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Abstract

The purpose of this research is to develop volatility and mortality models that could

be used in asset liability management in pension schemes. This study provides a

comprehensive study of various advance multivariate DCC GARCH models which

are used for construction of optimal portfolios in modelling asset return covariances.

The effectiveness of using parametric copula in estimating portfolio risk measures are

evaluated such that the DCC models are found to have better performance than any

other parametric copula models. Several models were developed as extensions to

existing mortality models in a single and multiple population, in particular the Lee

Carter (LC) mortality model and the Common Age Effect (CAE) model by proposing a

modification of singular value decomposition (SVD) and principal component analysis

(PCA) methods. Complementing this, a further study on mortality model by applying

a range of multivariate DCC GARCH models in modelling the mortality dependence

across multiple populations is evaluated.

Finally, the proposed models of volatility and mortality are applied to the pension

schemes. The volatility models were fitted using multivariate DCC GARCH model

to obtain the investment returns and the cohort actuarial tables were produced based

on LC approach for the out-of-sample period in the UK population. The fits from

the modelling of volatility and mortality were analysed on defined benefit (DB),

defined contribution (DC) and hybrid schemes to evaluate the fund value and actuarial

liabilities. This research underlined the important role that econometric volatility

modelling and stochastic mortality modelling can play in managing pension schemes

to ensure that future liabilities can be meet.
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Chapter 1

Introduction

Retirement may be viewed as a time for joy with family and friends after working

for years but over time it may create a burden due to financial uncertainty. When we

retire, we need a secure source of income to ensure that it is sufficient to maintain the

standard of living just as before retirement or some may settle for a adequate standard

of living, that may not be the same standard as when they were working. A pension

is a regular payment made during a person’s retirement from an investment fund to

which the person and/or their employer have contributed during their working life.

Commonly, it is made by the employer to people reaching the retirement age as one of

the ways to provide the retirees with a fixed income when they are no longer working,

due to advanced age or disability or loss of income (death of wage earner in the

family). Pensions seek to give protection and smoothing the consumption in old age,

since the pension payment corresponds to a lifetime benefit for the employees. Before

retirement, people normally work for 40 to 50 years. They are no longer employed

after, and thus rely on the pension given by the employer and/or personal savings

during the pre-retirement period. Almost half of pre-retirees admit they save nothing

1
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for retirement whereas two-thirds are counting on pension for income, government

benefits and the rest plan to work part-time [72]. It is worrying when people do not

save for retirement, yet expect income for when they retire.

Prior to retirement, each individual should have their own saving apart from

monthly contributions for the pension. For example, individuals may invest voluntarily

in financial markets or save in the form of buying properties or jewellery. This is

important since many studies have estimated that 70% of pre-retirement income

is needed to maintain current standard of living in retirement [94], [54], [108] and

[6]. Saving for retirement is essential for everyone due to increasing life expectancy,

reducing employer benefits, lower market returns and increasing costs of living (due to

expensive medical costs, long term care and expensive hobbies such as golf, travelling,

etc.). Pre-retirees must save accordingly, based on their future consumption plan, so

that they would be able to cover their living expenses in retirement or else they have to

extend their working years or live in poverty. The burden of pre-retirement savings is

now shifted from the sponsoring employer to the employees. The pension received

from the employer may not be sufficient to cover future consumption. Therefore, each

individual must plan, save and invest wisely before approaching retirement.

A pension system tries to smooth consumption between the pre-retirement and

post-retirement years so that individuals would be able to maintain their lifestyle

in retirement. The government is playing its roles to make sure everyone has basic

standard of living in retirement. Frequently, governments support pension benefits

directly or require employers’ participation in pension schemes. The government may

have laws to ensure that compulsory contributions are made by individuals and/or

sponsoring employers prior to retirement. The law is made to reduce the increasing
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cost of pension and protect the pension benefits provided. During the pre-retirement

period, individuals often consume as much as possible while forgetting future needs.

The government enforcement to participate in the pension scheme can prepare the

employee for the retirement.

In the United Kingdom (UK), the government has enforced auto enrolment as an

initiative to help people save for retirement. The employer is required by law to make

contributions and automatically enrol its workers into a pension scheme. This means

that, for every employee, a portion of their salary will be taken as a way to save money

for their retirement. All of the contributions will be invested and the member will get

the money when they retire. This is beneficial to the employees since many people

do not save enough for retirement or take advantage of private pension schemes

when the life expectancy keeps increasing. It is an effective way to increase employee

participation and savings for pensions [68].

In general, there are three main types of funded pension schemes; the defined

benefit (DB), the defined contribution(DC) and hybrid schemes. DB schemes promised

a pension based on a fixed formula, involving the numbers of years in the scheme, the

member’s age and the member’s final salary. Individuals who belong to DB pension

schemes can plan more easily for their retirement, as they know in advance how

much income they will receive every month until they die. Employers have turned to

DC pension schemes as a way of offering pension savings to their employees while

controlling costs. DC pension schemes offer no retirement income security in advance

of retirement. Contributions to the DC scheme are made by both the employee and the

employer. The employer’s contribution is guaranteed but the future benefit is based on

future investment return. A financial market crash at the time of retirement can result
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in unanticipated poverty, as the value of accumulated savings plummet. Whereas, a

hybrid pension scheme is a combination of the two schemes with a guarantee that the

benefit’s would not fall below a certain threshold value. Therefore, the members will

have protection against a bad investment performance.

Individuals should understand the basic investment principles so that they are

aware of the various investment options available. The shift from DB to DC schemes

has seen the responsibility for retirement planning transfer to the employee [20].

Individuals must decide when to start save for retirement, the amount to save and how

they should invest. Whereas for DB members, they must decide whether their current

pension scheme is sufficient to provide retirement income or should they contribute to

another retirement saving plan. Individuals who lack knowledge in financial markets

and pension schemes will not know how to plan properly and will not know the

best pension scheme that suits their retirement goals. With insufficient savings, the

employees are unable to achieve a balance between the accumulation phase during

their working period and future consumption in post-retirement.

It is challenging to manage retirees’ financial resources with the increasing life

expectancy, decline in the DB scheme and unanticipated events (i.e. health issues) [36].

The medical costs are rising which can cause a big hole in the retirees’ pocket while

the income received in retirement is lower compared to during their working period

[116]. The need for a professional financial adviser is crucial to ensure that the standard

of living just before retirement can be maintained. Practitioners or pension fund

managers, who are advising pension schemes, are responsible for, making decisions

relating to investment and mortality experience of the fund. An appropriate measure

of mortality improvement is essential as it will affects the premiums and reserves of
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annuity and pension products which eventually can cause financial distress to pension

providers.

In this thesis, the study of volatility and mortality modelling will enable the pension

scheme to choose the best models that will help them to meet the pension liabilities.

This study analyses the plethora of advance multivariate econometric models which

forecast the mean and variance-covariance of asset returns to create optimal asset

allocation models for pension schemes. Different mortality models involving single

and multiple populations are used in determining the future life expectancy.

Good volatility and mortality modelling in a pension scheme is very important as it

will help the pension providers in making investment decisions and projecting future

mortality as close as possible to the actual ones to ensure the pension liabilities can be

meet and avoiding the schemes closing. The on-going economic instability worldwide

has made pension schemes face losses, and therefore, this study will provide insights to

the pension providers on how to re-examine their asset allocation strategies to provide

the best pension schemes to retirees. This study will provide such an overview and

comparison which is an important contribution to the pension literature.

