P300 single-trial classification using deep belief networks for a BCI system

1st Sergio A. Cortez

Dept. of Electrical Engineering

Universidad de Ingeniería y Tecnología

Lima, Peru

sergio.cortez@utec.edu.pe

2nd Christian Flores

Dept. of Electrical Engineering

Universidad de Ingeniería y Tecnología

Lima, Peru

cflores@utec.edu.pe

3rd Javier Andreu-Perez

Dept. of Electronic Engineering

University of Essex

Essex, United Kingdom
javier.andreu@essex.ac.uk

Abstract—A brain-computer interface (BCI) aims to provide their users the capability to interact with machines only through their though processes. BCIs targeted at subjects with mild and severe motor impairments are of special interest since this kind of technology would improve their lifestyles. This paper focuses on the classification of the P300 waveform from single trials in EEG to be used in a BCI using deep belief networks. This deep learning algorithm has the capability to identify relevant features automatically from the subject's EEG data, making its training requiring less preprocessing stages. The network is tested on healthy subjects and post-stroke victims. The highest accuracy achieved was of 91.6% for a healthy subject and 88.1% for a post-stroke victim.

Index Terms—brain-computer interface, stroke victims, EEG, deep belief networks

I. INTRODUCTION

A brain-computer interface (BCI) is a technology that grants people control over machines or computers by using only their thoughts [1]. Different brain imaging techniques, like electroencephalography (EEG) and magnetic resonance imaging (MRI), are used to register and analyze people's brain activity. Certain mental processes are of special interest in BCI design because they can be performed whiteout problems by motor-impaired subjects, which allows engineers and medics to work on solutions towards them, potentially improving their lifestyle [2]. In the case of EEG, paradigms such as oddball and motor imagery (MI) [3] elicit well-defined potentials that can be used by the computer to 'understand' its user.

Speller is a well-known BCI application based on the P300 waveform, which is an event-related potential (ERP) triggered by visual stimuli [4]. This BCI acts as typing machine using the P300 response related to images of characters. The P300 ERP is elicited using an oddball paradigm which basically consists on presenting the subject target stimuli blended among irrelevant stimuli while recording its physiological response. 300ms after the target stimulus is presented, a positive deflection (or potential) in the subject's EEG signals can be observed, thus taking the name P300. The simplicity of this paradigm makes this BCI require less data samples for training/to train with in comparison with other paradigms, making it a useful for developing solutions targeted at patients [5] Two processes are required to use a BCI: training and testing. In training, the system learns to interpret the subject's

commands and in testing, it is measured how accurate the system is doing so. The correct functioning of a BCI will depend greatly on its capacity to recognize correctly the subject's commands. Statistical and Machine learning algorithms have been successfully used for that purpose. The work of Hoffmann [5] used Bayesian Linear Discriminant Analysis (BLDA) and Fisher's Linear Discriminant Analysis (FLDA) to classify the P300 responses of five disable subjects and four healthy subjects in a Speller-like BCI with 6 images. Using multiple blocks for classification, they were able to achieve on average a classification accuracy of 100% for the disable subjects. In [6], the authors presented a new way to detect the P300 waveform from raw EEG data by employing convolutional neural networks (CNN). Comparing multiple CNN architectures, they obtained a block precision of 95.5% with their best model.

Regarding deep belief networks for EEG classification, in [7] the authors proposed a method to improve the DBN's training algorithm. Testing their models with EEG P300 trials, they were able to achieve a target by block classification accuracy of 93.47% for their subject. The work of [8] used a DBN to classify raw EEG data for a P300 based BCI obtaining. They reported their best model precision was able to reach 86.4%. There has been other works such as [9], in which they tried to classify single P300 trials using DBNs, reporting for its best subject up to 87% in precision.

We propose a method to classify P300 single trials using deep belief networks (DBNs). We tested this network with EEG data of healthy subjects and stroke victims. The model can be used in the design of any P300 based BCI. This work is presented as follows: in section II are presented the materials, including participants, experimental setup and EEG acquisition and the methods, which describes preprocessing, feature vectors and classifiers. The results and discussion are presented in section III. Finally, we present the conclusions and future work in section IV.

II. MATERIALS AND METHODS

A. Participants and EEG Acquisition

Nine volunteers, aged between 20 and 55 years old, agreed to participate in this study. The healthy subjects (S01 to S06) acted as the control group for the three post-stroke patients

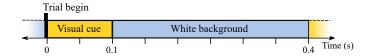


Fig. 1. Protocol's time diagram. One of the six images (visual cues) is randomly selected and displayed on the screen for 100ms followed by a white background for the next 300ms. After displaying all six images, this process repeats itself between 20 and 25 times.

