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Abstract. In this note, we unify and extend various concepts in the area of G-complete
reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–
Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an
action of a group on the spherical building of the identity component ofG.We show that other
variations of this notion, such as relative complete reducibility and σ -complete reducibility,
can also be viewed as special cases of this building-theoretic definition, and hence a number
of results from these areas are special cases of more general properties.

1. Introduction

This paper concerns the notion of complete reducibility in the theory of reductive
algebraic groups. LetG be a reductive algebraic group, defined over an algebraically
closed field, and to begin let us assume that G is connected. Following Serre [15],
a subgroup H of G is called G-completely reducible if, whenever H is contained
in a parabolic subgroup P of G, it is contained in a Levi subgroup of P . This
fundamental notion directly generalises the concept of a completely reducible H -
module (the case that G is a general linear group), and has proved highly fruitful
in streamlining results in the theory of algebraic groups. As well as having direct
applications to the subgroup structure of G, see for instance [11,20], it relates
closely to the semisimplicity of subgroups on G-modules [16, §5.2], and provides
connections with the related notion of strongly reductive subgroups and geometric
invariant theory [4,13].

Because of these connections, complete reducibility extends naturally to non-
connected reductive groups G [4, §6], replacing parabolic subgroups and Levi sub-
groups with so-called R-parabolic subgroups and R-Levi subgroups (see Sect. 2 for
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definitions). By placing restrictions on the parabolics and Levis under considera-
tion, we also obtain generalisations which we shall discuss shortly. The purpose of
this note is to show that these generalisations are all special cases of Serre’s original
building-theoretic concept, and that results in each area can therefore be viewed as
special cases of more general phenomena.

Let X be an arbitrary spherical building, [21]. A subset Y of X is said to be
convex if whenever two points ofY are not opposite in X , thenY contains the unique
geodesic joining these points. The vertices of X can be labelled in an essentially
unique way via an equivalence relation, cf. [16, §2.1.2]; the type of a vertex is its
label. An automorphism α of X is said to be type-preserving if x and α(x) have the
same type for all vertices x of X .

Now let X = X (G◦) be the spherical Tits building of the identity component
G◦ of a reductive algebraic groupG, [21]. Recall that the simplices in X correspond
to the parabolic subgroups of G◦ and the vertices of X correspond to the maximal
proper parabolic subgroups of G◦, see [16, §3.1].

By an action of a group � on a spherical building X we mean an action on X
by simplicial building automorphisms. In that case let X� be the fixed point subset
of the action of �, i.e. the subset of all �-stable (thus �-fixed) simplices in X and
note that this subset is always convex. If the action of � is type-preserving then X�

is a subcomplex, else it is only a subcomplex of the barycentric subdivision of X ,
[16, §2.3.1].

By an action of a group� on the reductive groupG, wemean an action such that
the induced action on the spherical building of G◦ is simplicial. For G connected,
abstract automorphisms of G do give rise to such automorphisms on the building
of G, see [19].

Our starting point is the following fundamental definition of Serre.

Definition 1.1. [16, §2] Let X be a spherical building. A convex subset Y is X -
completely reducible (X -cr for short) if for every y ∈ Y there exists a point y′ ∈ Y
opposite to y in X . An action of a group � on X is called completely reducible if
the fixed-point subset X� is completely reducible. If X = X (G◦) is the spherical
building ofG◦ for a reductive groupG, then an action of� onG is called completely
reducible if the induced action on X is completely reducible.

In [16], Serre concentrated mainly on the case that Y = X (G◦)� with � acting
by type-preserving automorphisms. It is useful to relax this condition, for instance
if G is not connected then G itself can induce automorphisms of X (G◦) which are
not type-preserving; the next example is a basic illustration of this. However even
when G is not connected, it turns out that a subgroup H of G is G-completely
reducible in the usual sense if and only if X (G◦)H is completely reducible [4,
Proposition 6.16].

