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ABSTRACT In this article, we study the performance of an uplink non-orthogonal multiple access
(NOMA) network under statistical quality of service (QoS) delay constraints, captured through each
user’s effective capacity (EC). We first propose novel closed-form expressions for the EC in a two-user
NOMA network and show that in the high signal-to-noise ratio (SNR) region, the “strong” NOMA user,
referred to as U2, has a limited EC, assuming the same delay constraint as the “weak” user, referred to as
U1. We demonstrate that for the weak user U1, OMA and NOMA have comparable performance at low
transmit SNRs, while NOMA outperforms OMA in terms of EC at high SNRs. On the other hand, for
the strong user U2, NOMA achieves higher EC than OMA at small SNRs, while OMA becomes more
beneficial at high SNRs. Furthermore, we show that at high transmit SNRs, irrespective of whether the
application is delay tolerant, or not, the performance gains of NOMA over OMA for U1, and OMA over
NOMA for U2 remain unchanged. When the delay QoS of one user is fixed, the performance gap between
NOMA and OMA in terms of total EC increases with decreasing statistical delay QoS constraints for the
other user. Next, by introducing pairing, we show that NOMA with user-pairing outperforms OMA, in
terms of total uplink EC. The best pairing strategies are given in the cases of four and six users NOMA,
raising once again the importance of power allocation in the optimization of NOMA’s performance.

INDEX TERMS Beyond 5G (B5G), effective capacity, low latency, non-orthogonal multiple access
(NOMA), quality of service (QoS), user-pairing.

I. INTRODUCTION

NON-ORTHOGONAL multiple access (NOMA)
schemes have attracted a lot of attention recently,

allowing multiple users to be served simultaneously with
enhanced spectral efficiency; it is known that the boundary
of achievable rate pairs using NOMA is outside the capacity
region achievable with orthogonal multiple access (OMA)
techniques [1]–[5]. Superior achievable rates are attainable
through the use of superposition coding at the transmitter
and of successive interference cancellation (SIC) at the
receiver [6]. The SIC receiver decodes multi-user signals
with descending received signal power and subtracts the
decoded signal(s) from the received superimposed signal, so

as to improve the signal-to-interference ratio. The process
is repeated until the signal of interest is decoded [7]. The
interest in NOMA is linked to the multiple possibilities it
offers, for example, in massive machine type communi-
cations (mMTC) systems where a large number of smart
Internet of Things (IoT) devices try to access the shared
resources simultaneously.
In uplink NOMA networks, the strongest user’s signal is

decoded first (reverse order with respect to the downlink).
However the use of SIC limits the promised performance
gain brought by NOMA due to error propagation [8]–[10].
The authors in [11] introduce an iterative interference can-
cellation (IIC) detection scheme for uplink NOMA, and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2020 1691

HTTPS://ORCID.ORG/0000-0001-9300-6978
HTTPS://ORCID.ORG/0000-0002-4458-3696
HTTPS://ORCID.ORG/0000-0002-7322-6794
HTTPS://ORCID.ORG/0000-0001-7364-7663
HTTPS://ORCID.ORG/0000-0002-5276-1157


BELLO et al.: ASYMPTOTIC PERFORMANCE ANALYSIS OF NOMA UPLINK NETWORKS

proposed a new detection scheme based on IIC, which is
called advanced IIC (AIIC). Its shown that the bit error rate
performance of AIIC is much better than that of SIC.
Similarly, the combination of NOMA with other

emerging techniques and technologies such as new mod-
ulation techniques, user pairing, resource allocation algo-
rithms (power and channel), MIMO, etc., improves its
performance [12]–[16]. The authors in [17] investigate the
optimal power allocation in a NOMA system with two users,
analyze user pairing in a NOMA system with four users
and propose a closed-form globally optimal power allo-
cation solution for a general NOMA downlink networks.
In [18], an iterative gradient ascent-based power alloca-
tion method is proposed for downlink NOMA that achieves
better performance compared to fixed and fractional power
allocation strategies.
Furthermore, the power allocation strategy for energy effi-

cient improvement in a downlink NOMA system is discussed
in [19]. A novel power allocation algorithm based on par-
ticle swarm optimization is presented in [20]. To tackle the
power allocation problem in downlink multi-carrier NOMA
networks, a dynamic power allocation algorithm is proposed
in [21], while a joint subchannel and power allocation is
proposed based on the Dinkelbach algorithm in [22]. In the
same framework, the joint power allocation and time switch-
ing control for energy efficiency optimization is investigated
in [23], with the aim to optimize the energy efficiency of
the system under maximum transmit power budget among
others.
In [24], a novel prioritization-based buffer-aided relay

selection scheme which is able to combine NOMA and OMA
transmission in a relay network is proposed and an analyt-
ical expression for the average throughput of the proposed
scheme is derived. In [25], dynamic and fixed power con-
trols at users are discussed in the case of a cooperative
uplink system with a buffer-aided NOMA and OMA trans-
mission and an efficient buffer-aided hybrid NOMA/OMA
based mode selection scheme is proposed. A hybrid OMA-
NOMA scheme is presented in [26], in which NOMA is only
employed if all users gain in terms of effective rates. Finally,
NOMA offers a natural scenario for physical layer security
as one user’s signal is naturally degraded with respect to
the other’s [27] and constitutes the equivalent of a helping
interferer [28].
Besides, in a number of emerging applications, delay

constraints become increasingly important, e.g., ultra reli-
able low latency communication (URLLC) systems such
as autonomous vehicles and enhanced reality. Furthermore,
in future wireless networks, users are expected to necessi-
tate flexible delay guarantees for achieving different service
requirements. In order to satisfy diverse delay requirements,
a simple and flexible delay quality of service (QoS) model is
imperative to be applied and investigated. In this respect, the
effective capacity (EC) theory can be employed [29]–[31].
The EC denotes the average maximum constant arrival rate

which can be served by a given service process, while
guaranteeing the required statistical delay provisioning [32].
The delay-constrained communications for a downlink

NOMA network was studied in [33], where the EC the-
ory was utilized. The present analysis on uplink com-
plements [33] which focused on downlink transmissions.
NOMA, as a more spectrum-efficient technique, is consid-
ered to be promising for supporting a massive number of
devices in the uplink connections.
The present work extends our recent publication [34] in

which novel closed form expressions for the effective rate
in a two user uplink NOMA network were presented. Our
contributions in this works are articulated around six lemmas
and four propositions; the main contributions of this article
are listed below:

• First, using the theory of order statistics, we derive
closed-form expressions for the effective capacity of
each user in a two-user uplink NOMA network.
The expressions are validated through Monte-Carlo
simulations.

• We then provide an asymptotic analysis of the indi-
vidual and sum ECs for both OMA and NOMA, in
the case of delay-constrained and delay-tolerant appli-
cations. A detailed comparison between NOMA and
OMA is provided; through an extensive set of simu-
lation results, we show that NOMA does not always
perform better than OMA in the presence of delay con-
straints. For illustration purposes, we depict the regions
of the transmit signal-to-noise ratio (SNR) where the
earlier outperforms the latter for generic values of the
system parameters.

• With respect to the strong NOMA user, we prove that,
its EC reaches a plateau in the high SNRs, in contrast
to OMA, a consequence of the fact that the strong user
is interference limited.

• The impact of the delay QoS exponent and of the trans-
mit SNR on the individual and sum ECs is investigated
as well. Specifically, we show that, through an extensive
set of simulation results, the individual ECs decrease
as the delay constraints becomes more stringent, and
consequently so does the sum EC.

• Moreover, we investigate the impact of the choice of the
user-pairing strategy on the sum EC. The best pairing
strategy that maximizes the sum EC is shown, numer-
ically, to be the pairing of users with the maximum
channel gains gaps, which is in agreement to previous
results in systems without delay constraints [35].

