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Abstract
Transcription Factors (TFs) bind to DNA and control activity of target genes. Here, we present ChIPanalyser, a

user-friendly, versatile and powerful R/Bioconductor package predicting and modelling the binding of TFs to DNA.
ChIPanalyser performs similarly to state-of-the-art tools, but is an explainable model and provides biological insights
into binding mechanisms of TFs. We focused on investigating the binding mechanisms of three TFs that are known
architectural proteins CTCF, BEAF-32 and su(Hw) in three Drosophila cell lines (BG3, Kc167 and S2). While CTCF
preferentially binds only to a subset of high affinity sites located mainly in open chromatin, BEAF-32 binds to most
of its high affinity binding sites available in open chromatin. In contrast, su(Hw) binds to both open chromatin and
also partially closed chromatin. Most importantly, differences in TF binding profiles between cell lines for these TFs
are mainly driven by differences in DNA accessibility and not by differences in TF concentrations between cell lines.
Finally, we investigated binding of Hox TFs in Drosophila and found that Ubx binds only in open chromatin, while
Abd-B and Dfd are capable to bind in both open and partially closed chromatin. Overall, our results show that TFs
display different binding mechanisms and that our model is able to recapitulate their specific binding behaviour.

Background
Decades of research have shown that gene expression plays an essential role in the livelihood of cells and organisms.
From development to cellular homoeostasis, the activation or repression of gene expression enables cells, and by extension
organisms, to function properly. One of the key components of the regulation of gene expression is Transcription Factors
(TFs). The most commonly used experimental method to determine specific regions of DNA where TFs bind is chromatin
immunoprecipitation followed by sequencing (ChIP-seq) [1, 2]. This technique has become the gold standard to determine
the binding profiles of TFs to the genome, but, despite the huge impact on understanding gene regulation, it does not
provide a mechanistic model of what drives the binding of TFs to those regions or even how genes are regulated. While we
still lack a complete predictive model for gene expression, over the years, many factors have been identified as contributing
to context dependant TF binding.

An important aspect to consider concerning TF binding specificity is the DNA sequence itself. While some TFs do not
bind in a sequence specific manner, our work focuses on the sequence specific TFs [3, 4, 5, 6]. The most common way to
describe this motif is in the form of a Position Weight Matrix (PWM); a measure of binding frequency between TFs and
DNA weighted by the genomic base pair frequency [3, 7]. Nevertheless, TFs can have tens of thousands potential binding
sites within each genome, yet only a few hundred will be occupied by TFs [8, 9].

Previous studies have shown that some TF binding events are TF concentration dependent [10, 11, 12, 13], where
varying the concentration of the TF will drive the expression of different sets of genes. However, there are many more
spurious sites, rather than functional binding sites where TFs could bind. This still begs the question: how do TFs
distinguish between bound and unbound binding sites?

One way to reduce the number of available sites is to consider DNA accessibility. Are these sites even available for
binding in the first place? This assumes that TFs would bind only to sites that are accessible and cannot locate sites
within dense chromatin [14, 15]. Nevertheless, there is a certain class of TFs known as pioneer TFs are able to bind in
closed chromatin. More specifically, pioneer TFs can bind sites in closed dense chromatin and subsequently open the
chromatin [16, 17, 18, 19].
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Over the years, many tools and frameworks have aimed to predict transcription factor binding. One of the earliest tools
incorporating DNA accessibility was the PIQ algorithm (Protein Interaction Quantification) which implemented a machine
learning type algorithm to filter out binding sites located in inaccessible DNA [20]. Later, msCENTIPEDE improved upon
CENTIPEDE using multi-scale models for inhomogeneous Poisson processes to untangle TF binding with respect to DNA
accessibility [21]. Some notable tools that have been developed through DREAM challenges are FactorNet, implementing
a deep learning framework [22], Anchor, relying on a XGBoost system [23] and Catchitt making use of supervised machine
learning and iterative training [24]. While machine learning methods predict TF binding events with high accuracy, they
are often difficult to interpret; i.e., it is not clear what these models actually use to produce their predictions. The
interpretability issues have been widely discussed in the last decade [25, 26] and machine learning methods are not always
best suited to understand the mechanism driving a biological phenomenon.

We previously showed that statistical thermodynamics can be used to model TF binding to DNA with high accuracy
[13]. Considering only binding energy between TFs and DNA (estimated by the PWM and a scaling factor modulating the
binding energy), the number of bound molecules to the DNA and DNA accessibility, we modelled binding of five TFs in
Drosophila embryo. Our results confirmed that, for some TFs, this model is sufficient to explain the majority of observed
binding events in ChIP data and we were able to backwards infer number of bound molecules and specificity for five TFs
in Drosophila embryo (bcd, cad, gt, hb and Kr).

In this manuscript, we build upon our previous model and developed ChIPanalyser a versatile and user-friendly
R/Bioconductor package [27, 28]. Furthermore, we used this model to describe the behaviour of several Drosophila TFs
(CTCF, BEAF-32, su(Hw), Ubx, Abd-B and Dfd) in different cell lines (BG3, Kc167 and S2).

We show that the performance of ChIPanalyser is at least similar to other TF binding tools available. However, our
results provide a mechanistic interpretation of TF binding behaviour and propose a new classification of TFs based on
fine details of their binding mechanism. In particular, we found that DNA accessibility is the main driver that explains
binding of CTCF, BEAF-32 and su(Hw) in three Drosophila cell lines (BG3, Kc167 and S2) and that relatively medium
changes in the concentrations of these TFs lead to only negligible changes in their binding profiles. We also show that
TF binding specificity can be achieved by their capacity to bind regions with different levels of DNA accessibility. In
particular, we showed that, while Ubx, Abd-B and Dfd have similar binding motifs, the differences in their binding to
DNA could be explained by their different capacity to bind dense chromatin, with Ubx binding only in highly accessible
chromatin and Dfd and Abd-B binding denser chromatin.