Example 1.2. Let G := G◦〈γ 〉 ≤ Aut(G◦), where G◦ is simple of adjoint type and
γ is a non-trivial graph automorphism of G◦. Then the induced action of � = 〈γ 〉
on the building X (G◦) of G◦ is not type-preserving. Thanks to [18, Theorem 7.2],
γ stabilizes a Borel subgroup of Go . If γ also stabilises a maximal torus of a stable
Borel subgroup it is called quasi-semisimple. In that case the G-conjugacy class
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of γ is closed in G, owing to [17, Corollaire II 2.22]. It follows from [3, Theorem
9.3] that � = 〈γ 〉 is G-completely reducible. Thus � acts completely reducibly on
X (G◦) in the sense of Definition 1.1, by [4, Proposition 6.16].

In general there may be elements in a non-connected group G that induce non-
quasi-semisimple automorphisms of G◦. For instance, let G = Aut(G◦), where
G◦ is an adjoint simple group of type D4 over an algebraically closed field of
characteristic 3. There are exactly two conjugacy classes of cyclic groups of order
three generated by outer automorphisms in G. Let γ1 and γ2 be representatives of
the respective unipotent G-classes, as in [2, Proposition 4.1]. They both act non-
type preservingly on X (G◦). By [2, Proposition 4.1], the G-class of γ1 is closed
while the G-class of γ2 is not (it contains the former in its closure). So again by
[17, Corollaire II 2.22], γ1 is quasi-semisimple while γ2 is not. It follows from [3,
Theorem 9.3] that �1 = 〈γ1〉 is G-completely reducible while �2 = 〈γ2〉 is not.
Thus �1 acts completely reducibly on X (G◦) and �2 does not.

We now come to some variations on the idea of complete reducibility. In the
first instance, suppose that G is not necessarily connected, and let X (G) denote the
poset of R-parabolic subgroups of G (see §2), ordered by reverse inclusion. If G is
connected then R-parabolic subgroups coincide with parabolic subgroups, see [4,
§6] for a detailed discussion. While akin to a building, in this case X (G) fails to
be a spherical building, or even a simplicial complex in general (cf. [1, Example
2.3]). However, the crucial notion of opposition in X (G) still makes sense: Two
R-parabolic subgroups P, Q ∈ X (G) are opposite if and only if P∩Q is an R-Levi
subgroup of each. Thus the concept of complete reducibility extends naturally to
X (G).

Further variations of G-complete reducibility arise by restricting attention to
certain convex subsets of X (G◦) and their fixed points under �. In one direction,
since G-complete reducibility for non-connected groups is naturally defined in
terms of cocharacters of G, [4, §6], by restricting attention to cocharacters of an
arbitrary reductive subgroup K ofG, one arrives at the notion of relativeG-complete
reducibility with respect to K , see Definition 3.3.

In another vein, suppose G is connected and defined over a finite field and thus
equipped with a Steinberg endomorphism σ , i.e. a surjective endomorphism of G
that fixes only finitely many points, see [18] for a detailed discussion. Restricting
attention to σ -stable parabolic subgroups ofG and σ -stable Levi subgroups thereof,
we come to the notion of σ -complete reducibility from [10], seeDefinition 3.7. Note
that σ induces an automorphism of X (G◦) also denoted by σ (which need not be
type-preserving).

Our main result is now as follows.

Theorem 1.3. Let G be a (possibly non-connected) reductive algebraic group over
an algebraically closed field.

(i) The action of an abstract group � on G is completely reducible in the sense of
Definition 1.1 if and only if every member of X (G)� has an opposite in X (G)� .

(ii) If H ≤ NG(K ◦) for a reductive subgroup K of G, then H is relatively G-
completely reducible with respect to K if and only if the induced action of H
on X (K ◦) is completely reducible.
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(iii) Let G be connected and let σ be a Steinberg endomorphism of G. Let H be a
subgroup of G and let � be the subgroup ofAut(X (G)) generated by σ and the
image of H. Then H is σ -completely reducible if and only if � acts completely
reducibly on X (G).

Remark 1.4. • In the case that� is the image of a subgroup H ofG acting by con-
jugation, part (i) recovers [4, Proposition 6.16]. Our proof is similar, although
wemust stick to the language of normalising anR-parabolic subgroup orR-Levi
subgroup, rather than being contained in it.

