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Abstract: With an increase in consumer demand of video gaming entertainment, the game industry
is exploring novel ways of game interaction such as providing direct interfaces between the game
and the gamers’ cognitive or affective responses. In this work, gamer’s brain activity has been
imaged using functional near infrared spectroscopy (fNIRS) whilst they watch video of a video
game (League of Legends) they play. A video of the face of the participants is also recorded for
each of a total of 15 trials where a trial is defined as watching a gameplay video. From the data
collected, i.e., gamer’s fNIRS data in combination with emotional state estimation from gamer’s
facial expressions, the expertise level of the gamers has been decoded per trial in a multi-modal
framework comprising of unsupervised deep feature learning and classification by state-of-the-art
models. The best tri-class classification accuracy is obtained using a cascade of random convolutional
kernel transform (ROCKET) feature extraction method and deep classifier at 91.44%. This is the first
work that aims at decoding expertise level of gamers using non-restrictive and portable technologies
for brain imaging, and emotional state recognition derived from gamers’ facial expressions. This work
has profound implications for novel designs of future human interactions with video games and
brain-controlled games.

Keywords: mind-controlled games; brain signals; fNIRS; facial expressions

1. Introduction

Electronic sports (or eSports) is fast gaining acceptance as both at par with traditional
sports, and the virtual athletes being celebrated as real-life sport athletes [1]. eSports is
formally defined as ‘an area of sport activities in which people develop and train mental or
physical abilities in the use of information and communication technologies’ [2]. The game
League of Legends (LoL) is one of the most popular Multiplayer Online Battle Arena
(MOBA) video games. The theme of the game LoL is fantasy combat strategy which,
in 2019, had garnered an active player base of 80 million registered players, with 27 million
active players on a per day basis [3]. The usage of eSports has been widely adopted as the
new form of sports owing much to greater access to the internet [4].

Although there is a consensus to investigate the effect of the ever increasing usage of
eSports, it is a rather complex task to quantify the eSports effect since there are varied genres,
and sub-genres of video games, and also because how it affects one individual may not
necessarily be the same for another individual. It has been established in previous studies
that brain responses of individuals to a determined visual stimulus can vary significantly

Brain Sci. 2021, 11, 106. https://doi.org/10.3390/brainsci11010106 https://www.mdpi.com/journal/brainsci

https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0001-7593-4527
https://orcid.org/0000-0003-0677-2637
https://orcid.org/0000-0002-7421-4808
https://orcid.org/0000-0001-6320-0729
https://orcid.org/0000-0002-3199-4509
https://orcid.org/0000-0002-9044-630X
https://doi.org/10.3390/brainsci11010106
https://doi.org/10.3390/brainsci11010106
https://doi.org/10.3390/brainsci11010106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/brainsci11010106
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/2076-3425/11/1/106?type=check_update&version=1


Brain Sci. 2021, 11, 106 2 of 20

depending on their exposure to violent games [5]. Furthermore, the continuous use of such
games is also found to have an impact on the behaviour, and personality of their users [6].
Also, significant correlations between the cognitive profiles and the neural substrates found
in the neuroimaging analysis have been indicated in several neuroscience studies [7]. In this
regards, a highly relevant aspect to investigate is the relationship between the proficiency
(or the expertise) of participants in playing a game and their brain responses as well as
emotional states.

Indeed, games are able to elicit a myriad of different cognitive processes and affective
responses in players [8,9]. The same game, played for the same amount of time, can evoke
varied physiological, psychological, and cognition-related responses across individuals [10].
In this work, the same phenomenon is also observed: 30 participants watched the same
15 gameplay videos from LoL, representative images from these 15 gameplay videos are
shown in Figure 1, and a histogram from the self-reported variety of responses evoked
in the 30 participants is shown in Figure 2. As can be readily appreciated from Figure 2,
the same gameplay video is not evoking the same response across the 30 participants.
However, despite gameplay evoking individual-specific responses, to the best of the au-
thor’s information, no direct attempt has been made in the literature to decode participant’s
expertise using brain as well as emotion responses to gameplay captured by nonrestrictive
bio-signal monitoring.

Gameplay 1 (GP1) Gameplay 2 (GP2) Gameplay 3 (GP3)

Gameplay 4 (GP4) Gameplay 5 (GP5) Gameplay 6 (GP6)

Gameplay 7 (GP7) Gameplay 8 (GP8) Gameplay 9 (GP9)

Gameplay 10 (GP10) Gameplay 11 (GP11) Gameplay 12 (GP12)

Gameplay 13 (GP13) Gameplay 14 (GP14) Gameplay 15 (GP15)

Figure 1. A representative image from all 15 gameplay (GP) videos used in the experiment.
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Figure 2. A bar chart representing the frequency of an emotion felt by participants as they watched the 15 gameplay (GP)
videos used in this experiment. A representative image from all 15 GP videos are displayed in Figure 1.

Converging from all these evidences, the present novel study aims to automatically
recognise gaming expertise of participants by capturing elicited neural responses from
prefrontal cortex (PFC) using functional Near-Infra red Spectroscopy (fNIRS). In addition,
the effect of integrating a measure of affective state, like emotion decoded from participant’s
facial expressions, in such a recognition system would also be investigated. In the present
study, we have bench-marked several classification methods and managed a satisfactory
recognition of expertise in several episodes of the game LoL. The episodes of the game
LoL were identified by other players, external to the participants’ sample, as pertaining to
different emotional context (for instance, exciting, extraordinary, funny, violent, stressful
and sad episodes of the game LoL).

In particular, the present study aims at answering the following research question:
to what extent is it possible to recognise gamer’s expertise from their brain responses
to gameplay videos, what methods provide a better accuracy and to evaluate the effect
that emotions recognition through participant’s facial expression analysis can have in
bolstering expertise recognition. This research question is of special interest for the game
industry [11].

To this end, we test the following three valid hypotheses H1 and corresponding null
hypotheses H0:

• H01: It is not possible to recognise gamer’s expertise level from fNIRS neural re-
sponses from the PFC with recognition performance (measured as cross-validated
f-scores) better than a 95% confidence interval difference to the results from a baseline
(rule 0) classifier.

• H11: It is possible to recognise gamer’s expertise level from fNIRS neural responses
from the PFC with recognition performance better than a 95% confidence interval
difference to the results from a baseline (rule0) classifier.

• H02: Assert H11 and the adding of facial expression emotions does not bolster the
recognition of expertise with statistical difference of p < 0.05.

• H12: Assert H11 and the adding of facial expression emotions bolsters the recognition
of expertise with statistical difference of p < 0.05.