Methods
Model Description
ChIPanalyser is an R package available on Bionconductor [28]. The package is an implementation of the statistical
thermodynamics model proposed in [13]. Briefly, the model requires (i) a PWM (Position Weight Matrix) or PFM
(Position Frequency Matrices) of the TF of interest, (ii) DNA accessibility data to model binding site accessibility and
two additional parameters: (iii) λ (a PWM scaling factor) and (iv) N (the number of bound molecules) [13]. The
probability of a position j on the DNA being occupied is given by [13]:

P bound
j (λ,w,N, a) = N · aj · e(
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with N the number of molecules bound to the DNA, aj the accessibility at site j, λ a scaling factor of the PWM score,
wj the PWM score at site j, L the length of the DNA and n is the ploidy level. Given the size of the genome and the
range of TF abundances reported in the literature, we can assume that the number of available sites is much larger than
the number of bound molecules. Thus, L ·n ·

〈
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λwi)

〉
i
does not consider the number of bound molecules as it describes

the rest of the genome that will not be bound by a given TF.
It should be noted that λ represents the relative affinity a TF could have for a binding site [7]. In particular, it

represents how well a given TF can discriminate between low/medium and high affinity sites. Also note that number of
bound molecules and concentration are not the same since in majority of the cases a large proportion of the molecules are
freely diffusing in the nucleoplasm (reviewed in [29]). λ and N are not always readily available in the form of experimental
data and, thus, we used ChIP-seq data and select the values of these parameters that maximise (or minimise) the goodness
of fit metrics.

Datasets
To carry out the analysis described in this manuscript, we selected data originating from various sources (see Table S1). We
provide the code used in the is manuscript in a GitHub repository ( https://github.com/patrickCNMartin/ChIPanalyserSub
)
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DNA Sequence: Reference Sequences of Drosophila melanogaster (dm6) [30, 31] and Homo sapiens (hg38) [32] were
extracted from the Bsgenome R packages [33]. All data sets were either aligned to the dm6 versions of the Drosophila
genome or lifted over from dm3 to dm6 using the UCSC genome liftover chain [34].

PWM and PFM: Binding Motif matrices were downloaded from online repositories (JASPAR) [35] or extracted from
the MotifDb R package [36], which collects and compiles PFMs and Position Probability Matrices (PPM) from various
online repositories (see Figure S1 in Supplementary Materials). For the purpose of method comparison requirements
(msCENTIPEDE), TF binding sites were extracted using FIMO from the MEME-suit tool kit [37].

ChIP-seq: ChIP enrichment signal and ChIP peaks were downloaded (pre-processed) from modEncode in three
Drosophila cell line: Kc167, S2 and BG3. Note that some of these ChIP datasets were generated in RNAi mutant cells.
Despite the differences between ChIP-chip and ChIP-seq, they are sufficiently similar to be comparable for the purpose
of this analysis [1]. Both describe TF binding events and both are provided in similar formats (.wig, .bed, .bedGraph,
.bigWig, .gff, .gff3). Supplementary data sets were downloaded from GEO. GEO datasets were aligned to the genome
(dm6) using bowtie-2 (- -non-deterministic). SAM files were converted to BAM files using samtools [38]. Peaks and
pile-up signal were called using macs2 with a 0.01 FDR (-q 0.01) [39] in order to ensure the robustness of the peaks
selected. Processed data sets for Homo sapiens were directly downloaded from ENCODE were already aligned to hg38.
We selected one of the datasets provided and used in the DREAM challenge competition related to TF binding prediction.
Peak replicates were combined using the GenomicsRanges package in R. Datasets used for this analysis are described in
Table S1 in Supplementary Materials.

DNA accessibility: DNase I hypersensitivity data was generated by modEncode for the three cell lines used in this
analysis [40]. We aligned fastq files to the dm6 genome build using bowtie-2 (- - non-deterministic). SAM files were
converted to BAM files using samtools [38]. Peaks and read pile-ups were called and produced using macs2 ( –broad-call
-cutoff 0.05 -q 0.05) [39]. We selected broad peaks and a more relaxed FDR, since DNA accessibility is characterised by
broader regions compared to ChIP data. DNase I hypersensitvity data for Homo sapiens was directly downloaded from
ENCODE and replicates were merged using samtools. DNase peak replicates were combined using the GenomicsRanges
package in R. The level of accessibility is consistent with past experiments (see Figure S2). ATAC-seq data for Kc167
cells was used from [41] and ATAC-seq scores were computed using macs2 as described in [41]. We selected a series of
ATAC-seq signal thresholds that we would use as a cut-off point to select accessible/inaccessible DNA. These thresholds
were based on signal quantiles from 0.05 to 0.95 by 0.05. We also considered 0.99 ,0.999, 0.9999 quantile thresholds. We
will refer to this method as Quantized Density Accessibility (QDA).

RNA-seq In order to rescale TF abundance between cell lines, we used RNA-seq data from [42]. RNA-seq relative
abundance was used to rescale the estimated number of bound molecules from one cell line to another.

Description of ChIPanalyser
The workflow of ChIPanalyser is described in Figure 1. Briefly, the optimal set of parameters (for λ and N) can be
inferred from ChIP data by maximising (or minimising) a goodness of fit metric. Nevertheless, if the user approximates
these values by other means, ChIPanalyser does not require any training data at all. Using these values, ChIPanalyser will
produce base pair resolution ChIP like profiles for different genomic regions and compare the prediction with the actual
ChIP data (if that is provided by the user).

ChIPanalyser uses a set of genomic regions to infer optimal parameters. If the genomic regions are not provided by
the user, the top n regions will be selected based on highest ChIP score after binning the genome into bins of 20 Kb
(number of regions to be selected and bin width and can be customized). In the context of this analysis, ChIP score refers
to the min/max normalised enrichment scores at base pair resolution provided in each data set. For our analysis, we split
the entire genome into bins of 20 Kb and selected bins that contained at least one CTCF, BEAF-32 and su(Hw) peaks
in at least one biological replicate and at least one cell line. By doing so, we ensure that the regions we will use in this
analysis are common between all data sets. This resulted in 3293 bins of 20 Kb that contain at least one peak of any
of these architectural proteins and at least one base pair of accessible DNA. In addition, we followed the same process
for Hox transcription factors, which resulted in a total of 3838 bins of 20 Kb containing at least one peak for each TF
(Ubx , Abd-b, and Dfd). Normalised and ordered bins (based on highest ChIP scores in that bin) were produced by the
processingChIP function from ChIPanalyser. Following this, we selected the top ten regions in order to train our model
(to infer N and λ by maximising or minimising a goodness of fit metric). While the top ten regions contain the strongest
peaks (True positive signal), they also contain large segments of DNA that are not bound by a given TF (True Negative
signal). The ratio of True positives to True negatives in the top ten regions provides a appropriate set of input data to
train our model. Once we had selected the optimal set of parameters based on our training set, we validated our results
on the other regions that do not contain the training set. For example, as regions were ordered based on ChIP signal
(from strongest signal to lowest signal), we selected the top ten regions with the strongest signal score to train our model
(regions 1 to 10) and following twenty regions (11 to 30) for validation.
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Figure 1: ChIPanalyser workflow. (A) ChIPanalyser follows the following work flow. Data Input: Data may come
in various formats (e.g. bed, wig, gff etc.). Processing ChIP-seq data: If ChIP data is used to infer the optimal
set of parameters (and/or validate model goodness of fit), ChIP data will be normalised and only regions of interest will
be extracted for further analysis. Inferring optimal parameters: Inferring optimal parameters will be achieved by
maximising (or minimising) a goodness of fit metric. Predicting ChIP profiles and plotting: Using the optimal
values for number of bound molecules and the PWM scaling factor, ChIPanalyser will produce ChIP like profiles. Both
optimal parameter heatmaps and ChIP profiles can be plotted using the package’s plotting functions. (B) shows the
general workflow and the main computational experiments that were carried out throughout this manuscript.

