models (Nicosia et al (2017)), to wavelet analysis (Polansky et al (2010)) and
time series CUSUM techniques (Knell and Codling (2012)) (see Gurarie et al
(2016), for a more complete list). Currently the analysis described here may
be used to predict the values of the initial distributions required in HMM
techniques (Michelot et al (2016); Jonsen (2016); McClintock and Michelot
(2018)), but could also be extended to predict breaks in behaviour by includ-
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ing additional ‘smoothing’ techniques in order to ascertain when a change from
using one distribution to another has occurred, most likely utilising a time-
series break point analysis such as that used in Knell and Codling (2012). For
this to be the case, many improvements would be needed in the method for
finding the p1, p2, w parameters, for example a more efficient search algorithm,
(for example, the Nelder-Mead algorithm (Nelder and Mead (1965))) could be
used rather than the slow parameter sweep used in section 5.

These results indicate that when techniques such as HMMs (Michelot et al
(2016); McClintock and Michelot (2018)), switching Markov models (Nicosia
et al (2017)) or state-space models (Patterson et al (2010)) are used to ascer-
tain the number of movement states from telemetry data, it would be necessary
to include more states when the assumed distributions for angular data are
of normal-type (WN or vM) compared to using WC distributions. In such a
case the resulting best-fitting model will be easier to interpret, with each single
distribution more likely to describe a single movement behaviour. For example
Pohle et al (2017) determined that, when considering von Mises distributions,
5 states gave the most parsimonious model in the analysis of muskox move-
ment. Had a wrapped Cauchy been used instead of a von Mises, this work
indicates that the expected number of states would have been lower, as the
WC distribution can better capture distributions with slower decaying tails or
bimodal behaviour.

Although only 2 distributions were considered in forming the mixed dis-
tribution here, the results generalise when including multiple underlying dis-
tributions (Online Resource 5). There are many other potential avenues for
enhancing and extending the work shown here, for example, this method could
be extended to mixing more than two normal distributions by simply including
more p; and mixing ratio terms in the summation for the mixed distribution
and editing the subsequent calculations appropriately. However, interpreting
the results obviously increases in difficulty due to the increasing dimension of
the required parameter space. It should be noted that Jammalamadaka and
Kozubowski (2017) have shown that a WC distribution can in fact be recovered
precisely when one considers mixing an infinite number of WN distributions
and therefore taking the mixture distribution as a continuous function across
all possible concentration parameter values in [0, 1] for the initial WN distri-
butions.

Whilst we chose to focus on two particular distributions, other wrapped dis-
tributions such as wrapped Gompertz and the wrapped exponential have also
been used to describe animal movement (Roy and Adnan (2012); Ravindran
and Ghosh (2011)) and could be included in a more complete analysis. Sim-
ilarly, other distributions on the unit circle such as the Jones-Pewsey (Jones
and Pewsey (2005)), Kato-Jones (Kato et al (2013)) and wrapped ¢ (Pewsey
et al (2007)) could have been considered, as could cylindrical distributions
(see Abe and Shimatani (2018) for a discussion of common cylindrical distri-
butions). However, these are all multi-parameter distributions and as such can
prove computationally harder to fit to actual data. Since our main aim here is
to illustrate a possible mechanism for how distributions, such as the wrapped
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Cauchy, may emerge in observed directional data, a full and and complete
classification of mixed circular distributions along with their combinations, is
beyond the scope of this work. Instead, this work highlights the importance
the choice between the most common distributions used in directional data,
can have to practitioners.
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Figure Legends

Figure 1: Plots demonstrating the parameter space for where a single WC or WN is the
favoured distribution for pq, p, € [0,1] calculated at 0.001 intervals with the mixing ratio w €
[0,0.5] at 0.05 intervals (due to symmetry the results for w > 0.5 are not displayed). Areas in
blue (dark grey — printed version) indicate parameter combinations for which the WC was
favoured whereas areas in yellow (light grey — printed version) show combinations for which
the WN was favoured. The dashed black line indicates where the transition from preferred

distribution occurs.

Figure 2: Movement data analysis of African elephant (ID: Habiba) from Wall et al (2014a).
(A) shows the recorded movement path; (B) the corresponding turning angle distribution
(grey); (C) the best fitting WC distribution (black-dashed; p,,. = 0.4385) and best fitting WN
(black dotted; p,,,, = 0.3558); (D) the best fitting mixed distribution (black — dashed and
dotted) determined by numerical simulations with parameters p; = 0.20,p, =091, w =
0.71. Thin black dashed line corresponds to a WN with concentration parameter p; and the

black thin dotted line corresponds to a WN with concentration parameter p,.



2d

2d

¢d

0=0

FigRi 1

| I I I o
80 90 ¥0 20 00
2d

ed

¢d

¢d

w o

I 11— 1o

0L 80 90 ¥0 20 00
2d

0.8

P1

Lo
o
I
<

0.4

0

K .
0L 80 90 ¥0 20 00
ed

0.8
P1

04

0

-

0L 80 90 ¥0 20 00
ed

0.8

P1

<
o

I
<

04

0

0L 80 90 ¥0 20 00
ed



Figure 2

Elephant Movement
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