(S07 to S09). The Ethics Committee from the Universidad Peruana Cayetano Heredia issued the ethical approval for the experiment and informed written consent. The participants were informed about the objectives of this study and ensured the preservation of their anonymity. Subjects S07 and S08 presented mild aphasia, but only subject S08 showed signs of upper limbs paresis. Subject S09 exhibited severe apraxia.

The EEG signals were acquired using sixteen bipolar electrodes and the g.USBamp amplifier (g.tec medical engineering GmbH, Austria). The electrodes were placed following the 10-20 system on the positions: Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, P7, P3, Pz, P4, P8, O1, O2, and O3. The ground electrode was placed at the subject's right mastoid and, the reference electrode, on its left earlobe.

TABLE I PARTICIPANTS INFORMATION

Subject	Age	Gender	Diagnosis	
S01	33	Male	Healthy	
S02	21	Male	Healthy	
S03	20	Male	Healthy	
S04	21	Male	Healthy	
S05	24	Male	Healthy	
S06	29	Male	Healthy	
S07	20	Male	Hemorrhagic post-stroke	
S08	52	Female	Ischemic post-stroke	
S09	55	Male	Ischemic post-stroke	

B. Experimental Setup

The protocol used here was based on Hoffmann's work [5]. To summarize, six different images were randomly flashed on a screen with white background. Each one of these tries to represent an action the subject would like to carry out. The Fig. 1 shows the timing scheme of the experiment. It is called a block to the time interval in which the six images are flashed only once. Between 20 and 25 blocks make a run, and each session had 6 runs. Four sessions, recorded in two days, were obtained from the nine participants. Through all the experiment, the participants were asked to count how many times the image they chose to pay attention to appeared on the screen.

C. Signal Preprocessing

The data was downsampled from 2400Hz to 120Hz and then filtered using a sixth order Butterworth bandpass filter with cut-off frequencies in 1 and 15 Hz. The data points of each electrode recorded in one second after an image was flashed

were extracted and stored in a 16×120 matrix, defining a trial. Any artifact and/or outliers were removed by winsorization [5]. Finally, the signals on each trial were standardized. The feature vectors were constructed rearranging the data from all trials. Specifically, the data points of each channel were concatenated in the following way:

$$I = \begin{bmatrix} S_1^1 & S_1^2 & S_1^3 & \dots & S_1^{16} & S_2^1 & S_2^2 & \dots & S_{120}^{16} \end{bmatrix},$$

wherein for a single point S_k^i , i indicates the channel it belongs and k its position with respect of time. The resulting vectors from all the trials present in the subject's sessions were stacked, shaping the initial training matrix. Each trial and thus, each feature vector, has a label which indicates whether or not if its related visual stimulus triggered a P300 waveform. If that is the case, the trial is called *target*, and when not, *non-target*. However, since consecutive trials overlap, the adjacent non-target trials to the target ones will also present the P300 waveform at some degree. These trials were removed before applying any balancing process.

Due to the paradigm employed in the design of the P300 BCI, the subject's data will have an uneven amounts of target and non-target trials. Any unevenness may bias the classifier, resulting in non-reliable performance metrics. To avoid this, a balancing process was applied, which consisted on randomly selecting the same number of target trials from a non-target trial pool. Finally, the feature vector were re-normalize from 0 to 1. The subject's balanced dataset were then used to train and test the classifier.

D. Classification

A deep belief network (DBN) was used to classify single trials automatically. Neural networks can be seen as function approximators [10], in which their inside parameters are adjusted trying to match actual outputs with desired outputs by comparing the error between both. A DBN is a deep neural network made of two or more restricted Boltzmann machines (RBMs) stacked on top of each other [11]. A RBM is a simple neural net with an input (or visible) layer fully connected to a single hidden layer. The DBN training is divided in two stages: the first one is the unsupervised training (or pretraining) of each RBM and the second stage is the supervised training of the whole network. The pretraining stage is motivated by the problems regular training by backprogation has. Specifically, the highly non-linear character of the performance/cost function makes its minimization by the gradient descent method troublesome due to the presence of local maximum (or minimum) values. The unsupervised greedy layer-wise training aims to give the cost function a more convex character, reducing the possibilities of the gradient getting stuck in local maxima (or minima). In the unsupervised training stage, each RBM learns to detect the most relevant characteristics of their respective inputs using the contrastive divergence (CD) algorithm [12]. A RBM's hidden layer will act as the input layer for the next RBM once its pretraining is complete. Once all the RBMs have been trained, the whole network can be fine-tuned using error backpropagation in a supervised manner. The simplified pretraining stage of each RBM is briefly presented below [13].

