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ABSTRACT

Neurophysiological signals are crucial intermediaries, through
which brain activity can be quantitatively measured and brain
mechanisms are able to be revealed. In particular, non-invasive
neurophysiological signals, such as electroencephalogram (EEG)
and functional magnetic resonance imaging (fMRI), are welcomed
and frequently utilised in various studies since these signals can be
non-invasively recorded without harming the human brain while
they convey abundant information pertaining to brain activity. The
to mine

recorded neurophysiological signals are analysed

meaningful information for the understanding of brain
mechanisms or are classified to distinguish different patterns (e.g.,
different cognitive states, brain diseases versus healthy controls).
To date, remarkable progress has been made in both the analysis
and classification of neurophysiological signals, but scholars are
not feeling complacent. Consistent effort ought to be paid to
advance the research of analysis and classification based on
neurophysiological signals. In this paper, I express my thoughts
regarding promising future directions in neurophysiological signal
analysis and classification based on current developments and
accomplishments. I will elucidate the thoughts after brief
summaries of relevant backgrounds, accomplishments, and
tendencies. According to my personal selection and preference, I
mainly focus on brain connectivity, multidimensional array
(tensor), multi-modality, multiple task classification, deep learning,
big data, and naturalistic experiment. Hopefully, my thoughts
could give a little help to inspire new ideas and contribute to the
research of the analysis and classification of neurophysiological

signals in some way.
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1 Background

The brain is one of the most complex organs in
the human body and plays a critical role in our
lives. It is significantly involved in generating
cognition, experiencing complicated emotions,
behaviors. The
outstanding capacity and function of the

and coordinating precise

human brain enable human beings to differ
from animals, which is the reason why human
beings stand out among other creatures on the
planet. As the brain is so special to us and yet is
still mysterious, we are keen to understand it
by diverse means. According to Godel’s
incompleteness theorem [1], we might infer
that the brain may be so simple that its mental
resources are not enough for it to understand
itself, or the brain may be so complex that the
brain is too complex to understand itself.
However, this paradox might not apply to the
human brain because the brain can create new
things by combining several basic concepts or
manipulating afferent information to generate
different
combinations of the binary numbers 0 and 1

new knowledge. For example,
can be used to express any number on a
computer. Similarly, basic elements or concepts
might be combined in the brain to generate
new abstracts.

Thanks to the advancement of neuroimaging
techniques, brain activity can be recorded and
represented with neuroimaging signals, which
allows us to investigate brain mechanisms. The
tirst electroencephalogram (EEG) recording
from the human scalp was performed by Hans
Berger in 1924 using a simple galvanometer [2],
and since then, novel EEG recording devices
have been developed to make EEG recordings
more precise and higher in resolution. Later,
neuroimaging techniques other than EEG were
utilised to record brain activity, such as
magnetic resonance imaging (MRI), which can
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produce images of the brain’s anatomy as well
as oxygen consumption in tissues. Although
recording principles for the acquisition of these
signals are quite diverse, they all can reflect
underlying brain activity and can be utilised to
investigate brain mechanisms. The type of
neuroimaging signal that is employed in a
study generally depends on the study’s
purpose and how well a neuroimaging signal
meets the requirement of the study. For instance,
EEG and functional MRI (fMRI) are frequently
employed in cognitive studies because they
capture temporal information that reflects the
dynamic cognitive processes of the brain.
Neuroimaging signals represent the underly-
ing activity of the brain. However, brain
activity cannot be observed visually by merely
looking at neuroimaging signals since the
content that we usually intend to observe is
masked by strong background noise or is
contaminated by unwanted signals or
surrounding interference. Therefore, the signals
are usually pre-processed to remove the effects
of the above factors before further processing,
namely artifacts removal. This initial process-
ing is followed by feature extraction. The
extracted features (or biomarkers) can be
analysed using statistical methods or fed into a
machine learning model for classification (also
known as identification or recognition). Both
data analysis and classification require good
features that intrinsically stand for inves-
tigatory ones in order to accomplish brain
mechanism discovery or brain pattern
differentiation. Data analysis is commonly
performed before data classification. Data
analysis aims to explore recorded data from
different views to understand brain activity
and then reveal brain mechanisms behind the
activity. When a brain mechanism is revealed,
or differences between brain patterns are found,

a machine learning model can learn based on
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these findings so that the trained model will be
able to classify new data automatically.