The rest of this article is organized as follows. In
Section II, we introduce the system model and define the
notion of EC in an uplink NOMA system under delay QoS
constraints. In Section III, an asymptotic analysis of the EC
is provided for a two-user system. In Section IV, the EC of
multiple pairs is studied to investigate the impact of pair-
ing. Simulation results are given in Section V, followed by
conclusions in Section VI.
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TABLE 1. Notation used.

II. EFFECTIVE CAPACITY IN UPLINK NOMA
The notation used throughout the rest of this article is given
in Table 1 for convenience.

A. GENERAL CASE: M-USER NOMA
Assume a M-user NOMA uplink network with users
U1,U2, . . . ,UM in Rayleigh block-fading propagation chan-
nels [36], with respective channel gains during a transmission
block denoted by |hi|2, i = 1, . . . ,M, that without loss
of generality are ordered as |h1|2 < · · · < |hM|2. The
users transmit corresponding unit power symbols s1, . . . , sM
respectively, with E[|si|2] = 1, i = 1, . . . ,M with a total
transmit power constraint PT = ∑M

i=1 Pi = 1. We note
in passing that the total power constraint does not capture
the individual user’s budgets, but rather regulatory require-
ments imposing that the transmit power in any given resource
block cannot exceed a maximum value [37]. The received
superimposed signal can be expressed as [38]:

z =
M∑

i=1

√
Pihisi + w, (1)

where w denotes a zero mean circularly symmetric com-
plex Gaussian random variable with variance σ 2, i.e.,
w ∼ CN (0, σ 2).
The receiver first decodes the symbols of the strongest user

treating the transmission of the weaker users as interference.
After decoding it, the receiver suppresses it from z and
decodes the signal of the second strongest user, and so on
until the decoding of the weakest user’s signal. Following
the SIC principle and denoting the transmit SNR ρ = 1

σ 2 ,
the achievable rate, in b/s/Hz, for user Ui, i = 1, . . . ,M,
assuming no error propagation, is expressed as [39]:

Ri = log2

(

1 + ρPi|hi|2
1 + ρ

∑i−1
l=1 Pl|hl|2

)

. (2)

Notice that in the present work we do not consider the
impact of path loss, but it could be easily taken into account
by inserting a multiplicative coefficient on the user received
SNR or SINR, accounting for the loss in received power due
to distance. For the sake of simplicity, we do not account for
this effect in the present, as common in related published
work [1], [2], [33], [38].
Next, let θi be the statistical delay exponent of the i-th user,

i.e., θi captures how strict the delay constraint of the user i
is, and assume that the service process satisfies the Gärtner-
Ellis theorem [30]. A slower decay rate can be represented
by a smaller θi, which indicates that the system is more
delay tolerant, while a larger θi corresponds to a system
with more stringent QoS requirements. Applying the EC
theory in an uplink NOMA with M users, the i-th user’s EC
over a block-fading channel is defined as:

Eic = − 1

θiTf B
ln
(
E

[
e−θiTf BRi

])
(in b/s/Hz), (3)

where Tf is the duration of each fading-block, B is the system
bandwidth and E[·] denotes expectation over the channel
gains. By inserting Ri into (3), we obtain the following
expression for the EC of the i-th user

Eic = 1

βi
log2

⎛

⎝E

⎡

⎣

(

1 + ρPi|hi|2
1 + ρ

∑i−1
l=1 Pl|hl|2

)βi
⎤

⎦

⎞

⎠ (4)

where βi = − θiTf B
ln 2 , i = 1, . . .M, is the normalized (negative)

QoS exponent. Developing (4), we have that:

Eic = 1

βi
log2

⎛

⎝
∫ ∞

0

∫ ∞

x1

∫ ∞

x2

· · ·
∫ ∞

xi−1

(

1 + ρPixi

1 +∑i−1
l=1 ρPlxl

)βi

fX(1),X(2),...,X(i) (x1, x2, . . . , xi)dxi dxi−1 · · · dx1

⎞

⎠,

(5)

where fX(1),X(2),...,X(i) (x1, x2, . . . , xi) is the joint distribution of
xi = |hi|2, i = 1, . . . ,M.

To evaluate the joint distribution of the channel gains,
we make use of the theory of order statistics [40]. The
probability density function (PDF) of the i-th ordered random
variable in a population of M is given by:

fX(i) (x) = ψif (x)(1 − F(x))M−iF(x)i−1, (6)

where ψi = 1
B(i,M−i+1) , and, B(a, b) is the beta function

B(a, b) = �(a)�(b)
�(a+b) , with �(a) = (a − 1)!. Assuming a

Rayleigh wireless environment, the channel gains, denoted
by xi = |hi|2, are exponentially distributed with PDF and
cumulative density function (CDF) respectively given by
f (x) = e−x, and F(x) = 1 − e−x.

The joint distribution of M order statistics is given by [40]:

fX(1)...X(M) (x1, x2, . . . , xM) = M!fX(1) (x1) . . . fX(M) (xM), (7)
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where x1 ≤ x2 ≤ · · · ≤ xM , while for any two order
statistics, we have that:

fX(l),X(k) (xl, xk)

= M!

(l− 1)!(k − l− 1)!(M − k)!

× (1 − F(x))l−1f (x)(F(x)− F(y))k−l−1f (y)(F(y))M−k.
(8)

Closed-form expressions for multi-users uplink NOMA
can be obtained by inserting (7) into (5), but considering
the complexity of the analytical development of these inte-
grals, we will just consider in this study, the simple case of
two users. Furthermore, there is also a question of practical
limitation. In fact, the execution of several SICs in series
at the base station can lead to additional processing delay;
thus, an increase in terms of latency, especially for the last
decoded user. Moreover, if we have imperfect SIC, additional
errors due to error propagation can lead to decoding failure
for weaker users, as they are the last to be decoded [41]. Due
to the above reasons, in the following we focus on deriving
closed-form expressions only for the two-user case.

B. CASE OF TWO-USER NOMA UPLINK NETWORK (M=2)
Using (6), we obtain

fX(1) (x1) = 2e−2x1 . (9)

Furthermore, by setting M = 2, l = 1 and k = 2 in (8), we
get:

fX(1),X(2) (x1, x2) = 2f (x1)f (x2) = 2e−x1e−x2 . (10)

As a result, the EC of U1, denoted by E1
c , is expressed as

E1
c = 1

β1
log2

(
E
[
(1 + ρP1x1)

β1
])

= 1

β1
log2

(∫ ∞

0
(1 + ρP1x1)

β1 fX(1) (x1)dx1

)

= 1

β1
log2

(
2

P1ρ
× U

(

1, 2 + β1,
2

ρP1

))

, (11)

where U(·, ·, ·) denotes the confluent hypergeometric func-
tion [33].
On the other hand, the EC of U2 is evaluated as

E2
c = 1

β2
log2

(

E

[(

1 + ρP2x2

1 + ρP1x1

)β2
])

= 1

β2
log2

(∫ ∞

0

∫ ∞

x1

(

1 + ρP2x2

1 + ρP1x1

)β2

× fX(1),X(2) (x1, x2)dx2dx1

)

= 1

β2
log2

(

2P1−β2
2 (ρP2)

β2e
1
ρP2 e

− (P1−P2)
ρP2

)

+ 1

β2
log2

⎛

⎝
−β2∑

j=0

(−β2

j

)

(ρP1)
j ×

∞∑

k=0

(−1)k(P2 − P1)
k

k!(1 + j+ k)

×
[

�

(

2 + β2 + j+ k,
1

ρP2

)

− (ρP2)
−1−j−k�

(

1 + β2,
1

ρP2

)]
⎞

⎠

(12)

with �(·, ·) denoting the incomplete Gamma function [33].
Proof: The proof is provided in Appendix A.
The closed-form expression of the sum EC in the case of

a two-user NOMA uplink network can be easily obtained
by summing up the individual ECs.