• In part (i), one might reasonably expect that some information is lost when
passing from an action on the poset X (G) to the induced action on the building
X (G◦); our result tells us this is not so, as the natural definition of ‘completely
reducible action on X (G)’ is equivalent to Definition 1.1.

• In part (iii), we emphasise that there are no conditions whatsoever on the sub-
group H . By [10, Theorem 1.4] (see Theorem 3.8 below), in the special case
that H is σ -stable, it is G-completely reducible if and only if it is σ -completely
reducible: That is, H acts completely reducibly on X (G) if and only if � acts
completely reducibly on X (G). ThusTheorem1.3(iii) generalises [10, Theorem
1.4] to subgroups H which are not σ -stable.

2. Preliminaries

2.1. Notation and background

Throughout, we let k be an algebraically closed field, and G is a possibly non-
connected reductive algebraic group over k. We let Y (G) denote the cocharacter
group of G, consisting of morphisms of algebraic groups k∗ → G. The limit of a
morphism φ : k∗ → G is a morphism ̂φ : k → G extending φ, when this exists,
and in this case we write lima→0 φ(a) := ̂φ(0). Each λ ∈ Y (G) determines an R-
parabolic subgroup ofG via Pλ := {g ∈ G | lima→0 λ(a) ·g exists}, where the dot
denotes left-conjugation ofG on itself, and theR-Levi subgroup ofG corresponding
to λ is Lλ := {g ∈ G | lima→0 λ(a) · g = g}. We have Lλ = CG(λ(k∗)). If P
is an R-parabolic subgroup of G, then by an R-Levi subgroup of P , we mean a
subgroup Lλ such that P = Pλ. We still have a semidirect product decomposition
Pλ = Ru(Pλ)Lλ, with Ru(Pλ) = {g ∈ G | lima→0 λ(a) · g = 1}.

Let X (G) denote the poset of R-parabolic subgroups of G under reverse inclu-
sion. R-parabolic subgroups of G are parabolic in the sense that G/P is a complete
variety, but the converse is false if G is not connected [4, §6]. As mentioned in the
introduction, the notion of opposition still makes sense for X (G): Two R-parabolic
subgroups P and Q are opposite if they intersect in a common R-Levi subgroup.
This permits a natural definition of complete reducibility of subsets of X (G).

2.2. Completely reducible actions and equivariant morphisms

First we prove the counterpart of [4, Lemma 2.12] in our more general setting
of completely reducible actions. This is a vital ingredient for proving part (ii) of
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Theorem 1.3. Recall that a homomorphism of reductive algebraic groups is said to
be non-degenerate provided the identity component of its kernel is a torus.

Lemma 2.1. Let G1 and G2 be reductive algebraic groups, and let � act on G1
and G2. Let f : G1 → G2 be a surjective �-equivariant homomorphism.

(i) If � acts completely reducibly on G1 then � acts completely reducibly on G2.
(ii) If f is non-degenerate then � acts completely reducibly on G1 if and only if �

acts completely reducibly on G2.

Proof. Wemirror the proof of [4, Lemma 2.12] (cf. also [4, §6.2]). Let N = ker f .
By [4, Lemma 6.14], there exists a subgroup M of G such that G = MN , M ∩N is
finite and M and N commute. For part (i), suppose that� acts completely reducibly
on G1. Let μ ∈ Y (G2) such that � stabilises Pμ(G2). We can write nμ = f ◦ λ

for some λ ∈ Y (M) and some sufficiently large integer n. By [4, Lemma 6.15(ii)],

Pλ(G1) = f −1( f (Pλ(G1))) = f −1( f (� · Pλ(G1))) ⊇ � · Pλ(G1).

Since � acts completely reducibly on G1, there exists some u ∈ Ru(Pλ(G1)) such
that � · Lu·λ ⊆ Lu·λ(G1). By [4, Lemma 6.15(i)],

� · L f (u)·μ(G2) = f (� · Lu·λ) = f (Lu·λ) = L f (u)·μ(G2).