• H03: Assert H11 and/or H12 and there are not statistical differences of performance
(α = 0.05) in the recognition form each benchmarked classifier.

• H13: Assert H11 and/or H12 and there are statistical differences of performance
(α = 0.05) in the recognition form each benchmarked classifier.

The main contributions and findings of this novel study are:

1. This work successfully recognizes the expertise level of gamers with high accuracy
(91.44%) using brain signals acquired from a portable neuroimaging modality (fNIRS).
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2. This is also a first study that integrates brain signals with the emotional states of the
participants, derived from the visual cues provided by their facial expressions, in the
classification paradigm to investigate the interlink between the emotional state of a
participant and their expertise level.

3. This work also found that unsupervised deep feature extraction for time-series
boosted recognition performance specially when applied to fNIRS signals.

The findings of this work pave the way for new avenues of interacting with games,
such as affective brain-to-game interfacing for entertainment or serious games. This novel
way of profiling of gamers can enable mind-to-game interlinked experience allowing a
higher coupling between the real expertise of the user, and the level reached in the game.

The paper is organised as follows: In Section 2: Background, an overview on affective
gaming and the successful usage of fNIRS modality in various gaming studies is presented.
This is followed by Section 3: Related Works where different physiological markers driving
the online game development are discussed alongside similar studies that have decoded the
manual dexterity of participants using their brain activity imaged with fNIRS in different
real-life settings. Section 3 also entails a review of studies investigating the effect of
gameplay videos on gamers’ cognition. In Section 4 Materials and Methods, the outline of
the experiment, along with data collection and subsequent feature engineering stages are
presented. Section 4 also covers the classification paradigms in detail. Results are presented
in Section 5 followed by a conclusion in Section 6.

2. Background

With the increased consumption of eSports and the availability of sophisticated tech-
nology, there is an increasing trend of modifying game themes in real time to enhance a
user’s experience. In this section, we discuss how varying feedback from reading users
physical and mental state, for example fNIRS for reading brain activity and emotional state
of the gamers perceived from their facial expressions, is being used to modify the game
content to enhance their overall gaming experience.

2.1. Mind-Controlled Games

Traditional video gaming involve playing games in a simulated environment with
users interacting with peripheral devices such as mouse, keyboard, and/or joysticks.
However, with the availability of more sophisticated technology, now users are also able to
interact in real-time with video games using their facial expressions, body movements, and
even physiological signals like heart rate, skin conductivity etc. [12]. An interesting area is
to directly monitor cognitive processes through Brain Computer Interfaces (BCI) to control
game function [13,14]. Beyond controlling the game physics as in BCI, integrating gamers’
cognitive experience as a higher induction of cognition permits new kind of physiological
computing [15,16] in video games.

2.2. On Game Experience and Sensors

In recent years, researchers have been focusing on finding the link to gamer’s ex-
perience in lieu with their physiological markers to drive the online game development
content towards enhancing the overall gamers experience. The work by Drachen et al. [17]
focus on learning about gamer’s experience using correlation between user experience and
physiological measures (electrodermal activity and heart rate). They conclude that a high
level of engagement, both positive e.g., excitement, and negative e.g., frustration, can be es-
tablished based on high correlation with physiological measures. There seems to be a direct
indication of how a user felt while playing a game based on their physiological measures.

Another important consideration when creating an emotionally adaptive game is
behavioural expressions. In the work by [18], the link between behavioural expressions
such as patterns in pressure on mouse, postural movement and game involvement is
established. The game difficulty level is varied, and the values of behavioural expressions
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are recorded. They concluded that as the level of game difficulty was increased, the level
of frustration or enjoyment, taken together as engagement, also increases.

2.3. On fNIRS during Video Gaming

The role of functional Magnetic Resonance Imaging (fMRI) in establishing the func-
tions of different brain regions before, and after learning, remains pivotal. However,
for neuroergonomic studies in specific, which focus on understanding the human brain
functions in everyday life settings, the confinement of a scanner environment is not ideal.
In this regard, fNIRS, another optical neuroimaging modality, is fast emerging as a de-facto
choice for imaging the human brain for neuroergonomic studies owing to its non-invasive,
highly portable and wearable characteristics [19,20]. fNIRS uses near infra-red (NIR) light
to read cerebral activity by introducing NIR at the specific location of interest over the scalp.
The brain activity is measured by fNIRS in terms of the changes of cortical deoxygenated,
and oxygenated haemoglobin (oxyHb) concentrations [21].

In the study by Cakir et al. [22] fNIRS was successfully employed to investigate the
changes in brain activation in PFC owing to playing a genre serious mobile game. Similarly,
in the study by Bunce et al. [23] the relation between a participant’s level of expertise and
their task performance using fNIRS is investigated. They conclude that brain activations
differ for participants with varying levels of expertise.

Another study which focused on gauging whether the effect of a decrease in oxyHb
in dorsal PFC on playing video games for a long time is also exhibited by young children
aged 7–14 years is reported here [24]. They conclude that a decrease in attention of the user
when they have been playing a video game for a long duration of time is a phenomenon
exhibited by both adults, and children, alike.

3. Related Works

In this section we outline relevant works that investigated how playing video games
impact gamers’ cognition, and further how measurements from brain, in particular using
fNIRS, have been previously made use of for decoding manual dexterity of users. All of
the research evidence provided in the following subsections helped us frame the research
question of the present study.

3.1. Game Experience and Cognition

To gauge the effect on playing video games on cognition and behaviour, a notable
review is presented in [10]. They divulge on the various facets of the effect of playing
video games on an individuals’ abilities. Although they all agree that given the diversity of
the video game genre’s and settings, it is not possible to give a conclusive yes/no answer
to its effects, but there are some established advantages and disadvantages that have
come forward.

Some of the possible effects of playing video games can be attributed to practise in
the parallel of real-world games. The practise of paying attention, staying focused, for
longer duration of times has proven to improve visual skills in individuals with amblyopia
(lazy eye) [10].

In the study by Hyun et al. [25], they establish that participants who take part in a
regular, long-term playing of games have a consequent incremental change in anatomical
volume in their PFC. Another related study by Gong et al. [26], reported a similar result
that for those gamers who played for less time have decreased brain activity indicating that
playing video games for longer times results in overall increase in cognition of participants.

Another notable study trying to draw the link between intelligence and expertise in
playing video game is done by Kokkinakis et al. [27]. They argue that as we associate a
higher ability level of those who are experts in playing real world games (like Chess, or Man-
cala), likewise experts in video games, which are built as games of strategy, should also
be regarded as those who possess a higher level of intelligence quotient. They base their
analysis on an online game MOBAs. A higher performance in MOBA is based on a combi-
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nation of skills like memory, tactics, attention, and strategy - the different facets of fluid
intelligence.