C. CASE OF A TWO-USER OMA NETWORK
Similarly, using time division multiple access (TDMA), the
achievable data rate of the i-th user in a two-user OMA
network, denoted by R̃i, i = 1, 2, is given by

R̃i = 1

2
log2

(
1 + 2ρPi|hi|2

)
, i = 1, 2. (13)

Note that 1
2 is due to the equal allocation of resources to both

users. Furthermore, it is important to note that the power of
each OMA user is double that of NOMA, for the sake of
fairness [33]. The corresponding ECs of both users in an
OMA network are denoted by Ẽic:

Ẽic = 1
βi

log2

(

E

[
(
1 + 2ρPi|hi|2

) βi
2

])

. (14)

A general expression of the ECs of M TDMA OMA users
is given in [33]; applying this to a two-user network we can
be easily obtain:

Ẽ1
c = 1

β1
log2

(
1

ρP1
× U

(

1, 2 + β1

2
,

1

ρP1

))

, (15)

Ẽ2
c = 1

β2
log2

(
1

ρP2

1∑

k=0

(
1

k

)

(−1)k × U

(

1, 2 + β2

2
,

1 + k

2ρP2

))

.

(16)

The difference in these expressions is due to the different
PDFs of ordered channel gains.

III. ASYMPTOTIC ANALYSIS
In this Section, an asymptotic analysis with respect to the
transmit SNR ρ is presented. This analysis consists in
describing the limiting behavior of individual and total ECs,
and how they evolve with the transmit SNR ρ. Our results
are summarized in the following Propositions and Lemmas.

A. CASE 1: DELAY-CONSTRAINED USERS
Proposition 1:
1) At low transmit SNR, ρ → 0, E1

c , Ẽ
1
c , E

2
c and Ẽ2

c start
at zero and then increase at the same rate for any user.

2) At high values of the transmit SNR, ρ >> 1,
E1
c increases faster than Ẽ1

c and NOMA becomes
more advantageous than OMA, for U1. While for
U2, Ẽ2

c increases faster than E2
c , although NOMA is

outperforming OMA.
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3) At very high values of the transmit SNR, ρ → ∞,
the performance gain of NOMA over OMA increases
at gradually reducing rate, for U1. Albeit, for U2, E2

c
reaches an upper limit, allowing OMA to outperform
NOMA after some SNR value (which depends on the
system parameters).

Proposition 1: is the synthesis of Lemmas 1, 2 and 3,
discussed in detail next.
Lemma 1: In the low and high SNR regimes, respectively,

the following conclusions hold:

1) When ρ → 0, then, E1
c → 0, E2

c → 0, Ẽ1
c → 0,

Ẽ2
c → 0, E1

c − Ẽ1
c → 0, E2

c − Ẽ2
c → 0;

2) When ρ → +∞, then E1
c → +∞, E2

c →
1
β2

log2(E[(1 + P2|h2|2
P1|h1|2 )

β2 ]), Ẽ1
c → +∞, Ẽ2

c → +∞,

E1
c − Ẽ1

c → +∞, E2
c − Ẽ2

c → −∞.

Proof: The proof is provided in Appendix B.
To further analyze the impact of ρ on the individ-

ual EC, the partial derivatives with the respect of ρ are
investigated [33].
Lemma 2: For the EC of the U1, in a two-user uplink

network the following hold:

1) ∂E1
c

∂ρ
≥ 0 and ∂Ẽ1

c
∂ρ

≥ 0, ∀ρ;
2) When ρ → 0, then lim

ρ→0
(
∂(E1

c−Ẽ1
c )

∂ρ
) = 0;

3) When ρ >> 1, then ∂(E1
c−Ẽ1

c )

∂ρ
≈ 1

2ρ ln 2 ≥ 0 and it
approaches 0 when ρ → ∞.

Proof: The proof is provided in Appendix C.
Lemma 3: For the EC of the U2, in a two-user uplink

network the following hold:

1) ∂E2
c

∂ρ
≥ 0 and ∂Ẽ2

c
∂ρ

≥ 0, ∀ρ;
2) When ρ → 0, then lim

ρ→0
(
∂(E2

c−Ẽ2
c )

∂ρ
) = 0

3) When ρ >> 1, then ∂(E2
c−Ẽ2

c )

∂ρ
≈ − 1

2 ln 2
1
ρ
< 0 and it

approaches 0 when ρ → ∞.

Proof: The proof is provided in Appendix D.
Finally, we investigate the sum ECs when using OMA

and NOMA, denoted by VN and VO, respectively, i.e.,

VN = E1
c + E2

c , (17)

VO = Ẽ1
c + Ẽ2

c . (18)

Proposition 2:

1) At low transmit SNR ρ, VN and VO increase at a
constant rate that depends on the average of the channel
power gains and the allocated power coefficients.

2) When ρ >> 1, VN and VO tend to ∞, and reach a
plateau when the transmit SNR ρ → ∞.

Proposition 3: is the consequence of the Lemma 4.
Lemma 4: For the sum EC with NOMA, denoted by VN ,

and with OMA, denoted by VO, in a two-user uplink network,
the following hold:

1) ∂VN
∂ρ

≥ 0 and ∂VO
∂ρ

≥ 0, ∀ρ;

2) When ρ → 0, VN → 0, lim
ρ→0

(
∂VN
∂ρ
) = P1

ln 2E[|h1|2] +
P2
ln 2E[|h2|2] ≥ 0, and VO → 0, lim

ρ→0
(
∂VO
∂ρ
) =

P1
ln 2E[|h1|2] + P2

ln 2E[|h2|2] ≥ 0;
3) When ρ >> 1, VN → ∞, lim

ρ→∞(
∂VN
∂ρ
) = 0, and VO →

∞, lim
ρ→∞(

∂VO
∂ρ
) = 0.

Proof: The proof is provided in Appendix E.

B. CASE 2: DELAY-TOLERANT APPLICATIONS
A case of particular interest is presented when the users’
applications are delay tolerant, i.e., when the delay expo-
nent becomes negligible. In this case, investigation of the
ECs of the two-user, uplink NOMA and OMA networks,
is performed without delay constraints. The impact of the
transmit SNR ρ in this case is also investigated.
Proposition 3:

1) For both OMA and NOMA, when there is no delay
constraint (θ = 0), the individual ECs of both users
are equal to their ergodic capacities.

2) At high transmit SNRs, irrespective of whether there’s
a tolerance for delay or not, the conclusions on the
performance gain of NOMA over OMA for U1, and
OMA over NOMA for U2 remain the same.

Proposition 3: is the consequence of the Lemma 5.
Lemma 5: Considering the EC for the weaker user with

θ1 → 0, in NOMA and OMA, the following hold:
a) When θ1 → 0, lim

θ1→0
E1
c = E[R1], lim

θ1→0
Ẽ1
c = E[̃R1],

lim
θ1→0

(E1
c − Ẽ1

c ) = E[R1] − E[̃R1],

b) When θ1 → 0, ρ → ∞, lim
θ1→0
ρ→∞

E1
c = ∞, lim

θ1→0
ρ→∞

Ẽ1
c = ∞,

lim
θ1→0
ρ→∞

(E1
c − Ẽ1

c ) = ∞.

Considering the EC for the stronger user with θ2 → 0, in
NOMA and OMA, we prove that:

c) When θ2 → 0, lim
θ2→0

E2
c = E[R2], lim

θ2→0
Ẽ2
c = E[̃R2],

lim
θ2→0

(E2
c − Ẽ2

c ) = E[R2] − E[̃R2],

d) When θ2 → 0, ρ → ∞,
lim
θ2→0
ρ→∞

E2
c = E[ log2(1 + P2|h2|2

P1|h1|2 )], lim
θ2→0
ρ→∞

Ẽ2
c = ∞,

lim
θ2→0
ρ→∞

(E2
c − Ẽ2

c ) = −∞.

Proof: The proof is provided in Appendix F.

