P300 single-trial classification using deep belief
networks for a BCI system
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Abstract—A brain-computer interface (BCI) aims to provide
their users the capability to interact with machines only through
their though processes. BCIs targeted at subjects with mild and
severe motor impairments are of special interest since this kind
of technology would improve their lifestyles. This paper focuses
on the classification of the P300 waveform from single trials in
EEG to be used in a BCI using deep belief networks. This deep
learning algorithm has the capability to identify relevant features
automatically from the subject’s EEG data, making its training
requiring less preprocessing stages. The network is tested on
healthy subjects and post-stroke victims. The highest accuracy
achieved was of 91.6% for a healthy subject and 88.1% for a
post-stroke victim.

Index Terms—brain-computer interface, stroke victims, EEG,
deep belief networks

I. INTRODUCTION

A brain-computer interface (BCI) is a technology that
grants people control over machines or computers by using
only their thoughts [1]. Different brain imaging techniques,
like electroencephalography (EEG) and magnetic resonance
imaging (MRI), are used to register and analyze people’s brain
activity. Certain mental processes are of special interest in BCI
design because they can be performed whiteout problems by
motor-impaired subjects, which allows engineers and medics
to work on solutions towards them, potentially improving their
lifestyle [2]. In the case of EEG, paradigms such as oddball
and motor imagery (MI) [3] elicit well-defined potentials that
can be used by the computer to "understand’ its user.

Speller is a well-known BCI application based on the P300
waveform, which is an event-related potential (ERP) triggered
by visual stimuli [4]. This BCI acts as typing machine using
the P300 response related to images of characters. The P300
ERP is elicited using an oddball paradigm which basically
consists on presenting the subject target stimuli blended among
irrelevant stimuli while recording its physiological response.
300ms after the target stimulus is presented, a positive de-
flection (or potential) in the subject’s EEG signals can be
observed, thus taking the name P300. The simplicity of
this paradigm makes this BCI require less data samples for
training/to train with in comparison with other paradigms,
making it a useful for developing solutions targeted at patients
[5] Two processes are required to use a BCI: training and
testing. In training, the system learns to interpret the subject’s
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commands and in testing, it is measured how accurate the
system is doing so. The correct functioning of a BCI will
depend greatly on its capacity to recognize correctly the sub-
ject’s commands. Statistical and Machine learning algorithms
have been successfully used for that purpose. The work of
Hoffmann [5] used Bayesian Linear Discriminant Analysis
(BLDA) and Fisher’s Linear Discriminant Analysis (FLDA)
to classify the P300 responses of five disable subjects and
four healthy subjects in a Speller-like BCI with 6 images.
Using multiple blocks for classification, they were able to
achieve on average a classification accuracy of 100% for the
disable subjects. In [6], the authors presented a new way to
detect the P300 waveform from raw EEG data by employing
convolutional neural networks (CNN). Comparing multiple
CNN architectures, they obtained a block precision of 95.5%
with their best model.

Regarding deep belief networks for EEG classification, in
[7] the authors proposed a method to improve the DBN’s
training algorithm. Testing their models with EEG P300 trials,
they were able to achieve a target by block classification
accuracy of 93.47% for their subject. The work of [8] used
a DBN to classify raw EEG data for a P300 based BCI
obtaining. They reported their best model precision was able
to reach 86.4%. There has been other works such as [9], in
which they tried to classify single P300 trials using DBNSs,
reporting for its best subject up to 87% in precision.

We propose a method to classify P300 single trials using
deep belief networks (DBNs). We tested this network with
EEG data of healthy subjects and stroke victims. The model
can be used in the design of any P300 based BCI. This
work is presented as follows: in section II are presented the
materials, including participants, experimental setup and EEG
acquisition and the methods, which describes preprocessing,
feature vectors and classifiers. The results and discussion are
presented in section III. Finally, we present the conclusions
and future work in section IV.

II. MATERIALS AND METHODS
A. Participants and EEG Acquisition

Nine volunteers, aged between 20 and 55 years old, agreed
to participate in this study. The healthy subjects (SO1 to S06)
acted as the control group for the three post-stroke patients
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Fig. 1. Protocol’s time diagram. One of the six images (visual cues) is
randomly selected and displayed on the screen for 100ms followed by a white
background for the next 300ms. After displaying all six images, this process
repeats itself between 20 and 25 times.

(S07 to S09). The Ethics Committee from the Universidad
Peruana Cayetano Heredia issued the ethical approval for the
experiment and informed written consent. The participants
were informed about the objectives of this study and ensured
the preservation of their anonymity. Subjects S07 and SO8
presented mild aphasia, but only subject SO8 showed signs
of upper limbs paresis. Subject S09 exhibited severe apraxia.