Although in these notable works some behavioral and/or anatomical differences were
found in participants on account of playing video games, these studies did not encompass
a direct recognition of participants expertise from their functional bio-signals, as intended
in this present study.

3.2. Expertise with fNIRS

The neuroimaging modalities most commonly utilised for measuring brain activity
in BCI applications are fNIRS [28] and electroencephalogram (EEG) [16,29] since these
modalities are non-invasive, portable, and allow greater flexibility for participants posture
(e.g., sitting upright) 180 whilst recording their brain activity. In this work, fNIRS is used
to image participant’s brain activity owing to the superior spatial resolution and resistance
to motion artifacts in comparison to EEG [30]. In addition, previous fNIRS studies from
our group have aimed to gauge technical skill levels assessment for surgeons with varying
levels of experience in the study by Andreu-Perez et al. [28] and Kiani et al. [31]. In Andreu-
Perez et al. [28] the surgeons perform a complex bi manual coordination task whilst their
brain activity is recorded using fNIRS. Their results demonstrate that it is possible to
classify operator skill level from functional connectivity data with statistical significance.
However, they garnered brain activity from only three customary surgical needling tasks
resulting in a classification accuracy of 82% for time-course based networks, and 68% for
session based networks. However, both studies [28,31] did not take into account any aspect
of the emotional state of their participants whilst decoding levels of manual dexterity.

Another study that investigated the relation between changes in mental workload,
level of expertise, and task performance for aerospace application on brain activity recorded
using fNIRS is by Ayaz et al. [32]. They concluded that fNIRS signal measurements are
correlated to task performance, and subjective self-reported measures. In addition, they did
not extend their analysis to decode the expertise level of the participants based on their
brain activity.

Indeed, the success of decoding participant’s skill level directly from brain activity
recorded using fNIRS, used in tandem with emotional state of the participants, has the
potential to conduct objective assessment of particpants whilst they perform a task in
more naturalistic settings. The feedback from such a decoding system may also be used
to improve operator performance during technical skill training. Hence towards this end,
in this work, we aim to decode gamers expertise level using their brain activity recorded
with fNIRS as well as emotional state derived from facial expressions.

4. Materials and Methods
4.1. Experimental Details

In this work, a total of 30 participants, casual and professional gamer’s, of varying
expertise levels were recruited to visualise 15 gameplay videos taken from the game LoL.
This gives a total of 450 trials (30 participants * 15 trials = 450 trials). This study was con-
ducted following Declaration of Helsinki norms and approval by a local Ethics Committee
on Human Research (CEIH) and The International School for Postgraduate Studies (Ref.:
UGR24102017). Written consent was obtained from all participants. A representative image
from all 15 gameplay videos which the participants watch in the experiment are shown
in Figure 1. Whilst the participants are performing the experiment (i.e., watching one of
the 15 gameplay videos from the game LoL) their brain activity is recorded using a fNIRS
sensor, and simultaneously the face of the participants is also video recorded to capture
their emotional state vis-a-vis facial expressions.

The motivation of the experiment is to be able to ascertain the expertise level of the
participants in playing the game LoL using only their brain data, and emotions predicted
scores derived from their facial expressions. In order to achieve this goal (i.e., determine a
participant’s expertise level using their brain data, and emotion scores) a fNIRS sensor is
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placed on PFC of each participant as can also be seen in Figure 3. The reason for recording
brain activity of all participants from PFC is because it is the part of brain associated with
concentration and planning [33]. Therefore, fNIRS sensor placed on PFC will record the
differences in the concentration of haemoglobin molecules in PFC region for users with
varying expertise levels. The variation in the fNIRS data, owing to different expertise level
of participants, will become the basis for classification of their expertise level.

In order to also establish the link between the expertise level and the emotional
state of participants while they are performing a given experiment, a video of their facial
expressions is also recorded. To the best of the author’s information, there is no established
correlation between the expertise level and the emotions of a gamer in the literature.
This is why, in this work, a preliminary investigation is performed to see if the additional
information from estimated emotions scores from the facial expressions would give further
insights that would bolster the classification for expertise of gamers.

The 30 participants are grouped in three main expertise groups: as 10 novices (NVs),
9 intermediates (ITs), and 11 experts (EXs). The criterion used to classify a participant in one
of the three given expertise categories (NV or IT or EX) is based on the average victory
points accumulated by the participant, and the average number of hours per week the
participant plays the game LoL, as outlined in Table 1. A Mann-Whitney test [34] is
performed on the victory points for the classification of participants, and the distributions
for NVs, ITs, and EXs, are ascertained to be statistically different. For more details on the
group level criterion, please see the earlier work here [35].
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Table 1. Classification of participants into one of the three expertise levels based on their accumulated
victory points, and the number of hours spent per week playing the game League of Legends.

Expertise Level Victory Points Hours Played Per week

Novices (NVs) 0–400 Less than 3 h

Intermediates (ITs) 200–400 More than 3 h

400–1000 2–5 h

Experts (EXs) More than 1000 -

4.2. fNIRS Data

The fNIRS data is recorded using 16 fNIRS channels using a specialized fNIRS sensor
system developed by the Optical Brain Imaging Lab at Drexel University [35]. The 16 fNIRS
channels on the fNIRS sensor have 8 channels on the right PFC, and 8 on the left PFC.

The fNIRS data collected from the fNIRS sensor is pre-processed in 3 stages:

1. The data from any channel that fails to meet the set pass criterion is eliminated from
subsequent data analysis. The most common reasons for failing to meet the pass
criterion were significant light leakage, low signal levels, and/or saturated signals.

2. The data from the passed channels is low pass filtered (cut off frequency 0.14 Hz) and
compared with baseline signal to compute change in optical density using modified
Beer-Lambert law.

3. Outlier data beyond the 3 standard deviations from the mean is removed before any
features are calculated.

Overall 12% of the fNIRS data failed to meet the quality checks listed above and was
excluded from the study. For more details on the fNIRS data pre-processing stages, please
see the earlier work here [34].

4.3. From Facial Expression’s Data to Emotion Scores

A video of the face of the participants performing the experiments is also recorded in
tandem whilst their brain activity is recorded using fNIRS. The reason the participants are
recorded while performing the experiments is to record their facial expressions in order
to subsequently use them in combination with the brain data to determine their expertise
level group.

(a) A participant wearing fNIRS sensor on his PFC. (b) An image from a gameplay (GP) 
video.Figure 4. (a) A participant watching a (b) gameplay (GP) video whilst his brain activity is recorded using a fNIRS sensor

placed on prefrontal cortex (PFC).

