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ABSTRACT

Site specific transcription factors recognise and bind DNA motifs to regulate gene expression.
Therefore,  it  is  important  to  understand  how  and  where  they  interact  with  the  genome.
Besides DNA sequence, chromatin accessibility,  CpG methylation and cooperative binding
with other transcription factors or themselves also impacts transcription factor binding. The
era of high throughput sequencing has brought large amounts of genomic data, including
chromatin  immunoprecipitation  and sequencing data  for  transcription  factor  binding.  As a
result,  bioinformatics  and machine learning tools  have become popular  for  genomic data
analysis. When investigating transcription factor activity, it is not enough to understand their
function,  but  understanding  the  mechanisms  behind  it  is  also  necessary.  Explainable
bioinformatics models facilitate the unravelling of mechanistic processes. ChIPanalyser is an
R/Bioconductor package that implements a statistical thermodynamics model for transcription
factor binding by leveraging binding motifs, chromatin accessibility and transcription factor
concentration. This study aimed to use ChIPanalyser on 135 human transcription factors in
the K562 cell line and investigate their chromatin accessibility preferences. Quantile density
accessibility  was  used  to  determine  how  transcription  factor  binding  changed  when
considering different levels of chromatin accessibility. In total, 12 quantiles were used and
their goodness of fit was determined by AUC. The transcription factors were clustered into
four groups based on their AUC trends over all quantiles using two algorithms: k-means and a
bespoke algorithm. The four clusters were (i) “pioneer”, containing factors that were indifferent
to variations in accessibility, (ii) “partial pioneer”, containing factors with a slight preference for
open  chromatin,  (iii)  “traditional”,  containing  factors  with  a  strong  preference  for  open
chromatin,  and  (iv)  “poorly  predicted”,  containing  factors  poorly  predicted  by  the  model
regardless of accessibility. The two methods varied somewhat in their classification, with the
“pioneer”  and  “partial  pioneer”  groups  being  larger  when  using  the  k-means.  This  study
provided  insight  into  the  relationship  between  transcription  factor  chromatin  accessibility
preference and their function, and opened the possibility for further study. 
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Chapter 1: Introduction and literature review

1.1 Introduction

It is well established that gene expression is the driving force behind most cellular processes,
from  embryo  development  (Davidson,  2010;  Peter  and  Davidson,  2011) to  cancer
development and progression  (Yan et al., 2016). Thus, understanding gene expression and
the regulatory processes behind it is one of the fundamental problems in molecular biology
today. Gene regulation is a complex process that encompasses several layers of expression
control.  One of  the key regulatory elements of  the genome are site  specific  transcription
factors (TFs). These are proteins that are capable of binding to the DNA in a site-specific
manner, often at specific regulatory sites, known as promoters and enhancers, and as a result
of binding to DNA they can regulate gene expression (Spitz and Furlong, 2012; Lambert et al.,
2018).TFs vary drastically in function, ranging from “master regulators”, involved in cellular
differentiation  (Bürglin, 2001), to TFs involved in regulating specific pathways, such as the
immune response pathways (Singh, Khan and Dinner, 2014). Expression of TFs also varies
greatly,  with some TFs being ubiquitously expressed  (Adcock and Caramori,  2009),  while
others are expressed in a cell-type specific manner (Lambert et al., 2018). Furthermore, the
same TF can have different functions depending on cell type (Lambert  et al., 2018). Due to
their heterogeneity as well as their role at the heart of gene expression, there has been a
great effort made in recent years to identify and annotate regulatory sites  (Libbrecht  et al.,
2019;  Meuleman  et  al.,  2019) and capture  their  interaction  with  TFs  (Spitz  and Furlong,
2012).

In  order  to  control  gene  expression,  TFs  must  bind  to  the  chromatin  at  specific  short
sequences known as “motifs”. TFs recognise and bind their motifs with much higher affinity
than any other sequence (Geertz, Shore and Maerkl, 2012). Therefore, TF function is closely
linked to DNA sequence and it is necessary to understand how and where they interact with
the genome in order to form an understanding of gene regulation. There is a wide array of
methods, both in vitro and in vivo, that can be used to determine TF binding sites (Jolma and
Taipale, 2011). Chromatin immunoprecipitation (ChIP) based techniques are among the more
widely used. Initially, microarrays were used to determine binding of proteins to DNA, in a
technique known as ChIP-chip.  However,  with  the  advent  of  next  generation  sequencing
(NGS), came the possibility  for higher throughput techniques. Starting in 2007 when they
were  first  published  (Johnson  et  al.,  2007),  chromatin  immunoprecipitation  followed  by
sequencing  (ChIP-seq)  experiments  have  become  one  of  the  primary  techniques  for
determining TF binding in vitro  (Park, 2009). Since then, thousands of ChIP-seq datasets
have  become  available  in  repositories  such  as  The  Encyclopaedia  of  DNA  Elements
(ENCODE) (Dunham et al., 2012; Davis et al., 2018). 

However, DNA sequence is not the only factor influencing TF binding and the presence of a
motif is not sufficient for a TF to bind. Indeed, there is only a partial overlap between motifs
present in the genome and actual binding sites, while the location of binding sites themselves

5



is not necessarily an indicator of what genes are being regulated (Cusanovich et al., 2014).
Thus, other factors besides DNA sequence must influence TF binding. Cooperative binding of
TFs is a well-established concept  (Villar, Flicek and Odom, 2014), with most TFs requiring
some co-factors such as epigenetic modifiers, other TFs or even themselves, in homotypic
complexes, in order to function correctly  (Ravasi  et al., 2010). Furthermore, many TFs can
regulate  different  sets  of  genes  (and  thus  bind  different  sites)  depending  on  their
concentration (Chu et al., 2009; Dangkulwanich et al., 2014; Zabet and Adryan, 2015; Abascal
et al., 2020).

In addition to this, TFs in humans and other higher eukaryotes also face the challenge posed
by  the  complex  structure  of  chromatin.  Histones  are  DNA binding  proteins  that  aid  the
formation  of  nucleosomes  and  are  strong  competitors  for  DNA binding  sites  (Bai  and
Morozov, 2010). Indeed, nucleosomes have long been known to impede TF binding and most
TFs  bind  in  nucleosome  depleted  regions  (NDRs),  while  nucleosome  rich  regions  are
associated  with  transcriptionally  inactive  chromatin  (Lee  et  al.,  2004;  Shivaswamy  et  al.,
2008).  Thus,  nucleosome  positioning  and  DNA accessibility  is  another  significant  factor
influencing TF binding. 

1.2 Pioneer transcription factors and chromatin accessibility

Eukaryotic genomes have a complex structure which poses an obstacle to TF binding. The
chromatin forms into nucleosomes by wrapping around a core of 8 histones, thus rendering
DNA inaccessible to TFs both through the tightening of chromatin and through competition
with histones for binding sites. Nucleosome positioning is not uniform throughout the genome,
with  transcriptionally  active  regions  being  generally  nucleosome  depleted,  while
transcriptionally  inactive  regions  being  generally  nucleosome  rich  (Tsompana  and  Buck,
2014). A number of assays exist for investigating chromatin accessibility (thoroughly reviewed
in Tsompana and Buck, 2014). The main assays used for this purpose can be split between
endonuclease cleavage assays such as DNase-seq and MNase-seq, and assays that do not
rely on endonucleases, such as  FAIRE-seq (Formaldehyde-Assisted Isolation of Regulatory
Elements with sequencing), ATAC-seq (Assay for Transposase-Accessible Chromatin using
sequencing) and NOMe-seq. 

The two main endonucleases used for accessibility assays are DNase I  and MNase. The
former,  a  double  strand,  non-specific  endonuclease,  has  been  traditionally  used  in
accessibility assays and it preferentially cleaves nucleosome depleted regions. NGS can then
be  used  to  sequence  the  fragments  and  reconstruct  a  chromatin  accessibility  profile
(Weintraub and Groudine, 1976; Tsompana and Buck, 2014). DNase-seq has been widely
used,  especially  by  the  ENCODE  consortium  to  elucidate  cell-type  specific  chromatin
accessibility.  MNase  is  a  single-strand  specific  endonuclease  that  cleaves  at  inter-
nucleosomal sites. It is used in conjunction with NGS to reconstruct a footprint of nucleosomal
occupation,  and  thus  indirectly,  of  chromatin  accessibility  (Tsompana  and  Buck,  2014).
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However, MNase cleavage is concentration dependent and thus assays can be unreliable
unless conditions are tightly regulated. 

In  addition  to  endonuclease  digestion,  several  other  methods  of  assessing  chromatin
accessibility have been developed. FAIRE-seq uses formaldehyde crosslinking of chromatin,
followed by DNA fragmentation through sonication. This is followed by phoenol-chloroform
extraction  during  which  the  nucleosome  depleted  DNA fragments  are  relaeased  into  the
aqueous phase of the solution. This is due to histone crosslinking being more efficient than
crosslinking  of  other  DNA-binding  elements  (Tsompana  and  Buck,  2014).  More  recently,
Nucleosome Occupancy and Methylome Sequencing (NOMe-seq) was developed  (Lay, Kelly
and Jones, 2018) to measure the relationship between DNA methylation and nucleosome
occupancy. The assay uses the methyltransferase M.CviPI which metylates CpG nucleotides
unprotected by nucleosomes, thus yielding a chromatin accessibility profile  (Lay, Kelly and
Jones, 2018).  

