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Abstract
We consider graph-based hedonic games such as simple symmetric fractional
hedonic games and social distance games, where a group of utility maximizing
players have hedonic preferences over the players’ set, and wish to be partitioned
into clusters so that they are grouped together with players they prefer. The
players are nodes in a connected graph and their preferences are defined so
that shorter graph distance implies higher preference. We are interested in
Nash equilibria of such games, where no player has an incentive to unilaterally
deviate to another cluster, and we focus on the notion of the price of stability.
We present new and improved bounds on the price of stability for several graph
classes, as well as for a slightly modified utility function.

Keywords: Fractional hedonic games, social distance games, equilibria, price
of stability

1. Introduction

Economic entities, be it individuals or corporations, interact frequently in
the context of performing complex tasks or even in enjoying cultural activities.
For example, people usually tend to like or dislike other people and, therefore,
wish to socialize or distance themselves depending on the occasion. The choice
about which party to attend, which restaurant to dine in, etc., usually depends
also on the other participants that will be present. This process, sometimes
also called coalition formation, and the corresponding behavior can be captured
by the class of hedonic games, where participating agents have preferences over
coalitions (or groups), and, based on these preferences, they behave accordingly
when selecting which group to join. In such scenarios, when an agent has de-
cided to join a specific group, e.g., for having dinner, her utility depends only

⋆Preliminary versions of this paper appeared in the Proceedings of the 9th Symposium on
Algorithmic Game Theory (SAGT 2016) [21] and the 11th Symposium on Algorithmic Game
Theory (SAGT 2018) [22].
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on the other agents in the same group and not on how the remaining agents
have been grouped together. Such preferences are termed hedonic preferences
and completely ignore inter-coalitional dependencies. Due to their simplicity,
hedonic games can be used to model a large spectrum of activities (e.g., clus-
tering in social networks [2], distributed task allocation for wireless agents [29],
etc.).

Hedonic games can be very expressive and admit a large class of utility func-
tions over coalitions. For instance, given a group, we may care about the sum
of utility we obtain over all members of the group, or only care about the min-
imum or maximum utility (again, over all members of the group). In addition,
we may prefer a smaller group, containing people that we value significantly,
over a larger group, with the same set of preferred people as well as several
other members that we are indifferent to; in this case, we are interested in the
average utility we obtain. What constitutes an acceptable or desired solution in
such games is a question that has also attracted significant attention. Clearly, a
natural objective is to compute a solution that maximizes some global function
over all participating agents. This solution, however, may leave several agents
unsatisfied and they may not adhere to it, but, on the contrary, may choose to
deviate to another group if this is to their best interest. Then, such deviations
may incentivize further agents (or even groups of agents) to deviate on their own
(or, respectively, in collaboration), and so on, until a group formation satisfying
all agents is reached, if such a formation exists.

In this paper, we assume that all players are nodes in a connected graph and
that their preferences are defined based on the graph structure; in principle, a
shorter distance leads to higher preference. We are interested in stable states
of the coalition formation process in such graph-based games, i.e., when all
cluster members are satisfied with the current configuration and no one wishes
to join a different cluster, and, in addition, in comparing a stable state to the
optimal partition. We consider a model where the utility obtained by a player
depends on the cluster distance to the cluster members; informally, we assume
that people tend to prefer being in clusters with friends, or friends of friends,
than with strangers. Classes of strategic games that capture this process include
simple symmetric fractional hedonic games as well as is that of social distance
games.

Related work. Hedonic games that rely on hedonic preferences were in-
troduced by Drèze and Greenberg [14]. Bogomolnaia and Jackson [11] present
sufficient conditions for the existence of core stable partitions in hedonic settings
and also consider the weaker notion of individual stability, where no player can
deviate to another cluster without either hurting itself or hurting a member of
its new cluster. An important subclass is that of additively separable hedonic
games (see [3, 18, 25]), where the total utility of each player is defined as the
sum of utility it obtains from each player in its cluster.

In fractional hedonic games, the utility of each player is defined as the sum
of utility it obtains from each player in its cluster divided by the cluster size.
Aziz et al. [2] introduce the model, consider more general stability notions,
such as core stability, and present positive results for several classes of graphs.

2



Aziz et al. [4] consider the computational complexity of computing partitions
that maximize the social welfare, defined as the sum of the players’ utilities, in
fractional hedonic games, without caring about stability. They consider three
different notions of social welfare (i.e., utilitarian, egalitarian, and Nash wel-
fare) and show that maximizing social welfare is NP-hard even for the subclass
of simple symmetric fractional hedonic games, where the utility obtained from
a single player can be either 0 or 1 and the utility is symmetric. On the positive
side, they present polynomial time algorithms with small constant approxima-
tion ratio for the notions of utilitarian and egalitarian social welfare and the
class of simple symmetric fractional hedonic games.

Olsen [26], among other results, suggests an alternate utility function for
fractional hedonic games, where the utility function of player i does not take i
into account when averaging over the cluster size, i.e., each player is interested in
the average utility obtained from all other players in the same cluster. Fractional
hedonic games under Olsen’s utility function are termed modified fractional
hedonic games in [16] where they consider Pareto optimality in such games.
Monaco et al. [23, 24] consider stable outcomes in modified fractional hedonic
games and study their existence and impact on the social welfare.

Bilò et al. [10] consider the price of anarchy and stability in fractional
hedonic games. They show that when the utility function may take negative
values, Nash stable outcomes are not guaranteed to exist, but if all values are
nonnegative, then the partition where all players are in the same cluster is
Nash stable. For the last case, they show an upper bound of O(n) on the
price of anarchy, which is tight even for simple symmetric fractional hedonic
games. Furthermore, they show a lower bound of Ω(n) on the price of stability
for games played on weighted stars and non-negative utility functions. For
the price of stability in simple symmetric fractional hedonic games, they show
a lower bound of 2 for general graphs, an upper bound of 4 for triangle-free
graphs, and almost tight bounds for the case of bipartite graphs. In particular,
they present an upper bound of 6(3 − 2

√
2) ≈ 1.0294 and a lower bound of

1.003. In addition, Bilò et al. [10] observe that their upper bounds still hold for
the utility function defined by Olsen. Further notions of stability in fractional
hedonic games have been investigated by Brandl et al. [12].