1.1 Problem Statement

Asset Liability Management (hereafter, ALM) is an approach to managing assets

and liabilities through examining pension risks for funding, benefit pay out, and

asset allocation in a pension scheme. It is a form of risk management, whereby the

sponsors try to hedge the risk of failing to meet the pension obligations. It involves a

comprehensive approach in analysing risk and return in terms of the overall pension

scheme’s impact. Pension schemes involve a long term investment decision to meet
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the pension liabilities and therefore strategic asset liability management is essential.

However, the current pension scheme’s system does not seem to be utopian at all.

Individuals should understand the basic investment principle so that they are aware of

the various investment options available and know how to allocate their portfolio’s

assets.

While maximising wealth, in ALM, investors are also trying to limit its exposures

to risks and possible future losses. To fund the pension schemes, a reasonable asset

allocation strategy must be chosen by investing a proportion of the fund in different

asset classes to diversify the risks.

In general, there are two types of risks involved which are intrinsic and non-systematic

risks. Intrinsic risk refers to uncertainty in share value as the price fluctuates according

to the market and this type of risk is not easily eliminated through diversification

strategies. Whereas, the non systematic risks can be eliminated through asset classes

diversification. For instance, currency risk can be eliminated by diversifying through

assets in different countries in the world.

There are three main asset classes, each with different levels of risk and return, which

are equities, fixed income (bonds) and cash equivalents (money market instruments).

Each asset in the pension’s portfolio behaves differently, depending on the market and

economic conditions, hence playing an important role in determining the portfolio’s

overall risk and return from investment.

Every individual have different specific goals which can be an early retirement,

paying children’s university education or buying properties. A retirement goal might

be different in terms of when to retire, their consumption preferences and future

lifestyle. From an investors’ view, goals generally involve achieving the target benefit
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in providing pension to its members. Once the goals are clearly specified, then the

investment objectives can be formulated. As a result, ALM studies, especially relating

to asset pricing, pension liabilities, portfolio selection and risk management are growing

in importance.

Pension schemes depend on steady stock market returns to ensure that they will be

able to pay its members. Investing in the stock market may help in achieving a retiree’s

financial objectives in a short period of time as long as we buy the right stock at the right

time. But, no one knows which stock is the best or even the best time to invest. And, if

the stock price falls (lower realised return), it is hard for the pension schemes to meet

their financial obligations. In extreme cases, the pension benefits may be reduced or

the scheme winds up. Moreover, the ongoing financial crisis has made many corporate

pension schemes record losses and made the sponsors re-examine their asset allocation

strategies in the pension scheme by considering the risk exposures to the schemes. As

a result, the pension management studies especially relating to portfolio’s investment

are growing significantly. The investment strategy in a portfolio (i.e., the decision

on how to invest the accumulated fund across different asset classes) will influence

the volatility of the pension fund and consumption in different time periods [10], and

hence determine the scheme’s capabilities in providing pension benefits to its members.

Therefore, a flexible decision-making tool for pension schemes is needed which can

appropriately describe the individual’s preferences and helping the members to make

an optimal decision that maximises their expected utility.

This study makes several contributions to the literature. First, this study involves

different ways of modelling volatility and mortality. Different model specifications

using multivariate GARCH processes are studied in modelling the mean returns
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and variance-covariance matrices. From the volatility modelling, optimal portfolio is

constructed using different optimisation models which are able to capture different

characteristics in the data and therefore improving the portfolio performance. This

study, therefore, will provide useful insights for those wishing to explore the different

GARCH models that are available and use a dynamic approach for asset allocation

and portfolio construction purposes. This study develops alternative estimation

methodologies with the modification of Singular Value Decomposition (SVD) and

Principal Component Analysis (PCA) in modelling the mortality rates in individual

and multiple population. This study also introduces the use of DCC GARCH models

to fit and forecast mortality rates. Finally, this study evaluates the pension schemes

with regard to the proposed volatility and mortality models.

1.2 Research Objectives

1. To analyse multivariate GARCH models which forecast the mean and variance-covariance

of the returns and construct optimal portfolios based on different optimisation

models and comparing the out-of-sample performance.

2. To examine the effectiveness of using parametric copula GARCH in estimating

portfolio risk measures over the sophisticated DCC model.

3. To evaluate various mortality models in single and multiple populations that

produces a better mortality forecasts using different approaches.

4. To evaluate the pension schemes’ funding level with regard to the management

of assets and liabilities.
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1.3 Structure of the Thesis

The remainder of the thesis is organised as follows: Chapter 2 reviews the relevant

literature review including financial econometric models, portfolio optimisation

strategies, mortality forecasting and various types of pension schemes that have been

used widely in the literature and its empirical application. This chapter will discuss

how practitioners and academics have traditionally addressed the main problems of

asset liability modelling.

Chapter 3 reviews the econometric models used to model the asset returns

covariances and describe the portfolio optimisation strategies to construct optimal

asset portfolios. This chapter will look at how the model evolves and give details on

the data used for the study, empirical analysis and results of the proposed models and

methods.

In Chapter 4, the feasibility of using stochastic mortality modelling methodology in

constructing the mortality forecasts for the single and multiple population is discussed.

This chapter discusses different approaches relating to the modelling of mortality rates

and the possible extensions of this problems that could arise when considering realistic

scenarios.

Further investigation of the mortality modelling using multivariate econometric

modelling is discussed in Chapter 5. The DCC GARCH and copula approach are used

to model the mortality rates in a multiple population. Chapter 6 combines the research

analysis by matching the asset with the liabilities. In here, the application of volatility

and mortality models will be evaluated on the pension fund.
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Finally, in Chapter 7, some concluding remarks are presented and potential future

research is discussed.



Chapter 2

Literature Review

2.1 Background

Pension schemes are among the largest institutional investors. In 2017 the OECD

countries had their highest level of pension assets amounting to over $40 trillion with

liabilities several times larger [96]. As the pension schemes continue to account for

a steadily growing share in the market, it is essential to understand their behaviour

in determining the allocation of asset for retirement savings’ investment. It is widely

known that the ageing population issue is threatening the global pension systems’

sustainability.

Previously, ALM has never been an issue for pension schemes but with the current

environment mentioned earlier, it becomes a great tool in managing the assets and

liabilities. Moreover, pension schemes face a variety of risks including investment risk,

longevity risk, financial risk, salary risk, mortality risk, interest rate risk and inflation

risk. Therefore, pension scheme’s need to solve the portfolio selection problem which

maximises the expected utility of a member’s wealth with the given risks. Through

11
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ALM, the investors are able to match future liabilities with future cash flow streams of

assets in finding investment strategy which maximises or minimises the objectives of

the retirees.

Asset allocation is a way to describe how much should be invested into each class

of asset within a portfolio investment. An asset class is a broad group of securities

or investments that have similar characteristics that tend to react similarly in the

marketplace and are subject to the same laws, forces and regulations. Typical asset

classes are equities, bonds, cash and property which have different levels of risk and

return. The risk and return in each of the asset class is different which can be illustrated

in Figure 2.1.