While the majority of TFs cannot bind nucleosome-rich chromatin, a subset of TFs known as
pioneer factors have the ability to interact with nucleosomes and bind their cognate DNA. Not
only that, they are also able to displace nucleosomes and make way for other TFs to bind
without  the  use  of  ATP-dependent  chromatin  re-modelers  (Cirillo  et  al.,  2002).  The  first
pioneer factors to be discovered were FOXA1 and GATA4, two TFs that play an important role
in endoderm formation during embryogenesis (Gualdi et al., 1996; Bossard and Zaret, 1998).
Later, more members of the FOX and GATA family of TFs were identified as being pioneers
(Bossard and Zaret, 1998; Cirillo et al., 2002; Rojas et al., 2005). Several other TFs involved
in a variety of processes have been identified as having pioneer function (reviewed in Lai et
al., 2018). Of note is the role of pioneer factors in cellular reprogramming. A classic example
of this is the pluripotency factors (SOX2, OCT3/4, KLF4 and c-MYC), which are able to de-
differentiate cells and essentially revert them to a pluripotent state. These factors have been
shown to be pioneers, with the exception of c-MYC which does not appear to be a pioneer
itself, but is a co-factor that enhances the activity of SOX2/OCT4 (Soufi, Donahue and Zaret,
2012; Mayran and Drouin, 2018).

In  addition  to  reverting  cells  to  a  pluripotent  state,  pioneer  factors  also  facilitate  trans-
differentiation  of  committed  cell  types  into  other  cell  types.  For  example,  PU.1  when
expressed in megakaryocyte/erythroid cells, triggers their conversion into myeloid cells, while
its  absence  causes  the  reverse  transformation,  often  facilitated  by  GATA1  (Graf,  2002).
Furthermore, when collaborating with C/EBPα/β, PU.1 mediates the conversion of fibroblasts,
pre-B and T cells into macrophages (Xie et al., 2004; Laiosa et al., 2006; Feng et al., 2008).
GATA4  works  alongside  co-factors  MEF2C,  and  TBX5  in  fibroblasts  to  trigger  their
transformation into cardiomyocytes (Ieda et al., 2010). Other pioneers of note include tumour
suppressor  p53, which regulates chromatin state in a variety  of  tissues  (Nili  et  al.,  2010;
Sammons et al., 2015; Younger and Rinn, 2017); PAX7, involved in the development of the
pituitary  (Budry  et al., 2012) and ASCL, which is involved in neurogenesis  (Wapinski  et al.,
2013; Park et al., 2017).
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The mechanisms by which pioneer factors recognise their motifs in closed chromatin differ
between pioneers. For example, FOXA1 was found to travel more slowly through cell nuclei
compared  to  other  TFs  and  it  has  been  postulated  that  this  is  due  to  scanning  of
heterochromatin  for  binding  sites  (Iwafuchi-Doi  et  al.,  2016).  Crystal  structure  analysis  of
FOXA1 bound to its domain has revealed a triple α-helix structure similar to that of linker
histone H5  (Clark  et al.,  1993).  Once it  identifies a binding motif,  FOXA1 then is able to
displace the linker histone H1, thus preventing nucleosomes from aggregating into complex
chromatin structures  (Iwafuchi-Doi  et al., 2016). In contrast, the pluripotency factors SOX2,
OCT3/4 and KLF4 are able to recognise and bind partial motifs in nucleosomal DNA and their
pioneer activity is boosted by cooperating with each other (Soufi et al., 2015). Notably, when
investigating the affinity for nucleosomal DNA of 2-mers of the pluripotency factors, Soufi et
al.,  (2015)  found  that  OCT4  acts  as  a  strong  potentiator  of  binding  nucleosomes,  while
combinations lacking OCT4 exhibited weaker affinity for nucleosomes. 

Nucleosome positioning also plays a role in pioneer recognition of their binding motifs. For
example, studies have shown that the pioneer tumour suppressor p53 preferentially binds
motifs found towards the edges of nucleosomes (Laptenko et al., 2011), unlike FOXA1, which
prefers binding sites near the centre of nucleosomes (Iwafuchi-Doi et al., 2016). Furthermore,
the rotational positioning of motifs on the nucleosome is also important for binding, with p53
binding preferentially to motifs that are facing the outside of the nucleosome  (Sahu  et al.,
2010; Cui and Zhurkin, 2014; Iwafuchi-Doi, 2019).

“Bookmarking” of binding sites by pioneers (i.e. the continued occupancy of pioneer factors at
their binding sites even during transcriptionally inactive phases such as during mitosis) is a
mechanism for quick reactivation of transcription sites after cell division. This behaviour has
been observed in several TFs such as FOXA1 (Caravaca et al., 2013), GATA1 (Kadauke et
al.,  2012),  as well  as the pluripotency factors  (Liu  et al.,  2017) and it  serves to maintain
cellular differentiation, or lack thereof, in the case of the pluripotency factors. 

The mechanisms by which pioneer factors open chromatin are not as well understood. While
it  has  been  shown  that  FOXA1  mediated  chromatin  relaxation  does  not  require  ATP-
dependent chromatin re-modelers, it is unclear whether no re-modelers are recruited (Cirillo
et  al.,  2002;  Iwafuchi-Doi,  2019).  In  the  case of  FOXA1,  there  is  evidence for  it  directly
causing chromatin relaxation through the displacement of linker histones (Iwafuchi-Doi et al.,
2016).  Other  factors,  such as OCT4, are known to  recruit  chromatin  re-modelers to  their
binding site in order to facilitate chromatin opening. For example, several studies (Pardo et
al.,  2010;  van den Berg  et  al.,  2010) identified  interactions of  OCT4 with  the SWI/SNF
complex of chromatin re-modelers, particularly Brg1. Later,  King and Klose, (2017) showed
that OCT4 mediated chromatin accessibility requires the activity of Brg1 which is recruited by
OCT4 at its binding sites. 

Despite their crucial function at the heart of gene regulation, only a handful of TFs have been
identified as pioneer. Some of these have been characterised in depth, however it remains
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unclear whether there are other TFs that exhibit similar properties, and to what extent. One
interesting  example  is  that  of  CTCF,  which  appears  to  have  the  ability  to  displace
nucleosomes after cell division and maintain NDRs in some contexts  (Owens  et al., 2019),
while other times its binding is inhibited by the presence of nucleosomes (Teif  et al., 2014;
Wiehle  et  al.,  2019).   This  indicates  that  the  relationship  between TFs  and chromatin  is
complex and context dependent and more investigation is needed to fully understand it and to
determine whether other TFs with similar context dependent binding profiles exist. 

1.3 Chromatin methylation and transcription factor binding

In addition to DNA sequence and chromatin accessibility, there are other factors known to
influence TF binding. One significant such factor is chromatin methylation. A common type of
DNA methylation occurs at the cytosine of CpG dinucleotides. Most CpG sites in the human
genome are methylated, however patterns can very between cell types (Bird, 2002), as well
as in disease (Robertson, 2005). CpG methylation is not uniform, with CpGs in nucleosome
rich regions being generally less methylated than CpGs in the more accessible linker regions
(Huff and Zilberman, 2014). Furthermore, methylation is highly abundant in gene bodies (Ball
et al., 2009), while regulatory sites remain relatively unmethylated  (Hon  et al., 2013). The
methylome of a cell is inherited through cell division with the aid of the methyl-transferase
DNMT1, which essentially copies the methylation patterns of an existing DNA strand onto the
newly synthesised one (Schübeler, 2015), and this is thought to contribute to the maintenance
of expression patterns in different cell types. 

Methylated DNA has traditionally been associated with transcriptionally inactive regions and
can  directly  block  TF binding  (Watt  and  Molloy,  1988;  Iguchi-Ariga  and  Schaffner,  1989;
Gaston and Fried, 1995), or indirectly interfere with TF binding by recruiting other epigenetic
factors that trigger chromatin condensation (Schübeler, 2015). However, not all TF binding is
inhibited by CpG methylation and some TFs even preferentially bind methylated sites. For
example, both YY1 and ETS family TFs are known to regulate the Surf-1 and Surf-2 genes.
YY1 binds to the Su1 promoter, which triggers transcription of both Surf-1 and Surf-2 genes,
while  ETS  binds  the  Su2  promoter  regulating  the  same  genes.  However,  YY1  binding
remained unaffected by methylation of CpG sites in the Su1 promoter, while methylation of
the Su2 promoter prohibited ETS from binding  (Gaston and Fried, 1995). Thus, the same
genes can be differentially impacted by CpG methylation. Sp1, which is involved in regulation
of housekeeping genes is another TF that is not hindered by CpG methylation (Harrington et
al.,  1988),  while  CTCF,  a  chromatin  remodeler  and  insulator,  has  been  shown  to  be
methylation sensitive (Hnisz, Day and Young, 2016; Wiehle et al., 2019).

Some TFs have been found to have different regulatory activity based on the methylation
state of its binding motif (Hu et al., 2013). For example, when testing KLF4 binding to several
methylated and unmethylated motifs in vitro, it was discovered that KLF4 was able to only
bind the methylated version of the M197 (TCCmCpGCCC) motif,  but not its unmethylated
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form,  while  the  reverse  was  true  for  motif  M412  (GCTTTTACG).  TFAP2A,  ARID3B,  and
ZMYM3 were also found to behave similarly (Hu et al., 2013).