Let us assume a binary RBM for simplicity, which then can be used to generalize the model for real value inputs. Let v and h be the state vectors of the visible and hidden neurons of the RBM. Also, let w be the weight matrix which describes the interaction between the ith visible neuron and the jth hidden neuron. The energy of a joint configuration (v, h), is defined as:

$$E(\boldsymbol{v}, \boldsymbol{h}) = -\sum_{i=1}^{V} \sum_{j=1}^{H} v_i h_j w_{ij} - \sum_{i=1}^{V} b_i v_i - \sum_{j=1}^{H} c_j h_j,$$

where V and H are the total number of visible and hidden neurons whilst b_i and c_j are their bias terms respectively.

The probability distribution for every possible joint configuration is defined using the energy function

$$p(\boldsymbol{v}, \boldsymbol{h}) = \frac{1}{Z} e^{-E(\boldsymbol{v}, \boldsymbol{h})}.$$

where $Z = \sum_{\boldsymbol{v}} \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})}$ is the partition function. The probability the neural net assigns to an input \boldsymbol{v} is computed by summing all hidden vectors, resulting in

$$p(\boldsymbol{v}) = \frac{1}{Z} \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})},$$

A RBM can be assigned to a specific input by modifying its parameters. The derivative of the log probability of an input vector with respect to the weight matrix can be used to define a learning rule

$$\frac{\partial \log p(\boldsymbol{v})}{\partial w_{ij}} \propto \Delta w_{ij} = \eta (\langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{reconst})$$

where η is the learning rate and the terms in the angle brackets are the expectations under the distributions of the training set and its reconstruction respectively. The $\langle v_i h_j \rangle_{data}$ term can be calculated, for a v input, using the conditional probability

$$p(h_j = 1|\mathbf{v}) = f(c_j + \sum_{i=1}^{V} v_i w_{ij})$$
 (1)

and the second term $\langle v_i h_j \rangle_{reconst}$ can be calculated first by applying Eq. 1 to the reconstructions after these are computed using

$$p(v_i = 1|\mathbf{h}) = f(b_i + \sum_{j=1}^{H} h_j w_{ij})$$
 (2)

where $f(x) = \frac{1}{1+e^{-x}}$ (logistic sigmoid). To summarize, this training consists on reconstructing the input by using only the hidden layer outputs. The goal is to make the real inputs and the reconstructions as similar as possible adjusting the net's parameters. Real input values were processed using a Gaussian–Bernoulli RBM, in which the conditional distributions are modeled with a Gaussian [14].

Four RBMs stacked and an output classification layer make up the network proposed here. The Fig. 2 shows the network's architecture and the RBMs. The logistic sigmoid function was used to model each neuron's activation function, except for the ones in the output layer which used the softmax function. The unsupervised training of each RBM was fixed for 100 iterations. The algorithm used for the supervised training process was the scaled conjugate gradient (SCG) backpropagation. All subject's networks converged using only 600 epochs. The whole training stage took in average fifteen minutes using a Nvidia GTX 1050 GPU and an Intel core i7 CPU.

III. RESULTS AND DISCUSSION

Table III shows the classification accuracy obtained using a 5-fold cross-validation method for the DBN and also compares it with our previous works [15] [16]. For each classifier, subjects S01, S03 and S09 obtained the best results whilst subject S07 performance was the lowest. It is very likely the subject S07 low performance was due to its critical condition (hemorragic poststroke). Even though the P300 is an endogenous response that can be elicited in post-stroke victims, the subject's concentration is an important factor that will determine overall if the P300 potential is generated or not. Subject S07 performance suggest its concentration decreased over time mainly due to its medical condition and fatigue. A possible solution for this kind of subjects would be to increase the amount of sessions and reduce the number of runs recorded in a day, making the recording periods shorter.

For all the subjects, the results from the DBN, the MLP and SVM were similar, except for subject S04 in which the DBN clearly outperform the rest. On average, subjects S08 and S09 obtained even a better performance than most of the healthy subjects which clearly indicates a p300 based BCI using this classifier would work correctly. An important factor that may have influenced the classifier's performance was the balancing process. Although all non-target trials were recorded under the same circumstances and should share the same information, differences may arise between them due to the artifacts generated by subject's fatigue, external events, among others. For that reason, it is possible another non-target trial combination may yield better or worst results.

This classifiers can also be used to classify trials by block, as in BCI systems proposed by [5], [6]. Their single trial classification accuracy would allow the system to reduce dramatically the amount of blocks it needs to be certain about the user's command, resulting in a 100% classification accuracy in less time.

IV. CONCLUSIONS

A P300 single trial classifier based on a DBN was presented and tested on six healthy subjects and three post-stroke patients. The results surpass our previous work in most of the healthy subjects but performance along the patient cohort was maintained. This classifier can be employed in the designing stage of a P300 based BCI. Patients with several medical

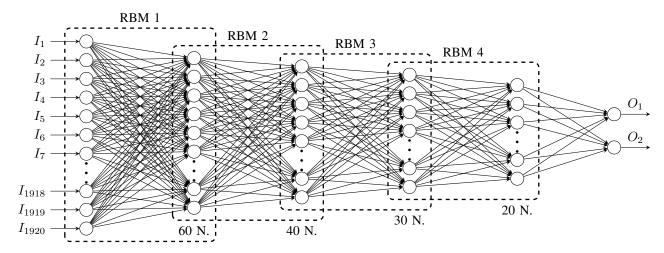


Fig. 2. Architecture of the deep belief network proposed.