Thus � acts completely reducibly on G2.
(ii) Suppose now that � acts completely reducibly on G2. Let λ ∈ Y (G1) such

that � · Pλ ⊆ Pλ. Then Pf ◦λ = f (� · Pλ) = � · Pf ◦λ, by [4, Lemma 6.14(i)].
Since � acts completely reducibly on G2, there exists u ∈ Ru(Pf ◦λ) such that
� · Lu·( f ◦λ) ⊆ Lu·( f ◦λ). By [4, Lemma 6.15(iv)], there exists u1 ∈ Ru(Pλ) such
that f (u1) = u. We then have

� · Lu1·λ ⊆ f −1( f (� · Lu1·λ)) = f −1(Lu·( f ◦λ)) = NLu1·λ = Lu1·λ,

since N is contained in every R-Levi subgroup ofG1. Therefore, � acts completely
reducibly on G1. �

3. Proof of Theorem 1.3

We prove the individual parts of Theorem 1.3 separately, since the exact nature of
the acting group changes in each scenario.

3.1. G-complete reducibility and the building of G◦

Before proving part (i) of Theorem 1.3, we require one more piece of set-up. It is
easily seen that for an R-parabolic subgroup P of G we have P◦ = G◦ ∩ P and
Ru(P) = Ru(P◦). Moreover, thanks to [12, Proposition 5.4(a)], the normaliser
NG(P◦) is also an R-parabolic subgroup of G.
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Proposition 3.1. The action of an abstract group � on G is completely reducible
if and only if every member of X (G)� has an opposite in X (G)� .

Proof. Suppose that every member of X (G)� admits an opposite in X (G)� and
let P ∈ X (G◦)� . Then NG(P) is an R-parabolic subgroup of G [12, Proposition
5.4(a)] which is stabilised by �, hence by assumption it admits an opposite in
X (G)� . But then the identity component of this parabolic subgroup is a �-stable
opposite to P in X (G◦), as required.

Conversely, suppose that � acts completely reducibly on X (G◦), and let P be
an R-parabolic subgroup in X (G)� . Then P◦ is also �-stable, so by assumption
there exists an opposite parabolic subgroup Q ∈ X (G◦)� . Then the proof of [4,
Proposition 6.16] shows that NG(Q) in X (G)� meets P in a (�-stable) R-Levi
subgroup, hence is the required opposite to P in X (G)� . �

Although Proposition 3.1 is perhaps a natural statement to expect, it implies
at once the following statement for subgroups of G, which is not so clear a priori
(although it can be derived from known results: the reverse implication is given in
[2, Corollary 2.5], while the forward implication follows from a special case of [5,
Lemma 5.1]).

Corollary 3.2. Let H be a subgroup of a reductive algebraic group G. Then H
is G-completely reducible if and only if, whenever H normalises an R-parabolic
subgroup P of G, it normalises an R-Levi subgroup of P.

3.2. Relative complete reducibility

First we recall [6, Definition 3.1].

Definition 3.3. Let H and K be subgroups of G with K reductive. We say that H
is relatively G-completely reducible with respect to K if, whenever λ ∈ Y (K ) such
that H ≤ Pλ, there exists μ ∈ Y (K ) with Pλ = Pμ and H ≤ Lμ.

Armed with Lemma 2.1 we can now address part (ii) of Theorem 1.3.

Proposition 3.4. With the above notation, suppose H is a subgroup of G which
normalises K ◦. Then H is relatively G-completely reducible with respect to K if
and only if the conjugation action of H on K ◦ is completely reducible.

Proof. It is straightforward to see that H is relatively G-cr with respect to K if
and only if H is relatively G-cr with respect to K ◦. By this and Proposition 3.1, it
suffices to assume that K = K ◦.

Let N = NG(K ), C = CG(K ), and π : N → N/C be the natural quotient
map. From [9, Theorem 1], H is relatively G-cr with respect to K if and only
if π(H) is π(N )-cr. Now by Theorem 1.3(i), π(H) is π(N )-cr if and only if the
action of π(H) on π(NG(K )) is completely reducible. Now, the connected kernel
of the induced map K → π(K ) is Z(K )◦, a torus, and so by Lemma 2.1(ii), H acts
completely reducibly on K if and only if H (equivalently, π(H)) acts completely
reducibly on π(K ). The result follows. �
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Remark 3.5. Notice that in the setting of Proposition 3.4, the definition of a com-
pletely reducible action makes no reference to the ambient group G, essentially
requiring only the fact that G is an algebraic variety containing the group HK as
a closed subvariety. Thus the independence of relative complete reducibility from
the ambient algebraic group indicated in [6, Corollary 3.6] becomes an intrinsic
feature of the definition in this case.