Figure 2.1. The risk return spectrum

Investments can go up or down depending on the asset allocation in the portfolio

and how the markets are performing. It is a time-honoured investment strategy

whereby it shows how the investor of pension schemes pursues their objective of

outperforming the market by allocating each asset in an investment portfolio to meet

the expected future liabilities. The goal is to create a balanced mix of assets which

have the growth potential that satisfies the investor’s risk preferences and investment

objectives.
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Asset diversification is about reducing risk by spreading the portfolio investments

across different assets class. This is true because by diversifying assets in each portfolio,

the volatility within the portfolio is reduced. If one of the asset classes does not perform

well in the market, the other asset class might perform better. A young investor with

a greater risk preference may want to invest his assets in a higher potential growth

asset as he would have benefited from the long term growth. In contrast, an investor

approaching retirement will choose more conservative investments that have a steady

return and risk. A conservative portfolio normally has a higher percentage of risk free

bonds and cash, while a risky portfolio, aiming for a higher return, will have more

stocks and risky bonds. A risky portfolio tends to produce higher returns over time

but have a significantly higher volatility as compared to the conservative portfolios.

Through asset diversification, the volatility in the portfolio may be reduced. Each

asset behaves differently in different market and economic conditions and hence asset

allocation is essential in determining the investment portfolio’s returns. The overall

risk can be reducing in terms of the return’s variability for a given level of expected

return. The asset allocation in global pension schemes is changing remarkably. The

evolving landscape for pensions schemes that has been influenced by a combination

of financial market performance, regulation, changes to accounting standards and

increasing longevity has driven many schemes to de-risk and fundamentally change

their investment strategies [95].

A recent global pension asset study by Towers Watson has analysed 22 major global

pension markets including Australia, India, South Africa, Spain, Switzerland, UK and

US in terms of their asset allocation, asset size and DB and DC share of pension’s assets

[136]. At the end of 2017, the total pension assets were estimated around USD 37.78
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billion, representing a 3.1% increase as compared to USD 36.6 billion at the end of 2016.

The seven largest markets (Australia, Canada, Japan, UK, Netherlands, Switzerland

and United States) has allocated its assets about 46% in equities, 27% in bonds, 2% in

cash and 25% in other assets (including property and other alternatives). According

to the consultancy’s European asset allocation survey, since 1996, the pension funds

across Europe have continued to reduce or maintain their exposure to equities, bond

and cash as they bid to limit funding level volatility [89]. The investment’s portfolios

are diversified into other asset classes such as hedge funds or commodities but equities

and bonds still remain as the main key investment. In 2015, Australia, the UK and the

US have continued to have above average equity allocations, whilst Japan, Netherlands

and Switzerland have more conservative investment with higher allocation to bonds.

Over the past 10 years, DC assets have increased at a rate of 5.6% per annum while DB

assets have grown at a slower pace of 3.1% per annum.

Figure 2.2. The global pension asset allocation and DB/DC asset split. Source: [136].
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2.2 Existing knowledge base

2.2.1 Modelling asset returns covariances

Over the past years, several studies have developed methods and approaches to

examine the dynamics of covariance of assets. Previous studies on asset allocation,

mainly in asset management, focus on a limited or specific econometric model without

comparing the different models to model its asset return covariances, see for example;

[55], [63], and [77]. One of the widely used models is the Vector Autoregressive

(VAR) model which is an extension of the univariate autoregressive model to dynamic

multivariate time series. Another model which is the Vector Equilibrium Correction

(VEqC) has been obtained from the VAR model for differences by adding an ’equilibrium

correction term’ to the right hand side of the equations. The VAR model is proven to be

useful for describing the dynamic behaviour of economic and financial time series and

for forecasting, but it has limitations. The standard VAR model may give misleading

results if some of the variables are highly persistent, and without modifications, the

model misses non-linearities, conditional heteroskedasticity and drifts in its parameters

[123]. It is useful to consider different multivariate econometric models that can

capture different characteristics of the data in selecting the best model to create optimal

portfolios.

To deal with a large number of parameters in multivariate models, [12] suggest a

Constant Conditional Correlation model (CCC) such that the conditional correlations

are assumed to be constant. This model reduces the number of parameters and thus

simplifies the estimations considerably. However, the assumption of a CCC model may

not be realistic in empirical applications of multivariate GARCH models because the
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conditional shocks are correlated only in the same market, and not across markets [30].

[50] proposes a generalisation of CCC model, by allowing the correlations to change

over time, known as the Dynamic Conditional Correlation model (DCC). This model is

estimated using a two-steps approach - the estimation of mean and variance by a series

of univariate GARCH models and the correlation estimation. It has the flexibility of

univariate GARCH but not the complexity of conventional multivariate GARCH. The

study by [81] has found that DCC GARCH with Student-t distributions outperforms

other models in measuring the value at risk on portfolio stock returns. However, the

limits of DCC model is constrained by the equal dynamics for the correlations of all

the assets [8]. It is not effective to say that the correlations dynamic of, for example, UK

stock indices, to be similar to the US stock indices. [132] undertake a comparative study

of Asset-Liability Management (ALM) for pension funds in a time varying volatility

environment and find that CCC and DCC models reduce portfolio risk and improve

the out-of-sample risk-adjusted realised returns.

Alternative DCC models also have been proposed in the literature which are aiming

to solve problems associated with the basic DCC model. The limits of the DCC model

are constrained by the equal dynamics for the correlations of all the assets [8]. To avoid

this problem, [8] propose the Flexible DCC (FDCC) model such that the correlation

dynamic is constrained to be equal only between w groups of variables, providing

flexible dynamics. Another study by [98] examines the performance of optimal

asset allocation strategies using FDCC models with regime switching as compared

to alternative models. Recently, [1] suggests a more tractable dynamic conditional

correlation model, known as a corrected DCC model or cDCC model, which involves

the three-step approach that is feasible with large systems and provides unbiased
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estimations. He proposes the model to obtain a consistent Quasi-Maximum Likelihood

(QML) estimator of the parameters and modifies the form of the correlation driving

process of the DCC model so that it has martingale difference innovations. He found

that the cDCC correlation forecasts perform equally or significantly better than the

DCC correlation forecasts. Other relevant works using a cDCC model include; [58],

[2], [18], [62] and [51]. Recent proposals of multivariate GARCH models include the

asymmetric DCC model (aDCC) of [29], the dynamic equicorrelation (DECO) model of

[51] and the smooth transition conditional correlation (STCC-GARCH) of [118]. A DCC

model can always be considered as a filter for estimating and forecasting conditional

correlations despite its limitations [28]. Although a DCC model is severely biased

for the case of large dimensions, it is still appealing to use the DCC family for asset

modelling involving a not-so-large number of assets due to the fact that the model is

easy to implement and widely used in the literature [58].

The copula theory was introduced by [121]. It states that any multivariate

distribution function can be decomposed into its marginal distributions and a copula

function. The application of copula function was only being introduced in the late

1990’s in actuarial science and finance by [47], [84], and more recently by [66] and

[139]. Over the years, copula function has been popular in the financial research,

especially because of its application to risk management and asset allocation. However,

there are very few studies assessing the out-of-sample performance of a portfolio

based on the copula model (see, for example, [101], [110], [139] and [79]). The study

by [71] presents a way to measure the conditional dependency in a multivariate

GARCH using the copula functions when only marginal distributions are known.

This method allows the marginal time series to follow a univariate GARCH process
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and the dependence structure between them is specified by a copula function [100].

[139] propose copula-based GARCH models to describe the time varying dependence

structure of stock-bond returns. The out-of-sample performance is compared with

other models which includes the passive, CCC GARCH and DCC GARCH models such

that they find that a dynamic strategy based on the GJR-GARCH model with Student-t

copula yields larger economic gains than passive and other dynamic strategies.