TABLE II
CLASSIFICATION ACCURACY

Subject	DBN	MLP [16]	RBF SVM [16]	ANFIS [15]
S01	91.6	91.8	91.5	85.3
S02	80.7	80.3	79.1	77.4
S03	85.8	85.3	83.9	79.3
S04	81.7	75.7	78.9	79.5
S05	83.5	84.9	83.4	-
S06	82.5	83.0	81.7	72.4
S07	66.6	68.6	69.2	70.1
S08	88.1	89.6	85.5	74.9
S09	85.8	86.9	87.4	78.4

conditions may require another type of classifiers and/or more training sessions to increase their performance.

The greedy layer-wise training the DBN goes through makes it require less processed inputs since it can detect by itself relevant characteristics for optimal discrimination. The main drawback is the computational power it requires for training. The balancing process to which the subject's data is put through may be preventing the classifier model to achieve its optimum classification accuracy due to the selection of non-target trials been without any specific criteria.

As future work, we intend to include amyotrophic lateral sclerosis (ALS) patients and also to improve the balancing process discriminating the non-target trials to select the most appropriate ones.

ACKNOWLEDGMENT

This work was supported by the Programa Nacional de Innovacion para la Competitividad y Productividad of Peru, under the grant PIAP-3-P-483-14 and a seed fund by UTEC.

REFERENCES

- [1] H.-J. Hwang, S. Kim, S. Choi, and C.-H. Im, "Eeg-based brain-computer interfaces: a thorough literature survey," *International Journal of Human-Computer Interaction*, vol. 29, no. 12, pp. 814–826, 2013.
- [2] E. W. Sellers and E. Donchin, "A p300-based brain-computer interface: initial tests by als patients," *Clinical neurophysiology*, vol. 117, no. 3, pp. 538–548, 2006.

- [3] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger, "A review of classification algorithms for eegbased brain-computer interfaces: a 10 year update," *Journal of neural engineering*, vol. 15, no. 3, p. 031005, 2018.
- [4] L. A. Farwell and E. Donchin, "Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials," *Electroencephalography and clinical Neurophysiology*, vol. 70, no. 6, pp. 510–523, 1988.
- [5] U. Hoffmann, J.-M. Vesin, T. Ebrahimi, and K. Diserens, "An efficient p300-based brain-computer interface for disabled subjects," *Journal of Neuroscience methods*, vol. 167, no. 1, pp. 115–125, 2008.
- [6] H. Cecotti and A. Graser, "Convolutional neural networks for p300 detection with application to brain-computer interfaces," *IEEE transactions on pattern analysis and machine intelligence*, vol. 33, no. 3, pp. 433–445, 2010.
- [7] S. Morabbi, M. Keyvanpour, and S. V. Shojaedini, "A new method for p300 detection in deep belief networks: Nesterov momentum and drop based learning rate," *Health and Technology*, vol. 9, no. 4, pp. 615–630, 2019.
- [8] Z. Lu, N. Gao, Y. Liu, and Q. Li, "The detection of p300 potential based on deep belief network," in 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–5, 2018.
- [9] A. Sobhani, "P300 classification using deep belief nets," in European Symposium on Artificial Neural Networks (ESANN), 2014.
- [10] P. H. Winston, Artificial Intelligence (3rd Ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1992.
- [11] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," *science*, vol. 313, no. 5786, pp. 504–507, 2006
- [12] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," *Neural computation*, vol. 18, no. 7, pp. 1527–1554, 2006.
- [13] G. E. Hinton, "A practical guide to training restricted boltzmann machines," in *Neural networks: Tricks of the trade*, pp. 599–619, Springer, 2012.
- [14] A.-r. Mohamed, G. E. Dahl, and G. Hinton, "Acoustic modeling using deep belief networks," *IEEE transactions on audio, speech, and lan*guage processing, vol. 20, no. 1, pp. 14–22, 2011.
- [15] D. Achanccaray, C. Flores, C. Fonseca, and J. Andreu-Perez, "A p300-based brain computer interface for smart home interaction through an anfis ensemble," in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–5, IEEE, 2017.
- [16] S. A. Cortez, C. Flores, and J. Andreu-Perez, "A smart home control prototype using a p300-based brain-computer interface for post-stroke patients," in *Smart Innovation, Systems and Technologies*, p. to appear, Springer Nature, 2020.