In social distance games, the utility of each player depends on the average
inverse distance from the other cluster players. This class of games was intro-
duced by Brânzei and Larson [13] who proved that finding the optimal partition
is NP-hard and designed a 2-approximation algorithm with respect to the social
welfare. In addition, they studied stability using the notion of the core. The
work that is most related to ours is by Balliu et al. [5] who considered the
price of stability in social distance games and presented lower bounds of 6/5
for general graphs, 169/160 for bipartite graphs, as well as an upper bound of
(
√
2 + 1)/2 for graphs for girth 5. Moreover, they proved that social distance

games do not admit a potential function, as best response dynamics may cy-
cle, while computing the social welfare maximizing Nash stable partition is also
NP-hard. In another paper, Balliu et al. [6] considered the price of Pareto
optimality in social distance games and presented asymptotically tight bounds.
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Apart from social distance games and simple, symmetric fractional hedo-
nic games, Peters and Elkind [28] investigate the computational complexity of
stability-related questions in hedonic games, while Peters [27] studies the com-
putational complexity of questions related to dichotomous hedonic games, where
each player either approves or disapproves a given coalition. Barrot et al. [7]
consider a model where agents can be friends, enemies, or unknown and show
that stable outcomes may not exist, while Barrot and Yokoo [8] explore the
interplay of stability and envy-freeness. Feldman et al. [17] consider the non-
cooperative version of hedonic clustering games, where they characterize Nash
equilibria and provide upper and lower bounds on the price of anarchy and price
of stability. Hoefer et al. [20] study hedonic games and characterize the struc-
tures based on which dynamic coalition formation can stabilize quickly, while
Hoefer and Jiamjitrak [19] consider proportional allocation for profit sharing in
hedonic games

Our contribution. We present new and improved bounds on the price of
stability for the classes of simple symmetric fractional hedonic games and social
distance games. For fractional hedonic games, we improve upon the lower bound
of [10] and show a lower bound of 1 +

√
6/2 ≈ 2.224 for general graphs. To do

this, we present a construction where the optimal partition consists of cliques of
different sizes, while the only Nash stable partition is the grand coalition, where
all players form a single cluster. Then, we consider games played on graphs of
girth at least 5, i.e., graphs without cycles of size 3 and 4. We prove that the
price of stability, for this class of graphs, is 1. This result complements a result
of Bilò et al. [10] that there exists a bipartite graph with price of stability at
least 1.003. Since bipartite graphs have no cycles of length 3 but may have
cycles of length 4, we obtain a clear separation of which girth values lead to
price of stability equal to 1. Our final result, for this class, concerns modified
fractional hedonic games, where the average utility is computed with respect
to the cluster size minus 1, i.e., each player only considers the average utility
it obtains by the nodes it is grouped together with. We show that the price
of stability of simple symmetric fractional hedonic games is 1; the previously
known bounds were those obtained in [10] for the standard utility function.

For social distance games, we improve upon the lower bound of 6/5 from
[5] and present a lower bound of 2 for general graphs. The construction we
use in the proof admits an optimal partition consisting of clusters of diameter
1, while in the only Nash stable partition almost all nodes are at distance 2
from each other. We also consider social distance games played on trees and we
prove that the price of stability is 1. Our final result concerns modified social
distance games, where again the utility is computed with respect to the cluster
size minus 1, and we show that, under this utility function, the price of stability
of social distance games is 1.

Roadmap. The remainder of the paper is structured as follows. We begin,
in Section 2, by formally introducing two classes of simple graph-based hedonic
games and, then, presenting the necessary definitions. Then, in Section 3, we
present improved lower bounds on the price of stability, while Section 4 contains
positive results for specific graphs. In Section 5 we consider the price of stability
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under a modified utility function and we conclude with open problems in Section
6.

2. Preliminaries

We consider non-cooperative graph-based coalition formation strategic games
played on a graph G = (V,E) by a set N of n utility maximizing players. Each
node in V (G) corresponds to a strategic player and a partition (or clustering) of
the game consists of a set C = {C1, C2, . . . } of clusters such that ∪iCi = N , and
Ci ∩ Cj = ∅ for any pair i ̸= j, i.e., each player belongs to exactly one cluster.
We let C(i) denote the cluster that player i belongs in.

Given a partition C, each player i has a utility function ui : N → R that
denotes how much player i values each of the remaining players and depends
also on C. We denote by wij the value that player i obtains from player j and
we consider only the symmetric case wij = wji; we set wii = 0 for any player i.
The utility of player i is then defined as

ui(C(i)) =

∑
j∈C(i)\{i} wij

|C(i)|
,

i.e., each player only considers the players in her cluster.
In the class of simple symmetric fractional hedonic games, it holds that wij

is either 0 or 1; recall that wij = wji. In particular, for any two players i and
j that are in the same cluster in C, we have wij = 1 if the edge (i, j) exists in
the graph G, while if edge (i, j) does not exist in the graph G, then wij = 0.
Let degG(i) denote the degree of node i in graph G and let degC(i) denote the
number of neighbors of node i that belong to cluster C. Given a partition C,
the utility of player i that is in cluster C(i) is then equal to

ui(C(i)) =
degC(i)(i)

|C(i)|
.

In the class of social distance games, for any two players i and j that are in
the same cluster in C, we have wij = 1

dC(i)(i,j)
, where dC(i)(i, j) is the distance

of players i and j in the subgraph defined by cluster C(i). In case i and j are
disconnected in cluster C(i), then dC(i)(i, j) = ∞. Hence, the utility of player i
is given by

ui(C(i)) =
1

|C(i)|
∑

j∈C(i)\{i}

1

dC(i)(i, j)
.

Clearly, in both game classes, for any player i and any partition C it holds
that 0 ≤ ui(C(i)) ≤ n−1

n . The social welfare SW(C) of partition C is defined
as the sum of the players’ utility, i.e., SW(C) =

∑
i ui(C(i)). We denote by C∗

the partition that maximizes the social welfare. An equivalent way to define
the social welfare for simple symmetric fractional hedonic games is by taking
into account the number of edges E(C) inside each cluster C. Hence, we obtain
that, in these games, SW(C) =

∑
C∈C

2E(C)
|C| .
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Since each player is utility maximizing, given a partition C, player i may
deviate from its current cluster C(i) in C and join another cluster C ′, if it holds
that ui(C(i)) < ui(C

′ ∪ i). A player i is Nash stable if there is no cluster
C ′ ̸= C(i) such that its utility improves by deviating to C ′ and, similarly, a
cluster is Nash stable if all players in the cluster are Nash stable. A partition is
a Nash stable partition if all clusters are Nash stable.

The price of stability PoS (introduced in [1]) denotes the best-case perfor-
mance deterioration arising from the requirement that the resulting partition is
Nash stable. Given a graph G, the corresponding game ΓG and its set of Nash
stable partitions Cs, the price of stability for the game ΓG is formally defined
as PoS(ΓG) = maxC∈Cs

SW(C∗)
SW (C) . Similarly, the price of stability for a class of

strategic games is defined as PoS = maxG PoS(ΓG).
We also consider a variant of these graph-based hedonic games, where the

single difference is that the utility of player i is now defined as

u′
i(C(i)) =

{ ∑
j∈C(i)\{i} wij

|C(i)|−1 , if |C(i)| > 1;
0, otherwise.

This variant is motivated by similar considerations in Olsen [26] and gives rise
to modified fractional hedonic games and modified social distance games.

3. Lower bounds for general graphs

In this section we present our lower bounds on the price of stability. We
begin by presenting an improved lower bound of 1 +

√
6/2 ≈ 2.224 for simple

symmetric fractional hedonic games, where our construction extends in a non-
trivial way the graph used in the lower bound of [10]. Then, we prove a lower
bound of 2 for social distance games; in both cases, we begin by describing a
graph and, then, we show that, for this graph, the grand coalition is the only
Nash stable partition while the optimal partition contains cliques of different
sizes.

In our proofs, we exploit the following technical lemma; in any stable par-
tition, any two players having the same closed neighborhood must belong to
the same cluster. Note that given a node i, its neighborhood Ni is the set
{j : (i, j) ∈ E(G)}.