IV. EFFECTIVE CAPACITY OF MULTIPLE NOMA PAIRS
The M NOMA users scenario assumes that the resource
block is shared among M users. For large values of M,
stronger users are penalized due to high interference level
from weaker users since they are decoded first. Pairing allows
us to mitigate interference from weaker users on stronger
ones. A popular approach for alleviating this effect in an
M user network, is to form M

2 groups with indices i =
1, . . . , M2 , where each group involves only 2 users. Inside
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each group, NOMA is implemented, while across different
groups TDMA is applied.
The achievable data rate of the two users, U1 and U2

of the ithgroup, where |h1i |2 ≤ |h2i |2, can be formulated as
follow:

R1i = 2

M
log2

(
1 + ρP1i |h1i |2

)
, (19)

R2i = 2

M
log2

(

1 + ρP2i |h2i |2
1 + ρP1i |h1i |2

)

, (20)

with 2
M the fraction of resources at the disposal of the two

users inside a NOMA group.
On the other hand, if all users utilize TDMA, their

achievable data rates are given as follows:

R̃j = 1

M
log2

(
1 + 2Pjρ|hj|2

)
, j ∈ {1i, 2i}. (21)

The factor 1
M is to indicate that each user has only one time

slot to transmit.
By replacing (19) and (20) in (3), we get respectively the

following ECs for U1 and U2 in the ith group:

E1i
c = 1

β1i
log2

(

E

[
(

1 + ρP1i |h1i |2
) 2β1i

M

])

, (22)

E2i
c = 1

β2i
log2

⎛

⎜
⎝E

⎡

⎢
⎣

(

1 + ρP2i |h2i |2
1 + ρP1i |h1i |2

) 2β2i
M

⎤

⎥
⎦

⎞

⎟
⎠. (23)

On the other hand, replacing (21) in (3) we get the
expressions for both users while using TDMA:

Ẽ1i
c = 1

β1i
log2

(

E

[
(

1 + 2ρP1,i|h1i |2
) β1i

M

])

, (24)

Ẽ2i
c = 1

β2i
log2

(

E

[
(

1 + 2ρP2,i|h2i |2
) β2i

M

])

. (25)

Next, we analyze the total sum EC of multiple NOMA pairs,
denoted by Etotc , in comparison with the total sum EC for
the M OMA users, Ẽc

tot
defined as:

Etotc =
M
2∑

i=1

(
E1i
c + E2i

c

)
, (26)

Ẽc
tot =

M
2∑

i=1

(
Ẽ1i
c + Ẽ2i

c

)
. (27)

To investigate the performance of the user-pairing, the
following Proposition and Lemma are provided.
Proposition 4:

1) NOMA user-pairing outperforms OMA at low transmit
SNRs and this performance gain carries on at very high
transmit SNRs, with the possibility to be improved by
optimizing the power allocation.

Proposition 4: is the consequence of Lemma 6.
Lemma 6: Considering Etotc − Ẽc

tot
, we prove that:

a) When ρ → 0, Etotc − Ẽc
tot→ 0, and

lim
ρ→0

∂(Etotc −Ẽctot)
∂ρ

= 0.

b) When ρ → ∞, Etotc − Ẽc
tot → constant, given in (28),

and lim
ρ→∞

∂(Etotc −Ẽctot)
∂ρ

= 0.

lim
ρ→∞

(
Etotc − Ẽc

tot
)

=
M
2∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1

β1,i
log2

(

2− β1,i
M E

[
(
P1,i|h1,i|2

) β1,i
M

])

+ 1

β2,i
log2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E

[
(

1 + P2,i|h2,i|2
P1,i|h1,i|2

) 2β2,i
M

]

E

[
(
2P2,i|h2,i|2

) β2,i
M

]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (28)

Proof: The proof is provided in Appendix G.
From Lemma 6, we can conclude that Etotc − Ẽc

tot
initially

starts at 0, first increases at low transmit SNRs ρ, and finally
approaches the constant value given in (28) that depends
on the power allocation, at high transmit SNRs, i.e., this
performance gain of NOMA with user-pairing over OMA
can be optimized by finding the best pairing strategy.

V. NUMERICAL RESULTS
In this Section, the Propositions and Lemmas presented
in previous sections are validated through Monte-Carlo
simulations. We first consider a two-user uplink NOMA
system, with the following parameters: normalized transmis-
sion power for both users, P1 = 0.2, P2 = 0.8, normalized
delay exponent β1 = β2 = −1 for both users, unless other-
wise stated. Fixed power allocation is used for the sake of
simplicity.
Fig. 1 provides validation of the proposed closed-form

expressions of E1
c and E2

c respectively in (11) and (12).
The analytical expressions of these individual ECs ( ,

) and the corresponding Monte-Carlo simulations ( ,
) are indistinguishable, showcasing the accuracy of the

proposed closed-from expressions.
In Fig. 2, the ECs of the two-user uplink NOMA and OMA

networks are depicted versus the transmit SNR. We note that
for U1, NOMA and OMA perform equally well at very low
transmit SNRs, and NOMA is advantageous compared to
OMA at high transmit SNRs. In contrast, for U2, NOMA
is better at low SNRs and OMA is advantageous at high
transmit SNRs. We notice also that the EC of U2 reaches
a plateau at high SNRs, validating Lemma 1. Moreover, we
note that, at low transmit SNRs, E2

c is higher than E
1
c , despite

the interference that U2 experiences; but with the transmit
SNR increasing, E1

c increases without bound and therefore
at some point surpasses E2

c which is capped to an upper
value.
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FIGURE 1. Validation of the closed-form expressions in uplink two-user NOMA
system.

FIGURE 2. E1
c , E2

c , and ˜Ec
1

, ˜Ec
2

, versus the transmit SNR ρ.

Fig. 3 and Fig. 4 show, respectively, the EC of U1 and
U2, versus the transmit SNR, for different values of the
delay exponent. When the delay constraints become more
stringent, i.e., β decreases (equivalently, θ increases), both
E1
c and E2

c decrease.
In Fig. 5, the ECs of the strong and weak users are

depicted in the high SNR regime (ρ = 30 dB) as functions
of the (negative) normalized delay exponent, for NOMA and
OMA. We noticed that the EC curves are identical. On the
other hand, in Fig. 6, where E1

c and E2
c are depicted across

different SNR values, ρ ∈ {1, 10, 30, 40, 50} dB, as func-
tions of the (negative) normalized delay exponent, the EC
of both users increase with the transmit SNR ρ increasing.

Fig. 7 shows E1
c − Ẽ1

c versus the transmit SNR. This
curve initially starts at zero, increases at the high trans-
mit SNRs. Also, we can note that this gap decreases with
delay constraints becoming more stringent (β decreasing).
This confirms Lemma 2.

FIGURE 3. E1
c versus the transmit SNR, for different delay requirements.

FIGURE 4. E2
c versus the transmit SNR ρ for different delay requirements.

FIGURE 5. E1
c , E2

c , and ˜Ec
1

and ˜Ec
2

, versus the (negative) normalized delay
exponent β at ρ = 30 dB.

Fig. 8 shows E2
c − Ẽ2

c versus the transmit SNR. This
curve initially starts at zero, increases to a certain maxi-
mum and starts decreasing without bound at high values of
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FIGURE 6. E1
c , E2

c versus normalized delay β, for different values of ρ.

FIGURE 7. E1
c − ˜E1

c versus ρ, for several values of the normalized delay exponent.

FIGURE 8. E2
c − ˜E2

c versus ρ, for various values of normalized delay exponent.

the transmit SNR. This confirms Lemma 3. We note that the
maximum of these curves decreases when the delay becomes
more stringent. Furthermore, as the negative delay exponent

FIGURE 9. VN and VO versus ρ, for various values of normalized delay exponent.

