Khanam, Zeba and Saha, Sangeet and Ehsan, Shoaib and Stolkin, Rustam and McDonald-Maier, Klaus (2021) Coverage Path Planning Techniques for Inspection of Disjoint Regions with Precedence Provision. IEEE Access, 9. pp. 5412-5427. DOI https://doi.org/10.1109/ACCESS.2020.3044987
Khanam, Zeba and Saha, Sangeet and Ehsan, Shoaib and Stolkin, Rustam and McDonald-Maier, Klaus (2021) Coverage Path Planning Techniques for Inspection of Disjoint Regions with Precedence Provision. IEEE Access, 9. pp. 5412-5427. DOI https://doi.org/10.1109/ACCESS.2020.3044987
Khanam, Zeba and Saha, Sangeet and Ehsan, Shoaib and Stolkin, Rustam and McDonald-Maier, Klaus (2021) Coverage Path Planning Techniques for Inspection of Disjoint Regions with Precedence Provision. IEEE Access, 9. pp. 5412-5427. DOI https://doi.org/10.1109/ACCESS.2020.3044987
Abstract
Recent times are witnessing an emergence of sites that are hazardous for human access. This has created a global demand to equip agents with the ability to autonomously inspect such environments by computing a coverage path effectively and efficiently. However, inspection of such sites requires agents to consider the correlation of work, providing precedence provision in visiting regions. The current approaches to compute coverage path in the hazardous sites, however, do not consider precedence provision. To this end, coverage path planning strategies are proposed, which provide precedence provision. To meet the challenges, the problem is divided into two phases: inter-region and intra-region path planning. In the ‘inter-region’ path planning of the approach, the site comprising of multiple disjoint regions is modelled as connectivity graph. Two novel approaches, Mixed Integer Linear Programming (MILP) solution and heuristic based techniques, are proposed to generate the ordered sequence of regions to be traversed. In the ‘intra-region’ path planning of the approach, each region is decomposed into a grid and Boustrophedon Motion is planned over each region. The ability of combined approach to provide complete coverage is proved under minor assumption. An investigative study has been conducted to elucidate the efficiency of the proposed approach in different scenarios using simulation experiments. The proposed approach is evaluated against baseline approaches. The results manifest a significant reduction in cost and execution time, which caters to inspection of target sites comprising of multiple disjoint regions with precedence provision.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Autonomous Systems; Coverage Path Planning; Inspection; Optimization Algorithms; Precedence Provision |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 16 Dec 2020 09:41 |
Last Modified: | 16 May 2024 20:38 |
URI: | http://repository.essex.ac.uk/id/eprint/29371 |
Available files
Filename: 09294034.pdf
Licence: Creative Commons: Attribution 3.0