This feature is demonstrated even more prominently in the following geometric
characterisation of relative complete reducibility, where, thanks to Proposition 3.4,
there is no longer any reference to an ambient reductive group G.

Let H be a subgroup of G and let G ↪→ GLm be an embedding of algebraic
groups. Then h ∈ Hn is called a generic tuple of H for the embedding G ↪→ GLm

if h generates the associative subalgebra of Matm spanned by H . We call h ∈ Hn

a generic tuple of H if it is a generic tuple of H for some embedding G ↪→ GLm ,
[7, Definition 5.4].

Relative complete reducibility has a natural characterisation in terms of K -
orbits in Gn , where K acts diagonally on Gn by simultaneous conjugation: Let
h ∈ Gn be a generic tuple for the subgroup H . Then H is relatively G-cr with
respect to K if and only if the K -orbit K · h is closed in Gn [6, Theorem 3.5(iii)].
Therefore in the case that H is also an algebraic group acting morphically on K ,
so that the semidirect product H � K is again an algebraic group, embedding this
into some large (arbitrary) reductive group G gives the following.

Corollary 3.6. Suppose that H is a linear algebraic group acting morphically on a
(not necessarily connected) reductive algebraic group K . Let h ∈ Hn be a generic
tuple for H. Then H acts completely reducibly on K if and only if the K -orbit K ·h
is Zariski closed as a subset of (H � K )n.

3.3. Complete reducibility and Steinberg endomorphisms

Let G be connected and let σ : G → G be a Steinberg endomorphism of G, i.e. a
surjective endomorphism of G that fixes only finitely many points, see [18] for a
detailed discussion. Steinberg endomorphisms of G belong to the set of all isoge-
nies G → G (see [18, 7.1(a)]) which encompasses in particular all (generalised)
Frobenius endomorphisms, i.e. endomorphisms of G some power of which are
Frobenius endomorphisms corresponding to some Fq -rational structure on G. We
recall the notion of σ -complete reducibility from [10].

Definition 3.7. Let σ be a Steinberg endomorphism of G and let H be a subgroup
of G. We say that H is σ -completely reducible (σ -cr for short), provided that
whenever H lies in a σ -stable parabolic subgroup P of G, it lies in a σ -stable Levi
subgroup of P .

The notions of G-complete reducibility, etc., can be extended to reductive
groups defined over arbitrary fields; see [16], [4, § 5]. The concept in Definition
3.7 is motivated as follows: If σq is a standard Frobenius morphism of G, then a
subgroup H of G is defined over Fq if and only if it is σq -stable and if so, H is
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G-completely reducible over Fq if and only if it is σq -completely reducible. The
following is the main theorem from [10]; it is a generalisation of a special case of
the rationality result [4, Theorem 5.8] to arbitrary Steinberg endomorphisms of G.

Theorem 3.8. ([10, Theorem 1.4]) Let σ be a Steinberg endomorphism of G and
let H be a σ -stable subgroup of G. Then H is σ -completely reducible if and only
if H is G-completely reducible.

We now come to part (iii) of Theorem 1.3.

Proposition 3.9. Let σ be a Steinberg endomorphism of the connected reductive
group G and let H be a subgroup of G. Let � be the subgroup of Aut(X (G))

generated by σ and the image of H. Then H is σ -completely reducible if and only
if � acts completely reducibly on G.

Proof. By definition of �, the fixed-point subcomplex X (G)� consists of those
σ -stable parabolic subgroups of G containing H . Thus the statement that every
member of X (G)� has an opposite in X (G)� is trivially equivalent to the statement
that whenever H lies in a σ -stable parabolic subgroup P of G, it lies in a σ -stable
parabolic subgroup Pop opposite to P; when this holds, H is contained in the
intersection of P and Pop, which is a σ -stable Levi subgroup of P .