Interestingly, when investigating the occupancy of several pioneer factors,  Donaghey  et al.,
(2018) found that DNA demethylation takes place at a subset of FOXA2 binding sites after
being bound by it, albeit in a replication dependent manner, suggesting that one mechanism
of pioneer-mediated chromatin accessibility could be through promoting de-methylation. Thus,
DNA  methylation  plays  an  important  and  diverse  role  in  TF  binding  and  a  better
understanding of how each TF is impacted by it is needed. 

1.4 Computational models for transcription factor binding

With the advent of high-throughput technologies came a large influx of genomic data and
along with it, bioinformatic tools and machine learning has become more and more popular
for genomic data analysis. Due to the drastic increase in computational power over the past
two decades, there has been a renewed interest in machine learning algorithms such as
artificial neural networks (ANN) and deep neural networks (DNNs), which can now be used to
predict with high accuracy many types of data. Furthermore, they are able to deal with large
datasets, as genomic data often is.

There are a number of tools that have been designed in the past few years that model TF
binding in silico. One of the earliest such tools was CENTIPEDE (Pique-Regi et al., 2011), a
probabilistic  tool  that  considered DNase I  hypersensitivity,  histone modifications and DNA
sequence to identify TF binding sites. CENTIPEDE works based on two assumptions (i) TF
binding leaves DNA more vulnerable to cleavage by DNase I and (ii) the cleavage profiles
around their bound sites is different and characteristic to each TF (Pique-Regi  et al., 2011).
However, this model does not consider variation in the DNase I profile between different sites
bound  by  the  same  TF,  nor  variation  between  DNase  I  replicates  at  the  same  site.
msCENTIPEDE (Raj et al., 2015) was therefore later released to improve on the CENTIPEDE
framework by using multi-scale models to model this variability. 

1.4.1 Linear regression models

Some of the simplest types of machine learning algorithms are linear regression (LR) models.
LR models can predict a dependent variable based on an independent variable by fitting data
to the equation of the straight line (y = mx + c)  (Wasserman, 2004). Due to their relative
simplicity,  regression  algorithms  can  provide  explainable  biological  models.  However,
regression models have difficulties when it comes to large, multivariate data. Thus, feature
selection  must  be  performed  on  the  data  before  analysis.  Several  methods  for  feature
selection have been proposed, including the lasso regression  (Tibshirani,  1996) and least
angle regression selection (LARS), which is a modified version of the lasso  (Efron  et al.,
2004). (Yuan and Lin, (2006) later proposed an extension to both the lasso and LARS models
that  was more robust to  parameter orthonormalization and termed them group lasso and
group LARS. Such algorithms can be very efficient  at  narrowing down the most  relevant
features. For example, Narlikar et al., (2010) used lasso regression to narrow their data down
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from 727 features to 45 when investigating heart  enhancers.  However,  45 is still  a large
number of features for regression models and thus the model accuracy suffered. Despite their
drawbacks, regression models remain attractive due to their explainability and simplicity and
improved algorithms continue to be proposed.

In 2017,  Zhou et al. developed Big Data Regression for predicting DNase I hypersensitivity
(BIRD), a regression model that can use RNA-seq data to predict DNase I hypersensitivity
sites. In order to bypass the big data problem that is a steeple of regression models, BIRD
clusters similar predictors (i.e. co-expressed genes) together and converts each cluster into a
single  predictor,  thus  effectively  reducing  the  dimensionality  of  the  data  and  optimising
computation  time.  Indeed,  when  comparing  their  model  to  another  previously  proposed
regression model  (Yuan and Lin, 2006), they found their model was 105 times faster while
maintaining similar predictive power. However, both these algorithms are based on reducing
data dimensionality, meaning that information, and therefore predictive power and accuracy,
are lost. 

Therefore, while regression models might not be able to handle high dimension data and
other tools are often better for genomic analysis, such models might be useful in analysing
datasets with small cell numbers when it may not be possible to get larger samples. Such
might be the case with clinical samples or cell types that are difficult or expensive to obtain in
large numbers.

1.4.2 Artificial neural network and deep learning models 

When large samples are available, artificial neural networks (ANNs) are much more powerful.
Unlike LR models, ANNs can easily handle large, multivariate datasets. ANNs are designed to
mimic  the  way  neurons  interact  in  the  human  brain  and  are  comprised  of  several
interconnected layers of “neurons” that pass information from one to the next and are thus
able to learn patterns. Deep neural networks (DNNs) are similar to ANNs, and indeed have
evolved from them, but they are more complex and contain many more neuronal layers. Each
layer is trained to recognise increasingly complex patterns by compounding on the outputs of
the  previous  layers  (Glorot  and  Bengio,  2010).  Because  of  this,  they  are  able  to  very
accurately predict complex and multidimensional data. Convolutional neural networks (CNNs)
are a type of deep learning algorithms that have seen many applications in genomics. CNNs
are well suited for analysing multi-dimensional data, such as images (2D), or videos (3D) but
are also applicable to one dimensional data such as genomic sequences (Lecun, Bengio and
Hinton, 2015; Angermueller et al., 2016; Telenti et al., 2018).

One of the first CNNs to be applied in a genomic context was DeepBind  (Alipanahi  et al.,
2015),  an algorithm designed to identify DNA and RNA binding sites. Since then, several
other CNNs have been used to investigate TF binding. Phuycharoen et al., (2019), compared
the performance of several k-mer methods, a shallow, 1-layer CNN and a deeper CNN when
predicting cooperative TF binding by looking at the differential binding in 3 mouse cell lines.
To test the different methods, they looked at the MEIS family of TFs and HOXA2, which are
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known to cooperatively bind in some mouse branchial tissues. By predicting differential MEIS
binding in three different branchial tissues, they were able to predict HOXA2 co-binding sites.
Their  study  indicates  that  deep  networks  outperform  both  shallow  networks  and  k-mer
methods and highlights several of  the advantages of using deep networks. Namely,  deep
models are better able to learn the context of motifs, which the commonly used annotation of
the  genome  with  a  position  weight  matrix  (PWM)  (used  by  k-mer  methods)  remains
insensitive to. Furthermore, deep networks were shown to lower the rate of false positives
when compared to k-mer methods.  Quang and Xie,  (2019) developed FactorNet,  a CNN
developed through the ENCODE DREAM challenge, that incorporates genomic sequences,
genome annotations, gene expression and accessibility data in order to predict TF binding
sites in various cell types. 

Another  type  of  DNNs that  have  received some interest  in  the  context  of  genomics  are
recurrent neural networks. These are a type of DNN that have feedback loops, thus the input
for  each  iteration  of  the  network  is  the  output  of  the  previous  iteration;  recurrent  neural
networks are especially useful  for learning relationships in time. In 2016,  Quang and Xie,
combined  CNNs  with  recurrent  neural  networks  and  developed  DanQ,  an  algorithm
comprised of a convolutional layer that identifies patterns within the sequence (i.e. motifs),
and a recurrent layer which determines long-term dependencies between the motifs. They
found that the hybrid algorithm outperformed the previously published DeepSEA model, which
was purely CNN. However, when comparing the motifs identified by DanQ to known motifs,
only ~50% of them were significantly matched. 

As highlighted above, there are many advantages in using DNNs and they are becoming
more and more used in the literature. However, DNNs require large training datasets which
may not always be possible to obtain. Furthermore, training DNNs can be highly ineffective if
the  network  architecture  is  not  suitable for  the  intended task and therefore selecting  the
appropriate  architecture  is  crucial.  Overfitting  is  also  a  concern  with  machine  learning  in
general, but especially with DNNs which, due to their great success might be tempting to use
in situations where they are unnecessary and simpler models would suffice.     

1.4.3  Unsupervised learning models

The models discussed above are “supervised” models, meaning that they must first be trained
on a “known” dataset before they are able to predict patterns in “unknown” data. However,
genomic  data  is  often  unlabeled  and  heterogeneous  and  therefore  supervised  learning
methods may not be successful, while deep algorithms may be inefficient to use for identifying
distinct subpopulations. This is where unsupervised clustering algorithms are useful and have
received some interest. 

Single  cell  sequencing  technologies  offer  the  opportunity  of  studying  heterogeneity  both
between cells and between tissue types. However, such data is difficult to analyse due to
sparsity. As a result, it is common for cells to be sorted experimentally, using technologies
such as FACS and performing bulk sequencing on the sorted subpopulations to guide the
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analysis. In order to bypass such costly and time consuming practices, Zamanighomi et al.,
(2018) developed a tool called single cell Accessibility Based Clustering (scABC), which uses
a weighted K-medioids unsupervised clustering algorithm to computationally  separate cell
subpopulations  based  on  scATAC-seq  data.  Using  scABC,  they  were  able  to  distinguish
between 6 established cell lines, as well as distinguish between subpopulations of cell lines
and primary cells and were able to identify cell-type specific accessibility patterns. Using their
accessibility profiles, they were the able to then identify cell-type specific TFs by interrogating
their clusters with chromVAR, a tool developed by  Schep et al.,  (2017) that can identify TF
motifs in accessible chromatin regions. 