FIGURE 10. VN - VO versus ρ for various values of normalized delay exponent of
U1, while the normalized delay exponent of U2 is fixed.

decreases, the zero crossing point moves to higher SNRs; this
implies that as the delay QoS constraints become more strin-
gent, the region of SNRs over which NOMA outperforms
OMA increases.
To investigate the impact of ρ on the performance of the

total EC for the two-user system, in Fig. 9, the plots for VN
in NOMA and VO in OMA, versus the transmit SNR are
depicted for various delay exponents. The curves demonstrate
that for both NOMA and OMA, the total EC for the two
users starts at the initial value of 0 and then increases with
the transmit SNR, as outlined in Lemma 4. When ρ is very
small, the total EC for the two users in NOMA, VN , increases
faster than VO in OMA. On the contrary, with the increase of
the transmit SNR, VO becomes gradually higher than VN . At
very high values of the transmit SNR, the gap between VN
and VO increases further. Finally, when the delay becomes
more stringent, both VN and VO decrease.

Fig. 10 and Fig. 11 depict VN − VO versus ρ, for several
values of the (negative) normalized delay exponent. In Fig. 10,
the delay of U2 is fixed, while the delay exponent of U1
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FIGURE 11. VN - VO versus ρ for various values of normalized delay exponent of
U2, while the normalized delay exponent of U1 is fixed.

FIGURE 12. (a): Etot
c and ˜Ec

tot
; (b): Etot

c - ˜Ec
tot

versus ρ for various pairing
settings. M = 4.

varies. It is shown that in that case, the smallest delay QoS
(i.e., the highest negative normalized delay exponent) of U1
corresponds to the highest gap inVN−VO.Withmore stringent

FIGURE 13. Etot
c versus ρ for various pairing settings, normalized to the worst

pairing which is (1, 2)(3, 4)(5, 6). M = 6.

FIGURE 14. Sum EC versus ρ for various grouping settings, normalized to the worst
grouping which is (1, 2, 3)(4, 5, 6). M = 6.

delay constraints for U1, NOMA outperforms OMA in an
increasing region of SNRs. On the other hand, when the
delay of U1 is fixed, Fig. 11 shows that the smallest delay
QoS (i.e., the highest negative normalized delay exponent)
for U2 corresponds to the largest gap in VN −VO. The curve
of VN −VO, initially starts at zero, increases to a maximum,
and returns to negative values. In the regions in which it is
positive, NOMA outperforms OMA in terms of the total EC;
the opposite is true in the regions in which it is negative.
Next, we focus on the comparison of multiple NOMA

pairs and OMA, i.e., Etotc and Ẽc
tot
. Fig. 12-(a) depicts the

curves of Ẽc
tot

and Etotc , versus the transmit SNR. NOMA
with multiple pairs outperforms OMA. The performance gain
of NOMA with multiple pairs over OMA starts at zero,
increases at small values of SNR, and stabilizes at high
transmit SNRs.
Fig. 12-(b) shows the curves of Etotc − Ẽc

tot
versus the

transmit SNR, for various settings of user-pairing. Initially
these start at zero at low transmit SNRs, increasing to a
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FIGURE 15. Sum EC and �Sum EC for various setting versus ρ. M = 6.

maximum at high values of ρ. This confirms Lemma 6.
Specifically, we set the total number of users M = 4; the
normalized delay of all users are assumed to be equal β1,i =
β2,i = −1, (i = 1, . . . , M2 ). The best pairing policy in the
case of M = 4 is (1, 4)-(2, 3). We noticed that even the worst
pairing strategy outperforms OMA in terms of the total EC.
Fig. 13 depicts the result of the exhaustive search, done

in order to find the pairing strategy which gives the highest
total EC in the case of M = 6. The curves are normalized
to the worst pairing. It appears that when these six users are
divided in three groups of two users, the pairing strategy:
(1, 6)-(2, 5)-(3, 4) gives the highest total sum EC. We believe
that this is due to the fact that coupling the strongest user
and the weakest user produces the lowest interference at
decoding.
Fig. 14, on the other hand, depicts the result of the exhaus-

tive search, of valid pairs, when all six users are divided in
two groups of three users. It appears that the best pairing
policy in terms of total sum EC is : (1, 2, 6)-(3, 4, 5). The
results for the best pairing are aligned with the literature on
NOMA user pairing without delay constraints.

Fig. 15 depicts a comparison between full NOMA, i.e.,
when all users transmit in the same resource block, NOMA
user-pairing, NOMA user-grouping (groups of 3 users) and
OMA, for M = 6 users. Considering the best power alloca-
tion policies in the case of user-pairing and user-grouping,
it appears that full NOMA outperforms all of them in terms
of the total EC, followed by NOMA with user-grouping,
assuming absence of error propagation due to decoding
errors.
In the simulation results given above, the user pairing

is presented for a specific values of the system parame-
ters and can be further improved by the power allocation
optimization, which in the present was ignored to simplify
the analysis. We note in passing that when the number of
users M is not a multiple of two or three, a hybrid pairing
can be used, i.e., using both clusters of two and three users.

VI. CONCLUSION AND FUTURE WORK
The concept of EC enabled us to study the performance
gain of NOMA over OMA in systems with statistical delay
QoS constraints. First, we investigated the EC of the uplink
of a two-user NOMA network, assuming a Rayleigh block
fading channel. We derived novel closed-form expressions
for the ECs of the two users and provided a comparison
between NOMA and OMA. The results show that, the EC
of U1 can surpass the EC of U2, as the latter is limited
due to interference. Furthermore, we showed that the ECs
of both users decrease as the delay constraints become more
stringent. For both users, when the delay QoS of one of them
is fixed, the smallest values of the other’s delay QoS give
the highest performance gap between NOMA and OMA
in terms of total EC. On the other hand, we investigated
NOMA with user pairing and found the optimal pairing
strategy that gave the highest EC, for M = 4 and M = 6.
It turns out that NOMA grouping and NOMA pairing does
not do better than full NOMA, but one can get close to it
when users transmit with optimal power. NOMA with user
pairing is interesting as it can be an alternative to mitigate
interference on stronger users and reduce the impact of error
propagation. These results raise questions on the possibility
of switching between NOMA and OMA according to the
individual users’ delay constraints and transmit power.

APPENDIX A

E1
c = 1

β1
log2

(
2
∫∞

0 (1 + ρP1x1)
β1e−2x1dx1

)
. (29)

Set t = ρP1x1, i.e., x1 = t
ρP1

and since x1 : 0 → ∞ =⇒
t : 0 → ∞, dx1 = 1

ρP1
dt, we can get that:

E1
c = 1

β1
log2

(
2

P1ρ

∫ ∞

0
(1 + t)β1e

− 2t
P1ρ

)

dt. (30)

Also, by setting a = 1, (b−a−1) = β1, =⇒ b = β2+2, z =
2
P1ρ

and denoting by U(., ., .) the confluent hypergeometric

function: U(a, b, z) = 1
�(a)

∫∞
0 e−ztta−1(1 + t)b−a−1dt, we
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have that:
∫∞

0 (1 + t)β1e
− 2t
P1ρ dt = U(1, 2 + β1,

2
ρP1
), which

means that:

E1
c = 1

β1
log2

(
2

P1ρ
× U

(

1, 2 + β1,
2

ρP1

))

. (31)

For the U2, we have that:

E2
c = 1

β2
log2

(

E

[(

1 + ρP2x2

1 + ρP1x1

)β2
])

= 1

β2
log2

(

2
∫ ∞

0

(
ρP2

1 + ρP1x1

)β2

e−x1

∫ ∞

x1

×
(

1 + ρP1x1

ρP2
+ x2

)β2

e−x2dx2dx1

)

. (32)

We set z = 1+ρP1x1
ρP2

+x2, i.e., we have that: x2 = z− 1+ρP1x1
ρP2

and dx2 = dz, so that x2 → x1, =⇒ z → 1+ρP1x1
ρP2

+ x1 =
1+ρx1
ρP2

and x2 → ∞ =⇒ z → ∞.