Conversely, suppose that whenever H is contained in a σ -stable parabolic sub-
group P of G, it is contained in a σ -stable Levi subgroup L of P . Being contained
in L implies that H lies in the unique parabolic subgroup Q ofG whose intersection
with P is L . But since P and L are σ -stable, the image of Q under σ is again a
parabolic subgroup of G whose intersection with P is L; uniqueness now implies
that Q is σ -stable. Thus every member of X (G)� has an opposite in X (G)� . �

3.4. Complete reducibility for finite groups of Lie type

Suppose G is connected reductive and defined over a finite field, hence equipped
with a Steinberg endomorphism σ . The fixed point subgroup Gσ := {g ∈ G |
σ(g) = g} of σ is thus a finite group of Lie type. Likewise, for a σ -stable subgroup
M of G, let Mσ := M ∩ Gσ be its fixed-point subgroup. As a further variant
of the concepts above, it is natural to consider the following notion of complete
reducibility for the finite reductive groups Gσ .

Definition 3.10. Let σ be a Steinberg endomorphism of G and let H be a subgroup
of Gσ . Then H is Gσ -completely reducible (Gσ -cr for short) provided if H ≤ Pσ

for some σ -stable parabolic subgroup P of G, then H ≤ Lσ for some σ -stable
Levi subgroup L of P .

An easy application of Theorem 3.8 gives that the notion of Gσ -complete
reducibility is already captured by the usual concept in the ambient reductive group
G.

Theorem 3.11. Letσ be a Steinberg endomorphismof G and let H be a subgroup of
Gσ . Then H is Gσ -completely reducible if and only if H is G-completely reducible.
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Proof. If H is G-cr and H ≤ Pσ for some σ -stable parabolic subgroup P of G,
then by Theorem 3.8, there is a σ -stable Levi subgroup L of P containing H . Thus
H ≤ L ∩ Gσ = Lσ .

If H is not G-cr, then by Theorem 3.8, it is not σ -cr. Thus there is a (proper)
σ -stable parabolic subgroup P of G containing H but no σ -stable Levi subgroup
of P contains H . In particular, H ≤ Pσ , but H does not lie in Lσ for any σ -stable
Levi subgroup L of P . �

Theorem 3.11 allows us to derive statements forGσ -complete reducibility from
corresponding ones for the ambient reductive group G. Note that the concept of
Gσ -complete reducibility relies not just on the group structure of Gσ , but also on
information on the embeddingGσ → G. For instance, the isomorphismPSL2(4) ∼=
PSL2(5), respectively PSL2(7) ∼= PSL3(2), leads to two different collections of
‘completely reducible’ subgroups depending on whether we consider it as a group
in characteristic 2 or 5, respectively 7 or 2.

In our next example, instances of finite subgroups of G readily lead to (non)
Gσ -completely reducible subgroups of Gσ .

Example 3.12. Suppose k is of characteristic 2. Let G be a simple algebraic group
of type G2 over k. Let M be a maximal rank subgroup of type Ã1A1. In [5, §7] a
family of finite subgroups Ha of M was constructed for a ∈ k∗ with the property
that Ha is G-cr but not M-cr, [5, Proposition 7.17]. Since Ha is isomorphic to
the finite symmetric group S3 and a fixed a ∈ k∗ belongs to Fq for some suitable
power q of 2, we see that Ha belongs to Mσ , where σ denotes the standard Frobe-
nius endomorphism of G associated with the Fq -structure of G. It follows from
Theorem 3.11 that Ha is Gσ -cr but not Mσ -cr for a ∈ k∗.

Our next result gives a general Clifford Theorem for finite groups of Lie type.
Its proof is immediate from Theorem 3.11 and [4, Theorem 3.10].

Corollary 3.13. Let σ be a Steinberg endomorphism of G and let H be a subgroup
of Gσ and N a normal subgroup of H. If H is Gσ -completely reducible, then so is
N .

In particular, it follows from Corollary 3.13 that if H is a subgroup of Gσ so
that NGσ (H) is Gσ -cr, then so is H . The converse is less clear.

Let σ and τ be Steinberg endomorphisms of G so that Gσ ⊆ Gτ . Let H be a
subgroup of Gσ . Then by Theorem 3.11, H is Gσ -cr if and only if it is Gτ -cr.