In 2018 de Boer and Regev developed BROCKMAN, an unsupervised learning tool similar to
chromVAR, that can infer TF binding from the changes in chromatin structure around their
binding motifs. BROCKMAN accounts for three groups of TFs: TFs that impact chromatin
structure as they bind in a concentration dependent manner, TFs that do not impact chromatin
structure as they bind, and TFs that bind cooperatively. Both BROCKMAN and chromVAR use
a k-mer approach. Simply, a k-mer is a DNA word or motif of length k that is recognised by a
TF.  When  the  TF  binds  the  motif,  it  causes  chromatin  changes  in  the  vicinity.  Thus  by
associating chromatin  changes to  motifs,  active sites can be identified. Unlike chromVAR
which uses ungapped 7-mers, BROCKMAN uses gapped 8-mers, which potentially makes it
more robust to TF motif variability. BROCKMAN was able to distinguish between cell types as
well  as  subpopulations  within  cell  types  and  to  identify  TFs  that  had  differential  activity
between groups.  The following year,  Jansen  et  al. published another  tool  (SOMatic)  that
investigates how changes in chromatin accessibility  and changes in gene expression are
linked. Unlike de Boer and Regev's k-mer approach, SOMatic uses linked self-organising
maps (SOMs) to this end, pointing out that the use of 8-mers might miss TFs with short
motifs. 

1.4.4 Explainable TF binding models

The main limitation of the types of algorithms described above is that they are essentially
“black box” models  (Loyola-Gonzalez, 2019), meaning they are not easily interpretable and
thus it is difficult to gain mechanistic insights from them.

Thus, more explainable models are needed for a thorough understanding of the mechanisms
behind TF binding. There have been several models attempting to mechanistically describe
TF binding using statistical thermodynamics (Bintu et al., 2005; Roider et al., 2007; He et al.,
2009; Zhao, Granas and Stormo, 2009).

Zabet  and  Adryan,  (2015) developed  a  model  based  on  the  statistical  thermodynamics
framework  which  can  predict  TF  binding  profiles  on  a  genomic  scale  based  on  four
parameters: (i) a weighted DNA binding motif referred to as a PWM, (ii) DNA accessibility
data, (iii) the number of molecules bound to the DNA (determined experimentally or predicted)
and (iv) a factor that modulates TF specificity. 
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The first two parameters are relatively easy to obtain; PWMs (w) for many TFs are collected
in online repositories such as JASPAR (Sandelin et al., 2004), and when not available, can be
determined from ChIP-seq experiments with tools such as MEME (Bailey  et al., 2006) and
Homer  (Heinz  et  al.,  2010);  DNA accessibility  (a)  data  from  DNase  I-seq  or  ATAC-seq
experiments is also readily available for many cell types. The latter two parameters, namely
the scaling factor λ and the number of bound molecules N, respectively, can be more difficult
to measure experimentally; however, the model is able to predict a set of optimal parameters
by fitting to already existing ChIP-seq data. Martin and Zabet developed an R/Bioconductor
package called ChIPanalyser (Martin and Zabet, 2020), which can accurately recover ChIP-
seq profiles based on this model. When comparing ChIPanalyser with several  other tools
such as msCENTIPEDE, PIQ and FactorNet, they found that ChIPanalyser outperforms all of
them when trained on the same data (Abascal et al., 2020).

This study aims to investigate the binding profiles and chromatin accessibility preferences of
human TFs using ChIPanalyser, by first training the model on bulk ChIP-seq data in order to
estimate TF binding parameters and then using those to determine whether TFs prefer to bind
open or nucleosome associated DNA. 

Chapter 2: Methods

2.1. Data gathering and pre-processing

Raw human TF ChIP-seq data was downloaded from ENCODE (Dunham et al., 2012; Davis
et al., 2018) for 244 TFs available in the K562 cell line at the time (prior to the ENCODE
phase 3 release (Abascal  et al., 2020)). This cell line was chosen because it had the most
available TF ChIP-seq data available on ENCODE at the time. For each TF, all the available
replicates at the time were downloaded, however those treated with anything were excluded
from further analysis. Furthermore, TFs for which a PWM motif was not available in any online
repositories  were  also  excluded  from  the  dataset.  All  metadata  information  for  the
downloaded data can be found in supplementary data Table A1 in the Appendix. The final
number of TFs after triage was 135, a list of which is available in Table A2 in the Appendix.
Where multiple experiments were available for one TF, the data were concatenated into one
file.  All  scripts  used  for  pre-processing  and  further  analysis  can  be  accessed  at
https://github.com/rtpop/MSD.

Once the data was downloaded and triaged, fastqc v. 0.11.7 (Andrews, 2010) was then used
to  assess  the  quality  of  the  data,  followed  by  removal  of  the  Illumina  adapters  with
trimmomatic v. 0.39 (Bolger, Lohse and Usadel, 2014)(Bolger, Lohse and Usadel, 2014). After
trimming, the data was aligned to the human genome (hg38) (NCBI, 2019) downloaded Oct.
2019  from NCBI  using  bowtie2  v.  2.3.4.1  (Langmead  and  Salzberg,  2012).  The  original
experimental controls for the ChIP-seq were downloaded from ENCODE (see Table A1 in the
Appendix) for each TF and processed in the same way. As before, where there were multiple
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control files for one TF, they were concatenated. Initially, SAM files were converted to BAM
using samtools, however, for some files this posed an issue with peak calling, so SAM files
were used instead. Finally, narrow peaks were called with macs2 (Zhang et al., 2008), with a
q-value threshold of 0.05. 

In  addition to  the TF ChIP-seq data,  chromatin  accessibility  data in the form of  DNase I
hypersensitivity data was also downloaded from ENCODE for the K562 (ECACC 89121407)
cell line (experiment accession ENCSR000EOT). This was processed in the same way as the
ChIP-seq data until the peak calling stage, where broad peaks were called with a q-value
threshold of 0.1 instead. 

After peak calling was complete, the accessibility data was subset with a quantile vector (0-
0.9, 0.95, 0.99) in R. This resulted in multiple quantile density accessibility (QDA) files, each
considering the top 1-n highest scoring regions (based on the DNase peak scores) in the
original data as accessible, regardless of their actual accessibility scores; for example QDA 0
considered  all  the  genome  accessible  (i.e  1-0=1  =>100%  of  the  regions  considered
accessible), while QDA 0.99 considered only the top 1% of regions as accessible (i.e. 1-0.99
= 0.01 => 1% of regions considered accessible). These QDAs were used for further analysis. 

Finally,  PWMs were downloaded for all  TFs, primarily with the use of the R Bioconductor
package MotifDb (Shannon and Richards, 2018). The databases available on MotifDb were
queried in the order shown in Table 1.

Where multiple PWMs were available from the same database, the
first  one was selected;  if  a PWM was not  found in either  of  the
above databases, but there was one from a different database, then
the first motif returned by MotifDb was selected. For the TFs that did
not have a PWM on MotifDb, the Tf2dna database  (Pujato  et al.,
2014) was downloaded and the PWM was taken from there. If  a
motif was not available there either, the TF was removed from the
analysis. All motif logos are available in the Appendix. 

2.2. Estimating binding parameters with ChIPanalyser

ChIPanalyser  (Martin  and  Zabet,  2020) is  a  bioinformatics  tool  that  implements  an
approximation  of  the  statistical  thermodynamics  framework  (Zabet  and  Adryan,  2015) to
estimate ChIP-seq like profiles based on four parameters: (i) a weighted DNA binding motif
referred to as a position weight matrix (PWM), (ii) DNA accessibility data, (iii) the number of
molecules bound to the DNA (determined experimentally or predicted) and (iv) a factor that
modulates TF specificity. The model outputs the probability that a TF is bound to a site j,
which is given by the statistical weight of site j divided by the total statistical weight, which is

given by the sum of the statistical  weight when the site is unoccupied and the statistical
weight when the site is occupied. as shown in (Zabet and Adryan, 2015):
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(1)

Where N is the number of TF molecules bound to the genome, aj is the DNA accessibility at
site j, λ is the specificity scaling factor, w is the PWM score and L and n are the length and
ploidy of the genome, respectively, while the genome-wide average weight is represented by:

L⋅n⋅⟨a ie
(

1
λ
w j)

⟩i

Where i indicates the term is a genome-wide average.

The The PWM along with λ are used to determine the binding energy of the TF at site j, as
given by:

binding energy=
1
λ
w j (2)

Thus, a lower λ value indicates a high affinity of the TF for its motif, while a high λ value
indicates low affinity of the TF for the motif. 

The PWMs and chromatin accessibility data were downloaded from third parties as described
in  the  previous  section;  ChIPanalyser  was  used  to  estimate  the  number  of  bound  TF
molecules (N) and the specificity factor (λ) for each TF using the ChIP-seq data. The analysis
was run 12 times, once for each QDA. For each run of the analysis, all parameters remained
constant,  with  the exception of  the QDA;  all  the parameters  can be found in  the GitHub
repository. If not specified, then they were left as default. 

First, the processingChIP function was used to extract ChIP scores at each locus of interest.
This requires either a GRanges object containing loci of interest, or the path to a bedGraph
(BDG) file from where the top n loci will be extracted after binning the genome into 50kb bins.
The number of loci to select and the bin width can be specified by the user. BDG files were
used for this analysis with n = 60 and a bin size of 50kb. In addition, the function also takes as
arguments a peaks file and DNA accessibility data. For this analysis, this was the QDAs.
Finally, a noise-filtering method can also be specified, in this case a “sigmoid” filter was used,
which applies a logistic weighting to each score (Martin and Zabet, 2020).

Next,  the optimal  N and λ were computed with the computeOptimal  function.  The top 10
regions were used for training the model. The input for this function is the training regions, a
PWM,  the  genome  sequence  and  accessibility  data.  As  before,  QDAs  were  used  as
accessibility data. 