E2
c = 1

β2
log2

(

2
∫ ∞

0

(
ρP2

1 + ρP1x1

)β2

e−x1

∫ ∞
1+ρx1
ρP2

zβ2

e
−
(
z− 1+ρP1x1

ρP2

)

dzdx1

)

= 1

β2
log2

(

2e
1
ρP2

∫ ∞

0

(
ρP2

1 + ρP1x1

)β2

e−x1e
P1x1
P2

∫ ∞
1+ρx1
ρP2

zβ2e−zdzdx1

)

. (33)

We note that:
∫∞
a

e−x
xb
dx = a− b

2 e− a
2 W− b

2 ,
1−b

2
(a) where W is

the Whittaker W function. Hence, we get that:

E2
c

= 1

β2
log2

⎛

⎝2e
1
ρP2

∫ ∞

0

(
ρP2

1 + ρP1x1

)β2

e−x1e
P1x1
P2

⎡

⎣
(

1 + ρx1

ρP2

) β2
2

e
− 1+ρx1

2ρP2 W β2
2 ,

1+β2
2

(
1 + ρx1

ρP2

)
⎤

⎦dx1

⎞

⎠

= 1

β2
log2

(

2(ρP2)
β2
2 e

1
2ρP2

∫ ∞

0
(1 + ρP1x1)

−β2

(1 + ρx1)
β2
2 e

(2P1−2P2−1)x1
2P2

[

W β2
2 ,

1+β2
2

(
1 + ρx1

ρP2

)]

dx1

)

.

(34)

Note that Wu− 1
2 ,u
(z) = e

1
2 zz

1
2 −u�(2u, z), so that we have

W β2
2 ,

1+β2
2
(

1+ρx1
ρP2

) = e
1+ρx1
2ρP2 (

1+ρx1
ρP2

)−
β2
2 �(1 + β2,

1+ρx1
ρP2

).

By substituting it in E2
c , we have that:

E2
c = 1

β2
log2

(

2(ρP2)
β2e

1
ρP2

∫ ∞

0
(1 + ρP1x1)

−β2e
(P1−P2)x1

P2

× �

(

1 + β2,
1 + ρx1

ρP2

)

dx1

)

. (35)

To continue we set 1+ρx1
ρP2

= y, i.e., x1 = P2y − 1
ρ
, and

dx1 = P2dy. x1 → 0 =⇒ y→ 1
ρP2

and x1 → ∞ =⇒

y→ ∞. Recall that without loss of generality we have set
P1 + P2 = 1. Then we get that

E2
c

= 1

β2
log2

(

2(ρP2)
β2e

1
ρP2

∫ ∞

0
(1 + ρP1x1)

−β2

× e
(P1−P2)x1

P2

[

�

(

1 + β2,
1 + ρx1

ρP2

)]

dx1

)

= 1

β2
log2

(

2P2(ρP2)
β2e

1
ρP2 e

− (P1−P2)
ρP2

×
∫ ∞

1
ρP2

P−β2
2 (1 + ρP1y)

−β2e(P1−P2)y�(1 + β2, y)dy

)

.

(36)

Using binomial expansion we have (1 + ρP1y)−β2 =∑−β2
j=0

(−β2
j

)
(ρP1y)j when β2 is integer, otherwise we use

�β2�. And, using Taylor series expansion we have that
e(P1−P2)y = e−(P2−P1)y = ∑∞

k=0
(−1)k(P2−P1)

k

k! yk, which
converges.

E2
c = 1

β2
log2

(

2P1−β2
2 (ρP2)

β2e
1
ρP2 e

− (P1−P2)
ρP2

×
∫ ∞

1
ρP2

(1 + ρP1y)
−β2e(P1−P2)y�(1 + β2, y)dy

)

= 1

β2
log2

(

2P1−β2
2 (ρP2)

β2e
1
ρP2 e

− (P1−P2)
ρP2

×
−β2∑

j=0

(−β2

j

)

(ρP1)
j ×

∞∑

k=0

(−1)k(P2 − P1)
k

k!

×
∫ ∞

1
ρP2

yj+k�(1 + β2, y)dy

)

. (37)

Note that
∫ ∞

c
zb�(A, z)dz = 1

1 + b

(
−c1+b�(A, c)+ �(1 + A+ b, c)

)

i.e.,
∫ ∞

1
ρP2

yj+k�(1 + β2, y)dy = 1

1 + j+ k

×
(

−(ρP2)
−1−j−k�

(

1 + β2,
1

ρP2

)

+ �

(

2 + β2 + j+ k,
1

ρP2

))

. (38)

Finally, by inserting (38) in (37) we obtain (12).

APPENDIX B
By inserting ρ → 0 into (11) and (12), we get 1) of Lemma 1,
i.e.,

lim
ρ→0

(
E1
c − Ẽ1

c

)
= 1

β1
log2

⎛

⎜
⎜
⎝

E

[(
1 + ρP1|h1|2

)β2
]

E

[
(
1 + 2ρP1|h1|2

) β2
2

]

⎞

⎟
⎟
⎠ = 0,
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lim
ρ→0

(
E2
c − Ẽ2

c

)
= 1

β2
log2

⎛

⎜
⎜
⎝

E

[(
1 + ρP2|h2|2

1+ρP1|h1|2
)β2
]

E

[
(
1 + 2ρP2|h1|2

) β2
2

]

⎞

⎟
⎟
⎠ = 0.

In the same way, by inserting ρ → ∞ into (11) and (12),
we get 2) in Lemma 1, given below.

lim
ρ→∞E2

c = 1

β2
log2

(

E

[(

1 + P2|h2|2
P1|h1|2

)β2
])

,

lim
ρ→∞

(
E1
c − Ẽ1

c

)
= 1

β1
log2

⎛

⎜
⎜
⎜
⎜
⎝
(ρP1)

β1
2

E

[(
1
ρP1

+ |h1|2
)β2
]

E

[
(

1
ρP1

+ 2|h1|2
) β2

2

]

⎞

⎟
⎟
⎟
⎟
⎠

= ∞

lim
ρ→∞

(
E2
c − Ẽ2

c

)
= 1

β2
log2

⎛

⎜
⎜
⎜
⎜
⎝

E

[(
1
ρ
+P1|h1|2+P2|h2|2

1
ρ
+P1|h1|2

)β2
]

ρ
β2
2 E

[
(

1
ρ

+ 2P2|h2|2
) β2

2

]

⎞

⎟
⎟
⎟
⎟
⎠

= −∞.

APPENDIX C
To analyze the trends of E1

c and Ẽ1
c with respect to ρ, we

start with

∂E1
c

∂ρ
= 1

β1 ln 2

(
E

[(
1 + ρP1|h1|2

)β1
])′

E

[(
1 + ρP1|h1|2

)β1
]

= P1

ln 2

E

[
|h1|2

(
1 + ρP1|h1|2

)β1−1
]

E

[(
1 + ρP1|h1|2

)β1
] ≥ 0. (39)

Similarly, for U1 in OMA we have that

∂Ẽ1
c

∂ρ
= 1

β1 ln 2

(

E

[
(
1 + 2ρP1|h1|2

) β1
2

])′

E

[
(
1 + 2ρP1|h1|2

) β1
2

]

= P1

ln 2

E

[

|h1|2
(
1 + 2ρP1|h1|2

) β1
2 −1

]

E

[
(
1 + 2ρP1|h1|2

) β1
2

] ≥ 0. (40)

Then, we get that

∂
(
E1
c − Ẽ1

c

)

∂ρ
= P1

ln 2

E

[
|h1|2

(
1 + ρP1|h1|2

)β1−1
]

E

[(
1 + ρP1|h1|2

)β1
]

− P1

ln 2

E

[

|h1|2
(
1 + 2ρP1|h1|2

) β1
2 −1

]

E

[
(
1 + 2ρP1|h1|2

) β1
2

] .