Theorem 3.14. Let σ be a Steinberg endomorphism of G and let H be a subgroup
of Gσ . Then there exists a Steinberg endomorphism τ of G with Gσ ⊆ Gτ such that
H is Gσ -completely reducible if and only if NGτ (H) is Gτ -completely reducible.

Proof. Suppose that H is Gσ -cr. Then by Theorem 3.11 and [4, Corollary 3.16],
NG(H) isG-cr. Thanks to [4, Lemmma 2.10], there is a finitely generated subgroup
� of NG(H) with the property that � lies in the very same parabolic and Levi
subgroups of G as NG(H). In particular, since NG(H) is G-cr, so is �. As a
finitely generated subgroup of G, � is finite. Thus � ≤ Gτ for some Steinberg
endomorphism τ of G. Without loss we may also assume that Gσ ⊆ Gτ .
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Since � ≤ Gτ is G-cr, it is Gτ -cr, by Theorem 3.11.
Now let NGτ (H) = NG(H) ∩ Gτ belong to Pτ for some τ -stable parabolic

subgroup P of G. Then � ≤ NG(H) ∩ Gτ = NGτ (H) ≤ Pτ ≤ P . Since � is
Gτ -cr, there is a τ -stable Levi L of P so that � ≤ Lτ ≤ L . The properties of �

imply that NGτ (H) = NG(H) ∩ Gτ ≤ L ∩ Gτ = Lτ . Consequently, NGτ (H) is
Gτ -cr.

Conversely, if NGτ (H) is Gτ -cr, then H is Gτ -cr, by Corollary 3.13. Finally,
H is Gσ -cr by the comment above. �

The following is an immediate consequence of Corollary 3.13 and Theorem
3.14.

Corollary 3.15. Let σ be a Steinberg endomorphism of G and let H be a subgroup
of Gσ . Then there exists a Steinberg endomorphism τ of G with Gσ ⊆ Gτ such
that if H is Gσ -completely reducible, then CGτ (H) is Gτ -completely reducible.

3.5. Complete reducibility and building automorphisms

We present some complements to our main development. Let G be connected
reductive and let � be a group of building automorphisms of the building X (G) of
G (not necessarily type-preserving). If one restricts attention to �-stable parabolic
subgroups and their �-stable opposites, one obtains the following more general
notion.

Definition 3.16. Let H be a subgroup of the connected reductive algebraic group
G, and let � be a group of building automorphisms of X (G). We say that H is
�-completely reducible (�-cr for short) if, whenever H is contained in an�-stable
parabolic subgroup P of G, it is contained in a �-stable parabolic opposite to P .

Note that Definition 3.7 is just the special case � = 〈σ 〉 for a Steinberg endo-
morphism σ of G in Definition 3.16.

Then incursions into this concept may bemade analogous to the ones from Sect.
3.3. We indicate the counterpart of Proposition 3.9, which shows that Definition
3.16 is equivalent to X (G◦)� being X -cr, where � is the subgroup of Aut(X (G◦))
generated by� and the image of the subgroup H of G in question. The proof of the
latter applies mutatis mutandis arguing via �-stable opposite parabolic subgroups
in place of σ -stable Levi subgroups and is left to the reader.

Proposition 3.17. Let G be connected reductive and let H be a subgroup of G, let
� ≤ Aut(X (G)) and let � be the subgroup of Aut(X (G)) generated by � and the
image of H. Then H is �-completely reducible if and only if � acts completely
reducibly on X (G).

Proof. Suppose � acts completely reducibly on X (G), and suppose H ≤ P , a
�-stable parabolic subgroup of G. Then P is �-stable. So by hypothesis, � fixes
an opposite Q of P . In particular, Q is �-stable.

Conversely, suppose that H is �-cr. Let P ∈ X (G)� . So P is �-stable. Then
by hypothesis there is a�-stable opposite parabolic Q in X (G) containing H . Thus
Q is �-stable. �
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3.6. Complete reducibility for arbitrary k

If G is defined over an arbitrary field k, then the collection of k-defined parabolic
subgroups of G◦ also gives a spherical building (cf. [21, §5]), which we denote by
Xk(G◦). If k is algebraically closed, then we set X (G◦) = Xk(G◦).