Lemma 1. For any two players x, y such that (x, y) ∈ E(G), if Nx∪x = Ny∪y,
then, in any stable partition, x and y are in the same cluster, i.e., C(x) = C(y).

Proof. Assume otherwise and consider a stable partition C such that there ex-
ist two neighboring players x and y with Nx∪x = Ny∪y, and C(x) ̸= C(y). Let
xi (respectively, yi) denote the number of players in C(x) (respectively, in C(y))
that are at distance i from x (respectively, from y). Then, in simple symmetric
fractional hedonic games, the utility of player x is ux(C(x)) = x1

1+
∑

i xi
, and

the utility of player y is uy(C(y)) = y1

1+
∑

i yi
, while, in social distance games,
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the utility of player x is ux(C(x)) =
∑

i xi/i

1+
∑

i xi
, and the utility of player y is

uy(C(y)) =
∑

i yi/i

1+
∑

i yi
.

Since C is stable, neither x nor y gain by deviating from C(x) and C(y). In
particular, in simple symmetric fractional hedonic games, the utility of player x
when joining cluster C(y) is ux(C(y)∪ x) = 1+y1

2+
∑

i yi
, and the utility of player y

when joining cluster C(x) is uy(C(x)∪y) = 1+x1

2+
∑

i xi
. Similarly, in social distance

games, the utility of player x when joining cluster C(y) is ux(C(y) ∪ x) =
1+

∑
i yi/i

2+
∑

i yi
, since (x, y) ∈ E(G) and any player k (other than x, y) is equidistant

from x and y, and the utility of player y when joining cluster C(x) is uy(C(x)∪
y) =

1+
∑

i xi/i

2+
∑

i xi
.

Hence, by the stability of C, it holds that ux(C(x)) ≥ ux(C(y) ∪ x) and
uy(C(y)) ≥ uy(C(x)∪y). The lemma follows by observing that, since ux(C(x)) <
1 and uy(C(y)) < 1, we obtain ux(C(y) ∪ x) > uy(C(y)), and, similarly,
uy(C(x) ∪ y) > ux(C(x)). Hence, it must hold that

ux(C(x)) ≥ ux(C(y) ∪ x) > uy(C(y)) ≥ uy(C(x) ∪ y) > ux(C(x)),

i.e., we reach a contradiction.

3.1. Fractional hedonic games
Let α be a positive integer and consider the following graph G1 (see also

Figure 1). It consists of α + 2 cliques Kκ where 1 ≤ κ ≤ α + 2 and some
additional nodes and edges to be detailed later. Clique K1 contains 4(

√
6+1)α2

nodes1, clique K2 contains 4α2 +2 nodes, while each remaining clique contains
4α nodes. There exist 4(

√
6 + 1)α2 additional nodes where each of them has

degree 1 and is connected to a node in K1 so that no pair of additional nodes
shares a neighbor. The total number of nodes is n = 8(2 +

√
6)α2 + 2. There

exist additional edges as follows: each node in K2 is connected to any node in
Kκ, for κ ∈ [1, . . . , α+ 2]. The total number of edges in G1 is

E(G1) = 4(
√
6 + 1)α2 +

4(
√
6 + 1)α2(4(

√
6 + 1)α2 − 1)

2
+

(4α2 + 2)(4α2 + 1)

2

+ α
4α(4α− 1)

2
+ (4α2 + 2)(4(

√
6 + 1)α2 + 4α2)

= 32(3 +
√
6)α4 + 8α3 + 2(11 + 5

√
6)α2 + 1,

where, in the first equality, the first term is due to the edges connecting the
additional nodes to the nodes in K1, the second term is due to the edges inside
K1, the third term is due to the edges inside K2, the fourth term is due to the
edges inside the remaining cliques, while the last term is due to edges connecting
nodes of K2 to nodes in other cliques.

1Strictly speaking, |K1| should be either ⌈4(
√
6 + 1)α2⌉ or ⌊4(

√
6 + 1)α2⌋ but the proof

still follows in the same way. We set |K1| = 4(
√
6 + 1)α2 to keep the presentation cleaner.
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K1 K2

K3

Kα+2

K4

. . .

...

4α nodes

4α nodes

4α nodes

4α2 + 2 nodes4(
√
6 + 1)α2 nodes

4(
√
6 + 1)α2 nodes

Figure 1: The graph G1 used in the lower bound. Each bubble is a clique and dashed lines
represent the edges connecting any node in K2 to any node at another clique.

Consider the partition C where each node in K1 forms a cluster with its
additional neighbor, nodes in K2 and K3 form a single cluster together, while
each Kκ, for κ ≥ 4, is a cluster. Then, the social welfare is

SW(C) =
∑
C∈C

2E(C)

|C|

= |K1|+ (|K2|+ |K3| − 1) +

α+2∑
κ=4

(|Kκ| − 1)

= 4(
√
6 + 1)α2 + 4α2 + 4α+ 1 + (α− 1)(4α− 1)

= 4(3 +
√
6)α2 − α+ 2.

Clearly, for the optimal partition C∗ it holds that SW(C∗) ≥ SW(C), hence

SW(C∗) ≥ 4(3 +
√
6)α2 − α+ 2. (1)

Consider now the partition C′ where all nodes form a single cluster, i.e., the
grand coalition. Its social welfare is

SW(C′) =
2E(G1)

n

=
32(3 +

√
6)α4 + 8α3 + 2(11 + 5

√
6)α2 + 1

4(2 +
√
6)α2 + 1

. (2)

We now show that C′ is the only Nash stable partition; this key property
will allow us to prove the main result of this section.

Lemma 2. C′ is the only Nash stable partition for graph G1.

Proof. First, observe that, in any Nash stable partition, any additional node
is in the same cluster as its neighbor in K1 as, otherwise, its utility would be
0. Next, note that, due to Lemma 1, in any Nash stable partition and for each
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κ ≥ 2, all nodes in Kκ must be in the same cluster as they have the same closed
neighborhood.

We now argue that all nodes in K1 and the additional nodes must be in the
same cluster as those in K2. Consider a node i ∈ K1. The utility of i in any
cluster containing only additional nodes and nodes in K1 is exactly 1/2. By
deviating to the cluster C that contains the clique K2, the utility of i becomes
at least ai+4α2+2

2ai+4α2+2+4α2+1 > 1/2, where ai is the number of nodes from K1 in C.
Indeed, the worst case is that C contains ai nodes from K1, the corresponding
ai additional nodes, and all nodes in ∪κ≥2K

κ. Hence, the nodes in K1 ∪K2 as
well as the additional nodes are necessarily in the same cluster in a Nash stable
partition.

We conclude the argument that C′ is the only Nash stable partition by
showing that there cannot be another Nash stable partition where a node
i ∈ K2 is not together with all nodes in ∪κ≥3K

κ. Assume otherwise that i

is not in the same cluster as the nodes in Kκ′ , for some κ′ ≥ 3. Then the
utility of node i ∈ K2 that belongs to cluster C(i) is at most ui(C(i)) ≤
4(

√
6+1)α2+4α2+1+4α(α−1)

8(
√
6+1)α2+4α2+2+4α(α−1)

= 4(3+
√
6)α2−4α+1

8(2+
√
6)α2−4α+2

. By deviating to the cluster con-
taining the nodes in Kκ′ , the utility of i is at least 4α

4α+1 > ui(C(i)); a contra-
diction. Hence, we have proven that the only Nash stable partition is the grand
coalition.