(41)

and lim
ρ→0

(
∂(E1

c−Ẽ1
c )

∂ρ
) = (P1−P1)

ln 2 E[|h1|2] = 0. When ρ >> 1,

we have that

∂
(
E1
c − Ẽ1

c

)

∂ρ
= P1

ρ ln 2

E

[
|h1|2

(
P1|h1|2

)β1−1
]

E

[(
P1|h1|2

)β1
]

− P1

ρ ln 2

E

[

|h1|2
(
2P1|h1|2

) β1
2 −1

]

E

[
(
2P1|h1|2

) β1
2

]

= 1

2ρ ln 2
≥ 0. (42)

When ρ → ∞, this term approaches 0.

APPENDIX D

E2
c = 1

β2
log2

(

E

[(

1 + ρP2|h2|2
1 + ρP1|h1|2

)β2
])

. (43)

And

∂E2
c

∂ρ
= 1

β2 ln 2

(

E

[(
1 + ρP2|h2|2

1+ρP1|h1|2
)β2
])′

E

[(
1 + ρP2|h2|2

1+ρP1|h1|2
)β2
]

= 1

ln 2

E

[
P2|h2|2

(1+ρP1|h1|2)2

(
1 + ρP2|h2|2

1+ρP1|h1|2
)β2−1

]

E

[(
1 + ρP2|h2|2

1+ρP1|h1|2
)β2
] ≥ 0.

(44)

In the same way, for the U2 in OMA, we have that:

∂Ẽ2
c

∂ρ
= 1

β2 ln 2

(

E

[
(
1 + 2ρP2|h2|2

) β2
2

])′

E

[
(
1 + 2ρP2|h2|2

) β2
2

]

= P2

ln 2

E

[

|h2|2
(
1 + 2ρP2|h2|2

) β2
2 −1

]

E

[
(
1 + 2ρP2|h2|2

) β2
2

] ≥ 0, (45)

and

∂
(
E2
c − Ẽ2

c

)

∂ρ
= 1

ln 2

E

[
P2|h2|2

(1+ρP1|h1|2)2

(
1 + ρP2|h2|2

1+ρP1|h1|2
)β2−1

]

E

[(
1 + ρP2|h2|2

1+ρP1|h1|2
)β2
]

− P2

ln 2

E

[

|h2|2
(
1 + 2ρP2|h2|2

) β2
2 −1

]

E

[
(
1 + 2ρP2|h2|2

) β2
2

] . (46)

1702 VOLUME 1, 2020



When ρ → 0, we have that lim
ρ→0

(
∂(E2

c−Ẽ2
c )

∂ρ
) = 0. When ρ is

very large,

∂
(
E2
c − Ẽ2

c

)

∂ρ

=
E

⎡

⎣ P2|h2|2
ρ2
(

1
ρ
+P1|h1|2

)2

(

1 + ρ
ρ

(
P2|h2|2

)

(
1
ρ
+P1|h1|2

)

)β2−1
⎤

⎦

ln 2E

⎡

⎣

(

1 + ρ
ρ

P2|h2|2(
1
ρ
+P1|h1|2

)

)β2
⎤

⎦

− P2

ln 2

1

ρ

E

[

|h2|2
(

1
ρ

+ 2P2|h2|2
) β2

2 −1
]

E

[
(

1
ρ

+ 2P2|h2|2
) β2

2

]

= P2

ρ2P2
1 ln 2

E

[
|h2|2
(|h1|2)2

(
1 + P2|h2|2

P1|h1|2
)β2−1

]

E

[(
1 + P2|h2|2

P1|h1|2
)β2
] − 1

2 ln 2

1

ρ

=
P2

P2
1 ln 2

A− 1
2 ln 2ρ

ρ2
, (47)

where A =
E[

|h2|2
(|h1|2)2 (1+ P2|h2|2

P1|h1|2 )
β2−1]

E[(1+ P2|h2|2
P1|h1|2 )

β2 ]
, unrelated to ρ. And it

gradually approaches 0 when ρ → ∞.

APPENDIX E
Note that VN = E1

c + E2
c . By using Lemma 1, we have that

lim
ρ→0

(VN) = 0 and lim
ρ→∞(VN) = ∞. Then, we get that,

∂VN
∂ρ

= ∂
(
E1
c + E2

c

)

∂ρ
= P1

ln 2

E

[
|h1|2

(
1 + ρP1|h1|2

)β1−1
]

E

[(
1 + ρP1|h1|2

)β1
]

+ 1

ln 2

E

[
P2|h2|2

(1+ρP1|h1|2)2

(
1 + ρP2|h2|2

1+ρP1|h1|2
)β2−1

]

E

[(
1 + ρP2|h2|2

1+ρP1|h1|2
)β2
] ≥ 0.

(48)

When ρ → 0, we have that lim
ρ→0

( ∂VN
∂ρ
) = P1

ln 2E[|h1|2] +
P2
ln 2E[|h2|2].
When ρ → ∞, we get that

lim
ρ→∞

∂VN
∂ρ

= 1

ρ ln 2
+

E

[
P2|h2|2
(P1|h1|2)2

(
1 + P2|h2|2

P1|h1|2
)β2−1

]

ρ2 ln 2E

[(
1 + P2|h2|2

P1|h1|2
)β2
] = 0.

For VO in the case of OMA, we note that VO = Ẽ1
c+Ẽ2

c . By
using Lemma 1, we have lim

ρ→0
(V0) = 0 and lim

ρ→∞(V0) = ∞.

Then,

∂V0

∂ρ
= ∂

(
Ẽ1
c + Ẽ2

c

)

∂ρ
= P1

ln 2

E

[

|h1|2
(
1 + 2ρP1|h1|2

) β1
2 −1

]

E

[
(
1 + 2ρP1|h1|2

) β1
2

]

+ P2

ln 2

E

[

|h2|2
(
1 + 2ρP2|h2|2

) β2
2 −1

]

E

[
(
1 + 2ρP2|h2|2

) β2
2

] ≥ 0. (49)

When ρ → 0, we have that lim
ρ→0

( ∂VO
∂ρ
) = P1

ln 2E[|h1|2] +
P2
ln 2E[|h2|2]. When ρ → ∞, we have that lim

ρ→∞(
∂VO
∂ρ
) =

lim
ρ→∞(

1
2ρ ln 2 + 1

2ρ ln 2 ) = lim
ρ→∞(

1
ρ ln 2 ), which equals to 0.

APPENDIX F
We have

E2
c = 1

β2
log2

(

E

[(

1 + ρP2|h2|2
1 + ρP1|h1|2

)β2
])

= − 1

θ2Tf B

(

E

[

−θ2Tf B

ln 2
ln

(

1 + ρP2|h2|2
1 + ρP1|h1|2

)])

.

(50)

When θ2 → 0, we get an indeterminate form. By applying
the L’Hopital’s rule one can get

E2
c = − 1

Tf B

(

E

[

−Tf B

ln 2
ln

(

1 + ρP2|h2|2
1 + ρP1|h1|2

)])

= E

[

log2

(

1 + ρP2|h2|2
1 + ρP1|h1|2

)]

. (51)

Hence, we get that

lim
θ2→0

E2
c = E

[

log2

(

1 + ρP2|h2|2
1 + ρP1|h1|2

)]

,

which equals to E[R2], the ergodic capacity.
Proceeding in the same way, one can find

lim
θ1→0

E1
c = E

[
log2

(
1 + ρP1|h1|2

)]
= E[R1],

lim
θ1→0

Ẽ1
c = E

[
1

2
log2

(
1 + 2ρP1|h1|2

)]

= E
[
R̃1
]
,

lim
θ2→0

Ẽ2
c = E

[
1

2
log2

(
1 + 2ρP2|h2|2

)]

= E
[
R̃2
]
,

lim
θ1→0

(
E1
c − Ẽ1

c

)
= E[R1] − E

[
R̃1
]
,

lim
θ2→0

(
E2
c − Ẽ2

c

)
= E[R2] − E

[
R̃2
]
.

