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Abstract Understanding the movement of human crowds is important for our gen-
eral understanding of collective behaviour and for applications in building design
and event planning. Here, we focus on the flow of a crowd through a narrow bottle-
neck. We develop statistical models that describe how pedestrian behaviour immedi-
ately in front of a bottleneck affects the time lapse between consecutive pedestrians
passing through the bottleneck. With this approach we isolate the most important as-
pects of pedestrian behaviour from a number of candidate models. We fit our models
to experimental data and find that pedestrian interactions immediately in front of the
bottleneck appear to be less important for the observed time lapses than interactions
further away from the bottleneck. Furthermore, we demonstrate how our approach
can be used to rigorously compare microscopic pedestrian behaviours across dif-
ferent contexts by fitting the same statistical models to three separate datasets. We
suggest that our approach is a promising tool to establish similarities and differences
between simulated and real pedestrian behaviour.

1 Introduction

The movement of human crowds is an important example of collective behaviour
and an understanding of such systems is important for applications in building de-
sign and event planning [9]. The general consensus is that interactions between in-
dividuals are crucial to the observed dynamics at the level of the crowd. This imme-
diately leads to two questions. First, how do individuals interact? Second, do these
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interactions differ across contexts? Here, we present a framework to address both of
these questions.

We focus on the paradigmatic and well-studied example of pedestrian crowds
passing through narrow bottlenecks, such as exit doors. It is possible to address the
aforementioned questions indirectly. For example, the average relationship between
the speed of individuals and the density of crowds or the distribution of crowds in
front of and inside bottlenecks provide insights into how pedestrians use the avail-
able space, whether they maintain a personal space around them and to what ex-
tent the presence of others obstructs their movement [8, 10]. Egress times can be
used to investigate how different contexts (e.g. motivation of individuals) can affect
the movement of a crowd [6]. Computer simulations are another well-accepted ap-
proach to explore the movement dynamics produced by different hypothesised mod-
els for interactions between individuals [9]. In contrast to such indirect approaches,
our framework uses experimental, observational or simulated data to directly infer
the most likely model for interactions between individuals from a set of candidate
models.

For narrow bottlenecks, a conveniently measured quantity is the time lapse (or
headway) between consecutive pedestrians passing through the exit. The distribu-
tion of these time lapses provides important insights: the mean is related to the
pedestrian flow and the frequency of large values indicates the likelihood of jams,
time-points when the flow of pedestrians slows down temporarily. Previous work
has investigated properties of the distribution of time lapses. For example, it has
been suggested that the distributions have a power law tail [6]. Investigating the
exponent of this power law tail provides fundamental insights into the properties
of the system. Exponents below a value of 2 suggest that the mean of the distribu-
tion does not converge, but grows without an upper bound as sample sizes increase
- a profound issue for the prediction of bottleneck blockages. However, this sce-
nario does not seem to apply to the pedestrian data investigated to date [6]. To study
wide bottlenecks, Hoogendoorn and Daamen [8] suggest a dedicated definition of
time lapses that takes the distance orthogonal to the movement direction between
pedestrians into account. The authors then used a model which assumes that time
lapse distributions are composed of the contribution of freely walking pedestrians
and constrained pedestrians (who walk behind others) to estimate for bottlenecks
of different widths the proportion of constrained and unconstrained pedestrians, as
well as the average time lapse between consecutive pedestrians and the bottleneck
capacity [8]. Our work presents a departure from this previous work. We develop
statistical models that describe how pedestrian behaviour immediately in front of the
bottleneck affects the time lapse between consecutive pedestrians passing through
the bottleneck. With this framework we isolate the most likely model for pedes-
trian behaviour from a number of candidate models. Furthermore, we demonstrate
how our approach can be used to compare microscopic pedestrian behaviours across
different contexts by fitting the same statistical models to three separate datasets.
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2 Methods