2.2.2 Portfolio optimisation and asset allocation

There is considerable literature on asset modelling and optimisation of portfolio

allocation strategies using different empirical approaches; see, for instance; [132], [77],

[8], [17] and [73]. One of the widely used and earliest approaches of the portfolio theory

was developed by [90] - an approach known as Mean-variance optimisation. This

theory introduces the concept of efficient frontier, which is a portfolio of investments

with a set of optimal risk-return combinations that maximises the expected utility of

wealth. The optimal portfolio diversifies the risk without reducing the expected return

and enhancing the portfolio construction strategy [130]. It is a myopic strategy which

assumes that the decision maker has a mean-variance criterion defined over the single

period rate of return on the portfolio. Other studies that are related are [117], [52],

and [105]. Other studies that uses myopic strategy are [117] and [105]. The seminal

paper by [90] and [125] has become the foundation of the modern financial theory and

inspired many to extend its theory such as Capital Asset Pricing Model and Lintner’s

model.

Despite its theoretical reputation, researchers find it very hard to solve the large

scale portfolio model which requires solving quadratic optimisation problems. There is
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a lack of studies on the multi-period and continuous-time setting due to the difficulty in

the extension from the single-period to the multi-period or continuous time framework.

The mean-variance analysis are inefficient for a longer period as the expected rates of

return that are inputs to the model are typically not expected rates of return in a single

period, but rather estimated internal rates of return over long holding periods. Only

recently, many authors have managed to extend the theory by taking into account the

multi-period portfolio selection using different approaches. Optimal portfolio in a

multi-period approach has been studied by [91], [114], [85], [33], and [117].

A new method to create optimal portfolios in a stochastic environment has been

first developed by [92]. [33] and [143] solved the mean-variance problem by using

the stochastic control theory. This method provides insight into questions of market

behaviour and arbitrage, and can be used to construct portfolios with controlled

behaviour. This method can be applied to a wide range of assumptions and conditions

that may hold in actual equity markets. It uses the logarithmic representation for stocks

and portfolios rather than the arithmetic representation used in ’classical’ mathematical

finance.

Some have used the stochastic programming optimisation models to evaluate the

long term investment strategies whereby they have put the original problem into a

stochastic linear quadratic problem and solving it using the standard methods (see

[33] and [135]). The martingale approach has been used by [38], [111], and [7]. An

advantage of using the martingale approach is that it is continuous in time and hence

the investor is able to consume or to redistribute his portfolio at any time instance

during his investment.
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Another approach to solve the asset allocation problem is the dynamic programming

techniques used in [37], [120] and [99]. The study by [120] considered the problem

of multi-asset and multi-period portfolio optimisation over a finite horizon with

a self-financing budget constraint and arbitrary distribution of asset returns, with

objective to minimise the mean-square deviation in achieving a desired final wealth.

When there are no additional constraints, the asset allocation problem can be solved

using a standard dynamic linear programming.

Some authors aims to maximise the return while reducing the downside risk using

Value at Risk (VaR) [15] or some using Conditional Value at Risk (CVaR) [11]. [4], [112]

and [11] have approached the optimisation problem using the minimisation of mean

CVaR such that the covariance risk is replaced by the CVaR as the risk measure. [112]

showed that CVaR can be efficiently minimised using the linear programming and

non-smooth optimisation techniques. CVaR is also known as expected shortfall, excess

loss or tail VaR. By minimising CVaR, the VaR is also reduced since CVaR is greater or

equal than VaR.

Alternative optimisation portfolio strategies includes the maximisation of Sharpe

ratio, maximisation of the expected utility and the minimisation of mean absolute

deviation (MAD). [79] analysed the application of Copula GARCH model and

bootstrapping method in maximising Sharpe ratio to construct optimal portfolio using

moving window approach. See the recent paper by [17] which propose minimising

the CVaR by assuming that the dependence structure is modelled using the copula

parameter. The study considers the classical mean-variance, mean-variance-copula,

and mean-CVaR-copula analysis such that the empirical results show that the efficient

frontier is influenced by the existence of long memory behaviour and the choice
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of the measure dependence. Whereas [64] illustrates the advantages of using

GARCH-EVT-Copula-CVaR modelling in enhancing portfolio performance under

short interval time period.

A study by [88] compares the performance of each optimal portfolio in an

out-of-sample period and found that orthogonal GARCH (OGARCH) model outperformed

the other models, such as Markov switching and the Exponentially Weighted Moving

Average (EWMA) model, in producing an optimal portfolio. While [75] considers asset

allocation problems under higher moments with GARCH effects using the expected

utility maximisation, and uses a bootstrap method to measure the performance of the

portfolio. Recently, [59] proposes a bi-objective portfolio optimisation model involving

efficient portfolios of a disutility-based risk measure (DCVaR), known as Mean-DCVaR

that constitutes an improvement over Mean-CVaR or Mean-Variance model.

The MAD portfolio optimisation model has been proposed by [78] in which

the model replaces the variance in the mean-variance objective function with the

MAD and transforms the portfolio selection problem from quadratic programming

to linear programming. The study claims that the MAD model does not require the

covariance matrix and consequently its estimation is not needed, it is easier to solve

linear programming as compared to quadratic and MAD portfolios have fewer assets.

However, a study by [119] finds that by ignoring the covariance matrix in a MAD model

gives results with a greater estimation risk, such that the estimation errors are very

severe, especially in small samples and for investors with high risk tolerance. We need

to develop the optimisation model for supporting the decision-making concerning the

allocation of assets so that the investment goals of the members can be achieved.
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2.2.3 Mortality modelling

The development of stochastic mortality models has been very rapid in terms of both

structure and statistical techniques used to fit the models. This section reviews the

modelling of mortality that exists in the literature.

Mortality risk is the risk of having a higher probabilities of death than expected. A

higher mortality rate may occur due to unexpected events such as wars or infectious

disease. On the other hand, the longevity risk is defined as the risk of people living

longer than expected which may, due to advances in medical sciences or lifestyle

improvements, lead to a lower number of deaths. The declining in mortality rates have

a significant impact to the pension schemes and insurers. In terms of financial planning,

getting an accurate assessment of mortality rates is crucial for pension providers and

to an individual as well, for future investments and pensions planning purposes.

In recent years, different stochastic models for mortality rates have been proposed.

Early work on stochastic models was pioneered by [82] with the introduction of the

Lee Carter (LC) model. This model is the most widely used in mortality forecasting

which assumes that the dynamic of the logarithm of central death rates is driven by an

age specific constant plus the speed of change at each age, multiplied by the overall

period trend of mortality rates. This model has then motivated various extensions (see

for example; [83], [109], [25], [23], [14], [27], [41], and [104]).

The Renshaw and Haberman (RH) model of [109] is a generalised model of the LC

model by including a cohort effect. The study investigated the feasibility of extending

the model and projection of age-period-cohort effects. [127] extends the LC model by

including multiple bi-linear age-period components in their model. The other widely

used mortality model is the CBD model by [25] which was proposed to solve the
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problem of projected mortality rates being perfectly correlated in a single age or period

term models. It is designed for modelling mortality at higher ages and suitable for

modelling longevity risk in pension and annuities. Whereas study by [23] estimates

the parameter embedded in the LC model into a Poisson regression setting.