All videos of the participants for each trial are split into 18 video frames. Each frame
of the participant’s video is then categorized into one of the following seven emotions:
Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral. A pictorial compilation of all of the
aforementioned facial expressions from emotions for one subject is shown in Figure 3.

Figure 3. (a) A participant watching a (b) gameplay (GP) video whilst his brain activity is recorded using a fNIRS sensor
placed on prefrontal cortex (PFC).

Table 1. Classification of participants into one of the three expertise levels based on their accumulated
victory points, and the number of hours spent per week playing the game League of Legends.

Expertise Level Victory Points Hours Played per Week

Novices (NVs) 0–400 {h|h ≤ 1}

Intermediates (ITs)
200–400 {h|1 < h ≤ 3}

400–1000 {h|3 < h ≤ 5}

Experts (EXs) More than 1000 {h|h > 5}

4.2. fNIRS Data

The fNIRS data is recorded using a commercially available research-grade fNIRS
system (fNIR Devices LLC, Potomac, MD). The 16 fNIRS channels on the fNIRS sensor
have 8 channels on the right PFC, and 8 on the left PFC.

The fNIRS data collected from the fNIRS sensor is pre-processed in 3 stages:
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1. The data from any channel that fails to meet the set pass criterion is eliminated from
subsequent data analysis. The most common reasons for failing to meet the pass
criterion were significant light leakage, low signal levels, and/or saturated signals.

2. The data from the passed channels is low pass filtered (cut off frequency 0.14 Hz) and
compared with baseline signal to compute change in optical density using modified
Beer-Lambert law.

3. Outlier data beyond the 3 standard deviations from the mean is removed before any
features are calculated.

Overall 12% of the fNIRS data failed to meet the quality checks listed above and was
excluded from the study. For more details on the fNIRS data pre-processing stages, please
see the earlier work here [35].

4.3. From Facial Expression’s Data to Emotion Scores

A video of the face of the participants performing the experiments is also recorded in
tandem whilst their brain activity is recorded using fNIRS. The reason the participants are
recorded while performing the experiments is to record their facial expressions in order
to subsequently use them in combination with the brain data to determine their expertise
level group.

All videos of the participants for each trial are split into 18 video frames. Each frame
of the participant’s video is then categorized into one of the following seven emotions:
Anger, Disgust, Fear, Happiness, Sadness, Surprise, Neutral. A pictorial compilation of
all of the aforementioned facial expressions from emotions for one subject is shown in
Figure 4. The self-reported varied emotions aroused in the participants when they watched
the 15 gameplay videos from LoL (also depicted in Figure 1) are shown as a bar chart in
Figure 2.

The participants’ video for each of the 15 trials, one trial for each of the 15 gameplay
videos from LoL, is sampled twice per second. Each gameplay had a duration of about
30.26 ± 14.33 s. The total number of frames included from the video of each trial is 18 so
that all trials have the same consistent number of frames. The facial emotions classifier
used for categorising each video frame is VGG19 [36]. The classification model VGG19
is a convolutional neural network based PyTorch implementation on facial expression
recognition. It is trained for the dataset Facial Expression Recognition 2013 (FER-2013) [37].
The classification accuracy of VGG19 on FER-2013 is 73.112% (10-fold cross-validation).

The participant’s expressions from the gamers’ experiment in this work are not used
to train the emotions recognition model. The intent is to use an off-shelf model that is
already trained using thousands of images of human facial expressions as a universally
trained model to be used on any human facial expression dataset. Each of the 18 video
frames for a given trial is then given emotion prediction score by FER-2013. For example,
the prediction score [0.0424, 0.0024, 0.0177, 0.8275, 0.1035, 0.0013, 0.0051] for a video frame
corresponds to facial emotional expressions of Angry, Disgust, Fear, Happiness, Sadness,
Surprise, Neutral respectively. The highest prediction score is for the expression of emotion
Happiness for the given video frame.
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Figure 4. An array of representative facial expressions of a participant’s seven emotions:
Anger, Disgust, Fear, Happiness, Sadness, Surprise, and Neutral. The participant gave his consent to
share his images.

4.4. Classification Paradigms

In this section, supervised and unsupervised classification paradigms are explored to
establish which combination of techniques allows for maximum classification accuracy for
determining the expertise level of the gamers. The classification paradigms are investigated
with two datasets (DSs):

1. DS1: Brain time-series data acquired from fNIRS alone.
2. DS2: Brain time-series data acquired from fNIRS appended with predicted emotion

scores, on participant’s expression data obtained from VGG19, on a per trial basis.

The motivation for using the two aforementioned DSs is to establish whether accuracy
of expertise classification is improved when fNIRS data is used in tandem with predicted
emotion scores data (DS2) in comparison to when only fNIRS data is used (DS1). In addition,
the classification prowess of the supervised classifiers are also gauged when these classifiers
are given statistical features in comparison to random convolutional kernel transform
(ROCKET) [38] features. A flowchart depicting the overall classification paradigm is
presented in Figure 5. More details on the feature generation, both statistical and ROCKET
features, and the classifiers used are presented in the following sections.
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fNIRS Brain signals per
trial: 450 trials × 16 chan-
nels × variable timeseries
length

ROCKET: 100 kernels, 2
operators (max. value and pro-

portion of positive values)

Emotion prediction scores
from facial expressions in
video frames: 450 trials ×
18 images × 7 scores

ROCKET: 100 kernels, 2
operators (max. value and pro-

portion of positive values)

Concatenate fNIRS & ex-
pression ROCKET fea-
tures

SUPERVISED
CLASSIFIERS

SUPERVISED
CLASSIFIERS

ROCKET Feature Generation

SUPERVISED
CLASSIFIERS

SUPERVISED
CLASSIFIERS

8 Statisitcal Features for all
channels, right channels,
and left channels on the
PFC

Rearrangement into 450
trials × 126 (18 images × 7

scores per image = 126)

Statistical Feature Generation

Concatenate fNIRS & ex-
pression Statistical fea-
tures

2 × 16 × 100 tensors

2 × 100 tensors

DS1 ROCKET:
3200 tensors

DS2 ROCKET:
3400 tensors

DS1 Statistical:
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Figure 5. Flowchart of the different multi-modal data frameworks used in this study for comparison purposes, feature
generation with hand-crafted features (statistical) or ROCKET and classification of expertise level per trial.