We are now ready to prove the main result of this section for simple sym-
metric fractional hedonic games.

Theorem 3. The price of stability of simple symmetric fractional hedonic games
is at least 1 +

√
6
2 − ϵ for ϵ > 0.

Proof. By combining inequalities (1) and (2), we conclude that the price of
stability for graph G1 is

PoS(G1) =
SW(C∗)

SW(C′)

≥ (4(3 +
√
6)α2 − α+ 2)(4(2 +

√
6)α2 + 1)

32(3 +
√
6)α4 + 8α3 + 2(11 + 5

√
6)α2 + 1

=
16(12 + 5

√
6)α4 − 4(2 +

√
6)α3 + 4(7 + 3

√
6)α2 − α+ 2

32(3 +
√
6)α4 + 8α3 + 2(11 + 5

√
6)α2 + 1

≥ 1 +

√
6

2
− ϵ

as α tends to infinity, where ϵ is an arbitrarily small positive number.

3.2. Social distance games
Let α be a positive integer. Consider the following graph G2 that is also

presented in Figure 2. There exist two sets S, S′ of α nodes each, where each
node i ∈ S is connected only to the corresponding node i′ ∈ S′. There also

9



exist α/2 cliques Kj , 1 ≤ j ≤ α/2, each of size α. Any node in clique K1 is
connected to all nodes in S′ ∪ (

∪
i≥2 K

i). Therefore, the total number of nodes
in G2 is α2/2 + 2α.

K1

K2

Kα/2

K3

...

α nodesα nodes

S S′

...
...

α nodes

α nodes

α nodes

α nodes

Figure 2: The graph G2 used in the proof of the lower bound. Each bubble corresponds to a
clique and each dashed line represents edges adjacent to all clique nodes.

We first argue about the social welfare in the optimal partition and then we
argue that the grand coalition is the only Nash stable partition. Consider the
partition C where each player i ∈ S is paired with the neighboring player i′ ∈ S′,
cliques K1 and K2 form a cluster, while each clique Kj , for 3 ≤ j ≤ α/2 forms
a cluster. The social welfare of this partition is

SW(C) = α+ (2α− 1) + (α/2− 2)(α− 1)

= α2/2 + α/2 + 1,

where the first term in the first equality is due to the α clusters containing the
players in S ∪ S′, the second term is due to the cluster K1 ∪K2, while the last
term is due to the remaining (α/2− 2) clusters, each containing a single clique
of size α. Clearly, for the optimal partition C∗ it holds that SW(C∗) ≥ SW(C),
hence, it holds that

SW(C∗) ≥ α2/2 + α/2 + 1. (3)

Consider now the partition C′ where all players form a single cluster, i.e.,
the grand coalition. Its social welfare is

SW(C′) =
α(1 + α

2 + α2/2−1
3 + α−1

4 ) + α(α+ 1 + α2/2−1
2 + α−1

3 )

α2/2 + 2α

+
α(α2/2 + α− 1 + α

2 ) + (α2/2− α)(2α− 1 + α2/2−α
2 + α

3 )

α2/2 + 2α

=
α(2α2 + 9α+ 5)/12 + α(3α2 + 16α+ 2)/12 + α(α2 + 3α− 2)/2

α2/2 + 2α

+
(α2/2− α)(3α2 + 22α− 12)/12

α2/2 + 2α
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=
α(3α3 + 38α2 + 30α+ 14)/24

α2/2 + 2α

=
3α3 + 38α2 + 30α+ 14

12α+ 48
, (4)

where, in the first equality, the first term is due to the α players in S, the second
term is due to the α players in S′, the third term is due to the α players in clique
K1, while the last term is due to the (α2/2−α) players in the remaining cliques.

Lemma 4. C′ is the only Nash stable partition for G2.

Proof. First, observe that in any stable partition, any player i ∈ S must be in
the same cluster as its neighbor i′ ∈ S′. If this is not the case, then ui(C(i)) = 0
as there is no path inside C(i) connecting i to any other player in C(i), while
by joining cluster C(i′) the utility of player i would be strictly positive. Then,
due to Lemma 1, observe that, in any stable partition, all players in a clique
Kj , where 1 ≤ j ≤ α/2, must belong in the same cluster, as by the construction
of graph G2, any pair of players in Kj has the same closed neighborhood.

We continue by showing that any player in S′ belongs to the same cluster as
the players in clique K1. Assume otherwise and consider such a player i′ ∈ S′.
By the discussion above, i′ is in the same cluster as its neighboring player
i ∈ S and, by our assumption that i′ is not in the same cluster as clique K1,
i′ has no path inside C(i′) connecting it to any other player in C(i′), hence
ui′(C(i′)) ≤ 1/2. Consider the cluster C that contains the players of clique
K1 and let us assume that C contains also κ players of S′ (but different than
i′), where 0 ≤ κ < α and the players of λ additional cliques Kj>1, where
0 ≤ λ < α/2; by the discussion above, C also contains κ players of S. Then,
the utility of player i′ when joining cluster C is

ui(C ∪ i′) =
α+ (κ+ λα)/2 + κ/3

(λ+ 1)α+ 2κ+ 1
,

which is strictly greater than 1/2 for any κ < α.
So far we have established that, in any Nash stable partition, the players

of S, S′, and K1 are necessarily in the same cluster, while the players of any
clique Kj>1 are also together in a cluster; note that we have not yet ruled out
the possibility that different cliques belong to different clusters. We conclude the
argument that the grand coalition is the only Nash stable partition by showing
that if there exists a clique Kj′>1 that is not in the same cluster as the clique
K1, then any player in K1 has an incentive to deviate and join the same cluster
as the players of Kj′ . Indeed, in this case, the utility of any player k in K1

is maximized whenever C(k) contains, apart from players in S ∪ S′ ∪ K1, all
players except those in Kj′ and, hence, it holds that

uk(C(k)) ≤
(α/2− 2)α+ 2α− 1 + α

2

(α/2− 2)α+ 3α

=
α2 + α− 2

α2 + 2α

11



=
α− 1

α
,

where the first term in the inequality is due to the distance to the other cliques,
the last term is due to the distance to players in S while the remaining terms
are due to the distance to players in S′ and the remaining players of K1. By
deviating to cluster Cj′ containing at least the players of clique Kj′ , player
k would obtain utility uk(Cj′ ∪ k) ≥ α

α+1 ,2 i.e., strictly greater utility than
uk(C(k)). This concludes the argument that the grand coalition is the only
Nash stable partition.

We are now ready to prove the main result of this section.

Theorem 5. The price of stability of social distance games is at least 2− ϵ for
ϵ > 0.

Proof. By combining inequalities (3) and (4), we conclude that the price of
stability for graph G2 is

PoS(G2) =
SW(C∗)

SW(C′)

≥ α2/2 + α/2 + 1

(3α3 + 38α2 + 30α+ 14)/(12α+ 48)

=
6α3 + 30α2 + 36α+ 48

3α3 + 38α2 + 30α+ 14

≥ 2− ϵ,

as α tends to infinity, where ϵ is an arbitrarily small positive number.