Following  the  parameter  estimation  based  on  the  top  10  regions,  validation  of  these
parameters was performed on the subsequent 50 loci (as outputted by processingChIP) using
12 goodness of fit metrics: correlation coefficients (Pearson, Spearman and Kendall), Mean
Squared Error  (MSE),  Kolmogorov-Smirnov Distance,  precision,  recall,  accuracy,  F-score,
Matthew’s  correlation  coefficient  (MCC)  and  Area  Under  Curve  Receiver  Operator
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Characteristic (AUC ROC or just AUC) (Martin and Zabet, 2020). However, it was previously
shown that the best metric for training is MSE (Martin and Zabet, 2020), while AUC was the
best metric for validation. 

2.3. Transcription factor clustering

After the parameter training and validation was complete for each QDA, the corresponding
AUC was extracted and this was repeated for each TF (see Table A3 in the Appendix). The
AUC was calculated as detailed in (Martin and Zabet, 2020). Briefly, the genome was first
sectioned into 100 bp bins and the peaks were sliced at different heights. At each level, the
number of true positives and the number of false positives were used to construct a sensitivity
curve, and the area under the sensitivity curve was calculated. The AUCs for each TF for
each QDAs were then combined into a matrix with TFs as rows and QDAs as columns. This
was then used to cluster the TFs based on their accessibility preference profile.

Two methods were used for the clustering: k-means and a threshold-based algorithm. The k-
means clustering was performed with the native kmeans function in R. This requires as input
a matrix or data frame with the data to be clustered, as well as a value k for the number of
clusters. The function then generates k random cluster “centres” and assigns each data-point
to the cluster whose “centre” is nearest to it. The value of the “centre” is then updated by
calculating the mean between the previous value and the newly added data-point. Another
parameter of the kmeans function is the “number of starts”, which defines how many random
starting points should be attempted. For this analysis, this was set to 20, meaning that the
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Figure 1. Graphical illustration of the threshold-based clustering algorithm.



algorithm was performed 20 times with different initial cluster centres, after which the best one
was selected based on the lowest within cluster variation.

As mentioned, the number of clusters k must be provided by the user. In order to determine
the optimal number of clusters for this data, the k-means algorithm was run with k values
between 1-15. The within cluster sum of squared errors for each k was plotted in order to
generate an “elbow plot”, with the “bend” in the plot indicating the optimal number of clusters
for a given dataset. In this case, k=4 was selected based on the elbow plot (Figure 5A) and
the  four  clusters  were  labelled  as  “pioneer”,  “partial  pioneer”,  “traditional”  and  “poorly
predicted” based on their trends. In order to reproduce the results, the seed used was always
13. 

For  comparison,  a  bespoke threshold-based algorithm was also used to  cluster  the TFs.
Briefly,  the  algorithm considered an AUC of  0.8  to  be  the  threshold  for  a  TF being well
predicted by the model. First, an average of the AUC for the low end QDAs (0-0.2) and of the
high end QDAs (0.8, 0.9, 0.99) was calculated. Then the difference between the high end and
low end averages was calculated and the TFs were sorted into clusters as shown in Figure 1.
If both the high end and low end averages were above or equal to the 0.8 threshold, the TF
was sorted into the pioneer cluster; if the low end average was below the threshold and the
high end average was above it and the difference between them was below or equal to 0.2,
the TF was sorted into the “partial pioneer” cluster. If the low end was below the threshold, the
high end was above the threshold and the difference between them was greater than 0.2, the
TF was sorted into the “traditional” cluster; finally, if both the low and high end averages were
below the threshold, the TF was sorted into the “poorly predicted” cluster.
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Chapter 3: Parameter estimation with ChIPanalyser

3.1 Data gathering, pre-processing and quality control 

In order for ChIPanalyser to estimate ChIP profiles, TF ChIP-seq data, chromatin accessibility
data and TF binding motifs were required as input. Bulk transcription factor ChIP-seq and
accessibility data (in the form of DNase I-seq) and controls were downloaded from ENCODE
for the K562 human cell line and the data was pre-processed as detailed in the Methods and
illustrated in Figure 2A. First, FASTQC (Andrews, 2010) was used on all the files to assess
read quality before and after trimming (Table A2). The files were then trimmed before being
aligned to the genome with bowtie2 (Langmead and Salzberg, 2012). The overall alignment
rate was above 80% for the majority of the transcription factors, indicating that overall, the
data was of good quality (see Figure 2A). After alignment, macs2 (Zhang et al., 2008) was
used  to  call  peaks;  the  number  of  peaks  varied  widely,  with  the  highest  number  being
~170,000 peaks for MAX, while the lowest after removing TFs with fewer than 60 peaks was
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Figure 2. Outline of ChIPanalyser workflow; A. TF ChIP-seq, DNA accessibility and TF binding motif data was 
downloaded from public repositories. The ChIP-seq and accessibility data were QC’d and pre-processed before the 
ChIPanalyser analysis commenced. B. The model was trained on the top 10 ChIP regions for each TF and the 
optimal binding parameters were estimated. Validation was then done on the subsequent top 50 ChIP regions and 
ChIP-like profiles were estimated.
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ZFP91 with 62 peaks. Any TFs with fewer than 60 peaks were eliminated from the analysis.
The wide variation in peak number is likely due to cell-line specific expression.

3.2. Binding parameter and ChIP profile estimation

Once  the  pre-processing  was  finalised,  ChIPanalyser  was  used  to  estimate  the  optimal
number  of  bound  molecules  (N)  and  specificity  factor  (λ)  for  each  TF  by  fitting  the
ChIPanalyser  model  to  the  existing  ChIP-seq  data  (see  Figure  2B).  This  was necessary
because these two parameters are not easily determined experimentally and, thus, not widely
available for most TFs. The genome was tiled into 50kb bins and the model was then trained
on the top 10 regions with the highest ChIP score from the ChIP-seq data and MSE was
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Figure 3. Optimal parameter and ChIP-like profile estimation for CTCF. A. Heatmap showing the optimal range 
for the optimal QDA for CTCF; B. Logo of the CTCF motif used in the analysis; C. AUC of the MSE for the 
optimal parameters estimated for CTCF for all QDAs; D. ChIP profile estimated with ChIPanalyser based on 
the optimal parameters. The grey shaded area represents the ChIP signal, the orange line represents the 
ChIPanalyser estimation of the ChIP signal, the blue lines represent occupancy at each locus, the yellow 
shaded areas represent closed chromatin and the white shaded areas represent open chromatin.
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minimised as a goodness of fit measure. Following training, the estimated parameters were
validated on the subsequent top 50 highest scoring regions of the ChIP-seq data. 

The accessibility data was subset with a quantile vector, resulting in QDAs between 0-0.99.
This means that for each QDA, the model considers a % of the top regions as accessible,
regardless of their actual accessibility scores; for example, for QDA 0, 100% of regions were
considered accessible,  while  for  QDA 0.9,  only  the  top  10% of  regions were  considered
accessible (see section 3.1). In order to observe the chromatin accessibility preferences of
the various TFs, the analysis was run for each QDA. The AUC of the MSE was used as a
goodness of fit metric for the model accuracy. If  the AUC for the bottom QDAs is high, it
indicates that the TF can bind inaccessible chromatin, as the prediction accuracy remains
high even though all or most of the genome is considered accessible by the model (including
dense chromatin), while if the AUC is high for the high end QDAs, it indicates that the TFs
bind open chromatin, as only the most open regions are considered accessible by the model.
Here, CTCF is used as an example (Figure 3),  however a complete list  of  the estimated
optimal parameters for all TFs is available in Table A2 in the Appendix. 

For visualisation purposes, heatmaps of the optimal parameters were generated using the
plotOptimalHeatMaps function native to ChIPanalyser. Figure 3A shows the optimal binding
parameter heat map for the optimal QDA for CTCF (QDA 0.9). The estimated λ for CTCF was
0.75, indicating that CTCF has a high affinity for its motif (shown in Figure 3B). The binding
affinity of a TF for its motif is given by its binding energy when interacting with its motif (see
equation 2); thus, the lower the λ, the higher the TF affinity. ChIPanalyser estimated 500,000
molecules of CTCF to be the optimal number of molecules bound to the genome in order to
replicate the ChIP-seq data. Previously, around ~200,000 CTCF molecules were reported in
the nucleus of HeLa cells, although the numbers varied throughout the cell cycle (Holzmann
et al., 2019). Another study, found ~100,000 molecules of CTCF in human U2OS cells and
~200,000  in  mouse  embryonic  stem  cells  (Cattoglio  et  al.,  2019).  Therefore,  variations
between cell lines may also be a factor. Belaghzal et al.,  (2019) found that ~95% of nuclear
CTCF is bound to chromatin. As can be seen from the heatmaps, varying the number of
bound molecules between ~200,000 – ~500,000 does not seem to affect the peak prediction
accuracy much.  Indeed,  even 100,000 bound molecules (BM) is  only  slightly  outside the
optimal range, with an MSE of 0.01163792. The MSE for 200,000 BM was 0.009522740,
while the optimal MSE for 500,000 BM was 0.007814508. As can be seen in Figure 3C, CTCF
was well predicted regardless of the QDA, indicating that it can bind chromatin regardless of
its level of accessibility. This is in line with the highly diverse function of CTCF, ranging from
insulator to gene regulation and maintaining chromatin open (Kitchen and Schoenherr, 2010). 