During this step of the analysis (processingChIP), we also included a noise filtering method. The current model does
not consider ChIP depletion, therefore all negative scores are replaced by 0. With that in mind, ChIPanlyser provides four
methods of filtering noise: Zero, Mean, Median and Sigmoid. Zero removes only depletion scores (equivalent to "no noise
filtering”). Mean and Median replace all scores below the mean or median after filtering out depletion scores. Finally,
Sigmoid applies a logistic weighting to every score, modulating ChIP scores around the 95th quantile point. All analysis
in this manuscript was carried out after using the Sigmoid noise filtering method.

Once the loci of interest have been selected, we inferred the optimal set of parameters by using computeOptimal func-
tion. The optimal set of parameters are inferred by maximising (or minimising) the average goodness of fit metric over all
regions selected. ChIPanalyser offers twelve different metrics: correlation coefficients (Pearson, Spearman and Kendall),
Mean Squared Error (MSE), Kolmogorov-Smirnov Distance, precision, recall, accuracy, F-score, Matthew’s correlation
coefficient (MCC) and Area Under Curve Receiver Operator Characteristic (AUC ROC or just AUC) (see Table S2 in
Supplementary Materials). We also developed a novel method that describes the ratio of shared geometric area between
curves and difference in area between curves. ChIPanalyser generates a ChIP like profile at a base pair level resolution,
however window size may be adjusted. The goal is to mimic experimental ChIP profiles by smoothing high occupancy
binding sites into ChIP like profiles. This approach was described by [13].

For this analysis we used a 100 bp window for validation. Goodness of fit is carried out by comparing our prediction
to ChIP score data (as opposed to peak location overlap). The rationale behind using ChIP scores instead of peaks was
two-fold: (i) we consider peaks that are missed by peak calling algorithms and (ii) using ChIP scores ensures that we also
consider signal enrichment. The latter is particularly relevant when estimating the number of bound molecules.

The evaluation method used by ChIPanalyer is significantly more stringent than methods used in other frameworks.
When confusion matrices are required for scoring (AUC, recall, F-score, MCC, Accuracy, precision), ChIPanalyser uses 20
threshold values bound between the lowest occupancy score (predicted or experimental score) and the highest occupancy
score (predicted or experimental score). The threshold values are squared in order to ensure a higher density of threshold
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values close to the lower end of occupancy scores. For every threshold value, ChIPanalyser compares its predicted profile
to the experimental profile in 100 bp bins. If they both contain a “signal”, we consider that ChIPanalyser has correctly
predicted local ChIP enrichment. If ChIPanalyser predicts ChIP enrichment when no experimental signal is present, we
consider this bin to be a false positive case. The same approach was used for false negative cases (Experimental enrich-
ment but no predicted enrichment) and true negative cases (No enrichment in either experimental or predicted profiles).
This approach ensures that the model is penalised if it fails to predict peak enrichment or conversely over estimates peak
enrichment.

The optimal parameters inferred over training can be visualised in the form of a heatmap describing the score associated
to each combination of λ and N . Heatmaps are produced using the plotOptimalHeatMaps function. Finally, using the opti-
mal set of parameters, ChIPanalyser will produce ChIP like profiles that can be visualised using the plotOccupancyProfiles
function provided by the package.

Results
Evaluation of ChIPanalyser
Previously, we showed how statistical thermodynamics can be used to mechanistically explain the binding of TFs in
Drosophila [13]. The optimal set of parameters (see Methods) was inferred by maximising correlation and minimising
Mean Squared Error (MSE) between the predicted profile and experimental ChIP data. Nevertheless, we observed that,
in some cases, the predicted profiles and ChIP profiles display low correlation coefficient despite the profiles looking similar
and vice versa (e.g. see Figure S3A and S3B in Supplementary Figures). In some cases, selecting the optimal parameters
was hindered by little variation in correlation between parameter combinations and, thus, the selection of these parameters
was exclusively driven by MSE (see Figure S3C in Supplementary Figures).

To reduce the potential influence of background noise, we tested four noise removal methods: Zero , Mean , Median
and Sigmoid; see Methods. To test their performance, we used three CTCF datasets (see Table S1 in Supplementary
Tables): (i) a ChIP-chip dataset with very little background noise (modEncode 2639), (ii) a ChIP-seq dataset with high
background noise (modEncode 3674) and (iii) a combination of all ChIP datasets in S2 cells (by adding enrichment signals
together at a base pair level). To ensure equal contribution of each data set, we normalised the signal prior to combining
data sets. We ran the model on top ten regions (as described in Methods ) and searched for the optimal set of parameters
(λ and N) that optimised the goodness of fit metric (in this instance - AUC). All four noise filtering methods have little
to no effect on ChIP data (see Figure S4 in Supplementary Figures). The Sigmoid method showed a slight signal reduc-
tion in smaller peaks (especially for noisy datasets), which was then translated into a slight improvement of the mean
Area Under Curve Receiver Operator Characteristic (AUC ROC) score between ChIP signal and our predictions (see Fig-
ure S4 in Supplementary Figures). The distribution describes all AUC ROC scores for the ten regions used for this analysis.

In addition to Pearson correlation and MSE, we tested several goodness of fit metrics to verify the influence of the met-
rics on our model as described in Methods and Table S2 in Supplementary Tables. We used the same three CTCF datasets
as described above and observed the emergence of two classes within these metrics: (i) similarity metrics that describe how
similar the two curves are (correlation coefficients, precision, MCC, Accuracy, F-score and AUC ROC) and (ii) dissimi-
larity metrics that are a measure of how different two curves are (MSE, geometric ratio, recall and Kolmogorov-Smirnov
distance). Our results showed that depending on the metric used, the optimal set of parameters varied significantly, but
each of the two classes (similarity and dissimilarity metrics) displayed similar yet not identical values for the optimal
parameters (see Supplementary Figure S5 A-F).