4. Positive results for special cases

This section contains our upper bounds on the price of stability of simple
symmetric fractional hedonic games (see Section 4.1) and social distance games
(in Section 4.2). Recall that Bilò et al. [10] have shown that for graphs of
girth 3 and 4 the price of stability can be strictly greater than 1 for the case of
fractional hedonic games, so our first result below, see Theorem 9, is essentially
the best possible with respect to girth.

4.1. Fractional hedonic games and girth at least 5
We consider the class of triangle-free and quadrilateral-free graphs, i.e., when

there are no cycles of length 3 or 4, and we will make use of the following result
by Dutton and Brigham [15] that upper-bounds the number of edges in a graph
of girth at least 5.

2uk(Cj′ ∪ k) obtains its minimum value when Cj′ contains a single clique, i.e., Kj′ .
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Lemma 6 (Theorem 4 in [15]). The maximum number of edges in a graph with
n nodes and girth at least 5 is n

√
n−1
2 .

Bilò et al. [10] have shown that the price of stability is 1 for the case of trees,
and, furthermore, that any optimal partition consists of clusters with diameter
either 1 or 2, i.e., either single edges or non-degenerate stars. Therefore, in
the following, we focus on graphs having at least 5 nodes which are not trees.
We now prove the key lemma that there exists at least one optimal partition
where all clusters are stars. In particular, we show that starting from an optimal
partition having at least one non-star cluster, we can transform it to another
partition with the same social welfare and strictly more star clusters. By re-
peatedly performing such transformations, we end up with an optimal partition
where all clusters are stars. Then, we argue that this optimal partition must
also be Nash stable; clearly, this implies a price of stability of 1.

Lemma 7. Given a graph G = (V,E) with girth at least 5, there exists an
optimal partition where all clusters are stars.

Proof. Assume otherwise and consider an optimal partition C∗ having a cluster
C that is not a star. Since C is not a star and the girth is at least 5, it holds
that |C| ≥ 4. We claim that C necessarily contains an edge (u, v) that is not a
bridge, as, otherwise, C is a tree and, by [10], a star. We decompose C into two
clusters C1 = {u, v} and C2 = C \ {u, v}.

Let c2 and e2 be the number of nodes and edges, respectively, in C2 and
note that c2 ≥ 2 as |C| ≥ 4. Similarly, let Nu = {j ∈ C2 : (u, j) ∈ E} and
Nv = {j ∈ C2 : (v, j) ∈ E} and, furthermore, let e12 = |Nu|+ |Nv| be the total
number of edges with one endpoint in C1 and the other in C2. Then, the total
utility of players in C is u(C) = 2+2e2+2e12

2+c2
, as C1 contains two nodes and a

single edge. Similarly, the total utility of players in C1 is u(C1) = 1 and the
total utility of players in C2 is u(C2) =

2e2
c2

.
Let ∆ = u(C1)+u(C2)−u(C) and note that it suffices to prove that ∆ ≥ 0.

It holds that

∆ = 1 +
2e2
c2

− 2 + 2e2 + 2e12
2 + c2

=
2c2 + c22 + 4e2 + 2e2c2 − 2c2 − 2e2c2 − 2e12c2

c2(2 + c2)

≥ c22 + 4c2 − 4− 2e12c2
c2(2 + c2)

≥ c22 + 2c2 − 2e12c2
c2(2 + c2)

,

where the first inequality holds since e2 ≥ c2 − 1 and the last inequality holds
since c2 ≥ 2.

Clearly, ∆ ≥ 0 when e12 ≤ 1 + c2/2, so let as assume that e12 > 1 + c2/2.
First, observe that, since graph G has girth at least 5 and the edge (u, v) ∈ E,
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clearly any two nodes in Nu (respectively, in Nv) are at distance at least 3.
Similarly, any node in Nu is at distance at least 2 from any node in Nv. Since
C2 is connected, this implies that there exist at least e12/2 nodes in C2\(Nu∪Nv)
having at least one neighbor in Nu ∪ Nu. Let D be a decomposition of C2 into
tree clusters so that each tree cluster contains at most one endpoint (out of
the e12 endpoints in C2) connected to the same node in C1 and at most two
endpoints in total. In the worst case, this decomposition contains e12/2 tree
clusters, each of utility at least 1. Consider now the partition C′ that, instead
of cluster C that contains c2+2 nodes, includes cluster C1 and the tree clusters
in C′. It holds that

u(C′)− u(C∗) ≥ 1 +
e12
2

− 2 + 2e12 + 2e2
2 + c2

> 1 +
2 + c2

4
−

√
c2 + 1

≥ 0,

where the second inequality holds since e12 > 1 + c2/2 and, by Lemma 6,
1 + e12 + e2 ≤ (2+c2)

√
c2+1

2 , while the last inequality holds since c2 ≥ 2. Hence,
assuming e12 > 1 + c2/2 contradicts the optimality of C∗.

Overall, we have shown that a non-star cluster C can be split into two
clusters C1 and C2 where C1 is a star, without decreasing the social welfare. By
iterating this process, we can reach an optimal partition where all clusters are
stars.

The following result of Bilò et al. [9] states that in a triangle-free graph, the
partition, that maximizes the social welfare among partitions consisting only of
stars, is stable. Clearly, the optimal partition obtained by Lemma 7 is such a
partition.

Lemma 8 (Lemma 3 in [9]). Let G be a triangle-free graph, then any optimal
star partition is stable.

By combining Lemmas 7 and 8, we obtain the main result of this section.

Theorem 9. The price of stability of simple symmetric fractional hedonic games
on graphs of girth at least 5 is 1.

4.2. Social distance games in trees
We now consider the case on social distance games where the graph G is a

tree, and we prove that there exists an optimal partition that is stable. We call
a partition compact if it consists only of stars and paths of 4 nodes and we begin
by showing that at least one optimal partition is compact.

Lemma 10. In social distance games on trees, there exists a compact optimal
partition.

14



Proof. Consider a cluster C in the optimal partition that is neither a star nor
a path of 4 nodes and let h be the depth of the subtree TC defined by cluster
C. By selecting a node i in depth h− 1 that has at least one neighbor of depth
h, we can decompose TC into a subtree T1 that is a star having i as the center
node and i’s descendants in TC as leaf nodes, and another subtree T2 containing
the remaining nodes. Let a ≥ 1 be the number of node i’s neighbors in T1, let
j be the node in subtree T2 that is the neighbor of node i in TC , and b ≥ 1 be
the number of additional nodes in subtree T2.