Let tp and tp−1 be the time points at which two consecutive pedestrians cross a
line that marks a physical bottleneck (e.g. an exit). We assume that the bottleneck is
narrow, so that only one pedestrian at a time can exit. We define ∆ tp = tp−tp−1 to be
the time lapse between two consecutive pedestrians passing through this bottleneck.
We propose statistical models that describe the random variable Tp which takes
values ∆ tp. We assume that ∆ tp are distributed according to gamma distributions
and the models take the general form Tp ∼Γ (µp−1,σ), where Γ denotes the gamma
distribution with mean µp−1 and variance σ . While we treat σ as a constant model
parameter, we propose a number of models in which µp−1 depends on the relative
positions of pedestrians in front of the bottleneck. A different way of describing
our approach is that we perform a gamma regression on the values of ∆ tp using
pedestrian positions in front of the bottleneck as predictors. Specifically, we use
pedestrian positions at time p−1, i.e. at the time point when the previous pedestrian
has just entered the bottleneck to predict ∆ tp. The rationale behind our models is
that relative pedestrian positions could affect the length of time it will take the next
pedestrian to enter the bottleneck. For example, if two pedestrians are close to the
bottleneck and equidistant from it, deciding who gets to exit next may take longer
than if one pedestrian is much closer to the exit than the other. We propose five
explanatory factors for the mean of Tp.

The first explanatory factor is a constant: m0 = α1, where α1 is a model pa-
rameter. It represents an intercept for µp−1 and thus an expected baseline for ∆ tp
regardless of the relative positions of pedestrians.

The second explanatory factor, m1, captures the effect on ∆ tp of how densely
pedestrians are clustered around the bottleneck. Let < d >k be the average distance
to the exit of the k pedestrians nearest to the bottleneck (at time tp−1; k = 2, ..,5).
Here and in the following, distances to the bottleneck are measured from the pedes-
trian position to the centre of the line pedestrians cross when entering the bottleneck.
Then we define m1 = (α2 < d >k −α3)

2, where k, α2 and α3 are model parameters.
For example, very low values of < d >k indicate that many pedestrians are very
close to the bottleneck which may lead to higher expected ∆ tp (pedestrians may
compete against each other to exit as quickly as possible).

The third and fourth explanatory factors investigate effects of the relative po-
sitions of the two pedestrians nearest to the bottleneck. We define di j to be the
difference in distance and θi j to be the angle between the two pedestrians i and j
closest to the bottleneck entrance. θi j is defined as the angle between the vectors
pointing from the position of pedestrians i and j to the centre of the bottleneck en-
trance. The third and fourth explanatory factors are defined as m2 = (α4di j −α5)

2

and m3 = (α6θi j −α7)
2, where α4,...,α7 are model parameters.

The fifth explanatory factor takes the distance of the pedestrian nearest to the
bottleneck, di, into account: m4 = (α8di −α9)

2 (where α8 and α9 are model param-
eters). This explanatory factor is motivated by the observation that in the absence
of interactions with other pedestrians, the distance to the bottleneck of the closest
pedestrian is likely to be the determining factor for ∆ tp.
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We use the five explanatory factors defined above to formulate sixteen models
for the mean of ∆ tp by considering all possible combinations of m1,m2,m3 and m4
whilst including m0 into all models. The predicted mean for a given model is the
sum over all explanatory factors included in the model. For example, the model that
includes m1 and m3 has predicted mean µp−1 = m0 +m1 +m3 (m0 is included in
all models). We will refer to the different models by the formula for their predicted
mean (e.g. “m0+m1+m3”). By comparing the extent to which these different mod-
els are supported by our data, we can establish which out of our explanatory factors
best predicts ∆ tp.

We use a maximum likelihood approach to fit our models. Let fΓ (∆ tp; µp−1,σ)
be the probability density function of a gamma distribution with mean µp−1 and
variance σ evaluated at ∆ tp. Then we define the likelihood, L, of a given model as:

L = ∏
p

fΓ (∆ tp; µp−1,σ), (1)

where the product runs over all observed data points, ∆ tp (i.e. time lapses). In equa-
tion 1 we assume that separate time lapses are conditionally independent given our
models or that our models explain any relationships between the probability densi-
ties for separate time lapses. We describe below how we assess the validity of this
assumption. For each model we find the parameter values that maximise the likeli-
hood (requiring α1,α2,α4,α6,α8,σ to be positive). From the maximum likelihood,
Lmax, we compute the Akaike Information Criterion (AIC), AIC = 2n−2log(Lmax),
where n is the number of model parameters. We then use the AIC for model se-
lection: models with lower AIC are better supported by the data than models with
higher AIC.