4.4.1. Statistical Feature Learning for Time Series

A total of 8 statistical features are computed for individual fNIRS channels (1–16),
‘All’ channels (Average of all passed channels), ‘Right’ channels (Average of passed channels
located on the right PFC), ‘Left’ channels (Average of passed channels located on the
left PFC). The 8 features computed per trial are: Mean, Standard Deviation, Maximum,
Minimum, Range, Signal Slope, Skewness, and Zero-crossing. These features are computed
for each of the total 450 trials. This results in dataset (DS1) of size 450 (trials) by 24 (statistical
features) as also illustrated in Figure 5.

4.4.2. Unsupervised Deep Feature Learning for Time Series

In this work, both DSs time series feature learning is done using ROCKET [38]. A set
of convolutional kernels are defined by their length, weights, bias, dilation, and padding.
However, in ROCKET implementation the only hyper parameter that needs to be defined
manually is the number of kernels, and it works in an unsupervised fashion. All other
ROCKET hyper parameters (i.e., length, weights, bias, dilation, and padding) are sam-
pled randomly i.e., each kernel of ROCKET assigns a random number for its length,
weights, bias, dilation, and padding. In this work we used 100 kernels, with 2 operators:
(1) maximum value operator and (2) proportion of positive values operator, as defined
in [38]. Resultant feature dimensions from this processing are depicted in Figure 5.

4.4.3. Supervised Classifiers

A total of 7 supervised classifiers of varying genres are used with both DS1 and DS2
each separately with both statistical and ROCKET features as shown in Figure 5. The classi-
fiers used, along with the detail of their hyper parameters is given below. The same hyper
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parameters are used for both DSs so that any difference in the classification accuracy for
the two DS by a given classifier can be attributed to the inclusion of emotion scores in DS2.

• Random Forest (RF): A RF is a ensemble learning method that incorporates multiple
decision tree classifiers on varying sub-samples of the input data set. RF improve
the predictive accuracy, and control over-fitting by averaging the decision of the
multiple decision tree classifiers [39]. In this work the number of multiple decision tree
classifiers used are 30, each with a maximum depth of 10. We used the implementation
in Scikit-learn [39] library.

• Support Vector Machines (SVM): SVM is inherently a supervised discriminative clas-
sifier constructed by a separating hyper plane in a multi-dimensional space [40].
SVM optimize the hyper plane definition by maximizing the distance to the nearest
data point of any class. In this work, non-linear kernel radial basis function is used with
gamma set at auto. We used the implementation in Scikit-learn [41] library.

• k-Nearest Neighbors (kNN): kNN capitalizes on the similarity idea that data points from
a given class would have more similarity with each other in comparison to data points
from different classes. The measure of similarity can be computed using different
metrics such as distance, proximity, or closeness [42]. The number of neighbors
used in this work for computing the similarity is 3. We used the implementation in
Scikit-learn [41] library.

• Gaussian Naive Bayes (GNB): GNB is an effective inductive learning algorithms based
on applying Bayes’ theorem. The term ‘naive’ appears because of the underlying
assumption of conditional independence between every pair of features used in the
implementation of GNB [43]. In this work, the default parameters are used for GNB.
We used the implementation in Scikit-learn [41] library.

• XGradient Boost (XGB): XGB provides parallel tree boosting machine learning algo-
rithms using an optimized distributed gradient boosting library designed to be highly
efficient, flexible and portable [44]. In this work, the XGB objective is set to multiclass
with fraction of columns to be subsampled as 0.3, learning rate as 0.1, maximum depth
as 3, alpha as 5, nestimators as 15, and numclass as 3. We used the implementation in
Scikit-learn [41] library.

• Fully Connected Deep Neural Network (FCDNN): The FCDNN consists of 5 blocks.
Each block consists of:

- Fully connected (FC) layer.
- Rectified linear unit (ReLU) activation.
- Each FC layer also dropouts neurons to ensure FCDNN is not over fitting with

any of the DSs.

Table 2 enlists the optimized hyper parameters of FCDNN for both DS1 and DS2.
The number of epochs the FCDNN is trained on is 1000. The optimizer used is ADAM
and the learning rate values for DS1 is 3.95 · 10−5 and for DS2 it is 8.28 · 10−5. This was
implemented with custom code in PyTorch 1.3.1 [45] library.

• Deep Classifier Auto Encoder (DCAE): The architecture of the DCAE along with its hyper
parameters i.e., the number of nodes for each layer, dropout layer rate, for both DS1,
and DS2 are shown in Figure 6. It consists of an encoder, decoder, and a classifier.
This was implemented with custom code in PyTorch 1.3.1 [45] library.

The number of epochs the DCAE is trained on is 1000. The optimizer used is ADAM
and the learning rate values for DS1 is 4.14 · 10−5 and for DS2 it is 4.87 · 10−5.

The structure of the auto-encoder which consists of an encoder and a decoder is
delineated as follows:

• Encoder: The number of inputs to the encoder are 3200 inputs for DS1 and 4600 inputs
for DS2. The encoder consists of a fully connected layer (FC1), Rectifier Linear Unit
(ReLU1) activation, and FC2.
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- Fully Connected Layer (FC1): A fully connected layer that performs a linear
transformation (i.e., a weight matrix and bias) with ReLU1 activation. It has
517 hidden units that encode 3200 inputs for DS1, and 551 hidden units to encode
4600 inputs for DS2.

- Fully Connected Layer (FC2): A fully connected layer that performs a linear
transformation with 328 hidden units for DS1, and 306 units for DS2. The output
of FC2 is the output of the encoder.

• Decoder: The number of inputs to the decoder are 328 inputs for DS1 and 306 inputs
for DS2. The decoder consists of FC3, ReLU2 activation, and FC4.

- Fully Connected Layer (FC3): A fully connected layer that performs a linear
transformation with 517 hidden units for DS1, and 551 hidden units for DS2,
with ReLU2 activation that decode from 328 hidden units for DS1, and 306 units
for DS2.

- Fully Connected Layer (FC4): A fully connected layer that performs a linear
transformation which decode 517 encoded inputs to 3200 decoded inputs for
DS1, and decode 551 encoded inputs to 4600 decoded inputs for DS2. The output
of FC4 is the output of the decoder.

The error between the decoded inputs, and the inputs from DS1 (or DS2) is computed
using mean square error (MSE).

• Classifier: The input to the classifier is the output of FC2 i.e., 328 inputs for DS1 and
306 inputs for DS2. It consists of FC5, drop-out, hyperbolic tangent activation function
(tanh1), FC6 and tanh2 layers, as outlined below:

- Fully Connected Layer (FC5): A fully connected layer that performs a linear
transformation with 328 inputs, and 104 outputs for DS1, and 306 inputs and 165
outputs for DS2.

- Dropout: FC5 output undergoes 39.22% dropout for DS1, and 49.96% for DS2
followed by hyperbolic tangent activation function (tanh1).