Since C is part of an optimal partition, the utility u(C) is at least the utility
of the clusters defined by subtree T1 and the optimal decomposition of T2 into
stars, i.e.,

u(C) ≥ a

a+ 1
+

a

2
+

b+ 1

2
, (5)

where the first two terms are due to the cluster of subtree T1, while the last term
holds since T2 contains b+1 players and by Corollary 1 in [13] that bounds from
below the social welfare in an optimal partition. Next, observe that the utility
of cluster C is maximized when player j is directly connected to all remaining
b players in T2, as in this way the number of node pairs inside T2 at distance 2
is maximized, while the number of node pairs at distance 1 remains the same.
Let C ′ be a cluster with this property, i.e., j is directly connected in C ′ to all b
remaining players of subtree T2; clearly, u(C ′) ≥ u(C) which, due to (5), implies
that it must hold that u(C ′) ≥ a

a+1 + a+b+1
2 , i.e.,

a(1 + a
2 + b

3 ) + a+ 1 + b
2 + b+ 1 + a

2 + b(1 + b
2 + a

3 )

a+ b+ 2
− a

a+ 1
− a+ b+ 1

2

=
3a2 + 4ab+ 15a+ 3b2 + 15b+ 12

6(a+ b+ 2)
− a2 + ab+ 4a+ b+ 1

2(a+ 1)

=
3b+ 3− a2b− ab

3(a+ 1)(a+ b+ 2)
≥ 0. (6)

Observe that (6) holds only when a = 1 and b ≥ 1, or when a = 2 and
b = 1. In the latter case, (6) holds with equality and, hence, without loss of
generality we can decompose cluster C into two star clusters, having nodes i
and j as center nodes, without decreasing the social welfare.

So, in the following, we assume a = 1 and distinguish on whether j is directly
connected to all remaining b players of T2 or not. In the first case, it holds that
T2 is a star centered at j and, since C is part of the optimal partition, u(C)
should be at least the utility of the two star clusters centered at i and j, i.e.,
since a = 1, we obtain that u(C) ≥ 1 + b/(b+ 1) + b/2 which implies

(1 + 1/2 + b/3) + (2 + b/2) + (b+ 1 + 1/2) + b(1 + b/2 + 1/3)

b+ 3
− 1− b

b+ 1
− b

2

=
b2/2 + 19b/6 + 5

b+ 3
− b2 + 5b+ 2

2(b+ 1)
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=
2− b

3(b+ 1)
≥ 0. (7)

Observe that (7) can only hold if b = 1, i.e., for a path of 4 nodes, or if b = 2
when again, as (7) holds with equality in this case, we can decompose C into
two star clusters without decreasing the social welfare.

It remains to consider the case where in cluster C, player j is directly con-
nected to b− c nodes of subtree T2, for some c < b, while the remaining c nodes
are at distance at least 2 from j; again, the utility in this case is maximized
when these c nodes are directly connected to a neighbor of j in T2 and is

u(C) =
1 + 1

2 + b−c
3 + c

4 + 2 + b−c
2 + c

3 + b− c+ 1 + c+1
2

b+ 3

+
(b− c− 1)(1 + b−c

2 + c+1
3 ) + c+ 1 + b−c

2 + 1
3 + c(1 + c

2 + bc
3 + 1

4 )

b+ 3

=
3b2 − 2bc+ 19b+ 2c2 − c+ 30

6(b+ 3)
.

Since C is in an optimal partition and we have assumed a = 1, by (5) we obtain

u(C) ≥ 1 +
b+ 1

2
=

b+ 3

2
,

that is, it must hold

3b2 − 2bc+ 19b+ 2c2 − c+ 30

6(b+ 3)
− b+ 3

2
=

2c2 + b+ 3− 2bc− c

6(b+ 3)
≥ 0,

which, since b > c, can only hold when b = 2 and c = 1 or b = 3 and c ≤ 2.
When b = 2 and c = 1, we have u(C) = 77

30 , while by considering the two star
clusters that include player i and its neighbor, and player j and two additional
nodes, we obtain utility 8

3 > 77
30 ; a contradiction. Similarly, if b = 3 and c = 1,

then u(C) = 109
36 , while for the two clusters obtained by decomposing C into a

path of 4 nodes and a path of 2 nodes, we have utility 19
6 > 109

36 . Finally, when
b = 3 and c = 2, without loss of generality we can decompose C into two star
clusters without decreasing the social welfare.

By repeatedly applying this process, we obtain a partition of at least the
initial social welfare, where each cluster is either a path of 4 nodes or a star.

Clearly, if the compact optimal partition is stable, then the price of stabil-
ity is 1. Starting from an unstable compact partition, we can obtain another
compact partition with at least the same social welfare and fewer paths of 4
nodes.

Lemma 11. A compact partition C is either stable or it can be turned into
another compact partition C′, where SW(C) ≤ SW(C′) and the number of paths
of 4 nodes is strictly less in C′ than in C.
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Proof. Consider a compact partition C. We argue about the stability of C
and we will show that when C is unstable, then we can obtain another compact
partition C′ satisfying the lemma.

In star clusters, each player that is a leaf has utility 1/2 and by joining a
path of 4 nodes would obtain utility 5/12, if its neighbor is a path endpoint, or
utility 7/15 if its neighbor is not a path endpoint. Similarly, by joining a star, it
would obtain utility of 1/2, so no leaf player has any incentive to deviate. Each
player that is a center in a star cluster has utility at least 1/2 and, as in the
case of leaf nodes, has no incentive to deviate.

In paths of 4 nodes, each player that is not a path endpoint has utility 5/8
and would obtain strictly less utility by any deviation. A player that is a path
endpoint obtains utility 11/24 and has no incentive to deviate by connecting to
an endpoint of another path of 4 nodes, or to a leaf in a star cluster of at least
3 players. When such a player has an incentive to connect as a leaf to a center
of a star cluster, then by allowing this deviation we obtain another compact
partition with strictly greater social welfare and a reduced number of paths of 4
nodes, as the original path has now become a star with 3 players. When a player
that is a path endpoint wishes to deviate and connect to a non-endpoint node
in a path of 4 nodes, then we can rearrange these two clusters, that are both
paths of 4 nodes, into three star clusters of size 2, 3, and 3 with the same social
welfare; again, we obtain a compact partition that satisfies the lemma.

By combining Lemmas 10 and 11 we obtain the following theorem, as there
exists an optimal partition C∗ that is compact and, in case it is unstable, we can
obtain another compact optimal partition with strictly fewer paths of nodes 4;
clearly, this process will eventually halt at a stable compact optimal partition.

Theorem 12. The price of stability of social distance games on trees is 1.

5. Modified graph-based hedonic games

This section contains our results for the class of modified fractional hedonic
games (in Section 5.1) and modified social distance games (in Section 5.2).
These classes are based on alternative utility functions, fist considered by Olsen
[26], that favor coalitions of smaller size.

5.1. Fractional hedonic games
Recall that the utility of a player i belonging to cluster C(i) is u′

i(C(i)) =
degC(i)(i)

|C(i)|−1 . We show that, under this utility function, the price of stability of
simple symmetric fractional hedonic games is 1 by arguing about the structure
of the optimal partition. In particular, we show that there exists an optimal
partition satisfying a desirable structure, and then we argue that this partition
is Nash stable. We begin with a technical lemma.