We use scaled deviance residuals to assess the fit of our models to the data [5].
We plot these residuals against the predicted values, µp−1. This allows us to check
if individual data points have particularly large residuals and should thus be treated
as outliers. Theory predicts that the mean of the residuals should be approximately
zero and systematic changes in this mean for increasing fitted values are indicative
of poor model fit, suggesting that model assumptions do not hold [5]. We also plot
the residuals as time series to test for correlations in our data over time that are not
explained by the models. If models fit the data well, we expect that there are no
systematic trends in the residuals over time.

We apply this analysis to three separate datasets. The first dataset is obtained
from experiments conducted on the 1st of October 2014 in the DANA centre of the
Science Museum in London with a crowd of 51 and a crowd of 71 visitors. Partici-
pants were asked to walk at a normal speed through a 0.6m wide bottleneck (1.5m
long) at the end of a 2m wide corridor. At the start of the experiment, the crowd
was lined up in the corridor 3m away from the bottleneck. Experiments were filmed
from above at a rate of 10 frames per second and the camera (Microsoft LifeCam
HD-3000 webcamTM) was positioned directly above the centre of the start of the
bottleneck (see figure 1a). For each frame, the position of all visible pedestrians was
obtained manually by determining the position of the centre of participants’ heads.
Pedestrian positions were obtained in pixels and not converted to metres, as for the
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purpose of our analysis only relative differences in distances matter. Time is given
in seconds throughout. To reduce the sensitivity of our analysis to errors in tracked
positions resulting from camera distortion, we focussed our analysis on the relative
pedestrian positions directly in front of the bottleneck (e.g. low values of parameter
k) where such errors are small due to the positioning of our camera. This dataset
contained 325 data points (1 run with 51 participants, 4 runs with 71 participants;
we only consider time lapses when at least two pedestrians are still in front of the
bottleneck).

The second dataset is obtained by repeating the same experiment with a group
of 39 students at the University of Bristol on the 11th of March 2015. We used the
same camera, but recorded at a rate of 15 frames per second (see figure 1b for a
snapshot). This dataset contained 147 data points (4 runs with 39 participants; in
one trial, the exit time of the last participant was not recorded).

The third dataset is obtained from simulations of a previously published model
for pedestrian movement [1]. Briefly, pedestrians move in continuous two-dimen-
sional space. The environment (e.g. walls), as well as preferred movement direc-
tions, are encoded in a discrete floor field [4] and interactions between pedestrians
and the environment (e.g. avoiding walls) are modelled via forces acting on point
masses [7]. We simulate crowds of 80 pedestrians, each with 0.5m diameter, exit-
ing a room through one 0.8m wide door (see figure 1c). At the start of simulations,
pedestrians are distributed randomly inside the room. All other model details and
parameters are given in previous work [1]. Simulation parameters are not fitted to
the experimental data. In our simulated dataset, we aggregate the data from the first
200s for 10 separate simulations. This results in 717 data points.

3 Results and Discussion

Figures 1d-f show the time lapse distributions for the three datasets we analyse. We
begin by discussing the results for the first dataset to show how our framework can
be used to identify the most likely model for pedestrian behaviour from our candi-
date models. Figure 1g shows the AICs for each model obtained from our maximum
likelihood fits. We can see that most models are better supported by the data (i.e.
have lower AICs) than the baseline model, m0, which assumes time lapses are inde-
pendent of the relative pedestrian positions in front of the bottleneck. It is also clear
that our analysis does not simply favour more complex models. For example, the
model with the most parameters, m0 +m1 +m2 +m3 +m4, does not have the lowest
AIC. Based on our results, the model that is best supported by the data is m0 +m4,
in which time lapses depend on the distance of the pedestrian nearest to the bottle-
neck. At first glance this appears to be a trivial result: the closer individuals are to
the exit, the less time it will take them to reach it. However, this model outperforms
other models for interactions immediately in front of the bottleneck implying that
such interactions are less predictive for the observed time lapses. This suggests that
in this data the order in which pedestrians exit is already determined when individ-
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Fig. 1 Still images of experimental setup in London (a), Bristol (b) and model simulations (c). Red
line segments indicate the bottleneck location used in the analysis. (d-f) time lapse distributions for
the datasets presented in still images above. Dashed lines show gamma distribution fit correspond-
ing to model m0. (g-i) AICs for all models analysed for the three datasets. Models are shown in the
same order in all panels. Dashed horizontal lines indicate the AIC of the baseline model (m0)