Goodness of fit metrics influence the way the model selects optimal parameters, but how does this translate to the
individual predicted ChIP profile level? We further investigated this behaviour at the individual loci using the same three
CTCF datasets. Figure 2A-B shows that similarity metrics (black shades) tend to be less prone to false positive peaks but
miss the actual ChIP signal strength within the peak (the height of the peak). On the other hand, dissimilarity metrics
(light blue shade) generate far more false positives but accurately recover the height of the peaks.

Overall, the best performing metrics were AUC ROC and MSE. AUC ROC occasionally missed peak enrichment com-
pletely however, seemed to recover peak location fairly accurately, while MSE rarely missed peak enrichment but also
produced a higher number of false positive peaks. For much of the following analysis, we used AUC ROC and MSE, since
they are more widely used estimators and performed best. More specifically, MSE was used as the training metric to select
the optimal set of parameters. AUC, recall, Spearman correlation and MSE were used for validating model performance.
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To evaluate the performance of our model, we first used a chromosome withholding set up. The model was trained on
the top 10 regions (as described in Methods - performed on modEncode 922) on chromosome 3R (Figure 3A). We then
validated our model using two approaches: (i) on the top 10 regions found on chr2R (Figure 3B) and (ii) on the top 10
regions on chr3R excluding regions used for training (Figure 3C). Our results show that ChIPanalyser accurately recovers
peak location and enrichment between chromosomes (Figure 3D-G).

In order to demonstrate that our model accurately recovers TF binding mechanisms, we also produced profiles in chr2R
after training in chr3R but with the addition of PWM scores above threshold. In Figure 4, we show predicted profiles
(red lines) compared to experimental ChIP (dark blue) for BEAF-32 (A), CTCF (B) and su(Hw) (C). The vertical lines
represent strong PWM scores (top 20%, top 20% and top 30% respectively). We observed that while some regions dis-
played strong PWM scores, this was not necessarily accompanied by experimental ChIP peaks. By using the statistical
thermodynamic model, we were able to recapitulate ChIP peaks more accurately and thus demonstrating that our model
predicts TF binding with higher accuracy than PWM scores alone.

Finally, we compared the performance of ChIPanalyser to other TF binding prediction frameworks namely PIQ,
msCENTIPEDE and Catchitt (see Table 1). As many available tools and frameworks are restricted to only considering
human or mouse data, we selected CTCF ChIP data in astrocyte cells (Homo sapiens) as provided by ENCODE (Table
S1 in Supplementary Materials). This dataset was also used in the DREAM challenge competition related to TF binding
prediction. It should be noted that neither PIQ nor msCENTIPEDE have a validation step and, for this reason, we ran
both PIQ and msCENTIPEDE on both chr11 and chr18 of the human genome (full chromosomes). Input BAM files were
truncated using samtools to only include these chromosomes. As PIQ and msCENTIPEDE provided discrete TF binding
sites, we smoothed scores over 100 bp in order to keep the evaluation window consistent between all tools. Catchitt was
trained on chr18 while ChIPanalyser was trained on the top ten regions of chr18. We then validated each tool on varying
number of regions on chr11 (20, 50, 100, 200, 500, 1000 and 6755 bin of 20 Kb). ChIPanalyser outperforms all other tools
when the number of regions used for validation is below 500 (see Figure 5 A-C). When using more than 500 regions for
validation, we observed that all tools performed similarly poorly. This trend holds true when using AUC, recall and MSE
as goodness of fit metrics (although less clear with MSE). Furthermore, we trained all tools (when possible) on whole chr18
and validated on whole chr11. This ensures that all tools were trained and validated using the same data. We show that
all tools perform similarly poorly when using the ChIP enrichment method to estimate goodness of fit (see Figure 5D-F).
While ChIPanalyser outperforms other tools, this could also be due to the method used to assess model performance (see
Methods, Discussion and Figure S6).

Table 1: Tool and framework comparison We provide a breakdown of a few popular tools and frameworks for TF
binding prediction. We assess the ease of use of each tool based on three main factors: ease of installation (package
manager), knowledge of underlying code (if it is required to make changes to the underlying code) and finally package
support (support and documentation).

ChIPanalyser Catchitt FactorNet Anchor PIQ msCENTIPEDE
Language R java python 2.7 python3.6/perl 5.1 R python 3.6
Organisms All* All Human Human All* Human

Training & Validation Yes Yes Yes Yes No No
Plotting Yes No No No No Limited

Support & Documentation Yes Yes No Incomplete Yes Yes
Knowledge of Underlying code No No Yes Yes No No

Package Manager Yes No No No No No
Availability Bioconductor GitHub GitHub GitHub bitbucket GitHub

DNA accessibility plays a key role in the binding of TFs
Steric hindrance can influence the binding of some TFs to DNA, meaning that a TF molecule would only bind stretches
of DNA if they are accessible. Any given genomic region can be considered either accessible or inaccessible and that is
sufficient to explain the binding profiles of most TFs [13]. Here, we selected accessible DNA based on DNase Hypersensi-
tivity Sites (DHS) in three Drosophila cell lines (Kc167, S2 and BG3). In these circumstances, DNA was either considered
accessible (score of 1) or inaccessible (score of 0). As a point of comparison, we also considered all DNA to be accessible
(No Access - all regions are assigned a score of 1) and also used a min-max normalised DNase score as continuous DNA
accessibility level (values between 0 and 1). We focused our analysis on three TFs: CTCF, BEAF-32 and su(Hw). We
trained our model on the top 10 regions for each data set. Then, we validated our results using the optimal parameters
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selected during training. The optimal parameters were selected by minimising MSE between experimental ChIP profiles
and predicted ChIP profiles. Validation was carried out on the top 100 regions for each dataset (excluding the ones
used for training). Figure 6 shows that, for BEAF-32, the binding predictions were improved when considering DNA
accessibility. Nevertheless, su(Hw) and CTCF displayed a different behaviour, as the mean AUC decreased when DNA
accessibility was considered for most ChIP-seq datasets (Figure 6A-B). This difference is especially striking in the case of
su(Hw). The performance of the model improves drastically when all DNA was considered accessible or when we used
continuous values for DNA accessibility. CTCF showed a similar trend although improvement was not as striking as in
the case of su(Hw). This would indicate that only a small number of CTCF peaks are located in closed chromatin regions
that display intermediary levels of accessibility.