The EEG signals were acquired using sixteen bipolar elec-
trodes and the g.USBamp amplifier (g.tec medical engineering
GmbH, Austria). The electrodes were placed following the
10-20 system on the positions: Fz, FC1, FC2, C3, Cz, C4,
CP1, CP2, P7, P3, Pz, P4, P8, Ol1, O2, and O3. The ground
electrode was placed at the subject’s right mastoid and, the
reference electrode, on its left earlobe.

TABLE 1
PARTICIPANTS INFORMATION

Subject Age  Gender Diagnosis

S01 33 Male Healthy

S02 21 Male Healthy

S03 20 Male Healthy

S04 21 Male Healthy

S05 24 Male Healthy

S06 29 Male Healthy

S07 20 Male Hemorrhagic post-stroke
S08 52 Female Ischemic post-stroke
S09 55 Male Ischemic post-stroke

B. Experimental Setup

The protocol used here was based on Hoffmann’s work [5].
To summarize, six different images were randomly flashed
on a screen with white background. Each one of these tries
to represent an action the subject would like to carry out.
The Fig. 1 shows the timing scheme of the experiment. It is
called a block to the time interval in which the six images
are flashed only once. Between 20 and 25 blocks make a run,
and each session had 6 runs. Four sessions, recorded in two
days, were obtained from the nine participants. Through all the
experiment, the participants were asked to count how many
times the image they chose to pay attention to appeared on
the screen.

C. Signal Preprocessing

The data was downsampled from 2400Hz to 120Hz and then
filtered using a sixth order Butterworth bandpass filter with
cut-off frequencies in 1 and 15 Hz. The data points of each
electrode recorded in one second after an image was flashed

were extracted and stored in a 16 x 120 matrix, defining a trial.
Any artifact and/or outliers were removed by winsorization [5].
Finally, the signals on each trial were standardized. The feature
vectors were constructed rearranging the data from all trials.
Specifically, the data points of each channel were concatenated
in the following way:

I=[si s S Si° 83 83 Si%o] »

wherein for a single point Si, i indicates the channel it
belongs and k its position with respect of time. The resulting
vectors from all the trials present in the subject’s sessions were
stacked, shaping the initial training matrix. Each trial and thus,
each feature vector, has a label which indicates whether or not
if its related visual stimulus triggered a P300 waveform. If
that is the case, the trial is called target, and when not, non-
target. However, since consecutive trials overlap, the adjacent
non-target trials to the target ones will also present the P300
waveform at some degree. These trials were removed before
applying any balancing process.

Due to the paradigm employed in the design of the P300
BCI, the subject’s data will have an uneven amounts of target
and non-target trials. Any unevenness may bias the classifier,
resulting in non-reliable performance metrics. To avoid this, a
balancing process was applied, which consisted on randomly
selecting the same number of target trials from a non-target
trial pool. Finally, the feature vector were re-normalize from
0 to 1. The subject’s balanced dataset were then used to train
and test the classifier.

D. Classification

A deep belief network (DBN) was used to classify single
trials automatically. Neural networks can be seen as function
approximators [10], in which their inside parameters are
adjusted trying to match actual outputs with desired outputs
by comparing the error between both. A DBN is a deep
neural network made of two or more restricted Boltzmann
machines (RBMs) stacked on top of each other [11]. A RBM
is a simple neural net with an input (or visible) layer fully
connected to a single hidden layer. The DBN training is
divided in two stages: the first one is the unsupervised training
(or pretraining) of each RBM and the second stage is the
supervised training of the whole network. The pretraining
stage is motivated by the problems regular training by back-
progation has. Specifically, the highly non-linear character
of the performance/cost function makes its minimization by
the gradient descent method troublesome due to the presence
of local maximum (or minimum) values. The unsupervised
greedy layer-wise training aims to give the cost function
a more convex character, reducing the possibilities of the
gradient getting stuck in local maxima (or minima). In the
unsupervised training stage, each RBM learns to detect the
most relevant characteristics of their respective inputs using
the contrastive divergence (CD) algorithm [12]. A RBM’s
hidden layer will act as the input layer for the next RBM
once its pretraining is complete. Once all the RBMs have
been trained, the whole network can be fine-tuned using



error backpropagation in a supervised manner. The simplified
pretraining stage of each RBM is briefly presented below [13].

Let us assume a binary RBM for simplicity, which then can
be used to generalize the model for real value inputs. Let v and
h be the state vectors of the visible and hidden neurons of the
RBM. Also, let w be the weight matrix which describes the
interaction between the ¢th visible neuron and the jth hidden
neuron. The energy of a joint configuration (v, k), is defined
as:

V. H \4 H
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where V' and H are the total number of visible and hidden
neurons whilst b; and c; are their bias terms respectively.