- Fully Connected Layer (FC6): A fully connected layer that performs a linear
transformation with 104 inputs for DS1, and 165 inputs for DS2, and 3 outputs
followed by hyperbolic tangent activation function (tanh2).

The error between the predicted label of the expertise level of a participant (from FC6),
and the true expertise level is computed using cross entropy (CE) loss.

The hyper-parameters of FCDNN, and DCAE, which include number of hidden units
for each FC layer, dropout rate, and learning rate, are optimized using a sequential model-
based optimisation based on a tree-structured Parzen estimator search algorithm [46].
In order to keep a check on bad trials, a custom termination condition is also implemented
that terminates a trial if the loss reduction is less than 10−5 for every 100 epochs.

Table 2. Optimal hyper-parameter values of FCDNN for DS1 and DS2.

FC Layer No. Hyper Parameters DS1 DS2

FC1 Number of nodes 244 244
Dropout 0.333 0.231

FC2 Number of nodes 313 148
Dropout 0.344 0.433

FC3 Number of nodes 160 119
Dropout 0.453 0.265

FC4 Number of nodes 149 102
Dropout 0.346 0.391

FC5 Number of nodes 65 182
Dropout for FC5 0.395 0.691
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hyper-parameter search found by SMBO approach [46].

5. Expertise Classification Results

The expertise classification results are obtained both separately for each trial for DS1
and DS2. For each of the 7 classifiers, the classification results are reported for 10 repeated
stratified k-fold cross-validation (CV) with 5 splits DS1, and DS2. The data was split with
20% as test and the remaining as training and validation. The mean and standard deviation
of the statistical metrics of accuracy, precision, recall, and F1-scores for the classifiers
are reported in Table 3a for DS1, and Table 3b for DS2. For both DS1 and DS2, the best
classification accuracy has been obtained by the classifier using DCAE at 90.70 ± 7.84% for
DS1, and for DS2 the best classification accuracy is obtained by FCDNN at 91.44 ± 6.32%
for DS2.

Also, for both DSs, the classification performance of deep neural networks i.e., FCDNN
and DCAE is considerably better than other machine learning algorithms i.e., RF, SVM etc.
One possible explanation for this can be that the deep learning architecture further enables
the discovery of relevant patterns automatically from the enhanced features provided
by ROCKET for both DSs. Although there is minimal difference in accuracy metrics for
FCDNN and DCAE, the convergence and optimisation happens earlier for DCAE because
its range of search and number of hyper-parameters is smaller. Also, the inclusion of the
autoencoder helps to reduce the unnecessary dimensions for the classifier. It is worth
mentioning that the parameters for the autoencoder and classifier in DCAE are jointly
learned as both loss functions are added and back-propagated through the layers.

A comparison of which feature set to use, statistical features or ROCKET features, is
best suited for the expertise recognition from bio-signal data is also drawn on Figure 7.
In Figure 7, a bar chart for the F1 scores for all classifiers for DS1 and DS2 using both
statistical features and ROCKET features indicate a clear trend that the classification
prowess of the classifiers is improved significantly when the input feature set is ROCKET
(in comparison to statistical features).
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Table 3. Single-trial classification results for expertise levels of participant’s into NVs, ITs, and EXs (a) DS1 and (b) DS2 with
ROCKET features or statistical features using various classification paradigms.

(a) Classification results for DS1: Brain data acquired from fNIRS alone.

Classifier Features Accuracy Precision Recall F1-Score

RF ROCKET 52.06 ± 5.56 53.95 ± 10.92 51.77 ± 12.17 51.72 ± 5.63
Statistical 51.69 ± 4.95 52.13 ± 7.74 51.39 ± 10.09 51.43 ± 4.96

XGB ROCKET 50.79 ± 4.99 52.39 ± 8.87 50.47 ± 10.96 50.50 ± 5.10
Statistical 50.51 ± 5.05 51.86 ± 9.20 50.05 ± 10.62 50.23 ± 5.10

SVM ROCKET 58.23 ± 6.07 62.02 ± 14.06 57.72 ± 12.91 58.11 ± 6.20
Statistical 46.60 ± 4.92 46.97 ± 8.12 45.66 ± 14.34 45.69 ± 5.04

kNN ROCKET 56.89 ± 3.06 59.87 ± 12.11 56.62 ± 10.94 56.87 ± 2.78
Statistical 42.44 ± 4.18 43.85 ± 8.12 42.11 ± 11.63 41.97 ± 4.34

GNB ROCKET 47.86 ± 6.86 50.45 ± 10.62 47.27 ± 12.34 47.49 ± 6.38
Statistical 41.49 ± 3.70 46.29 ± 13.90 39.27 ± 30.91 35.95 ± 4.29

FCDNN ROCKET 89.84 ± 9.31 89.93 ± 9.19 89.84 ± 9.31 89.84 ± 9.28
Statistical 51.20 ± 6.07 50.40 ± 6.14 52.89 ± 7.02 50.10 ± 6.38

DCAE ROCKET 90.70 ± 7.84 90.65 ± 8.65 90.70 ± 7.62 90.64 ± 9.14
Statistical 45.97 ± 4.81 44.86 ± 4.96 47.95 ± 6.15 43.79 ± 5.56

(b) Classification results for DS2: Brain data acquired from fNIRS appended
with predicted emotion scores on participant’s expression data.

Classifier Features Accuracy Precision Recall F1-Score

RF ROCKET 59.93 ± 4.64 60.90 ± 7.90 59.85 ± 10.69 59.66 ± 4.80
Statistical 51.96 ± 4.83 52.61 ± 7.91 51.49 ± 11.20 51.59 ± 4.97

XGB ROCKET 71.55 ± 2.72 72.04 ± 5.57 72.06 ± 12.12 71.12 ± 2.74
Statistical 51.82 ± 4.17 53.38 ± 8.15 51.10 ± 11.86 51.36 ± 4.19

SVM ROCKET 58.69 ± 2.67 61.99 ± 11.79 58.62 ± 11.03 58.53 ± 2.83
Statistical 46.67 ± 4.36 48.06 ± 8.94 45.57 ± 17.09 45.37 ± 4.79

kNN ROCKET 54.63 ± 1.93 59.76 ± 16.05 54.35 ± 13.68 54.46 ± 2.06
Statistical 41.84 ± 4.56 42.55 ± 7.61 41.54 ± 12.78 41.15 ± 4.56

GNB ROCKET 49.21 ± 4.34 51.84 ± 10.19 48.94 ± 8.93 49.16 ± 4.29
Statistical 34.07 ± 4.56 34.43 ± 8.16 33.81 ± 14.57 32.80 ± 4.89

FCDNN ROCKET 91.44 ± 6.32 91.66 ± 6.24 91.44 ± 6.32 91.48 ± 6.28
Statistical 66.00 ± 7.08 65.69 ± 7.14 66.85 ± 7.13 65.65 ± 7.20

DCAE ROCKET 91.43 ± 9.97 91.47 ± 9.88 91.60 ± 12.73 91.48 ± 7.78
Statistical 69.62 ± 10.80 69.25 ± 10.97 71.17 ± 11.50 69.01 ± 11.86
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(a) DS1: Brain time-series data alone. (b) DS2: Brain time-series data appended with emotion scores.