In [21, §5], Tits showed that for G = G◦, if Xk(G) is irreducible and of rank
at least 2 then every automorphism of Xk(G) arises via some natural constructions
involving the algebraic group G: the building automorphisms induced by isogenies
of G and by field automorphisms of k.

The last part of Definition 1.1 extends naturally to this rational setting.

Definition 3.18. [16, §2] Suppose G is defined over an arbitrary field k. Let
X = Xk(G◦) be the spherical building of G◦. Then an action of � on G by
k-automorphisms is called completely reducible if the induced action on X is com-
pletely reducible (in the sense of Definition 1.1).

Let Xk(G) be the set of R-parabolic k-subgroups ofG. Note that by assumption
� acts on Xk(G). For the rational counterpart of Definition 3.3, we replace the R-
parabolic and R-Levi subgroups by k-defined R-parabolic and k-defined R-Levi
subgroups, see [6, Definition 4.1]. We obtain the following rational counterparts of
Theorem 1.3(i) and (ii).

Theorem 3.19. Let G be a (possibly non-connected) reductive algebraic group
defined over k.

(i) The action of an abstract group � by means of k-automorphisms on G is com-
pletely reducible in the sense of Definition 3.18 if and only if every member of
Xk(G)� has an opposite in Xk(G)� .

(ii) Let K be a k-defined reductive subgroup of G and suppose that NG(K ◦) and
CG(K ◦) are k-defined. If H ≤ NG(K ◦), then H is relatively G-completely
reducible over k with respect to K if and only if the induced action of H on
Xk(K ◦) is completely reducible.

For the proof of (i), follow theproof ofProposition3.1, replacing theR-parabolic
subgroups by k-defined R-parabolic subgroups. Note that NG(P) is also k-defined,
by the proof of [12, Proposition 5.4(a)]. For (ii) replace Theorem 1.3(i) by part (i)
and [9, Theorem1] by its rational version [9, Theorem7.5]. The rational counterpart
of Lemma 2.1 does not hold in general, see [23, Example 3.10]. However, the map
K → K/Z(K ) is central. Without loss, we can assume that K is connected. Then
the image resp. preimage of a k-defined parabolic subgroup is k-defined, by [8,
22.6 Theorem(i)]. Clearly, the image of a k-defined Levi subgroup is k-defined.
The preimage of a k-defined Levi subgroup is k-defined, by [8, 22.5 Corollary].
This suffices to adapt the proof of Theorem 1.3(ii) to the rational setting.

3.7. Complete reducibility and the topology of fixed-point subcomplexes of X (G◦)

In our final section we consider the connection between the notion of G-complete
reducibility and the geometric realisation of the building of G◦ due to Serre [14,
Theorem 2].
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As before, let X = X (G◦). Take a Levi subgroup L of G and set s(L) := XL

denote the subcomplex of X consisting of the parabolic subgroups ofG◦ containing
L . For every parabolic subgroup P in s(L) there is a unique Levi subgroup M of
P with L ⊆ M . Moreover, the parabolic subgroup P− such that P ∩ P− = M is
also contained in s(L), so that P has an opposite in s(L); thus s(L) is X -cr. This
argument also shows that each P in s(L) has a unique opposite in s(L), and this
implies that the geometric realisation of s(L) has the homotopy type of a single
sphere (cf. Theorem 3.20(v) below). Serre calls the subcomplexes s(L) of X Levi
spheres, [14, §2] or [16, 2.1.6, 3.1.7]. The following is part of [14, Theorem 2] in
our context and applies to each of the notions of complete reducibility discussed
above, thanks to Theorem 1.3.

Theorem 3.20. [14, Theorem 2] Let G be reductive and defined over the field k,
X = Xk(G◦) and let � ≤ Aut(X). Then the following are equivalent:

(i) � acts completely reducibly on X;
(ii) X� is X-completely reducible;
(iii) X� contains a Levi sphere of the same dimension as X�;
(iv) X� is not contractible (i.e. does not have the homotopy type of a point);
(v) X� has the homotopy type of a bouquet of spheres.
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