Based on the estimated optimal parameters, as well as the PWM, a ChIP-like profile was
estimated to validate these parameters. The model was able to recover peak location with
high accuracy, as indicated by the blue lines in Figure 3D. The peak hight was also recovered,
however not always completely.
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When looking at the estimated optimal parameters for all TFs, theTFs (85) that were predicted
to have 1,000,000 bound molecules (Figure 4A). This is likely a result of the default maximum
number of bound molecules set by ChIPanalyser of 106  being too low and some of the TFs in
this group having an even higher optimal number of bound molecules. It is also possible that
ChIPanalyser overestimates the number of bound molecules
to compensate for factors that may influence TF binding that
are not considered by the model, such as DNA methylation,
cofactors or chromatin architecture. There is little available
data about the number of TF molecules in cell  nuclei and
virtually  none  for  the  K562  cell  line,  so  it  is  difficult  to
validate  these  findings  without  further  experimental
investigation.  The  data  that  is  available  indicates  that  in
humans, TF abundance ranges from a few thousand to a
few million, depending on TF, cell type and cell cycle stage
(Biggin, 2011; Cattoglio et al., 2019; Holzmann et al., 2019).
Thus, while the predictions made by ChIPanalyser may not
be  accurate  for  use  outside  of  the  model,  and  may  not
reflect  absolute  values,  it  is  nevertheless  sufficiently
accurate for the model to accurately estimate the range of
these values and binding profiles for the majority of these TFs.  

The predicted λ for the majority of TFs was below 1.5 (Figure 4B), indicating a good affinity for
their motifs. There were 10 TFs with a predicted λ of 3 or higher, listed in Table. Of these, all
but one were poorly predicted by the ChIPanalyser model (see Table A2 in the Appendix and
Figure 5 F). This is likely due to the model not accounting for cooperative binding. Indeed,
some of these TFs are known to be cooperative, such as the E2F family TFs which form a
complex with DP and have low affinity for DNA as monomers (Zheng et al., 1999; Morgunova
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TF name Predicted λ
ZEB2 5.00
SOX6 4.25
PKNOX1 4.00
ZNF407 3.75
E2F8 3.50
MGA 3.25
YBX1 3.25
ZMYM3 3.25
NR3C1 3.00
ZFP91 3.00

Table 2. TFs with a predicted λ above 3
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et al., 2015; Morgunova and Taipale, 2017). Furthermore, E2F family TFs are also known to
be sensitive  to  DNA methylation  (Gaston and Fried,  1995),  another  factor  not  taken into
account by the model; SOX6, which was found to bind interactively with BCL11A to regulate
ϒ-globin  (Xu  et  al.,  2010),  as well  as interact  with  other  members  of  the SOX family  to
regulate cell fate (Lefebvre, Li and De Crombrugghe, 1998; Lefebvre, 2010).

As seen in Figure 4C, the majority of TFs had their optimal QDA among the high end QDAs
(0.7-0.99), suggesting that they bind best in open chromatin, as would be expected. However,
there were 9 TFs that had their optimal QDA as 0, suggesting that their preferred chromatin
type is closed chromatin. Three of these (ZNF146, REST and ZNF274), were poorly predicted
by ChIPanalyser, as mentioned previously, likely due to cooperative binding, methylation or
other such factors not taken into account by the current model.  For the remaining 6, this
preference might be an indicator of function.

Chapter  4:  Clustering  TFs  based  on  their  chromatin  accessibility
preference

In order to further investigate the chromatin state preference of the different TFs and how that
might relate to function, the AUC of each TF for each QDA was calculated as detailed in
Martin  and  Zabet,  2020   and  summarised  in  the  Methods  section.   The  TFs  were  then
clustered based on how the AUC changed with QDA (Figures 5-6). Two methods were used
for  clustering:  k-means  and  a  bespoke  threshold-based  algorithm  and  the  two  were
compared.

4.1. K-means clustering

The k-means algorithm native to R was used to cluster the TFs (Figure 5). The value of k was
determined with the use of an elbow plot (Figure 5A). Because the “bend” in the elbow was
not clear, the clustering was performed with k = 3, 4 and 5, however the best fit for the data
was when k=4 was used. Three main trends were observed that were labelled “pioneer”,
“partial  pioneer” and “traditional”,  with an additional  fourth cluster of TFs that were poorly
predicted by the model. In addition to these, a fifth cluster with a downward trend (high AUC in
the low QDAs and low AUC in the high QDAs) was expected based on similar work in other
organisms (unpublished work), however this does not appear to be present in this dataset.
The largest group was the “partial  pioneer” group, with 54 TFs, followed by the “pioneer”
group with 42 TFs, the “traditional” group with 20 TFs and finally, the poorly predicted group
with 19 TFs (Figure 5B). Table A2 in the Appendix contains a full list of TFs and which clusters
they were assigned to. 

As can be seen in Figure 5C, the “pioneer” group contains TFs that were well predicted by the
model  regardless of  QDA. As mentioned previously,  the lower the QDA, the more of the
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genome  is  considered  “accessible”  by  the  ChIPanalyser  model  regardless  of  the  actual
chromatin accessibility in the region. Thus, if the model recovers the real ChIP-seq data with
high accuracy under those conditions, the TF in question must be able to bind anywhere in
the genome where its motif is present, regardless of accessibility. These were labelled as
“pioneer” on the premise that a pioneer TF binds closed chromatin in order to open it, but the
chromatin surrounding it then becomes accessible and it can therefore bind in both open and
dense chromatin. 

The TFs in this cluster included known pioneer TFs such as GATA1, which belongs to the
GATA family of pioneer factors that are involved in cell  differentiation among other things
(Bossard and Zaret,  1998; Lai  et al.,  2018),  NRF1  (Lai  et al.,  2018;  Mayran and Drouin,
2018), POU5F1 (Oct4) which although it has weak pioneer activity when binding on its own, it
is a strong pioneer when working with Sox2 (Soufi et al., 2015; Lai et al., 2018; Michael et al.,
2020), NFYA/NFYB which was shown to contribute to cell differentiation of murine embryonic
stem cells (Oldfield et al., 2014), FOS (Biddie et al., 2011; Alvarez-Dominguez et al., 2019).
FOS was notable for being present in the dataset twice, one version tagged with a GFP
marker,  and  one  version  untagged.  Interestingly,  the  tagged  version  was  classed  as  a
pioneer, however, the untagged version was classed as traditional. The likely cause of this is
data quality, as indeed the tagged version had a better overall alignment rate (97.78% vs.
83.34 % for the untagged version) and a lower λ (0.75 vs. 1.25 for the untagged version),
indicating better affinity for its motif. This is an interesting observation, as 18 out of the 135
TFs within the dataset were tagged with either a GFP marker or a 3xFLAG marker. In addition
to  FOS,  ATF1,  CUX1,  GATA2,  JUND and  USF2  were  also  present  in  both  tagged  and
untagged version,  however,  there  were  no notable  differences between the  two versions
(Table A2).

The remaining TFs were only present in either tagged or untagged form in the dataset. In
addition to these, this cluster also contained some pioneer co-factors such as MYC which
works alongside Oct4/Sox2 (Soufi, Donahue and Zaret, 2012). This is because the model is
unable to differentiate between TFs that have pioneer function and their cofactors but can
only determine whether a TF is able to bind dense chromatin. 

Other TFs in this cluster include IRF2 and while there is no evidence yet of it having pioneer
function, three other members of the IRF family, IRF1, IRF4 and IRF8, have been previously
shown to have some pioneer activity  (Decker  et al., 2009; Alvarez-Dominguez et al., 2019),
although none of them were present in the dataset analysed. However, when considering
domain  architecture  (available  through  the  SMART database  (Letunic,  Doerks  and  Bork,
2015), IRF2 is similar to IRF1 and thus may share its function. Similarly, ELF1, CEBPB and
RFX5 also have other members of their family that have been found to have some pioneer
function.  ELF3,  RFX2-4  were  found  to  have  some  chromatin  opening  function  (Alvarez-
Dominguez et al., 2019) and CEBPA is also known to be a pioneer factor (Lai et al., 2018). 
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Interestingly, CTCF was also a part of the pioneer group. There are several conflicting results
within the literature regarding CTCF. Some studies have found that CTCF binding is impaired
by nucleosomes  (Teif  et al., 2014; Wiehle  et al., 2019), while others show that CTCF can
displace nucleosomes and maintain chromatin accessibility throughout the cell cycle (Owens
et  al.,  2019).  In  addition,  CTCF  is  also  known  to  bind  at  the  boundary  between
heterochromatin and euchromatin in order to stop heterochromatin spreading, and acts as an
insulator  (Lee, 2003).  Thus, CTCF is a highly versatile TF whose function seems to vary
widely depending on context. CTCF is known to have clusters of multiple adjacent binding
sites  (Kentepozidou  et  al.,  2020;  Nanni,  Ceri  and  Logie,  2020).  Since  the  training  and
validation for the model were performed on the top 10 and subsequent 50 highest scoring
ChIP-seq regions, respectively, it is possible that these regions contained such clusters which
are heavily populated by binding sites and likely inherently accessible, thus explaining why
CTCF appears to be a pioneer.  Another possibility  is that the presence of multiple CTCF
molecules in the same region can displace nucleosomes and thus CTCF acts as a pioneer
through homo-cooperativity, however further investigation is needed to elucidate this. 