To look further the impact of the transmit SNR ρ on the
EC considering delay-unconstrained user:

lim
θ1→0
ρ→∞

E1
c = lim

ρ→∞E

[
log2

(
1 + ρP1|h1|2

)]
= ∞,
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We also have that

lim
θ2→0
ρ→∞

E2
c = lim

ρ→∞E

[

log2

(

1 + ρP2|h2|2
1 + ρP1|h1|2

)]

= E

[

log2

(

1 + P2|h2|2
P1|h1|2

)]

.

Similarly, we have for OMA

lim
θ1→0
ρ→∞

Ẽ1
c = lim

ρ→∞E

[
1

2
log2

(
1 + 2ρP1|h1|2

)]

= ∞,

lim
θ2→0
ρ→∞

Ẽ2
c = lim

ρ→∞E

[
1

2
log2

(
1 + 2ρP2|h2|2

)]

= ∞.

Therefore, we have that

lim
θ1→0
ρ→∞

(
E1
c − Ẽ1

c

)
= lim

ρ→∞

⎛

⎝E

⎡

⎣log 2

⎛

⎝ 1 + ρP1|h1|2
(
1 + 2ρP1|h1|2

) 1
2

⎞

⎠

⎤

⎦

⎞

⎠

= lim
ρ→∞

⎛

⎝E

⎡

⎣log 2

⎛

⎝

√

ρP1|h1|2
2

⎞

⎠

⎤

⎦

⎞

⎠ = ∞.

lim
θ2→0
ρ→∞

(
E2
c − Ẽ2

c

)
= −∞.

APPENDIX G
Using the Lemma 1, when ρ → 0, we can show that E1,i

c −
Ẽ1,i
c → 0 and E2,i

c − Ẽ2,i
c → 0. Then Etotc − Ẽc

tot → 0, since

Etotc − Ẽc
tot = ∑M

2
i=1(E

1,i
c + E2,i

c − Ẽ1,i
c − Ẽ2,i

c ), we get

lim
ρ→0

(
Etotc − Ẽc

tot
)

= 0.

On the other side, when ρ → ∞,

Etotc − Ẽc
tot

=
M
2∑

i=1

⎛

⎜
⎜
⎝

1

β1,i
log2

⎛

⎜
⎜
⎝

E

[
(
1 + ρP1,i|h1,i|2

) 2β1,i
M

]

E

[
(
1 + 2ρP1,i|h1,i|2

) β1,i
M

]

⎞

⎟
⎟
⎠

+ 1

β2,i
log2

⎛

⎜
⎜
⎜
⎜
⎝

E

[
(

1 + ρP2,i|h2,i|2
1+ρP1,i|h1,i|2

) 2β2,i
M

]

E

[
(
1 + 2ρP2,i|h2,i|2

) β2,i
M

]

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

=
M
2∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

1

β1,i
log2

⎛

⎜
⎜
⎜
⎜
⎝
ρ
β1,i
M

E

[
(

1
ρ

+ P1,i|h1,i|2
) 2β1,i

M

]

E

[
(

1
ρ

+ 2P1,i|h1,i|2
) β1,i

M

]

⎞

⎟
⎟
⎟
⎟
⎠

+ 1

β2,i
log2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ− β2,i
M

E

⎡

⎣
(

1 + P2,i|h2,i|2
1
ρ
+P1,i|h1,i|2

) 2β2,i
M

⎤

⎦

E

[
(

1
ρ

+ 2P2,i|h2,i|2
) β2,i

M

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(52)

Then,

Etotc − Ẽc
tot

=
M
2∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

1

β1,i
log2

⎛

⎜
⎜
⎜
⎜
⎝

E

[
(

1
ρ

+ P1,i|h1,i|2
) 2β1,i

M

]

E

[
(

1
ρ

+ 2P1,i|h1,i|2
) β1,i

M

]

⎞

⎟
⎟
⎟
⎟
⎠

+ 1

β2,i
log2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

E

⎡

⎣
(

1 + P2,i|h2,i|2
1
ρ
+P1,i|h1,i|2

) 2β2,i
M

⎤

⎦

E

[
(

1
ρ

+ 2P2,i|h2,i|2
) β2,i

M

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

lim
ρ→∞

(
Etotc − Ẽc

tot
)

=
M
2∑

i=1

(
1

β1,i
log2

(

2− β1,i
M E

[
(
P1,i|h1,i|2

) β1,i
M

])

+ 1

β2,i
log2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E

[
(

1 + P2,i|h2,i|2
P1,i|h1,i|2

) 2β2,i
M

]

E

[
(
2P2,i|h2,i|2

) β2,i
M

]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(53)

which is a constant with respect to ρ.

Furthermore, to analyze lim
ρ→0

(
∂(Etotc −Ẽctot)

∂ρ
) and

lim
ρ→∞(

∂(Etotc −Ẽctot)
∂ρ

), we start with ∂Etotc
∂ρ

and ∂Ẽc
tot

∂ρ
.

∂Etotc
∂ρ

=
M
2∑

i=1

(
∂E1,i

c

∂ρ
+ ∂E2,i

c

∂ρ

)

=
M
2∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

2P1,i

M ln 2

E

[

|h1,i|2
(
1 + ρP1,i|h1,i|2

) 2β1,i
M −1

]

E

[
(
1 + ρP1,i|h1,i|2

) 2β1,i
M

]

+ 2P2,i

M ln 2

E

[
|h2,i|2

(1+ρP1,i|h1,i|2)2

(
1 + ρP2,i|h2,i|2

1+ρP1,i|h1,i|2
) 2β2,i

M −1
]

E

[
(

1 + ρP2,i|h2,i|2
1+ρP1,i|h1,i|2

) 2β2,i
M

]

⎞

⎟
⎟
⎟
⎟
⎠
,

(54)

where (.)’ a first derivative with respect to ρ. Then,

lim
ρ→0

(
∂Etotc
∂ρ
) = ∑M

2
i=1(

2P1,i
M ln 2E[|h1,i|2] + 2P2,i

M ln 2E[|h2,i|2).

lim
ρ→∞

(
∂Etotc
∂ρ

)
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= lim
ρ→∞

⎛

⎜
⎝

M
2∑

i=1

(
2

M ln 2ρ
+ 2P2,i

M ln 2ρ2

×
E

[
|h2,i|2

(P1,i|h1,i|2)2

(
1 + P2,i|h2,i|2

P1,i|h1,i|2
) 2β2,i

M −1
]

E

[
(

1 + P2,i|h2,i|2
P1,i|h1,i|2

) 2β2,i
M

]

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

= 0.

Similarly,

∂Ẽc
tot

∂ρ

=
M
2∑

i=1

(
∂Ẽ1

c

∂ρ
+ ∂Ẽ2

c

∂ρ

)

,

=
M
2∑

i=1

⎛

⎜
⎜
⎝

1

M ln 2

E

[

2P1,i|h1,i|2
(
1 + 2ρP1,i|h1,i|2

) β1,i
M −1

]

E

[
(
1 + 2ρP1,i|h1,i|2

) β1,i
M

]

+ 1

M ln 2

E

[

2P2,i|h2,i|2
(
1 + 2ρP2,i|h2,i|2

) β2,i
M −1

]

E

[
(
1 + 2ρP2,i|h2,i|2

) β2,i
M

]

⎞

⎟
⎟
⎠.

(55)

Then we have that, lim
ρ→0

( ∂Ẽc
tot

∂ρ
) = ∑M

2
i=1(

2P1,i
M ln 2E[|h1,i|2] +

2P2,i
M ln 2E[|h2,i|2), and lim

ρ→∞(
∂Ẽc

tot

∂ρ
) = lim

ρ→∞(
∑M

2
i=1

1
ρM ln 2 +

1
ρM ln 2 ) = 0. So that, lim

ρ→0
(
∂(Etotc −Ẽctot)

∂ρ
) = 0.

By following similar approach, we also get,

lim
ρ→∞(

∂(Etotc −Ẽctot)
∂ρ

) = 0.
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