While DNA accessibility seems to play a role in the quality of our predictions, we also observed that the number of
bound molecules (N) and scaling factor (λ) show a reduced influence when DNA accessibility is considered for CTCF
(Figure 6). In particular, we observed less variation in MSE for different sets of parameters, when DNA accessibility was
included, i.e., larger circles indicate that number of bound molecules and λ have a more important role in TF binding,
while smaller circles indicate that they have a less important role. This opposite trend is seen in the case of su(Hw) where
N and λ show an increased influence when DNA accessibility is considered. BEAF-32 on the other hand is negligibly
influenced by N and λ independently of whether or not we consider DNA accessibility. The rational behind this approach
was that if different combinations of parameters produce a strong difference in goodness of fit, then N and λ play an
important role in producing the predicted profiles. On the other hand, if we observed low variation in MSE, we could
conclude that regardless of the values assigned to these parameters, the predicted profiles would remain similar.

To factor in for potential differences in the capacity of the model to predict binding in regions with strong or weak
ChIP signal, we trained ChIPanalyser on the top 10 regions (see Methods) for each data set and then selected the top
20, 50, 100, 150, 200, 500, 1000 and 3283 regions for validation (excluding regions used for training). We looked at
how the median AUC scores (over all data sets) changes when regions with weaker binding are included in the analysis
or when DNA accessibility is considered. For each number of regions selected for validation and for each data set, we
subtracted the mean AUC score when no accessibility was considered from the AUC score with DHS accessibility (Delta
mean AUC). First, we observed that CTCF exhibited a slightly lower AUC score when DNA accessibility was considered
(Figure S7A and D; see also Figures S8A- S11A in Supplementary Figures). The decrease in AUC scores observed upon
considering more regions (see Figure S8A in Supplementary Figures) implies that CTCF binds preferentially to genome
hotspots. CTCF shows strong binding at only a subset of binding sites. Interestingly, the same results for CTCF were
found in human data sets as described in Figure 5A-C. In contrast to CTCF, BEAF-32 displayed higher AUC scores
when DNA accessibility was included, supporting the previous findings (Figure S7B and E ; see also Figures S8B - S11B
in Supplementary Figures). BEAF-32 AUC scores were not affected by the increase in the number of regions (Figures
S7B and E and Figures S8B - S11B in Supplementary Figures), which means that BEAF-32 binding is not influenced by
the number of regions selected. In other words, BEAF-32 would bind anywhere along the genome as long as it has an
accessible site. In this context, we call BEAF-32 a global binder and CTCF a hotspot TF.

Furthermore, Supplementary Figure S7C and S7F shows that there is a strong and statistically significant ( p < 0.05
) reduction in AUC score for su(Hw) when DNA accessibility is included, which indicates that su(Hw) would bind in
less accessible DNA (also Supplementary Figures S8C-S11C). While, su(Hw) did not generally perform well when DNA
accessibility is considered, the performance of our model to predict su(Hw) binding is also tied to the number of regions
selected and our results show that the strongest su(Hw) binding sites are found within inaccessible DNA. As the model
uses experimental ChIP data for training, these results suggest that many su(Hw) peaks are located in inaccessible DNA.

Number of bound molecules and TF specificity plays a limited role in the binding of
architectural proteins.
To investigate the robustness of our estimated parameters, we computed the optimal parameters for different biological
replicates. Despite strong variations between experimental data, we show that the predicted optimal set of parameters
when using MSE remained similar between biological replicates (see Figure 7). This suggests that despite biological and
technical variation between replicates performed by different labs using different protocols, our model robustly infers a
similar number of bound molecules and scaling factor for a given TF. Note the consistency between optimal parameters
of different ChIP dataset despite some of the ChIP being performed in RNAi mutants (not more than one sample per TF
and cell), which could be explained by the fact that TFs are not strongly depleted.

The importance of method selection is clearly shown when considering other metrics, where MSE produces most clear
heatmaps compared to AUC, Recall or Spearman correlation (see Figures S12 - S14 in Supplementary Figures). The
optimal parameters estimated over the training set can be found in Table S3, Table S4, Table S5 and Table S6 in Supple-
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mentary Tables for MSE, AUC, recall and Spearman correlation coefficient.

To investigate the influence of these parameters, we assumed that a high variation of goodness of fit score for each com-
bination of parameters would suggest a strong influence of these parameters on TF binding. If goodness of fit scores varied
little between parameter combinations, we can then conclude that they do not strongly influence our predicted profiles. We
then analysed the standard deviation of MSE over training between different sets of parameters and we found that some
TFs are not strongly influenced by the number of bound molecules or the scaling factor (described by circle size in Figure 6).

CTCF showed a slight decrease in sensitivity to number of bound molecules and the scaling factor when accessibility
was considered (Figure 6A), while, for BEAF-32, N and λ showed reduced influence on the binding profile (Figure 6C).
In contrast to CTCF, su(Hw) displayed an increased sensitivity to N and λ only when DNA accessibility was considered
(Figure 6B). This means that DNA accessibility would be the strongest driver towards predicting TF binding of these
architectural proteins. Restricting the amount of available binding motifs would be more influential than the number of
TFs and the ability of a TF to discriminate between high and low affinity sites. Interestingly, this still holds in the case of
su(Hw); we show that su(Hw) binding sites are most likely found in less accessible DNA. Our results suggest that relative
TF abundance only play a role on binding sites found in accessible DNA.

ChIPanalyser recapitulates TF binding profiles in different cell lines by considering relative
mRNA abundance.
We wanted to further investigate the predictive capabilities of our model and also demonstrate its mechanistic soundness
for CTCF, BEAF-32 and su(Hw) in the three selected cell lines. For that, we estimated the optimal set of parameters
in one cell line and aimed to predict TF binding in a different cell line taking into account changes in DNA accessibility
using DHS data and changes in number of bound molecules using relative changes in RNA abundance. For example, we
estimated the optimal set of parameters for CTCF in Kc167 cells (GSM762842) that would minimise MSE as λ = 1.5 and
N = 104 over the top 10 regions (see Methods). By rescaling N based on relative RNA-seq levels of CTCF in the two cell
lines, we could approximate the number of CTCF molecules bound to DNA in BG3 cells (N ≈ 1.6 × 104). This together
with BG3-specific DNA accessibility data is capable of predicting the ChIP-seq profile in BG3 cells (see Figure 8A and B -
modEncode 282). RNA rescaling of the number of bound molecules seems to recover both the number of peaks and their
location with high accuracy. The rescaling of number of bound molecules lead to differences in terms of MSE variation
between estimated and rescaled (Figure 8G).