In the past, numerous features derived from
the temporal domain (e.g., amplitude, mean,
peak), spectral domain (e.g.,, power spectral
density, phase), and spatial domain (e.g.,
interactions between brain regions) have been
used in data analysis. A lot of methods have
been proposed to process data. Similarly, a
variety of models have been developed for data
classification, ranging from simple models (e.g.,
k-Nearest Neighbours) to complex models (e.g.,
deep learning). These methods have helped us
understand a lot about the brain and enable
successful diagnosis of brain diseases, which
are associated with the success of data analysis
Although
accomplishments have been attained, there are

and classification. considerable
still many aspects of the brain that we do not
understand. Continuous effort is required to
reveal brain mechanisms and increase our
understanding of the brain. As we progress
further in the journey of brain investigation,
more difficult problems will emerge. New
views and novel methods are required to
produce additional successes in the field
regarding brain investigation in the next
decade. In this paper, I would like to express a
few thoughts about promising potential
directions in data analysis and classification. I
will focus on the following topics: brain
connectivity, multidimensional array (tensor),
multi-modality, multiple task classification,
big data,

experiment (see Fig. 1). Some of these topics

deep learning, and naturalistic
have been exhibiting an obvious trend, to
which research concentration is being shifted
from the past, while the others seem to appear
but are unclear.

The remainder of the paper is organised as
follows. Each of the above topics is expanded
to detail my thoughts in the following separate
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Fig. 1 Overview of promising developments in the neurophy-
siological signal analysis and classification. The topics discussed in
this paper are shown in the right panel, which are brain
connectivity, multidimensional array (tensor), multi-modality,
multiple task classification, deep learning, big data, and naturalistic
experiment.

sections. These sections are followed by a
conclusion, where the key information of the
paper is recalled, and the relationships among
the topics are briefly addressed. Finally, conflict
of interests, financial support, and acknowledge-

ments are stated.

2 Brain connectivity

Since neuroimaging techniques were utilised to
record brain activity, the brain was considered
of which each

as an organ, region is

structurally  integrated and functionally
independent. This concept is based on the
observations of early experiments, where a
brain region is predominantly activated by a
particular task/stimulus [see the illustrations of
the features extracted from individual brain
regions in Fig. 2(A)]. Within this context, many
specialised brain regions have been determined.
For example, the occipital region is devoted to
visual information processing, and the motor
region is in charge of movement coordination.
The parietal region, which is located between
the occipital region and motor region, plays an

intermediate role in information transmission.
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Fig. 2
Typical extracted features are shown on the right. Feature

(A) Information extracted from individual brain regions.

examples are shown above the text. (B) Connectivity within the
brain and between the brains. Typical methods of connective
strength estimation are listed on the right.

These regions can be further divided into
smaller regions, which perform subordinate
functions. For instance, the occipital region is
divided into V1, V2, V3, and V4, through which
visual information is processed and becomes
more abstract. The above examples appear to
demonstrate that brain regions are functionally
independent and separately oversee specialised
processing. Brain regions likely support each
other and perform cooperatively, although
brain regional cooperation might not be
observed since the cooperation is minuscule
compared to dominant regional activation.
Cooperation can generally be observed when
viewing on a larger scale (e.g., brain hemis-
phere); for example, large-scale cooperation is
usually visible during a cognitive task that
involves several brain regions.

Due to the nature of brain interregional
cooperation in cognitive tasks, more and more
studies investigate interactions between brain
regions and attempt to reveal how brain
regions work together. With the help of brain
connectivity analysis, brain interregional
connective patterns concerning different brain
states/statuses are revealed. Rissman et al.

explored functional connectivity to reveal that a
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greater connection between brain hemispheres in
the motor area was observed during sequence-
tapping task [3]. Functional connectivity could
also be changed from one mental state to
another [4-7] or switched from one condition to
another condition [8, 9]. It is believed that
functional connectivity is relevant to numerous
types of cognitive processing [10-13] and
emotion perception [14]. In studies involving
patients, functional connectivity was also found
to be closely related to a range of brain diseases
such as Alzheimer’s disease [15], Parkinson’s
disease [16], depression [17], and schizophrenia
[18, 19]. In general, brain disease disrupts
functional connectivity or changes connective
strengths between regions. For instance,
schizophrenia leads to wide disconnectivity,
especially between brain hemispheres [20].
Dysconnectivity, or the disruption of functional
connectivity, results in the alteration of brain
organization toward inefficiency from a “small-
world” optimal organisation (small-world organisa-
tion is an efficient network, in which informa-
tion can be quickly transported from one region
to another via short paths). Moreover, graph
metrics such as shortest path length are also
used to depict topological properties of brain
organisation. Additional detailed information
about these metrics can be found in ref. [21],
which contains definitions and interpretations
of each frequently used metric.