The original CBD model has then been complemented by [27] to include the cohort

effect and a quadratic age effect which are known as the M6, M7 and M8 models. M6

model is the original CBD model with added cohort effects, while M7 is the extension

of M6 with additional quadratic term in age. M8 determines the impact of cohort effect

for any specific cohort that diminishes over time. Another model that combines the

features of the LC model and CBD model is the PLAT model that is suitable for all range

of ages and also captures the cohort effect [104]. This model has a predictor structure

that includes a static age function, three age-period terms with pre-specified age

modulating parameters and a cohort effect. In general, these models are different to one

another based on different bases such as assumptions on the ease of implementation,

age and period dimensions, incorporation of cohort effects, forecasting properties and

method of estimations.

The first generation of mortality models, are mostly univariate, which model a

single population at a time. Other recent models which have been proposed for a

single population include studies by [39], [21] and [31]. In a single population, when

a mortality model is fitted to a number of population individually, the age effect is

obtained individually for each population which makes it difficult to compare the

period effects observed in different populations as they are actually fitted to different

age effects.
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To deal with multi-country longevity risk, we need a mortality model which is able

to forecast future mortality rates for different countries at the same time. A multiple

population mortality model considers more than one population in a joint mortality

model. There have been a very few contributions on the study of mortality forecasting

in a multiple population settings.

[131] provide a comparative study of two population models for the assessment of

basis risk in longevity hedges and overview of existing multiple population mortality

modelling methodologies in the actuarial and statistical literature. Models that have

been proposed for a multiple population includes [76] which proposes a common age

effect (CAE) that allows estimation of period effects in different countries. [49] extends

the study by reviewing a number of different multiple population mortality models

and found that CAE model fits best.

There are few recent studies that attempts to model mortality rates using econometric

models such as [133] which introduces mortality dependence using a dynamic copula

approach and [32] which uses a factor copula approach. Whereas, [134] uses a DCC

GARCH model to capture the evolution of the aggregate mortality rates for different

countries jointly and applied to pricing catastrophic mortality bonds. This model

prevent the pricing inaccuracy that may potentially arise from the independence

assumption as cross population is explicitly captured. The mortality data set is bigger

in a multiple population as it combines data from different sources which can be from

different countries or regions or genders, allowing a robust mortality modelling by

identifying "similar" characteristics within the sub populations.



2.3 Pension Schemes 25

2.3 Pension Schemes

Although there exist various designs of pension schemes, it can be divided into two

broad types: Defined Contribution (DC) and Defined Benefit (DB). Each of the schemes

have significantly different characteristics with respect to the risks faced by employers

and employees, the types of benefits, the structure of the scheme, and the funding

flexibility for the benefits which will be discussed further below.

2.3.1 Defined Benefit

A DB scheme is a type of pension scheme that promises to pay a defined benefit in

retirement. Generally, employee/member pension benefits’ accrue independently of

the contributions payable and investment returns. They may be a function of length of

service in the company and salary history, or a fixed amount of money. Individuals

who belong to a DB scheme can plan more easily for their retirement, as the retirement

income they will receive every month until they die is known in advance. For instance,

retiring in the midst of a financial market crisis does not result in a benefit reduction as

it is a consequence of the investment risk sharing in which the investment returns are

smoothed across time. The cost for the pension benefits are normally shared between

the employer and the employee where the employee pays a fixed percentage of salary

and the employer pays the rest. On retirement, which is normally between age 60

and 75, the employee will typically receive a pension benefit in the form of periodic

payments which end when they die. The amount of benefit distributed is usually in

the form of annuities and not guaranteed however, as it is dependent on the scheme’s

underlying performance. Some countries allow only one form of retirement benefit
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while others allow several forms including lump sum payments, life annuities or a

combination of both. In some DB schemes, a person may elect to choose a one-off lump

sum payment reflecting the value of the annuity benefits rather than the traditional life

annuity payments.

The contributions to the pension fund may be made by the employees, the employers

or both. Generally, the employees make a periodic predetermined contribution amount

whereas the employers make a contribution to meet the balance of the cost of the

promised pension. The periodic payments generally begin when the member retires

which is normally at 65 years old and ends when the member dies. Each DB scheme

has a different way of defining the pension benefits. However, typically, it is a formula

that incorporates the length of time that the member contributed to the scheme and

the salary. A simple example is a dollars times service plan that pays £100 per month

in retirement for each year that member has contributed to the scheme. Thus a

member who has contributed for 20 years would receive a monthly pension of £2,000

in retirement. Another type of pension benefit is the final salary benefit. For example, a

member with a salary rate of £8,000 per annum at retirement and who has contributed

for the last 30 years, will receive a pension of 30×£8,000× (1/60) = £4,000 per annum.

The fraction 1/60 is called the accrual rate. Regardless of funding method used for the

pension benefits, the result is a series of monthly payments that the scheme is required

to pay until the member dies. Nevertheless, there is no full guarantee that a given level

of contributions will be enough to meet the pension benefits as the future return on

investments and the future pension benefits are not known with certainty. The pension

benefits may be increased while in payment. The motivation is to maintain the living
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standards of the retiree. The increases may be fixed or linked to a inflation index, and

they may be guaranteed or given at the discretion of the trustees.

A funding surplus arises when the value of the assets exceeds the calculated value

of the liability. During favourable investment periods, most DB schemes encounter

substantial surpluses where the assets increase by more than expected. When there is a

surplus, the employer may reduce their contribution rate or even stop contributing to

the scheme. The latter is called as contribution holiday. The contribution holiday may

not be really ’reasonable’ to the employee as the contribution holiday can be taken by

the employer and not to the employees when actually the surplus is coming from the

employees’ contributions. However, it is debatable as the employer has made most of

the contributions and they bear most of the "normal" risk. During unfavourable market

conditions, the asset values decline and impact the employer since they have to inject

extra money from company’s current profit into the pension fund which consequently

increasing its costs. Hence, when markets rise, the employer gets its benefit from the

rising investment values and the cost of funding the pension fund decreases which

allow the employer to contribute less while the members continues to receive the same

promised benefit.

On the other hand, a funding deficit arises when the value of the assets is less than

the expected cost of promised benefits. This means that there are insufficient funds to

pay the entire pension benefits promised to the members. The employer and trustee

must come up with a recovery plan to eliminate the funding deficit. Generally, the

employer is financially responsible for funding any deficit. However, the member

contribution rates may also be increased over a sustained period. In extreme cases, the

pension benefits may be reduced or the scheme wound up.
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DB schemes used to be a popular type of pension scheme. This is because the

members in the scheme know, with a reasonable degree of certainty, the amount of

pension benefits they will get in the future. This helps them to plan for their retirement.

A survey by [107], found that by knowing earlier the amount of pension benefits

received in the future, a member is able to make better decisions relating to their

retirement such as to know i) when is the best time for them to retire, ii) what they

should do with retirement plan and savings accumulations at retirement, iii) the amount

they can spend each year, and iv) the need for insurance protection. Hence, this will

help the members to make financial decisions relating to their money in retirement.

However, not many people are participating in the risk-sharing advantages of DB

schemes. In 2011, only 3% of workers in the US private sector participated in a DB

pension scheme, compared to 28% in 1979 [57]. The employers face difficulties in

estimating the DB scheme liabilities to evaluate the retirement benefit expenditures.

Thus, over the past few years, employers reacted to the risks by decreasing the pension

benefits/increasing contribution rates and made a significant shift from DB to DC

schemes. Consequently, through DC schemes, the primary responsibilities for funding

retirement have been shifted from employer to employees.