Figure 7. Comparison of mean F1 scores with standard deviation for all classifiers per trial for (a) DS1 and (b) DS2 using
ROCKET and statistical features.
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Across all classifiers, the maximum increase in classification accuracy on inclusion of
expression data (i.e., the difference between DS1 and DS2) is for XGB with a percentage in-
crease in classification accuracy by 40.87%. To appreciate the improvement in classification
accuracy on inclusion of emotion scores, a bar chart for the F1 scores for all classifiers for
both DS1 and DS2 is also plotted in Figure 7. As can be seen in Figure 7, the height of the
bars on the right hand sides bar graph is greater, in comparison to those on the left hand
side, for most of the classifiers, indicating an overall trend of increase in the classification
prowess of the classifiers on inclusion of emotion scores. Nevertheless, this improvement
is less pronounced for deep models, which sustain a satisfactory level of recognition with
brain data only as well. Overall, the increase in F1-scores is only slight for most classifiers,
and as is also reported in Table 4b not statistically significant for all classifiers.

Table 4. (a) One-tailed Kruskal-Wallis test performed to test H01 for all classifer’s F1-scores compared
with F1-scores of a baseline classifier [41]. (b) One-tailed Kruskal-Wallis test performed to test H02

on the distribution of F1-scores for each classifier for both DS1 and DS2.

(a) H01 tested on the distribution of F1-scores

Classifier Dataset p-Value H01

RF DS1 0.08 Accepted
XGB DS1 p < 0.05 Rejected
SVM DS1 p < 0.05 Rejected
kNN DS1 p < 0.05 Rejected
GNB DS1 p < 0.05 Rejected

FCDNN DS1 p < 0.05 Rejected
DCAE DS1 p < 0.05 Rejected

(b) H02 tested on the distribution of F1-scores

Classifier p-Value H02

RF p < 0.05 Rejected
XGB p < 0.05 Rejected
SVM p < 0.05 Rejected
kNN p < 0.05 Rejected
GNB 0.1494 Accepted

FCDNN 0.1698 Accepted
DCAE 0.0812 Accepted

5.1. Hypotheses Testing

In this section the test for the three hypotheses’ outlined in Section 1 are presented here.
For hypothesis test we use non-parametric Kruskal-Wallis (KW) [47] test, and correction
Dunn-Sidak [48] for multi-comparisons is applied, at significance level α = 0.05.

5.1.1. H01

To test the H01, a Kruskal-Wallis (KW) test on F1-scores obtained for 10 repeated
stratified k-fold CV with 5 splits from all classifiers are compared with a baseline classifier
(baseline classifier from the Scikit-learn [41] library) at significance level 0.05. The F1-scores
for baseline classifiers are also obtained for 10 repeated stratified k-fold CV with 5 splits.
By comparing the F1-scores for the classifiers used in this work with those of baseline
classifer, we can test the H01 that it is not possible to recognise gamer’s expertise level
from fNIRS neural responses from the PFC with recognition performance better than a 95%
confidence interval difference to the results from a baseline classifier. The results of the KW
test are presented in Table 4a.

For all classifiers, except RF, H01 is rejected. Hence, for six out of a total of seven
classifiers the H11 is accepted that it is possible to recognise gamer’s expertise level from
fNIRS neural responses from the PFC with recognition performance better than a 95%
confidence interval difference to the results from a baseline classifier.
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5.1.2. H02

In order to test H02 the F1-scores distributions of each classifier for DS1 and DS2,
a KW test is performed at significance level 0.05. For each classifier, the F1-scores are
obtained for 10 repeated stratified k-fold CV with 5 splits DS1, and DS2. The results of the
KW test for H02 for both DS1 and DS2 for each classifier are reported in Table 4. For four
classifiers (RF, XGB, SVM, kNN), the H02 can be rejected hence for these four classifiers the
H12 is accepted that adding facial expression emotions decoding bolsters the recognition
of expertise.

5.1.3. H03

In order to test H03 KW is performed at significance level 0.05. The KW test results
with p-values, lower and upper bound are reported in Table 5a for DS1, and Table 5b for
DS2. For all classifiers, H03 is rejected for at least four out of a total of seven classifiers.

Table 5. Multiple comparison using Kruskal-Wallis test to establish H03 of F1-scores for all classifiers
with (a) DS1 and (b) DS2.

(a)

Classifier Classifier p-Value Lower
Bound Estimate Upper

Bound

RF

XGB 1.0000 −48.95 12.34 73.63
SVM p < 0.05 −129.55 −68.26 −6.97
kNN p < 0.05 −129.15 −67.86 −6.57
GNB 0.6197 −20.75 40.54 101.83

FCDNN p < 0.05 −232.12 −170.83 −109.54
DCAE p < 0.05 −237.44 −176.15 −114.86

XGB

RF 1.0000 −48.95 12.34 73.63
SVM p < 0.05 −141.89 −80.60 −19.31
kNN p < 0.05 −141.45 −80.20 −18.91
GNB 0.9763 −33.09 28.20 89.49

FCDNN p < 0.05 −244.46 −183.17 −121.88
DCAE p < 0.05 −249.78 −188.49 −127.20

SVM

RF p < 0.05 −129.55 −68.26 −6.97
XGB p < 0.05 −141.89 −80.60 −19.31
kNN 1.0000 −60.89 0.40 61.69
GNB p < 0.05 47.51 108.80 170.09

FCDNN p < 0.05 −163.86 −102.57 −41.28
DCAE p < 0.05 −169.18 −107.89 −46.60

kNN

RF p < 0.05 −129.15 −67.86 −6.57
XGB p < 0.05 −141.45 −80.20 −18.91
SVM 1.0000 −60.89 0.40 61.69
GNB p < 0.05 47.11 108.40 169.69

FCDNN p < 0.05 −164.26 −102.97 −41.68
DCAE p < 0.05 −169.58 −108.29 −47.00

GNB

RF 0.6197 −20.75 40.54 101.83
XGB 0.9763 −33.09 28.20 89.49
SVM p < 0.05 47.51 108.80 170.09
kNN p < 0.05 47.11 108.40 169.69

FCDNN p < 0.05 −272.66 −211.37 −150.08
DCAE p < 0.05 −277.98 −216.69 −155.40

FCDNN

RF p < 0.05 −232.12 −170.83 −109.54
XGB p < 0.05 −244.46 −183.17 −121.88
SVM p < 0.05 −163.86 −102.57 −41.28
kNN p < 0.05 −164.26 −102.97 −41.68
GNB p < 0.05 −272.66 −211.37 −150.08

DCAE 1.0000 −66.61 −5.32 55.97
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Table 5. Cont.