uals get close to the bottleneck meaning that interactions between pedestrians occur
further away from the bottleneck. We caution that while this framework establishes
the relative performance of different models, it should not be over-interpreted as
determining the actual, true mechanism underlying pedestrian interactions: our ap-
proach is inherently probabilistic and only investigates a potentially incomplete set
of candidate models.

Importantly, our analysis allows us to compare the relative performance of the
different models across datasets (figure 1g-i). General trends in AICs indicate simi-
larities or differences across contexts. The trends in AICs for our two experimental
datasets are very similar (figure 1g,h), while the trend for the simulated dataset dif-
fers substantially from the others (figure 1i). For the simulated dataset, only mod-
els that include the contributing factor m1 perform much better than the baseline
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model and the AIC of the model that is best supported in both experimental datasets,
m0 +m4, does not even outperform the baseline model. The performance of mod-
els including m1 for the simulated data suggests that the density of pedestrians in
front of the bottleneck helps considerably to predict the time lapse between con-
secutive pedestrians. At this point we have to re-iterate that we have not fitted our
simulations to the experimental data. Therefore this result should not be interpreted
to mean that our model or any similar model is based on fundamentally different
interaction mechanisms than seen in experimental data. Rather, we show that our
framework can be used to compare microscopic pedestrian behaviours across dif-
ferent contexts and datasets.

An additional advantage of our framework is that residuals provide a well-
established approach to assess the fit of models to data. In figure 2 we show residual
plots for the models with the lowest AIC for each dataset. There does not appear to
be a systematic trend in residual means against predicted values (figure 2a-c). On
close inspection, we find a consistent increase in residuals over time for each simu-
lation run in the model data (figure 2f; multiple simulation runs are shown). In the
experimental data, no such temporal correlations are immediately obvious (figure
2d,e). This suggests that our model does not capture aspects of the simulated data.
One explanation for this result could be that our simulations implement forces be-
tween pedestrians: as the number of pedestrians in front of the bottleneck decreases,
the pressure exerted on pedestrians by others behind them is decreased which results
in longer time lapses. In this way the analysis of residuals does not only highlight
potential shortcomings of our statistical models, but it can also provide an additional
way to highlight differences in interaction mechanisms between datasets.

4 Conclusions and Outlook

We have presented a framework of statistical models to analyse microscopic pedes-
trian behaviour in front of narrow bottlenecks. This approach allows us to isolate
the most likely interaction mechanism from a list of possible mechanisms which
can also be used to compare the behaviours underlying different simulations and
datasets in a rigorous and quantitative way.

Our work presented here is a starting point and many extensions of our models
to take different scenarios and behaviours into account are possible or even neces-
sary depending on the context. For example, interactions within social groups, such
as friends, could be considered [2]. Our framework could also be developed fur-
ther to permit analysis of wider bottlenecks (an important topic, as wider bottleneck
occur frequently and pedestrians appear to preferentially exit through wider bottle-
necks [3]). Our models focus on interactions in front of bottlenecks but dynamics
inside bottlenecks could have a strong influence on time lapses between consecutive
pedestrians (e.g. consider a jammed bottleneck). If such dynamics are important, it
is likely that our approach as presented here is not appropriate.
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Fig. 2 Deviance residuals plotted against predicted mean time lapse for the model with the lowest
AIC for the London (a), Bristol (b) and simulated (c) data. Plots of residuals ordered in time for the
same data (d-f). Vertical grey lines separate data from different experimental or simulation runs

To test the usefulness of our framework, it will be necessary to apply our analysis
to a wide variety of simulated, experimental and observational data. In particular,
applying our analysis to experimental data in which the behaviour of individuals is
controlled to some extent (e.g. motivation levels) would be very informative.

In conclusion, we suggest that our approach is a promising first step to directly
establish mechanistic similarities and differences between simulated and real mi-
croscopic pedestrian behaviour.
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