The estimated MSE (MSE over the training set) in one cell line is lower than its counter parts in the other cell
line. However, we attribute this change to differences quality and nature of peaks/signal between cell lines. Here we
assume that more narrow peaks and less spurious binding events represent higher quality data. Nevertheless, depending
on the biological question, the data quality assessment can vary. This is especially striking in Figure8 A, B, E, and
F. ChIP peaks in the training cell line (see Figure8 A and E) display sharper peaks and much less background signal
then ChIP peaks in the validation cell line (see Figure8 B and F). As described in Methods, ChIPanalyser estimates
goodness of fit using ChIP enrichment scores and therefore is sensitive to background signal and/or wider than expected
peaks. The same analysis was performed for BEAF-32 (Figure 8C, D and H - modEncode 921 & modEncode 922), where
we estimated parameters in BG3 cells (λ = 2.5 and N = 2 × 104) and rescaled the number of molecules in S2 cells
(N ≈ 1.2×104 ). Once again, the model correctly predicts ChIP profiles in both location and relative enrichment. Finally,
for su(Hw) (Figure 8E, F and I - GSM762839 & modEncode 331) we estimated parameters in Kc167 cells (λ = 1.25 and
N = 104) and rescaled the number of molecules in S2 cells (N ≈ 6×103). Again, the predictions of the model are accurate.

Our results show that ChIPanalyser can accurately recapitulate ChIP profiles between cell lines using cell specific
DNA accessibility data and number of bound molecules. Nevertheless, we still do not know which of the two is the more
important factor or whether both have similar contributions. To address this, we also assumed that in the predicted
profile that there is (i) no change (same number of bound molecules is used in both cells), (ii) a 10 fold reduction and (iii)
one 100 fold reduction in the number of bound molecules and repeated the analysis. Figure 8 shows that using the same
TF abundance as in the original cell line produces extremely similar ChIP like profiles. In fact, we observed a significant
reduction in the predicted profile only when reducing the number of bound molecules by 100 (for su(Hw)) or 10 (for CTCF
and BEAF-32) fold. These results show that cell differences in binding profiles of TFs, at their strong binding regions,
would mainly come from differences in DNA accessibility and not relatively small changes in TF abundance. The only
way that TF abundance could impact the binding profile (and, consequently, lead to changes in gene regulation) is when
the expression of the TF is strongly down-regulated.
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Hox genes show differential binding preferences with respect to DNA accessibility.
Hox proteins are key players during development. Recently it has been suggested that Hox proteins show different binding
preferences with respect to DNA accessibility [41]. Most notably, Ubx and Abd-A would bind predominately in open
chromatin, while other Hox TF (Lab, Pg, Dfd, Scr and Abd-B) would prefer closed chromatin. We selected three Hox
TFs (Ubx, Dfd and Abd-B) and ran our model using different levels of DNA accessibility. DNA accessibility levels were
selected based on quantile distribution of ATAC-seq scores (see Methods). This means that higher QDA scores lead to
fewer regions being marked as accessible.

We trained our model on the top ten regions selected from the 3838 selected for the Hox analysis (see Methods) for
each QDA accessibility. Our results show that Ubx exhibits a preference towards open chromatin. In Figure 9A, the
maximum AUC score for Ubx increases with the increase of the QDA score. Dfd and Abd-B on the other hand were not
strongly influenced by QDA accessibility. This means that these TFs can bind in inaccessible DNA. According to our
model, Ubx performed best with 0.99 QDA (top 1% ATAC-seq scores - AUC 0.928), while Abd-B and Dfd with 0.95 QDA
(top 5% ATAC-seq scores) and 0.8 QDA (top 20% ATAC-seq scores) respectively (see Figure 9B). It should be noted that
these scores are on the training set as the goal was to understand how QDA would effect the training of our model. We
then validated our model on the top 100 regions (excluding the ones used for training) using the optimal set of parameters
inferred during training and plotted the predicted profiles for Hox TF (see Figure 9C,D, and E).

The model recovers the position of peaks accurately especially for Ubx (see Figure 9C-E). While for Dfd and Abd-B
most of the peaks are detected, their height is not always an accurate representation of the strength of the ChIP-seq signal.
Hox TFs are known to display cooperative interactions and there are reports that both Dfd and Abd-B have a higher
number of sites in the bound peaks, suggesting they bind cooperatively to open the chromatin [41]. Our model does not
include cooperative interactions and this could explain the reduced performance for Dfd and Abd-B. Furthermore, TF
binding event can also be mediate by protein-protein interactions and post-translational modifications [43], which are not
consider in our model.

DISCUSSION
Our analysis shows that ChIPanalyser and its underlying model predicts binding profiles of TFs (ChIP) with high accuracy
and most importantly it can also shed light on the binding mechanism of TFs. We show how ChIPanalyser not only predicts
location of peaks, but can correctly predict the enrichment of a TF at a given location.

TFs used different binding mechanisms
In this analysis, we focused our attention on three DNA binding proteins: CTCF, BEAF-32 and su(Hw). All three TFs are
known architectural proteins in Drosophila but also play roles in transcription regulation and insulation [44, 45]. Moreover,
it was shown that these three TFs have distinct binding behaviours and were classified into three subclasses with respect
to chromatin architecture [46, 47]. In our analysis we show that they all exhibit different behaviours with respect to DNA
binding.

Our findings suggest that CTCF binds to hotspots along the genome and this could be explained by the observation
that the strongest peaks are in fact highly conserved binding sites. CTCF binding to highly conserved sites can be
explained by our model, but something else is responsible for the reduced binding at less conserved sites (i.e. cell specific
CTCF binding) as seen by the decay in performance with increased number of regions used for validation.[48].

BEAF-32 is a Drosophila specific insulator [49] that shows preferential binding towards TAD boundaries, but also is
involved in transcription itself [50]. Previous studies showed that BEAF-32 has uniform binding along the entire genome
[46]. Our results confirm that BEAF-32 shows a strong preference towards accessible DNA and that the majority of
accessible sites would be bound. We notice a drop in model performance when all regions are used to validated the model,
but this is likely due to an increase in false positive peaks as those many regions will not contain any peaks at all.