In literature, there are only few papers dealing with DB pension schemes for portfolio

optimisation and asset allocation. Previous studies by [43] deal with contribution

rates and asset allocation strategies. They investigated a DB scheme during the

pre-retirement period for a continuous time economy in which the accumulated funds

for retirements are converted into annuities by assuming that the asset return is driven

by a Levy process. The paper considers two mean-variance optimisation problems,

which are quadratic control problems with an additional constraints on the expected
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value of the funding surplus. While the latter studied a DB pension scheme in infinite

time such that the benefits are modelled as a geometric Brownian motion and introduces

another state variable in a control problem. [11] and [132] examine ALM for pension

funds using CVaR constraints which is solved using linear programming techniques.

2.3.2 Defined Contribution

Whereas the DB scheme focuses on the amount of pension benefits the member will

receive at retirement, the DC plan focuses on the value of the accumulated contributions

in the member’s account. In a DC plan, there is a fixed predetermined contribution that

must be made monthly during the member’s working life which are invested, and the

returns on investment are credited to the member’s account. The sponsoring employer

is obliged to pay a specified amount into a pension fund for each member and the

members may also contribute. The employer’s contribution is guaranteed but the future

benefit is based on future investment return. Normally, the member’s contributions are

deducted from certain percentage of member’s salary and the employer will add up a

certain amount to match it. The member and the sponsoring employer will contribute

periodically where the contributions are pooled and invested.

This scheme does not guarantee the amount of pension benefits on retirement. The

member’s pension benefit is dependent on how well the contributions are invested

and investment earnings received from the employer, less any charges. During a good

investment performance period, DC members will receive substantially higher pension

benefits than a typical DB scheme. This is true because the DB scheme is invested in a

way to meet the targeted benefit levels and not to maximise the benefit amount. It is

very difficult to predict the final amount of the pension benefit for the DC scheme as
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it is depending on the investment performance. The total accumulated value in the

member’s fund is used to provide pension benefits on retirement but we would not

know in advance (during the contribution period) the value of the pension benefit we

will get.

Traditionally, in most countries, DB schemes used to be the most popular type

of pension but now gradually shifted towards DC scheme. Many countries are now

using DC schemes including United Kingdom, United States, Germany, Australia,

Singapore, Malaysia and New Zealand. Basically, the shifts are driven due to the

desire for risk mitigation and reduce pension costs [20]. In a typical DB scheme, the

sponsoring employer covers most of the risk whereas in DC, most of the risk is passed

to the scheme members but they reap most of the benefits in the scheme. The shifts are

due to many factors including increasing DB scheme costs due to increasing longevity

risks, additional burden by pension accountants and regulators, declining long term

interest rates, and underfunded DB pension fund.

The basic difference between DC and DB schemes is the risk allocation. Many

employers are switching from DB to DC plans as a way to reduce the investment risk

as it is assumed by each retiree and not by the employer [34]. The shift passes the

risk away to the employees, who lack resources and knowledge in achieving the same

results of investment returns as in larger DB plans which are managed by the employers.

The DC plans also appear to be riskier because, at retirement, there is no annuity

provided and the members have to seek for themselves the best annuity products

available from the insurance company. Pension life annuity is a form of longevity

insurance that converts the amount of pension benefits received on retirement with

a regular income payment throughout a person’s life. This will protect the member



2.3 Pension Schemes 31

from outliving his DC savings in the retirement period. The pension life annuity can

be purchased using the amount of funds available in the pension pot. When buying

a life annuity, the member bears inflation risk, the risk of losses in the real value of

the pension due to unanticipated inflation. However, there is no obligation for the

DC’s members to purchase the annuities with their savings upon retirement though

it is compulsory in some countries. It is important for the employees to realise the

implications of not having a secure pension income and the possible consequences that

might occur. The members are also exposed to a higher longevity risk as compared in

the DB scheme due to pooling of individual risk.

DC schemes have found to be extremely higher risk compared to DB schemes by

[9] and the value at risk estimates are sensitive to asset allocation strategies and asset

return models. In addition, the study found that static strategies with a higher equity

weight on the portfolio will deliver better results than the dynamic strategies.

2.3.3 Hybrid Pension Schemes

Even within the shift from DB to DC scheme, some of the pension sponsors have

converted to hybrid plans that combine the characteristics of both DB and DC schemes.

Under hybrid schemes, the fund is treated as DB plans for tax, accounting and

regulatory purposes but the benefits are expressed similar to DC scheme which are

often payable as a lump sum on retirement. Plan sponsors are trying to share the

pension risks more evenly with their employees while giving the best benefit available

by providing alternative pension schemes which can satisfies both parties. There are

different types of hybrid schemes available in the literature and in real life.



2.3 Pension Schemes 32

One of the popular types is the cash balance (CB) scheme which was introduced in

the United States but has become popular in some other countries such as the United

Kingdom and Japan. The features of CB plans are similar to DC schemes but the scheme

has some DB scheme features. It works like a DC scheme such that the employer

decides the contribution levels (which are normally expressed as a percentage of salary)

and the benefit is expressed as a lump sum payment upon retirement just like a DB

scheme. The employer is responsible in contributing to the scheme but the employee

may also contribute at the minimum level. The trustees are responsible in all aspects

of the scheme including investment and paying out benefits to its members. If the

investment return is less than the minimum guaranteed benefit level, the employer will

make further contributions so that the minimum guaranteed level can be achieve. But

if the return on investment is higher than the minimum guaranteed level, the employer

may hold back some, or all, of the excess investment return and use this amount for the

future when the minimum guaranteed investment return is not achieved. Employers

bear the investment risk prior to retirement which is similar to DB schemes. Upon

retirement, the retirees can buy an annuity to fund for the retirement.

Another type of hybrid scheme found in the literature is the group self-annuitisation

(hereafter, GSA) which provides annuity benefit payments adjustments from a longevity

risk pooling fund. GSA takes advantage of economies of scale by allowing the members

to pool mortality risk together and protects against the longevity risk. In return, the

member will receive a regular benefit annuity payment, calculated based on chosen

mortality and investment basis. The scheme mixes characteristics of annuities and the

mutual fund. It acts like a mutual fund in terms of pooling the wealth of the members

but the members cannot withdraw their money; and acts like annuities such that the
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funds of dying members will be redistributed among other surviving members in

the pool fund [122]. The benefit is payable as an ordinary annuity such that each

member who survived in each period will receive a constant benefit payment known

as a mortality credit or survivor credit. If the actual value in the investment return is

higher than expected, then the benefit payment will be larger. Whereas, a lower actual

rate of mortality than expected will gives lower benefit payments to the GSA members.

Basically, when a member dies over the short time interval (t−, t), their wealth is shared

equally between other surviving members. By assuming that we have 100 people in

the scheme, and suddenly one of them dies, leaving wealth of £99,000, then every

survivor in the fund will each receive a mortality credit of £99,000÷99 people = £1,000.

There is no fixed time to receive the benefit as it is dependent on the death of the fund

members in which we don’t know the exact time of the death. However, according to

[45] and [122], as the pool size become infinite, the mortality risk is eliminated and

the deaths will occur at a constant rate. Therefore, surviving members will receive a

continuous mortality credit. The more members in the fund, the lower is the mortality

credit but the higher probability to earn a frequent mortality credit. And, the bigger

wealth of the dying member has, the larger mortality credit or benefit the members will

receive. When death occurs more frequently, the surviving GSA members get more

frequent benefit from it. So, in general, the benefit is adjusted, based on the previous

period benefit multiplied with two factors which are mortality experience and interest

rate adjustment.