In studies concerning neurophysiological
signal classification, the features of brain
connectivity are increasingly utilised (a recent
review can be found in ref. [22]). Those features
represent interactions or relationships between
brain regions and contribute to the discrimina-
tion of mental states [23, 24] and the detection
of brain diseases [20, 25, 26]. Changes in brain
state would accompany alterations in functional

connectivity. The information contained in
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functional connectivity is believed to be
supplementary to the information derived from
individual brain regions. Incorporating functional
connectivity features into the feature pool
improves classification performance. This point
has been confirmed in both movement category
classification [27] and mental fatigue identifica-
tion [28]. Furthermore, the features extracted
based on dynamic functional connectivity could
provide additional discriminative information
for classification because dynamic functional
connectivity reflects the underlying changes of
brain activity over time. Such temporal
information might not be contained in static
functional connectivity because the temporal
information could be canceled out when
collapsing  connectivity across time in
connective strength estimations. It has been
observed that dynamic functional connectivity
is significantly different between brain states
[11, 29, 30]. Through the use of the features
derived from dynamic functional connectivity,
traumatic brain injury has been successfully
classified [31]. To date, dynamic functional
connectivity is a straightforward extension of
static functional connectivity. A long signal that
is used in the strength estimation of static
functional connectivity is divided into smaller
segments, and each segment has its strength
estimated independently. Then, dynamic
functional connectivity is attained based on
these strengths. Currently, the division is
arbitrary. A division coinciding with underly-
ing neural processing is preferable so that
dynamic connectivity can more accurately
reflect the pace of brain activity. Alternatively, a
that

connectivity without signal division is desired.

brand-new method estimates brain
In addjition to ordinary functional connectivity

(namely, low-order functional connectivity),

Brain Sci. Adv.

other kinds of functional connectivity emerged
to provide additional tools for neurophy-
siological signal analysis and classification. The
study of mild cognitive impairment detection
that
significantly improved when high-order func-

demonstrated detection performance

tional connectivity features were used [32, 33].
High-order
extended

functional = connectivity = was
to between-frequency high-order
functional connectivity in a drowsiness
assessment study [4]. In this study, they also
proposed a global metric to quantify the
aggregated effect of functional connectivity.
These new types of functional connectivity
could be used to extract high-level connectivity
patterns to enrich data analysis and classifica-
tion beyond ordinary functional connectivity.
High-order functional connectivity is a measure
of similarity between topographical profiles of
brain regions, while associated high-order
functional connectivity shows the similarity
between topographical profiles and high-order
topographical profiles (see Fig. 2 in ref. [8] for
the illustrations and explanations). All of these
types
extended to dynamic types by taking temporal

of functional connectivity can be
information into account when estimating
connective strengths.

New methods of estimating connective
strengths will be developed either to improve
estimation precision or to meet emerging
data

classification also require new methods to

requirements.  Finer analysis and
acquire connectivity information from brand-
new angles. I believe these imminent methods
will expand the current toolkit to empower us
to perform more comprehensive connectivity-
based analysis and facilitate classification using
connectivity features. Another trend is to
continue to broaden the usage of connectivity.
This would not be restricted to brain-related
and could into the

studies also expand
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investigations of other organs such as the heart.
Nowadays, hyperscanning is an attractive
technique to simultaneously record neurophy-
siological signals from two or more persons, by
which cooperation or competition between
persons could also be investigated [34, 35].
Functional connectivity is also applicable to
thus
connectivity could also be investigated [See Fig.

more than one brain, inter-brain
2(B)]. In a hyperscanning study of emotion
perception, significantly different connections
between positive emotion and negative
emotion were observed not only within each
[36].