Furthermore, we show that su(Hw) binds in both open and closed chromatin. su(Hw) plays a role in chromatin
insulation and remodelling [51] and is also a primary actor in the interaction between the genome and nuclear lamina
[52]. This would explain why su(Hw) can bind in both open and closed chromatin and why ChIP peaks might not overlap
well with DNase hypersensitivity data. It has also been shown that su(Hw) binding sites tend to cluster together (with
varying number of sites) and that these sites are constitutively bound by su(Hw) [53]. Interestingly, it seems that only
isolated high affinity sites had a role in transcriptional regulation and the clustered sites were more involved in chromatin
architecture.
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DNA accessibility is the main driver of binding to DNA for architectural TFs and Hox TFs
Our results show that DNA accessibility and number of bound molecules control the binding profiles of TFs (Figures 6).
When we estimated the binding parameters (λ and N) in one cell line and then predicted TF binding profiles in a different
cell line based on changes in DNA accessibility and number of TF molecules (using changes in mRNA), we found a good
agreement between our predictions and the actual ChIP-seq dataset (see Figure 8). Nevertheless, the changes in number
of TF molecules between the two cell lines did not seem to make any difference to the predicted profiles (compare blue
and dashed red line in Figure 8 B, D and F). This means that biologically relevant fluctuations in TF numbers between
different cell lines would have little effect on the differences in binding profiles of TFs, which would be mainly driven
by changes in DNA accessibility. Furthermore, only very strong knock-downs would decrease or deplete ChIP peaks. It
should be noted that CTCF, BEAF-32 and su(Hw) are highly expressed architectural and insulator proteins and, thus,
they would be expected to saturate their binding sites. Interestingly, only strong depletion (undetectable by western blot)
of CTCF in mammalian cells (using Auxin Inducible Degradation) was able to lead to noticeable changes in 3D chromatin
chromatin loops controlled by CTCF [54]. It should be noted that our analysis focused on the regions displaying strongest
binding, which means that strong depletion is required for the binding of these TFs at their strongest sites to be affected.

While our model and current results do not demonstrate a strong role of TF abundance (as in TF concentration) in
the binding of these TFs, this does not mean that concentration as well as binding site affinity does not a play a role in TF
binding. Indeed, concentration fluctuation have been shown to play a role in gene expression during embryonic development
in Drosophila [55, 56]. More recently, studies have demonstrated the role of TF concentration by direct measurement of
TF concentration instead of relying on mRNA abundance as a TF concentration proxy [57]. Modelling of TF binding by
considering TF concentration and binding kinetics have been described by [58, 7]. Changes in concentration is expected
to change the binding affinity of TFs only if the concentration is within a certain range. Indeed, the Kd (dissociation
constant) of TF buffers binding events if the concentration is below a certain threshold and sites will be oversaturated
above a certain TF concentration (reviewed in [59]). Furthermore, it has been suggested that DNase I footprinting can
display sequence specificity depending on experimental conditions. This would influence the location of open chromatin
and in turn influence the performance of our model [60].

Why would changes in concentration of the TF have such a limited effect on their binding? One potential explanation
is that these TFs control the expression of essential genes that should be tightly regulated to buffer fluctuations in number
of molecules that affect the cell.[61].

Finally, we also investigate the capacity of our model to differentiate between TFs that can bind only in open chromatin
or also partially opened chromatin. Our results showed that while Ubx displays a strong sensitivity to open chromatin and
binds in the top 1% accessible sites, the binding of Abd-B and Dfd is less influenced by DNA accessibility (with Abd-B
and Dfd binding in top 5% and 20% respectively accessible regions); see Figure 9. Hox TFs are known for having a similar
motif, but display differences in their binding profiles [62]. It was hypothesised that binding cooperativity could explain
the difference in binding profiles coupled with protein sequence changes [63]. Here, we showed that differential capacity
to bind in dense chromatin could also be responsible for the difference in binding profiles of Hox TFs (see Figure 9).

Background noise and experimental artefacts remain a challenge in TF binding predictions
We found that many ChIP datasets suffer from significant background noise that would reduce our ability to accurately
assess the goodness of fit of the model. Despite our approaches to reduce background noise, it seems that ChIP data
will always suffer from unspecific DNA pull-down [64]. It should be noted that more recent methods such as ChIP-exo
or Cut‘n‘Run demonstrate sharper peaks and reduced background noise. Using these newer methods could reduce the
influence of background noise on the performance of the model [65, 66]. Finally, differences in data sets could be the
consequence of these data sets being produced by different laboratories with potentially different protocols. However, we
demonstrate that ChIPanalyser produces similar results between data sets for a given TF in a given cell line.

Another possibility is that the noise in ChIP signal could be the result of unspecific binding of TFs to DNA followed
by one-dimensional random walk along the genome [67, 68]. Nevertheless, the washing steps in the ChIP protocol would
remove this non-specific binding from the final ChIP signal [2].

We showed that choosing a goodness of fit method is context dependent. Interestingly, similarity methods (correlation,
F-score or AUC) had the tendency to correctly call peak location but greatly underestimate the enrichment on the peak
(see Figure 2). This behaviour results from the fact that these methods are highly penalised by false positive hits. The
scaling factor can be described as how well a TF discriminates between a strong binding site over a weaker one. High
values for the scaling factor translate to poorer ability for the TFs to discriminate between high and low affinity sites,
which leads both to a higher number of false positive peaks and the model picking up smaller peaks. The number of bound
molecules on the other hand, tend to affect the height of the peak (relative local enrichment). Similarity methods would
avoid high values for N and λ as this would penalise their goodness of fit score more severely as opposed to dissimilarity
methods (see Figure 2).

Choosing the right method will depend on the question at hand and similarity methods could be used to determine
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peak location, while dissimilarity metrics would be more appropriate to investigate the TF local enrichment.

ChIP enrichment scores provide a highly stringent method to assess model performance
ChIPanalyser evaluates goodness of fit using ChIP enrichment scores (see Methods). This ensures that the model considers
peak enrichment during the optimisation step (both location and height of the peak). Competing tools generally assess
model performance by overlapping predicted TF binding sites with ChIP peaks and do not explicitly account for peak
enrichment (they assume that there is very little difference between a strong and a weak ChIP peak). While we recognise
that our scoring method is best suited for TF binding events described both by peak location and peak enrichment, we
selected this approach as ChIPanalyser describes a mechanistic interpretation of TF binding.

When comparing ChIPanalyser to other frameworks, we observed that all tools performed poorly when trained and
validated on a full chromosomes. When ChIPanalyser was trained on the top 10 regions of chr18 and validated on varying
number of regions in chr11, it outperforms other tools and frameworks if the number of validation regions did not exceed
500. The rational to train ChIPanalyser on top 10 regions is to ensure a balance between True Positive and True Negative
signals, which results in a more effective parameter inference. Many regions along the genome might not contain any ChIP
signal and this lack of signal will affect the profiles produced by ChIPanalyser and result in a drop in performance for our
model (increase in False positive).