Lemma 13. For any integers x, y, z such that 1 ≤ x ≤ y ≤ z− 1, it holds that
z2 − 3z + xy − x2 + x+ y − yz + 2 ≥ 0.
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Proof. Fix z and let f(x, y) = −x2 + xy + x + (1 − z)y + z2 − 3z + 2. It
suffices to prove that f(x, y) ≥ 0 for any 1 ≤ x ≤ y ≤ z−1. The derivative with
respect to y is f ′

y(x, y) = x+ 1− z. Note that f ′
y(x, y) < 0 whenever x < z − 1

and f ′
y(x, y) = 0 only when x = z − 1. In both cases, the value y = z − 1

minimizes f(x, y). Then, f(x, z − 1) = −x2 + zx + 1 − z with f(1, z − 1) = 0
and f(z − 1, z − 1) = 0. The proof follows since f(x, z − 1) is increasing up to
x = z/2 and then becomes decreasing.

The next lemma specifies the structure of an optimal partition. In particular,
we show that there exists an optimal partition where each cluster C is either a
singleton cluster (when |C| = 1), a path of two nodes (when |C| = 2), a star
with 2 leaves or a triangle (when |C| = 3), or a star (whenever |C| ≥ 4).

Lemma 14. There exists an optimal partition C∗ where each cluster C with
|C| ≥ 4 is a star.

Proof. Consider a cluster C with k ≥ 4 nodes that is not a star. Let ℓ be the
number of edges in C; then, the social welfare is SW(C) = 2ℓ

k−1 . Let i be a node
in C with the minimum degree, solving ties arbitrarily, and let x = deg(i). Let
j be the neighbor of i with the minimum degree among all i’s neighbors, again
solving ties arbitrarily, and let y = deg(j).

We argue that we can split C into two clusters, i.e., C1 = {i, j} and C2 =
C \C1 without decreasing the social welfare. The total social welfare of the two
clusters is SW′ = SW(C1)+SW(C2) = 2+ 2ℓ′

k−3 , where ℓ′ is the number of edges
in cluster C2. It holds that ℓ = ℓ′ + x + y − 1, as i (respectively, j) has x − 1
(respectively, y − 1) neighbors in C2 while the edge (i, j) also exists in C but
not in C2.

We now provide a lower bound on ℓ′ based on x, y and k. By the definitions
of x and y, it holds that C contains x nodes with degree at least y and k − x

nodes with degree at least x. Hence, we obtain that ℓ ≥ xy+(k−x)x
2 . Since

ℓ′ = ℓ− x− y + 1, we obtain that

ℓ′ ≥ kx+ xy − x2 − 2x− 2y + 2

2
. (8)

It suffices to prove that SW′ ≥ SW(C). We have

SW′ − SW(C) =
2k + 2ℓ′ − 6

k − 3
− 2ℓ′ + 2x+ 2y − 2

k − 1

=
2k2 − 6k + 4ℓ′ − 2kx− 2ky + 6x+ 6y

k2 − 4k + 3

≥ 2k2 − 6k + 2kx+ 2xy − 2x2 − 4x− 4y + 4− 2kx− 2ky + 6x+ 6y

k2 − 4k + 3

=
2k2 − 6k + 2xy − 2x2 + 2x+ 2y − 2ky + 4

k2 − 4k + 3

≥ 0.
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The first inequality follows by using (8), while the last inequality holds due to
Lemma 13 (by setting z = k) and since k ≥ 4.

By repeating this process as long as there exists a non-star cluster of size at
least 4, we obtain an optimal solution with the desired properties.

We now show that there exists an optimal partition that is Nash stable,
hence the price of stability is 1.

Theorem 15. The price of stability of simple symmetric modified fractional
hedonic games is 1.

Proof. Consider an optimal partition satisfying the properties of Lemma 14.
Clearly, any node in a triangle and any node that is a root in a star is satisfied
since its utility is 1. The only players that may wish to deviate are nodes in
singleton clusters or leaves in a star. Observe that there cannot be an edge con-
necting two nodes from the set of leaves and singletons, as these two nodes would
form a new cluster and the social welfare would strictly increase; a contradiction
to our original assumption. Similarly, there cannot be an edge connecting a leaf
or singleton node i to a node j that belongs to a cluster C forming a triangle,
as then the social welfare would strictly increase by creating cluster {i, j} and
reducing C to C \ {j}.

We first let all singleton clusters deviate and join their preferred star. Since
the social welfare of any star cluster C with k nodes is SW(C) = 2(k−1)

(k−1) = 2

irrespective of the number of leaves, these deviations do not decrease the social
welfare. Then, all possible subsequent deviating moves (which can be made only
by leaves) lead to partitions where the number of triangles and the number of
stars remains the same, but the structure of these stars may change as the leaves
deviate. Observe that a deviating move of node i from star C(i) to another star
C, requires that |C(i)| > |C|+1 and strictly decreases the maximum size among
these two star clusters, i.e., |C(i)| in this example. Therefore, by considering the
lexicographic order π of all star-clusters in the partition C based on the number
of nodes, from the minimum to the maximum, we observe that any deviating
move that leads to partition C′ satisfies π(C) < π(C′) and, hence, this process
is guaranteed to end. Furthermore, any deviating move does not decrease the
social welfare, as the new clusters remain stars. The theorem follows.

5.2. Social distance games
Our results for the class of modified social distance games follow along similar

lines as that in Section 5.1. In our proofs, we exploit the following technical
lemma that argues about the social welfare in a partition that consists only of
stars.

Lemma 16. Any partition where m star clusters span a set of n nodes has total
utility m+ n/2.

Proof. Consider the m star clusters C1, C2, . . . , Cm and let ni, 1 ≤ i ≤ m,
denote the number of nodes in cluster Ci. For a given cluster Ci, the cluster
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center has utility 1 while each of the remaining ni − 1 nodes has utility (1 +
(ni − 2)/2)/(ni − 1) = ni/(2ni − 2). By summing over all players in Ci, we
obtain that u(Ci) = 1 + ni/2. The lemma follows by summing over all m star
clusters and since

∑
i ni = n.

We first show that there exists an optimal partition where each cluster is a
triangle, a star or a single disconnected node; we begin by an optimal partition
that may not exhibit these properties and we show how to transform it into
another optimal partition that satisfies them.

Lemma 17. There exists an optimal partition C∗ where each cluster C with
|C| ≥ 4 is a star.

Proof. Consider an optimal partition C∗ and a cluster C with |C| ≥ 4 nodes
that is not a star. Let D be a decomposition of cluster C into a collection of
disjoint sets {T, P, I} where T contains x disjoint cliques of size 3, i.e., triangles,
P contains y disjoint cliques of size 2, i.e., pairs, and I contains z isolated
nodes, so that z is the minimum among all such decompositions. Clearly, |C| =
3x+ 2y + z.

We now argue about the structure inside cluster C. First, observe that
there cannot be an edge connecting a node belonging to set T in D to a node
belonging to set I in D, or connecting two nodes belonging to set I in D, as
then another decomposition D′ exists with strictly fewer isolated nodes than D.
Furthermore, each isolated node in D may be directly connected to at most one
node of each pair in D as otherwise we could form a triangle and reduce the
number of isolated nodes. In addition, for each pair in D, at most one node
may be directly connected to any isolated node, as otherwise we could split the
pair, connect its endpoints to the isolated nodes and again reduce the number
of isolated nodes. Let P ′ be the set of the y′ ≤ y pairs in D where exactly one
endpoint has at least one isolated node as neighbor, while, for the remaining
y − y′ pairs, no endpoint has an isolated node as neighbor. Furthermore, for
any pair where one endpoint is directly connected to an isolated node, the other
endpoint cannot be connected to a triangle node, as then we could again reduce
the number of isolated nodes by rearranging the triangle, the pair, and the
isolated node. Finally, any isolated node i is directly connected to at least one
node (which, by the discussion above, must be a pair node), as otherwise the
cluster C \ {i} has strictly greater utility than C, contradicting the optimality
of C∗.