(a)

Classifier Classifier p-Value Lower
Bound Estimate Upper

Bound

DCAE

RF p < 0.05 −237.44 −176.15 −114.86
XGB p < 0.05 −249.78 −188.49 −127.20
SVM p < 0.05 −169.18 −107.89 −46.60
kNN p < 0.05 −169.58 −108.29 −47.00
GNB p < 0.05 −277.98 −216.69 −155.40

FCDNN 1.0000 −66.61 −5.32 55.97

(b)

Classifier Classifier p-Value Lower
Bound Estimate Upper

Bound

RF

XGB p < 0.05 −156.77 −95.54 −34.31
SVM 1.0000 −54.37 6.86 68.09
kNN p < 0.05 6.23 67.46 128.69
GNB p < 0.05 54.23 115.46 176.69

FCDNN p < 0.05 −199.34 −138.11 −76.88
DCAE p < 0.05 −203.14 −141.91 −80.68

XGB

RF p < 0.05 −156.77 −95.54 −34.31
SVM p < 0.05 41.17 102.40 163.63
kNN p < 0.05 101.77 163.00 224.23
GNB p < 0.05 149.77 211.00 272.23

FCDNN 0.5278 −103.80 −42.57 18.66
DCAE 0.3694 −107.60 −46.37 14.86

SVM

RF 1.0000 −54.37 6.86 68.09
XGB p < 0.05 41.17 102.40 163.63
kNN 0.0552 −0.63 60.60 121.83
GNB p < 0.05 47.37 108.60 169.83

FCDNN p < 0.05 −206.20 −144.97 −83.74
DCAE p < 0.05 −210.00 −148.77 −87.54

kNN

RF p < 0.05 6.23 67.46 128.69
XGB p < 0.05 101.77 163.00 224.23
SVM 0.0552 −0.63 60.60 121.83
GNB 0.3098 −13.23 48.00 109.23

FCDNN p < 0.05 −266.80 −205.57 −144.34
DCAE p < 0.05 −270.60 −209.37 −148.14

GNB

RF p < 0.05 54.23 115.46 176.69
XGB p < 0.05 149.77 211.00 272.23
SVM p < 0.05 47.37 108.60 169.83
kNN 0.3098 −13.23 48.00 109.23

FCDNN p < 0.05 −312.99 −253.43 −193.86
DCAE p < 0.05 −318.60 −257.37 −196.14

FCDNN

RF p < 0.05 −199.34 −138.11 −76.88
XGB 0.5278 −103.80 −42.57 18.66
SVM p < 0.05 −206.20 −144.97 −83.74
kNN p < 0.05 −266.39 −206.83 −147.27
GNB p < 0.05 −312.99 −253.43 −193.86

DCAE 1.0000 −65.03 −3.80 57.43

DCAE

RF p < 0.05 −203.14 −141.91 −80.68
XGB 0.3694 −107.60 −46.37 14.86
SVM p < 0.05 −210.00 −148.77 −87.54
kNN p < 0.05 −270.60 −209.37 −148.14
GNB p < 0.05 −318.60 −257.37 −196.14

FCDNN 1.0000 −65.03 −3.80 57.43
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6. Discussion and Conclusions

With the ever-increasing consumption of eSports, it is pertinent to explore how it is
affecting the gamers, and watchers alike. In particular, in this study, we explored two
main aspects in which greater consumption of eSports can affect the gamers- mainly (i) the
neuroplasticity of the brain in response to 460 gaining expertise in playing a game, and
(ii) the emotional state of a gamer. Previous studies have demonstrated that the expertise
level of participants can lead to a change in brain activity in response to experience, also
known as neuroplasticity [32], and continuous consumption of such eSports may effect
on the cognition and emotional states of gamers [49]. Hence, to gain an insight into the
link between an emotional state of a gamer, and their expertise, classification analysis with
only fNIRS data (DS1) and classification analysis with fNIRS data in tandem with derived
emotions from facial expressions (DS2) is performed separately. Also, a range of supervised
classifiers have been explored with feature extraction strategies for both DS1 and DS2.

The best classification accuracy is obtained by DCAE classifier at 90.70 ± 7.84% for
DS1 with ROCKET features. For DS2 the best classification accuracy is obtained by FCDNN
at 91.44± 6.32% with ROCKET features. For six out of a total of seven classifiers, the H01 is
rejected hence establishing that it is possible to recognise gamer’s expertise level from fNIRS
neural responses from the PFC with recognition performance better than a 95% confidence
interval difference to the results from a baseline classifier. This is inline with previous
studies which found professional on-line gamers to have an increased brain volume in the
PFC [25], and from the literature we know that subjects at different 475 expertise levels
have different patterns of activation in their PFC [28,31].

A comparison of the F1-scores for all the classifiers for DS1, and DS2, also plotted in
Figure 7, indicate that for six out of a total of seven classifiers explored, the classification
accuracy improves with DS2 i.e., when a classifier is also given the information from the
emotions of the gamers. However, we did not find the increase in accuracy to be statistically
different for all classifiers, as also reported in Table 4b. Nevertheless, this warrants further
investigation perhaps with a greater number of participants (the current study has n = 30),
and a selection of gameplay that evokes stronger emotional responses from the participants.

In addition our work has demonstrated that the performance of all classifiers, for both
DS1 and DS2, improved markedly when recognising expertise level of gamers using
ROCKET features in comparison to hand-crafted (viz. statistical) features. The classification
results from all classifiers are also tested for H03 that there are not statistical differences of
performance α = 0.05 in the recognition form each bench marked classifier. As reported in
Table 5, H03 is rejected for all classifiers for at least four other classifiers.

Overall, this work has demonstrated successful classification of gamer’s expertise
level using their brain data, and emotions decoded from facial expressions. We expect that
the findings of this work pave the way of new designs of affective and mind-controlled
gaming. For example, integration of neural data in games, such as identification of gamers’
expertise based on their neural responses achieved after time played, rather than discrete
counts of points achieved after game played.
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