Currently, the amount of studies investigating

brain but also between the brains

between-brain connectivity is very limited. I
believe these types of studies will dramatically
increase eventually because cognitive investiga-
tion should be performed in the context of
multi-person interactions, since we are living in
a society. Two potential limitations may be the
lack of techniques supporting the setup of such
experiments and impractical experimental
control for excluding confounding factors to

achieve the required experimental purposes.

3 Multidimensional array (tensor)

In the past, features were usually arranged as
vectors, one feature by another feature, which
were further refined or fed into a classifier. For
example, features extracted from each EEG
channel or MRI voxel are concatenated into a
vector without consideration of channel order or
voxel position. In this case, the relationships
between channels or voxels could be destroyed,
resulting in a loss of potential discriminative
information for classification. A promising
solution is to arrange features as a multidi-
mensional array (tensor) [37] so that the
relationship information between channels
or voxels can be better preserved (see Fig. 3
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for the illustrations of tensors and their
decomposition).
(A)
3rd-Order 4th-Order nth-Order
Tensor Tensor Tensor
Frequency Time

Frequency Time
Frequency } Subject

\Y{ Trial Time
Trial

Channel

Channel Channel

(B) a(13) a(3)

P
i I
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Fig. 3 (A) Prevalent third-order tensor, fourth-order tensor, and
a general nth-order tensor. (B) A high-order tensor is decomposed
into components. This figure was adapted from Fig. 1 in ref. [43]

with the permission of IEEE.

In a study on stroke recovery training [38], EEG
data were transformed into a time-frequency
representation of the signal and were then
formed into a third-order tensor based on which
rehabilitation course was tracked. To date, a
number of the published papers demonstrated
that tensor representation had an effective and
useful role in the EEG classification [39—42]. In
these
decomposed

studies, tensor representation was

into components to extract
discriminative features. An additional classifier
is then required to complete classification.
However, this is not always the case. The
separate classification step can be merged into
tensor decomposition. Therefore, EEG decom-
position and classification can be achieved at a
time without the involvement of a classifier, as
shown in ref. [43].

Overall, tensor has not been extensively
applied to neurophysiological signals. The vast
majority of the existing studies that employ
tensor for data analysis and classification are
applications of tensor theory without adaption

according to the characteristics of neurophy-
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siological signals. Novel tensor algorithms will
be developed to meet the application require-
ments of neurophysiological signals in the
future. Moreover, higher-order tensor decom-
position will be applied to neurophysiological
signals beyond the currently prevalent third-
order tensor and fourth-order tensor. When
using a higher-order tensor, more information
could be
which could benefit data analysis and classifica-

incorporated into decomposition,

tion or expedite data processing.

4 Multi-modality

Brain activity can be recorded using a few
different techniques. These techniques are of
their own strengths and some of their strengths
are complementary. Fig. 4 depicts EEG recording,
MRI EEG/MRI
recording. EEG has high temporal resolution

recording, and concurrent
while MRI has high spatial resolution. These
two modalities (i.e., EEG and MRI) can be
simultaneously recorded to gain high temporal
and spatial resolution (a relevant review can be
found in ref. [44]). Full information can be
acquired by taking advantages of multimodal

(B)
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recordings. Although the wuse of multiple
modalities brings benefits, it also raises new
challenges. One challenge is the interference that
originates from the respective modalities. While
two or more modalities are simultaneously
recording, a modality could adversely influence
other modalities by introducing noise thereby
degrading the quality of recorded signals. To
remove this noise, noise removal methodologies
have been developed. For concurrent EEG/fMRI
recording, the EEG recording produces a
negligible effect on the fMRI but the fMRI
recording significantly influences the EEG and
introduces gradient artifacts into the EEG.
Average artifact subtraction (AAS) [45], optimal
basis set (OBS) [46], and canonical correlation
analysis-based method [47] were proposed to
remove gradient artifacts from EEG signals.
Another challenge is accurate alignment of the
timing across modalities. This is essential to
effectively combine different modalities to enhance
data analysis and classification. This is particularly
important for the investigation of cognition
because time-locked exploration is very prevalent
in revealing cognitive mechanisms concerning
outside stimuli or internal particular processing.

|

I

EEG Recording
©)

\ /
— ) ——

Concurrént EE G/M RI Récordlng

Fig. 4 (A) Single EEG recording using a multi-channel cap and a signal amplifier. (B) Single MRI recording using an MRI scanner. (C)
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Concurrent EEG/MRI recording using both types of signal equipment.