Figure  5D  shows  the  “partial  pioneer”  cluster,  which  contains  TFs  that  showed  a  slight
preference for open chromatin (i.e. AUC for the lower end QDAs was slightly lower) and were
labelled as “partial” pioneers because they do not appear to have as strong affinity for closed
chromatin as the “pioneer” cluster TFs. This cluster contained some factors that are known to
have pioneer function, such as FOXA1 and FOXK2, two members of the FOX family which
are some of the best characterised pioneer TFs (Cirillo et al., 2002; Zaret and Carroll, 2011;
Iwafuchi-Doi et al., 2016; Zaret and Mango, 2016; Lai et al., 2018). RUNX1 was also part of
this  cluster  and along with  PU.1 is  known to  prime transcription of  the c-fms/csf1R gene
involved in hematopoietic differentiation. However,  RUNX1 was shown to only be needed
transiently  (Krysinska et al., 2007; Hoogenkamp et al., 2009), which might explain why it is
picked up as being a “weaker” pioneer. 

In addition to pioneer factors, this group also contained pioneer co-factors, such as Ep300.
While not itself a TF, Ep300 is a histone acetyltransferase that has been shown to work with a
number of pioneer factors such as FOXO1 (Perrot and Rechler, 2005). Ep300 is not a site
specific transcription factor and does not bind DNA on its own  (Perrot and Rechler, 2005),
however ChIPanalyser can model the binding of any protein for which a motif is provided.
Often de novo motifs are generated from ChIP-seq experiments, which are problematic due to
the fact that they originate from the ChIP-seq data in order to explain the ChIP-seq data. As
Ep300 is recruited by various pioneers at their binding sites, the “motif” discovered for it is
likely  a  consensus  between  all  the  TFs  that  it  is  being  recruited  by,  thus  giving  it  the
appearance of being a pioneer factor itself. However, while the “binding” of Ep300 in itself has
no biological meaning, its classification as a “partial pioneer” supports its role as a co-factor
for  pioneers.  Indeed,  histone acetylation has long been associated  with  the  relaxation of
chromatin. 
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The pioneer and partial pioneer groups are very similar in the kinds of TFs that they contain,
both having a mixture of  known pioneers and pioneer cofactors,  along with  a number of
factors for which no pioneer function is known. Together, they seem to account for most of the
TFs in the dataset, with 96 out of 135 TFs between them, which seems contrary to the widely
accepted idea that pioneer factors are a small subset of TFs. While it is possible that the
model  has picked up some previously  unknown TFs,  there  is  also some bias  that  might
explain the unusually high number of “pioneer” TFs. One such bias is the use of DNase I data
as the accessibility data, as this assay takes into account large regions of the genome, and
some small  accessible regions might be considered inaccessible by the assay if  they are
surrounded by dense regions, thus introducing a bias in the model. Using accessibility data
with higher resolution, such as micrococcal nuclease digestion with sequencing (MNase-seq)
(Chereji, Bryson and Henikoff, 2019) could be a way of eliminating this bias and improving the
model accuracy. Another possible bias is that the training and validation of the model were
done on the top 10 and subsequent 50 highest scoring regions, respectively. These could
potentially all be regions highly populated with binding sites and thus accessible DNA. In that
case, modifying how much of the genome the model considers accessible (i.e. using different
QDAs) would not make a difference if none of the 60 regions were found in dense chromatin.
A possible way of overcoming this bias would be to perform the validation on lower scoring
regions and see if the same trends persist.

The  “traditional”  cluster  (Figure  5E)  contains  TFs  that  behave  in  the  “traditional”  way  of
binding in open chromatin and not binding in dense chromatin. The TFs in this group had a
strong preference for open chromatin and included ZBTB40, a TF primarily involved in bone
formation and density (Doolittle et al., 2020), but is also associated with stress response (Bae
and Lee, 2018); PKNOX1, a tumour suppressor (Longobardi et al., 2010) that is also involved
in  hematopoiesis  (Di  Rosa  et  al.,  2007);  and  TEAD4,  a  developmental  TF  involved  in
trophectoderm lineage formation during mammalian embryogenesis  (Yagi  et al.,  2007). An
outlier  in  this  cluster  is  NEUROD1,  which  was found to  have pioneer  function  in  mouse
neurons (Lai et al., 2018). However, this is a specific TF only expressed in the brain and GI
tissues and is not present in lymphatic tissue or bone marrow. Indeed, there was only one
replicate on for the K562 cell like on ENCODE. Thus, data on this TF is not conclusive in the
K562 cell line, as this is a lymphoma cell line. 

Finally, the “poorly predicted” cluster (Figure 5F) contains TFs that were poorly predicted for
all QDAs. This could be due to some of the following reasons. Some of them might need to
bind cooperatively, such as FOS has long been known to bind the AP-1 site cooperatively with
JUN, but is unable to bind it on its own (Rauscher et al., 1988). Others might be methylation
sensitive, for example ZMYM3 was found to preferentially bind the M203 motif  when it  is
methylated, while it only bound the unmethylated version of the M85 motif  (Hu et al., 2013),
while Oct4 binds preferentially to CpG methylated motifs (Yin et al., 2017).  And some might
be due to poor data, such as MGA and ZNF24 which only had 165 peaks and 89 peaks,
respectively. 
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4.2. Threshold-based clustering

Since the “pioneer” and “partial pioneer” clusters were unexpectedly large and accounted for
more than half the dataset, we wanted to see if the clusters would be maintained if we set a
hard threshold for what was “well predicted” and what was not. In order to do this, we used
the k-means clustering to inform the creation of a threshold-based algorithm to cluster the TFs
with AUC >= 0.8 being considered as “well predicted” and AUC < 0.8 as “poorly predicted”
with the stipulation that if the low end QDAs were below 0.8, but the high end QDAs were
above  0.8  and  the  difference  between  the  two  was  less  than  0.2,  they  would  still  be
considered “well predicted” and sorted into the “partial pioneer” factors (Figure 1). As can be
seen in Figure 6, the clusters were largely maintained, however the “pioneer” and “partial
pioneer” groups are slightly smaller, reflecting the stricter criteria. Thus, the “pioneer” cluster
was reduced to 30 TFs from 42 in the k-means method and the “partial pioneer” group was
reduced to 32 from 54 in the k-means method. This number of “pioneer” TFs is more in line
with literature, however it is still an unusually large number of “pioneer” factors, totalling 62
TFs between the two clusters. The “traditional” and “poorly predicted” groups both gained
TFs, with the “traditional” cluster now containing 36 TFs up from 20 in the k-means method
and the poorly predicted cluster with 37 TFs up from 19 in the k-means method. 

While the number of “pioneer” factors is more reasonable with this method, the number of
“poorly predicted” factors has almost doubled. However, as can be seen in Figure 6E, the
“poorly predicted” AUC trend closely resembled the “partial pioneer” AUC trend, only with an
overall lower AUC. Indeed, many of the TFs in this cluster look as if they would fit the “partial
pioneer” or “traditional” groups much better. Figure 6F shows the TFs that were sorted as
“poorly predicted” by the threshold algorithm, but not the k-means one. The majority of these
have an AUC only slightly below 0.8 in the high end QDAs and some of them are even above
0.8. However, due to the algorithm using averages of the top and bottom QDAs, they were
classed as “poorly predicted”. Thus, this algorithm could be improved upon by using dynamic
thresholds, instead of a hard threshold.

As can be seen in the Sankey diagram (Figure 7), the largest migration was from the “partial
pioneer” group to the “traditional”  group, with 24 TFs shifting. Among these were EP300,
which as mentioned previously is a histone acetyltransferase which might explain the shift,
and FOXA1, which is a pioneer factor. However, its average AUC for the high end QDAs was
above 0.9, while the average AUC for the lower end QDAs was ~0.69 and thus, the difference
between the two was greater than 0.2 and as such the algorithm classed it as traditional. 

A total of 11 TFs moved from “pioneer” to “partial pioneer”, including CEBPB and CEBPZ.
While CEBPA is known to be a pioneer (Lai et al., 2018), it is unclear whether all members of
the family share this function. 11 factors moved from “partial pioneer” to “poorly predicted”, 9
from “traditional” to “poorly predicted” and 1 from “pioneer” to “traditional”. 
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Figure 6. Clustering of TFs with the threshld-based algorithm. A. Bar plot showing the number of 
TFs in each cluster; B-E Line plots showing the change in AUC with QDA for the “pioneer”, “partial 
Pioneer”, “traditional” and “poorly predicted” clusters, respectively with the threshold method. F. TFs 
classed as “poorly predicted” by the threshold method, but not by the k-means method.



Of the 42 TFs in the k-means “pioneer” cluster, 30 maintained their cluster with the threshold-
based method, including CTCF, GATA1 and FOS. 21 of the 54 TFs in the k-means “partial
pioneer” group maintained their group, including SP1, Jun and KLF16. 11 “traditional” TFs
maintained  their  cluster  including  SMAD1,  PKNOX1  and  NR2C1.  Finally,  all  the  “poorly
predicted”  TFs  maintained  their  cluster  when  using  the  threshold  method.  The  Sankey
diagram is also available as a html widget in Figure A1 in the Appendix and a complete
comparison between the classification given to each TF by the two methods can be found in
Table A2 in the Appendix. 
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Chapter 5: Summary, conclusions and future work

5.1. Summary and conclusions

This dissertation set out to investigate the chromatin accessibility preferences of 135 human
TFs in the K562 cell line. First, bulk ChIP-seq data and DNase I data from ENCODE was
used to estimate the number of bound molecules (N) and the TF binding specificity factor (λ)
for  each  TF  with  the  R  Bioconductor  package  ChIPanalyser.  N  proved  to  be  generally
overestimated compared to experimental values, however this did not impact the prediction
accuracy of the model. Indeed, the overestimation was likely due to the model compensating
for other factors that influence TF binding,  such as cooperativity  or DNA methylation, but
which were not considered by the model. Furthermore, there was a large number of TFs that
had a N of 106, which is the default upper threshold for ChIPanalyser. However, it is possible
that this was not high enough for all TFs and had the threshold been set higher, the prediction
would have been higher as well. The λ for the majority of the TFs was 0.5-1, suggesting good
affinity of the TFs for their motifs. Some of the TFs had high λ values (see Table 2), indicating
low  affinity  for  their  motifs.  This  is  likely  due  to  them  binding  cooperatively,  which  was
something not considered by the current model. 