The probability distribution for every possible joint config-
uration is defined using the energy function

1
p(v,h) = Ee*E(”’h).

where Z = 3" 3", e E(h) i the partition function. The
probability the neural net assigns to an input v is computed
by summing all hidden vectors, resulting in

1 —FE(v
p(v)zgze Blohk),
h

A RBM can be assigned to a specific input by modifying its
parameters. The derivative of the log probability of an input
vector with respect to the weight matrix can be used to define
a learning rule

dlogp(v)
87 X Awij - 77(<Uihj>data - <Uihj>reconst)

Wi j
where 7 is the learning rate and the terms in the angle brackets
are the expectations under the distributions of the training set
and its reconstruction respectively. The (v; hj>dam term can

be calculated, for a v input, using the conditional probability

v
plhy = 1|v) = flc; + > viwij) ()
i=1
and the second term (v;/1;)reconst can be calculated first by
applying Eq. 1 to the reconstructions after these are computed
using

H
p(vi = 1|h) = f(bi + Y hywij) )

j=1
where f(z) = H% (logistic sigmoid). To summarize, this

training consists on reconstructing the input by using only the
hidden layer outputs. The goal is to make the real inputs and
the reconstructions as similar as possible adjusting the net’s
parameters. Real input values were processed using a Gaus-
sian—Bernoulli RBM, in which the conditional distributions are
modeled with a Gaussian [14].

Four RBMs stacked and an output classification layer make
up the network proposed here. The Fig. 2 shows the network’s
architecture and the RBMs. The logistic sigmoid function
was used to model each neuron’s activation function, except
for the ones in the output layer which used the softmax
function. The unsupervised training of each RBM was fixed
for 100 iterations. The algorithm used for the supervised
training process was the scaled conjugate gradient (SCG)
backpropagation. All subject’s networks converged using only
600 epochs. The whole training stage took in average fifteen
minutes using a Nvidia GTX 1050 GPU and an Intel core i7
CPU.

III. RESULTS AND DISCUSSION

Table III shows the classification accuracy obtained using a
5-fold cross-validation method for the DBN and also compares
it with our previous works [15] [16]. For each classifier,
subjects S01, SO3 and S09 obtained the best results whilst
subject SO7 performance was the lowest. It is very likely
the subject SO7 low performance was due to its critical
condition (hemorragic poststroke). Even though the P300 is
an endogenous response that can be elicited in post-stroke
victims, the subject’s concentration is an important factor that
will determine overall if the P300 potential is generated or not.
Subject SO7 performance suggest its concentration decreased
over time mainly due to its medical condition and fatigue. A
possible solution for this kind of subjects would be to increase
the amount of sessions and reduce the number of runs recorded
in a day, making the recording periods shorter.

For all the subjects, the results from the DBN, the MLP
and SVM were similar, except for subject SO4 in which the
DBN clearly outperform the rest. On average, subjects SO8
and S09 obtained even a better performance than most of
the healthy subjects which clearly indicates a p300 based
BCI using this classifier would work correctly. An important
factor that may have influenced the classifier’s performance
was the balancing process. Although all non-target trials were
recorded under the same circumstances and should share the
same information, differences may arise between them due
to the artifacts generated by subject’s fatigue, external events,
among others. For that reason, it is possible another non-target
trial combination may yield better or worst results.

This classifiers can also be used to classify trials by block,
as in BCI systems proposed by [5], [6]. Their single trial
classification accuracy would allow the system to reduce
dramatically the amount of blocks it needs to be certain
about the user’s command, resulting in a 100% classification
accuracy in less time.

IV. CONCLUSIONS

A P300 single trial classifier based on a DBN was pre-
sented and tested on six healthy subjects and three post-stroke
patients. The results surpass our previous work in most of the
healthy subjects but performance along the patient cohort was
maintained. This classifier can be employed in the designing
stage of a P300 based BCI. Patients with several medical
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Fig. 2. Architecture of the

TABLE 11
CLASSIFICATION ACCURACY

Subject DBN MLP [16] RBF SVM [16] ANFIS [15]
S01 91.6 91.8 91.5 85.3
S02 80.7 80.3 79.1 774
S03 85.8 85.3 83.9 79.3
S04 81.7 75.7 78.9 79.5
S05 83.5 84.9 83.4 -

S06 82.5 83.0 81.7 72.4
S07 66.6 68.6 69.2 70.1
S08 88.1 89.6 85.5 74.9
S09 85.8 86.9 87.4 78.4

conditions may require another type of classifiers and/or more
training sessions to increase their performance.

The greedy layer-wise training the DBN goes through makes
it require less processed inputs since it can detect by itself
relevant characteristics for optimal discrimination. The main
drawback is the computational power it requires for training.
The balancing process to which the subject’s data is put
through may be preventing the classifier model to achieve its
optimum classification accuracy due to the selection of non-
target trials been without any specific criteria.

As future work, we intend to include amyotrophic lateral
sclerosis (ALS) patients and also to improve the balancing
process discriminating the non-target trials to select the most
appropriate ones.
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