In a study on assessing brain involvement
during focal epileptic activity [48], EEG was
utilised to capture pathological temporal
characteristics (e.g., epileptic spike) and fMRI
was used to help localise generators correspond-
ing to such pathological temporal characteristics.
This instance is a good example of how EEG
could be utilised to inform fMRI analysis. In
contrast, fMRI can be utilised to inform the EEG
for source estimation [49]. Both of the above
manners integrate EEG and fMRI by relying on
one modality to guide the analysis of the other
modality. Alternatively, modalities could be
treated equally to explore correlations between
modalities [50]. In addition to the fact that
multiple modalities measure the same neural
activity, each modality could also measure
completely different physiological activities. For
instance, EEG was used to measure brain

activity and EMG was used to measure

(A)

Task-Mixed

Single Task

Within-Subject

aa (O

Cross-Subject
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muscular activity. The correlations between
these two modalities were examined to reveal
the relationship between the brain and lower
limbs during the process of walking [51]. In the
future, different modalities respectively measuring
diverse physiological activities will be employed
to investigate cognition, emotion, and behavior
to a more extensive degree. This could facilitate
studies that aim to understand relationships
between organs or interactions between different
parts of the human body:.

5 Multiple task classification

Usually, different cognitive levels (e.g., workload
levels) or brain statuses (e.g., diseased versus
healthy) within the same context are classified. It
is called single task classification (see Fig. 5).
The single task classification can be divided into
two categories: within-subject classification and

i Cross-Task i

Multi-Task

Dissimilar
Task

Analogous
Task

mm Training Data
B Testing Data

Fig.5 Taxonomy of classification problems. Blue and red colors represent training data and testing data, respectively. Letters and roman

numerals are used to label subjects.

Yy
ANERS A hazed
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the within-
subject classification, data recorded from each

cross-subject classification. In

subject (participant) are split into the training
set and testing set. A classifier trained using the
data from a subject applied to classify the data
in the testing set of the same subject. In the case
of cross-subject classification, a trained
classifier is used to classify the data of another
subject whose data are not used for training the
classifier. Generally speaking, single task
classification is relatively easier compared to
multi-task classification. Herein, multi-task
does not refer to several tasks, where each task
only has one level/condition. It refers to several
tasks and each of them has two or more
levels/conditions. These tasks could be either
analogous or dissimilar (heterogeneous). For
example, mental workload and mental fatigue
are analogous, while mental workload and
motor movement are dissimilar. According to
the data division, the multi-task classification
comprises of task-mixed classification and
cross-task classification. Task-mixed classification
means that training data consist of the data
from all tasks. If a classifier trained using the
data from a task is used to classify the data of
other tasks, it called cross-task classification.
Similar to the taxonomy in the single task
classification, multi-task classification can also
be categorised into within-subject classification
and cross-subject classification (see Fig. 5).
According to the taxonomy depicted in Fig. 5,
no study of the multi-task classification has
been done until now, as far as I know. Multi-
task classification might receive increasing
attention because this is meaningful to practical
based

signals. With the multi-task classification, a

applications on neurophysiological
general classifier is capable of the discrimina-
tion of different tasks or detection of multiple
which has
respective classifiers trained for each task or

diseases, to be achieved by

Brain Sci. Adv.

each disease. In other words, neurophy-
siological signal recorded at one time could be
used to understand diverse aspects of the
human body. For example, mental fatigue level
and mental workload level are simultaneously
tracked based on EEG by a classifier.

In the future, more and more offline
classifications will be converted to online
classifications (namely, real-time classification).
Meanwhile, techniques

solving emerging

challenges in the development of online
classification will be invented, such as portable
signal acquisition equipment and speedy signal
processing methods. In order to achieve better
performance of real-time classification, a
classifier should be updated to learn the
information from the latest data. Classifier
adaption algorithms will be developed to meet
this new requirement. I think this point is one
of the promising directions in the research of

the real-time classification.

6 Deep learning and big data

Deep learning is a revival of the conventional
neural network, which suffers from some
(e.g. With the
advancements in novel network architectures

drawbacks local minima).
(e.g., long short-term memory architecture [52])
and training strategies (e.g., batch normalization
[53]), the neural network is upgraded to deep
learning while eliminating its initial drawbacks.
Nowadays, deep learning is almost overwhelm-
ingly involved in data recognition due to its
excellent performance in a variety of classifica-
tion problems [54], including image object
recognition, speech recognition, as well as EEG
and fMRI data classification.