In order to investigate the preference of each TF for chromatin accessibility, the analysis was
run multiple times with different QDAs. Simply put, this means that each iteration of the model
considered the top 1-n regions of the DNase I data as accessible, regardless of the scores.
Thus, a QDA of 0 meant the top 1-0 (i.e. all) regions were considered as accessible, while a
QDA of 0.99 meant the top 1-0.99 (i.e. 1%) of the regions were considered as accessible.
Essentially, this meant that any TFs that were well predicted with the lower QDAs were not
affected by chromatin accessibility, since there was no distinction made between accessible
and inaccessible regions; the reverse is true for higher QDAs. ChIPanalyser has 12 goodness
of fit metrics incorporated  (Martin and Zabet, 2020), however the best ones to use for this
type of data are MSE and AUC (Martin and Zabet, 2020) and therefore, they were used to
determine the accuracy of the model. 

In order to gain a better overview of TF accessibility preferences, the TFs were clustered
based  on  the  trend  in  their  AUC over  all  QDAs.  Two  different  methods  were  used  and
compared, k-means and a bespoke threshold-based algorithm (Figure 1). Four clusters were
observed with both methods. The first cluster appeared to be unaffected by DNA accessibility
and remained well predicted regardless of QDA (Figures 5C, 6B) and was dubbed “pioneer
TFs”. The second cluster showed a slight preference for more open chromatin, but was still
relatively well predicted regardless of QDA (Figures 5D, 6C) and was dubbed “partial pioneer
TFs”.  The third cluster showed a strong preference for  open chromatin and was not  well
predicted when lower QDAs were used (Figures 5E, 6D) and was dubbed “traditional TFs”.
Finally,  the  fourth  group  was  poorly  predicted  regardless  of  QDA (Figures  5F,  6E).  The
“pioneer” and “partial” pioneer groups accounted for a much larger percentage of the data
than anticipated,  containing several  known pioneer  factors such as GATA1  (Bossard and
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Zaret, 1998), Oct4 (Soufi et al., 2015; Yu and Buck, 2020), NFYA/B (Oldfield et al., 2014) and
forkhead TFs (Cirillo et al., 2002; Zaret and Carroll, 2011; Zaret and Mango, 2016). In addition
to known pioneers, these groups also contained some known pioneer co-factors such as c-
MYC (Soufi, Donahue and Zaret, 2012). This is due to the model not being able to distinguish
between pioneers and their co-factors. Thus, some of the other TFs in these clusters are
potentially pioneer co-factors, explaining the unusually large size of the clusters. 

When  using  the  threshold-based  algorithm to  cluster  the  TFs,  the  “pioneer”  and  “partial
pioneer” clusters were significantly reduced, while the “traditional” cluster gained some TFs
bringing them more in line with the consensus of there only being a small number of pioneer
factors. 30 TFs were classed as “pioneer” by both including CTCF, GATA1 and FOS, while 11
“traditional”  factors  maintained  their  cluster  across  the  two  methods,  including  SMAD1,
PKNOX1 and NR2C1. However, this came at the cost of many TFs being sorted in the “poorly
predicted” group despite being better suited to the “partial  pioneer” or “traditional” groups,
based on their AUC trends (Figure 6F). This could potentially be rectified by calculating the
threshold for a TF being well predicted dynamically, instead of using a hard threshold. 30 TFs
were classed as “pioneer” by both including CTCF, GATA1 and FOS, while 11 “traditional”
factors maintained their  cluster across the two methods,  including SMAD1, PKNOX1 and
NR2C1.

5.2. Future work

This work prompts many potential future investigations, both to improve upon this work and to
expand its scope. One limitation of the current implementation of ChIPanalyser is that is does
not consider cooperative binding (Martin and Zabet, 2020) and some TFs cannot bind well on
their own (Ravasi et al., 2010). For example, E2F8 was poorly predicted by ChIpanalyser and
some members of the E2F family are known to bind cooperatively and have low affinity for
DNA when on their own (Zheng et al., 1999). 

5.2.1. Optimising the current analysis

A few parameter optimisations could be made to improve on both the ChIPanalyser and the
clustering analyses, which due to time constraints, were not included in this thesis. As shown
in figures 5F & 6E, there were a number of TFs that were poorly predicted by ChIPanalyser.
There are a number of  potential  factors influencing this,  and some could be mitigated by
tweaking some of the parameters of the analysis. One example would be to rerun the analysis
for the poorly predicted TFs with another PWM motif. Due to the size of the data, it was not
possible to select the optimal PWM for each TF and this might have negatively impacted the
predictions  in  some  cases.  Another  would  be  to  rerun  the  analysis  with  a  higher  upper
threshold for the number of bound molecules, which may result in better prediction of some
TFs. Moreover, multiple replicates for the same TFs were merged where available. This was
done for simplicity and speed, considering the large quantity of date that was analysed. An
alternative would be running the analysis on each individual replicate. 
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As  discussed,  the  “pioneer”  and  “partial”  pioneer  groups  were  unexpectedly  large,  in
contradiction of the general consensus of only a small subset of TFs having pioneer function.
This indicates that there might be some bias in the analysis. One such bias could be the use
of DNase I data as a determinant of accessibility, as the assay accounts for relatively large
genomic regions and thus some accessible sites might be “hidden” within larger surrounding
regions of inaccessible DNA, thus giving the appearance of TF binding in dense chromatin.
One way to mitigate this would be to use another type of accessibility data, such as MNase-
seq, to rerun the analysis, and compare it to the current results. 

Furthermore,  another potential  bias could be the use of  the top 60 highest  scoring peak
regions  when  training  and  validating  the  model.  TFs  usually  bind  at  highly  accessible
promoter and enhancer regions that contain many binding sites for many TFs. This might
result in the top 60 regions for some of these TFs not containing any dense chromatin, and
thus they appear to be unaffected by chromatin accessibility. Furthermore, one study found
that at low affinity sites, the binding of CTCF was impaired by nucleosomes (Teif et al., 2014;
Wiehle  et  al.,  2019) This  bias  could  be overcome by performing the  validation  on lower
scoring regions which are more likely to contain some dense chromatin. If the AUC trends
persist, then it is likely that the TF is indeed able to bind dense chromatin.

5.2.2. Expanding the scope of the analysis

There are many further avenues of investigation which were opened up by this research.
First,  there  are  several  more  human  cell  lines  for  which  ChIP-seq  data  is  available  on
ENCODE, and with the release of ENCODE phase 3 (Abascal et al., 2020), more data for the
K562 cell  line  has become available  as  well.  Incorporating  them into  the  analysis  would
provide a more complete picture of TF binding in humans, how it is affected by chromatin
accessibility and how it varies between different tissues. Furthermore, cooperativity between
TFs  is  a  well-established  phenomenon  (Villar,  Flicek  and  Odom,  2014) and  a  full
understanding of TF binding cannot be gleaned without taking it into account. The underlying
framework for modelling cooperativity into ChIPanalyser already exists (unpublished work),
however it has yet to be implemented into the package. Incorporating it into the analysis could
both improve the predictive power of the model,  as well  as provide new insights into the
interactions between TF when binding to the genome. Furthermore, this could also improve
the  parameter  estimation  and  bring  the  estimates  for  N  more  in  line  with  experimental
evidence,  by  removing  the  need  to  compensate  for  lower  binding  affinity  by  predicting
increased TF concentrations.

Secondly, it has been established that CpG methylation plays a role in TF binding (Yin et al.,
2017). However, much like is the case with DNA-accessibility, CpG methylation impacts TFs
differently. Some TFs, such as ETS  (Gaston and Fried, 1995) and CTCF  (Hnisz, Day and
Young, 2016) are inhibited by CpG methylation at their motifs, while others, such as YY1
(Gaston and Fried, 1995) and SP.1  (Harrington  et al.,  1988) remain unaffected. Moreover,
some TFs  such as KLF4 preferentially bind the methylated versions of some motifs, while
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preferring the unmethylated form of others (Hu et al., 2013). Thus, the methylation preference
of TFs merits further investigation. Furthermore, some pioneer factors such as FOXA2 were
found to promote demethylation around their binding site (Donaghey et al., 2018), suggesting
that  a  possible  mechanism  for  pioneer  activity  is  promoting  demethylation.  It  would  be
interesting  to  compare  the  methylation  preference  profiles  of  TFs  to  their  accessibility
preference profiles and investigate how they correlate. Bisulfite sequencing data is widely
used for methylome studies  (Grunau, Clark and Rosenthal, 2001) and similarly to DNase I,
there are many publicly available datasets. Thus, ChIPanalyser could be used to perform a
similar analysis to what has been described in this thesis, using bisulfite data. 

This project has considered the relationship between TF binding and DNA accessibility and
has revealed the chromatin accessibility preferences of 135 human TFs in the K562 cell line.
Of these, 96 were identified as known or putative pioneer factors and co-factors, and thus
raised further questions about the mechanisms of TF-DNA interactions. 
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