There is a possibility of moral hazard for this model since the benefits are coming

from the death of other members. Moral hazard is the risk that one party entered a

transaction with an agenda to earn profit from it. In addition, the members may also
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use their survival probabilities information in deciding to purchase the scheme. The

adverse selection can be determined by looking at the changes in annuity demand

with changes to the probability of survival. The research by [128], has found that the

adverse selection problem does not exist at all in the GSA scheme. Even a member has

a high survival rate; the purchasing behaviour towards GSA remains unchanged. This

is true because if there are increases in the GSA purchases, the return on investment

does not change much due to the fact that the longevity risk is absorbed by the

member themselves. Systematic longevity risk refers to the portion of the risk that is

non-diversifiable. [122] also stated that the GSA members have to bear idiosyncratic

and systematic mortality risk in which the mortality credit is directly linked to the

population development. Therefore, across time, the member will receive less and less

benefit payments even though he survives the other annuitants.

There are several authors who have studied GSA. [122] studied the impact of

the pool size on the risk to which the members are exposed. It shows the mortality

benefits obtained from pooling the mortality risk in the scheme. In a similar vein,

[129] compares people’s preferences over GSA schemes and standard annuity schemes

and examines how much people were willing to spend to protect themselves from

aggregate mortality risk. Recently, [45] has analysed GSA from the member’s view by

comparing it to a mortality-linked fund. The study has found that the GSA has a higher

expected return and members are willing to bear mortality risk in the fund. While [103]

has studied the implications of pooling longevity risk through GSA. [106] has expand

the study by [103] and proposed a method for collective risk pooling of systematic

mortality in GSA rather than individual bearing the risk. So far, there is no literature
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relating to ALM studies discussing on GSA scheme. Our study will contribute to the

literature by including GSA along with other types of pension schemes.

2.4 Conclusion

To sum up, the main aim of this chapter was to provide a comprehensive literature

review to the reader in three main areas covered in the thesis – volatility and mortality

modelling with applications to pension schemes. In particular, the volatility modelling

are discussed in Chapter 3, where a review of econometric models is used to model

the asset returns covariances in constructing optimal asset portfolios. Chapter 4 is

mainly related to mortality modelling where a novel approach is used to propose

alternative estimation methodologies for mortality modelling in a single and multiple

population settings. Furthermore, Chapter 5 extends the study of mortality modelling

by attempting to model mortality rates using econometric approaches. Chapter 6

combines elements from both the volatility and mortality modelling and evaluate their

performance in pension schemes.

The objective of this study is to develop volatility and mortality models that could

be used in asset liability management in pension schemes. This study provides a

comprehensive study of various advance multivariate DCC GARCH models which

are used for construction of optimal portfolios in modelling asset return covariances.

Then, several models were proposed as alternative estimation methods to the existing

mortality models in a single and multiple population. This research underlined the

important role that econometric volatility modelling and stochastic mortality modelling

can play in managing pension schemes to ensure that future liabilities can be meet.



Chapter 3

Evaluation of Multivariate GARCH

Models in an Optimal Asset Allocation

Framework

This chapter proposes different approaches for modelling volatility using Dynamic

Conditional Correlation (DCC) models with multivariate GARCH and evaluating the

copula functions’ performance to the model.

3.1 Introduction

With today’s challenging environments and highly volatile markets, modelling volatility

has become important for organisations in managing their assets to obtain the best

possible returns. Asset allocation aims to balance the risk and return by adjusting

the percentage of each asset in an investment portfolio to meet the investor’s goals,

investment objectives, risk tolerance and investment horizon.

36
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The future forecast is highly dependent on the choice of the volatility modelling. It

is known that volatility is not directly observable, which makes it important to have

a good model to predict future volatilities. Obtaining an optimal portfolio requires

estimating and forecasting very large conditional covariance matrices of the asset

returns which depend on many parameters [8], [81].

This study involves a large class of different advance multivariate DCC GARCH

models in modelling the mean returns and variance covariance matrices. Specifically,

a symmetric GARCH model and an asymmetric version of it (GJR-GARCH) are

used. These models are implemented with the multivariate normal and Student-t

distributions. For the conditional mean dynamics, this study allows a constant,

univariate autoregressive (AR), autoregressive-moving average (ARMA) or vector

autoregression (VAR) model to be fit. In general, the model specifications to model

covariances include DCC models, aDCC models, FDCC models, Generalised Orthogonal

GARCH (GO-GARCH) and copula GARCH models. Different model specifications

are applied to obtain out-of-sample forecasts of the mean returns and the conditional

covariance matrix of all assets. The estimated asset return and covariances are used to

construct optimal short selling constrained and unconstrained portfolios. The portfolio

is constructed by using different optimisation strategies including minimum-variance,

mean-variance, maximisation of the Sharpe ratio, maximisation of Sortino ratio, for a

given risk, and minimisation of mean-CVaR.

This chapter provides a comprehensive comparative study involving various

multivariate GARCH models in an optimal asset allocation setting such that different

characteristics in the data can be captured. With that, the portfolio performance can be

improved and useful for the construction of optimal portfolios. Most of the existing
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literature compares the performance of limited GARCH models, and they are based on

a specific optimisation model. Several studies have tried to examine the effectiveness

of using parametric copula in estimating portfolio risk measures, but the results have

been inconclusive. It is unclear whether it is optimal to use copula GARCH over the

sophisticated DCC model. This study, therefore, provides useful insights for those

wishing to explore the different GARCH models that are available, from the simplest

autoregressive models up to more complex models and use a dynamic approach for

asset allocation and portfolio construction purposes.

3.2 Notation

The variables used in the models are defined below:

xt: n×1 vector of log returns of n assets at time t.

ϵt: n×1 vector of mean-corrected returns of n assets at time t.

µt: n×1 mean conditional expectation of xt, conditional on Φt−1, the information set

up to time t−1.

Ht: n×n matrix of conditional variances of ϵt, conditional on Φt−1, the information set

up to time t−1.

H1/2
t : n×n matrix which is obtained from Cholesky factorisation of the time varying

conditional covariance matrix of ϵt.

Dt: n×n diagonal matrix of time-varying standard deviations of ϵt at time t.

Rt: n×n positive definite conditional correlation matrix of ϵt at time t.

zt: n×1 vector of independent and identically distributed random errors.

Φt−1 : information set up to time t−1.
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Qt: n×n symmetric positive definite matrix.

Q̄ : n×n unconditional correlation matrix of the standardised error ζt.

3.3 Econometric models for asset returns

Volatility has some characteristics that are not directly noticeable but are commonly

seen in asset returns; i.e., the presence of volatility clustering in the data, a volatility

jump is rare, stationary, and has a leverage effect [126]. Various volatility models

were introduced, particularly to correct the weaknesses of their inability to capture the

characteristics mentioned previously.

Consider the vector stochastic process xxxttt which is the n×1 vector of financial returns

and µµµttt is the mean vector. The multivariate GARCH model can be written as,

xxxttt = µµµttt+ϵϵϵttt, ϵϵϵttt|ΦΦΦt−1 ∼N(0,HHHttt), (3.1)

where ϵϵϵttt is the n×1 residuals of the process which follows a conditionally multivariate

normal distribution with mean 0 and time-varying conditional covariance matrix HHHttt.

ΦΦΦt−1 is the information set at time t−1. The residuals are modelled as,

ϵϵϵttt =HHH
1
2
ttt zzzttt, (3.2)

where HHHttt is n×n positive definite matrix of conditional variances of ϵϵϵttt at time t. HHH
1
2
ttt

is the Cholesky factorisation of the time varying conditional covariance matrix of HHHttt.