As the number of layers of a deep learning
model increases, the learning capacity of the
model increases so that more information can be
learnt by the model. Massive learning capacity

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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might be one of the prerequisites to accomplish
the aforementioned multi-task classification.
This is because the volume of information a
model must learn for multi-task classification is
much larger than what is needed for single-task
classification. Deep learning models have
numerous weights to empower the learning of
the large volume of information, which appears
impossible to do with a simple conventional
model such as support vector machine. Numerous
weights empower the learning capacity of a
deep learning model, but can also lead to
training complications. As we know, deep
learning training is very time-consuming. This
shortcoming could be resolved by using high-
performance computers. An alternative solution
is a pre-training strategy, which has been
proposed in the processing of image and speech
data [55]. The real challenge is the lack of
definite training rules, by which a good model
can be guaranteed. Currently, we have to tune
model parameters blindly and cannot predict
whether a parameter setting would result in a
good model. This parameter tuning obstacle
becomes even more severe when a deep learning
model contains complicated architecture (e.g., a
high number of layers and connections between
neurons within the same layer). Further research
addressing this difficulty should be conducted
in the future.

A great deal of data is usually required to
train a deep learning model being good
performance. This is associated with the concept
of big data. As neurophysiological signals can be
recorded more easily and portably than ever,
more and more data can be gathered, forming a
large volume of data. The increase in data size is
also related to the topics I mentioned above. The
use of multiple modalities and the involvement
of multi-task undoubtedly lead to an increase in
data

probability of the use of tensor arrangements.

size. Large data size enhances the
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7 Naturalistic experiment

Most experiments are conducted in laboratory-
based environments. The experiments are
strictly controlled to ensure the exclusion of as
many confounding factors as possible. Although
strict control of experiments benefits and
facilitates these studies, the assumptions in the
experiments are not always accurate. In this case,
the observations derived from the experiments
could be distorted and might significantly differ
from the real phenomena that should occur. For
instance, emotional images or videos are
frequently presented to subjects in order to
induce emotional responses. The assumption
underpinning such an experiment is that these
images or videos can successfully induce the
same emotion as shown in the images or videos.
However, this assumption is not always
plausible. The emotional response of a subject is
influenced by several factors, including baseline
emotional status, and cannot be uniquely
determined by emotional stimuli. Therefore, it
would be better to conduct experiments in a
naturalistic environment. Ideally, the experiment
environment should be as identical to the real
scenario as possible. For example, a walking
experiment carried out in a real corridor would
be better than that one carried out on a treadmill
[56].

In the future, naturalistic experiments should
extensively replace laboratory-based experiments.
With the emergence of portable recording
equipment and relevant technological advance-
ment, producing naturalistic experiments will
become more and more feasible. Undoubtedly,
many challenges will arise during the
implementation of naturalistic experiments. For
instance, there may be some difficulties in
synchronizing multiple signal streams in a
However,

mobile manner. the advantages

gained from these naturalistic experiments will
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be worth the cost paid to solve these challenges.

8 Conclusions

In this paper, I discussed and expressed my
thoughts on the topics of brain connectivity,
multidimensional array (tensor), multi-modality,
multiple task classification, deep learning, big
data, and naturalistic experiment. In my opinion,
these topics are both crucial and promising for
the future advancement of neurophysiological
signal analysis and classification. The topics are
separately discussed, but they are inherently
pertinent. Brain connectivity enhances data
exploration from a different perspective within
the same data modality, and multiple modalities
provide more data from different angles. These
are devoted to multiple task classification and
make it more feasible since big data (a huge
amount of data in different modalities) and
benefit

multiple task classification. For such a complex

more feature representations will
classification, a model with high learning
capacity (e.g., deep learning) is required to learn
based on massive amounts of data. More flexible
deep learning models are expected in multiple
task

known as

classification. Decisive outcomes (also
classification outputs) are not
necessarily made at the last layer of a deep
learning model. Some of them could be
generated in the middle layers if sufficient
information has been available for the
classification decision. I believe that a more
flexible deep learning model is key for complex
multi-task classification. Finally, I discussed
naturalistic experiment, which ensures quality
data for

engineering applications.
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