Finally, the goal of ChIPanalyser is not only to predict TF binding events but also shed light on the mechanisms
driving TF binding. In the case of CTCF in human astrocytes (as used in the comparison with other tools), ChIPanalyser
showed a decay in performance after 500 regions used for validation (see Figure 5 A-C). PIQ, msCentipede and Catchitt
did not display such a clear behaviour. Interestingly, we observed a similar effect for CTCF in Drosophila. Our results
suggest that CTCF binds to highly conserved sites [48] and this holds true in different organisms. Most importantly,
ChIPanalyser was able to recapitulate this behaviour

Conclusion
ChIPanalyser is a user-friendly R package available on Bioconductor for predicting the binding of Transcription Factors to
DNA . The package performs similarly if not better than competing tools and frameworks. More importantly, the model
also provides an insight into the binding mechanisms of various DNA binding proteins. We show the nuanced role of
DNA accessibility in the binding of three architectural proteins CTCF, BEAF-32 and su(Hw) in Drosophila. Furthermore,
we demonstrate that architectural proteins are robust to relative changes in protein abundance. Finally, we recover the
binding preferences of Hox TFs with respect to chromatin compaction. ChIPanlyser provides both predictive and biological
modelling capabilities.
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Figure 2: Goodness of fit Methods are context dependent.(A) ChIPanalyser correctly predicts CTCF peaks in a
clean ChIP dataset (modEncode 2639) for the majority of metrics used. (B) For a noisier dataset (modEncode 3674),
dissimilarity metrics capture the height of the peak but also tend to show a high rate of False Positive peaks. In contrast,
similarity metrics accurately predict the location of the peak, but tend to underestimate peak height. (C) Combining
several ChIP replicates (all ChIP-seq datasets in S2 cells; see Table S1 in Supplementary Materials ) does not reduce the
rate of False Positive peaks for similarity metrics. The red profile shows experimental ChIP peaks, while light blue and
dark blue are predicted profiles. Light blue and dark blue as dissimilarity and similarity metrics respectively. Associated
scores are the scores for each profile when that metric was used to select optimal parameters.
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Figure 3: Chromosome withholding setup for model validation. We analysed BEAF-32 ChIP in S2 cells (modEn-
code 922) and we trained ChIPanlayser on the top 10 regions on chromosome 3R. Top regions were selected from the 3293
regions described in Materials and Methods. We then validated our model on the top 20 regions on chromosome 2R and,
for comparison, on top 10 regions on chromosome 3R that did not contain the training set. (A) shows example profiles
obtained during training. (B) shows validation profiles obtained on chromosome 3R. (C) are profiles obtained during
validation on chromosome 2R. Finally, (D-G) are the associated metrics for training and validation: AUC, Spearman
correlation, recall and MSE respectively.
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Figure 4: ChIPanalyser models TF binding with higher accuracy than PWM scores alone. A-C show predicted
ChIP-seq profiles for BEAF-32 (modEncode 922), CTCF (modEncode 282) and su(Hw)(modEncode 330). After training
the model on chr3R, we validated the model on chr2R. The vertical blue lines represent normalised PWM scores for regions
above threshold: 0.8 for BEAF-32 and CTCF and 0.7 for su(Hw). The red line represents our prediction while the dark
blue region represent experimental ChIP. Yellow areas are regions on inaccessible DNA. Despite exhibiting strong PWM
scores, some regions are not bound by TFs according to ChIP data.
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Figure 5: Performance comparison to other TF binding predictions tools After training each model in their
respective training set, we validated each tool using varying number of validations regions. ChIPanalyser outperforms
other tools when number of validation regions remains below 500. This demonstrates ChIPanalyser’s ability to describe
TF binding behaviour with respect to peak strength. (A) shows AUC scores between Catchitt, msCENTIPEDE, PIQ ,and
ChIPanalyser over the selected validation regions in chr11 on Homo sapiens.(B and C) are respectively recall and MSE
over validation regions for each tool. Finally, (D), (E), and (F) show the performance of all tools when trained on whole
chr18 and validated on whole chr11. It should be noted that these results were performed using the ChIP enrichment
method (see Methods) and that this approach considers both ChIP peak location as well as local peak enrichment.
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Figure 6: DNA accessibility, number of molecules and binding energy have different roles in TF binding.
We selected optimal parameters by minimising MSE over the training set (see Table S3 in Supplementary Materials) and
then computed the median AUC scores over the top 100 regions in the validation set. We considered different ChIP
replicates in S2, Kc167 and BG3 cells for: (A) CTCF, (B) su(Hw) and (C) BEAF-32. Darker colours indicate higher
AUC scores, while lighter colours lower AUC scores. We also investigated the influence of number of bound molecules
and scaling factor on TF binding by computing the standard deviation of MSE scores for all combination of parameters
over the training set. Smaller circles indicate less variability in MSE when different parameters are used and larger circles
more variability.
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Figure 7: Optimal parameters consistency among biological replicates for MSE using DHS accessibility.
Heatmaps show an overlay of the top 10 % combinations of parameters when minimising MSE for: (A-C) CTCF, (D-F)
BEAF-32 and (G-I) su(Hw). We plot the following cell lines: (A, D and G) BG3, (B, E and H) Kc167 and (C, F and
I) BG3. The colour legend represents the proportion of data sets inferring each parameter combinations.
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Figure 8: TF abundance remains stable between different cell lines when considering relative mRNA abun-
dance. A-F show predicted ChIP-seq profiles with TF abundance estimated based on RNA-seq. The yellow area rep-
resents inaccessible DNA, the dark area represents experimental ChIP signal and the red lines are our predicted profiles.
We estimated the number of bound molecules in one cell line (A, C and E) (GSM762842, modEncode 921,GSM762839
respectively) and rescaled our estimate using relative mRNA abundance in an other cell line (B, D and F) (modEncode
282, modEncode 922, modEncode 331 respectively). (B, D and F) The dashed red line represents the rescaled value of
number of bound molecules based on relative RNA-seq abundance, the light blue the original value estimated in (A, C
and E).The purple line and the green line represent the original estimated value reduced 10 and 100 times respectively.
(G , H and I) Boxplots with MSE for all cases in the estimated and predicted profiles at top 10 regions for both training
and validation.
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Figure 9: Hox genes show binding preferences towards DNA accessibility. We tested our model using different
DNA accessibility stringencies. (A) Maximum AUC score as a function of stringency of DNA accessibility (the higher the
QDA value the less DNA is called accessible) for three Hox TFs: Ubx, Dfd and Abd-B. (B) The best performing QDA
accessibility in terms of AUC. (C, D and E) Binding profiles and prediction of the ChIP data at individual loci taken
from the validation set for the three TFs.
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