By the last observation about isolated nodes, it follows that we can decom-
pose cluster C into smaller clusters such that each triangle in T forms a cluster,
while there are also y star clusters that contain the nodes in P as well as the
isolated nodes, i.e., 2y+ z nodes in total. By Lemma 16, we have that the total
utility u(D) of the new set of clusters is

u(D) = 3x+ 2y + z/2. (9)

Let us now argue about the utility of cluster C. We upperbound the utility
of each player i in C according to its type in the decomposition D. If i is in a
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triangle,

ui(C) ≤ 3x+ y′ + 2(y − y′)− 1 + (y′ + z)/2

3x+ 2y + z − 1

=
3x+ 2y − y′/2 + z/2− 1

3x+ 2y + z − 1
, (10)

since, by the discussion above, i can be directly connected to at most the nodes
in triangles, one endpoint for each of y′ pairs, both endpoints for the remaining
(y − y′) pairs, while it can have distance at least 2 from the remaining y′ + z
nodes.

If i is an isolated node, then

ui(C) ≤ y′ + (y′ + 2(y − y′) + 3x+ z − 1)/2

3x+ 2y + z − 1

=
3x/2 + y + y′/2 + z/2− 1/2

3x+ 2y + z − 1
, (11)

since it can be directly connected to at most y′ nodes and has distance at least
2 to all remaining nodes.

If i is a node in the y′ pairs and has isolated nodes as neighbors, then the
utility is

ui(C) ≤ 3x+ 2y + z − 1

3x+ 2y + z − 1
, (12)

as it may be directly connected to all remaining nodes, while if i is an endpoint
in one of the y′ pairs and does not have isolated nodes as neighbors, then the
utility is

ui(C) ≤ 2y − 1 + (3x+ z)/2

3x+ 2y + z − 1
, (13)

since i can be directly connected only to the remaining nodes belonging to pairs
in D.

Finally, if i is part of the y−y′ pairs where no endpoint has an isolated node
as neighbor, then the utility is

ui(C) ≤ 3x+ 2y − 1 + z/2

3x+ 2y + z − 1
, (14)

as it may be directly connected to all remaining nodes apart from those that
are isolated in D.

The total utility of cluster C can be bounded from above by using inequalities
(10)-(14) as

u(C) =
∑
i∈C

ui(C)
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=
∑
i∈T

ui(C) +
∑
i∈P ′

ui(C) +
∑

i∈P\P ′

ui(C) +
∑
i∈I

ui(C)

≤ 3x(3x+ 2y − y′/2 + z/2− 1) + y′(3x+ 2y + z − 1 + 2y − 1 + (3x+ z)/2)

3x+ 2y + z − 1

+
2(y − y′)(3x+ 2y − 1 + z/2) + z(3x/2 + y + y′/2 + z/2− 1/2)

3x+ 2y + z − 1

=
9x2 + 4y2 + z2/2 + 12xy − 3xy′ + 3xz + 2yz + y′z − 3x− 2y − z/2

3x+ 2y + z − 1
.

(15)

The proof follows as by combining (9) and (15) we obtain u(D) ≥ u(C),
since (3x + 2y + z/2)(3x + 2y + z − 1) ≥ 9x2 + 4y2 + z2/2 + 12xy − 3xy′ +
3xz+2yz+ y′z− 3x− 2y− z/2 for any y′ ≤ y, i.e., we can decompose cluster C
into triangles and stars without losing social welfare; clearly, we can repeatedly
perform this process until all clusters are as desired.

We are now ready to prove the main result of this section, i.e., that there
exists a stable optimal partition.

Theorem 18. The price of stability of modified social distance games is 1.

Proof. Consider an optimal partition C∗ that exhibits the properties of Lemma
17. Clearly, if C∗ is stable, the theorem follows, so we assume that C∗ is unstable
and we show how to modify it in order to obtain a stable optimal partition.

First, observe that any player that is in a triangle cluster and any player
that is a root in a star cluster is satisfied since its utility is 1. Therefore, the
players that may wish to deviate from C∗ are those that are either in singleton
clusters, or leaves in a star. We now argue that players in singleton clusters are
disconnected in graph G and, hence, obtain utility equal to 0 in any partition; so,
they have no incentive to deviate and can be ignored, without loss of generality.
Indeed, if i is connected by an edge (i, j) to another player j that is in a singleton
cluster, then we can merge the two singleton clusters C∗(i) and C∗(j) to a single
cluster and strictly increase the social welfare; a contradiction since C∗ is an
optimal partition. A similar reasoning applies if player i is connected by an
edge (i, k) to a player k that is in a triangle cluster or that is a leaf in a star
cluster, as then we can replace C∗(i) and C∗(k) by C∗(i)∪{k} and C∗(k) \ {k}
and obtain strictly greater social welfare. Finally, if i is connected to a player ℓ
that is root in a star cluster, we can merge clusters C∗(i) and C∗(ℓ) and obtain
strictly greater social welfare as u(C∗(i)) = 0, u(C∗(ℓ)) = 1 + |C∗(ℓ)|/2, while
u(C∗(ℓ) ∪ {i}) = 1 + (|C∗(ℓ)|+ 1)/2.

We now consider the players that are leaves in star clusters. As in the case
of singleton clusters, a leaf player i cannot be connected by an edge to a triangle
cluster or to another leaf player, as again we would obtain strictly greater welfare
by letting player i and its neighbor form a new cluster. Hence, i can only deviate
by becoming a leaf to another star cluster. By Lemma 16, the social welfare of
any set of disjoint star clusters spanning a given set of nodes does not depend

22



on how these stars are actually formed, and, hence, any such deviation does not
reduce the social welfare. Observe that such a deviating move of player i from
the star C∗(i) to another star C, requires that |C∗(i)| > |C| + 1. Therefore,
by considering the lexicographic order π of all star clusters in the partition C∗

based on the number of nodes, from the minimum to the maximum, we observe
that any deviating move that leads to a partition C′ satisfies π(C∗) < π(C′) and,
hence, this process is guaranteed to end as we can apply this reasoning to any
subsequent deviation. This concludes the proof of the theorem.

6. Conclusions

We have presented new bounds on the price of stability of some graph-based
hedonic games such as simple symmetric fractional hedonic games and social
distance games. In particular, we show improved lower bounds for the general
case as well as positive results for special cases and variants.

Clearly, the most important open question concerns the upper bound for
general graphs, as no non-trivial bound is known. We conjecture that the price
of stability is constant in both cases but the proof of such a claim remains
elusive. Interestingly, for social distance games no better bounds are known
even for the restricted case of bipartite graphs; we remark that for the class of
simple symmetric fractional hedonic games, the price of stability for bipartite
graphs is a very small constant [10].
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