The symbol zzzttt is n×1 vector of independent and identically distributed random errors

such that E[zzzttt] = 0 and E[zzztttzzz
′′′

ttt] = IIInnn, whereby IIInnn denotes the identity matrix.
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By using different econometric models, different characteristics in the data can be

captured which improve the portfolio performance and are useful for the construction

of optimal portfolios. The results of each model are compared to see their ability in

optimising portfolio.

3.3.1 Modelling mean returns

There are various models for time series which are divided into the AR and MA models.

The AR(p) model can be written as

xxxttt =

p∑
i=1

ϕϕϕixxxt−i+ϵϵϵttt. (3.3)

For the moving average, MA (q) refers to

xxxttt = ϵϵϵt−

q∑
j=1

θθθ jϵϵϵt− j. (3.4)

These models are commonly used to generate new models, i.e., ARMA or VAR

models. The mean returns are modelled using different estimation processes, either

using a constant mean, AR, ARMA or VAR models.

The ARMA model provides a parsimonious parametrisation and further simplification

in modelling multivariate time series. It has both stationary stochastic processes of the

autoregression and moving average methods, which are applied to a multivariate time

series data. The ARMA (p,q) model refers to the p autoregressive terms and q moving
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average terms, which includes the AR (p) and MA (q) models. Thus, the mean of the

process modelled by ARMA (p,q),

xxxttt = ϕϕϕ000+

p∑
i=1

ϕϕϕiiixxxt−i−

q∑
j=1

θθθ jjjϵϵϵt− j+ϵϵϵttt, (3.5)

where ϕϕϕ000 ∈R
n. The autoregressive coefficients is denoted by ϕϕϕiii and moving average

coefficients is denoted by θθθ jjj if there exist real coefficients ϕϕϕ111, . . . ,ϕϕϕppp and θθθ111, . . . ,θθθqqq, such

that ϵϵϵttt is the linear innovation process of xxxttt. ϕϕϕiii and θθθ jjj are n×n matrices with ϕϕϕiii , 0

and θθθ jjj , 0.

The VAR model is one of the most commonly used multivariate econometric models.

We allow the conditional mean to follow a VAR structure, where the model can be

represented by,

xxxttt = ccc+
p∑

i=1

ϕϕϕiiixxxt−i+ϵϵϵttt, (3.6)

where xxxttt is vector and ccc denotes n×1 dimensional vector of constants. ϕϕϕ111,,, . . .. . .. . .,,,ϕϕϕppp is

parameter matrices. This model has an important characteristic which is its stability. It

generates stationary time series with time invariant means, variances and covariances.

If the process satisfying this equation is stationary we say that the VAR is stationary.

For instance, the process is defined as a weak stationarity when it satisfies two

conditions which are, (i) E(xt) = a and Cov(xt,xs) = r(t− s), where a is a constant and r is

a appropriate function. If one of the elements in the vector is not stationary, then the

whole vector is not stationary too. Stationarity refers to the statistical properties of a

process generating a time series that does not change over time. The estimated model

can have stationarity ensured by using regularisation of coefficient matrices ϕi is one
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way. Another is factor modelling of xt first, and use VAR model on the estimated factor

series.

3.3.2 Modelling covariances matrix

To model the covariance matrix, different specifications for multivariate GARCH

processes are used, i.e., (i) dynamic conditional correlation (DCC), (ii) asymmetric

dynamic conditional correlation (aDCC), (iii) flexible dynamic condition correlation

(FDCC), (iv) generalised orthogonal GARCH (GOGARCH), and (v) copula GARCH

(C-GARCH).

3.3.2.1 Dynamic Conditional Correlation (DCC)

The DCC model was proposed by [50], which is a generalisation of the Constant

Conditional Correlation (CCC) model from [12], to allow for the time-varying correlation

matrix of multiple asset returns. In the CCC model, the conditional covariance matrix

is decomposed into conditional standard deviations and a constant correlation as

HHHttt =DDDtttRRRDDDttt, (3.7)

where DDDttt is the n× n diagonal matrix of time-varying standard deviations from

univariate GARCH models, DDDttt = diag(
√

h11, t, . . .,
√

hnn,t), and RRR = ρi j is the positive

definite constant conditional correlation matrix withρii = 1 for i= 1, . . .,n. The dimension

for ht is n×1. The off-diagonal elements of HHHttt, are given by

[HHHttt]i j = ρi j

√
hii,th j j,t i , j. (3.8)
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This model is computationally attractive and simple because of the constant

correlation. However, the assumptions of constant conditional correlations may be

unrealistic in practice and it may be too restrictive in some cases. The DCC model

allows the time-varying correlation dynamics, RRR = RRRttt. It is defined as in [60],

xxxttt = µµµttt+ϵϵϵttt,

ϵϵϵttt =HHH
1
2
ttt zzzttt,

HHHttt =DDDtttRRRtttDDDttt,

(3.9)

such that xxxttt is a n×1 vector of log returns of n assets at time t. ϵϵϵttt is a n×1 vector of

mean corrected returns of n assets at time t such that E[ϵϵϵttt] = 0 and Cov[ϵϵϵttt] = HHHttt. µµµttt

is a n× 1 vector of the expected value of the conditional xxxttt. HHHttt is a n×n matrix of

conditional variances of ϵϵϵttt at time t, and DDDttt is a n×n diagonal matrix of conditional

standard deviation of ϵϵϵttt at time t. Note that the conditional correlation matrix of ϵϵϵttt is

now time varying and denoted by a symbol RRRttt. RRRttt is a positive definite conditional

correlation matrix and zzzttt is n× 1 vector of independent and identically distributed

random errors with E[zzzttt] = 0 and E[zzztttzzz
′′′

ttt] = IIInnn. The conditional variances, hhht, i = 1, . . .,n

can be estimated separately by a simple univariate GARCH (P,Q) specification of [50],

hhht = ggg+
P∑

i=1

αααiiiϵϵϵ
(2)
t−i+

Q∑
i=1

βββiiihhht−i , (3.10)

where ggg ∈ Rn, with a dimension of n× 1, and αααi and βββi are n×n diagonal matrices.

ϵϵϵ(2)
t−i = ϵϵϵt−i

⊙
ϵϵϵt−i is the Hadamard product, which is the element by element product.

The elements of g and the diagonal elements of αααi and βββi are positive so that the
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conditional covariance matrix of Ht is positive definite. RRRttt is the conditional matrix of

the standardised disturbances ζt, that is,

ζζζttt =D−1
t ϵt ∼N(0,RRRttt). (3.11)

The elements of HHHttt =DDDtttRRRtttDDDttt with ρii = 1 can be written as,

[HHHttt]i j = ρi j,t

√
hii,th j j,t. (3.12)

The conditions for the positivity of the covariance matrix HHHttt requires RRRttt to be positive

definite, ggg and all diagonal elements of matrices βββi and αααi are all positive. Therefore,

we need to decompose RRRttt into,

RRRttt = (QQQ∗∗∗ttt)
−1QQQttt(QQQ

∗∗∗

ttt)
−1,

QQQttt = (1− a− b)Q̄QQ+ aζζζt−1ζζζ
′′′

t−1+bQQQt−1.

(3.13)

Q̄QQ =Cov[ζζζttt] = E[ζζζtttζζζ
′′′

ttt] is a n× n unconditional matrix of the standardised errors ζζζttt.

QQQ∗∗∗ttt = diag(
√

q1t,
√

q2t, . . .,
√

qnt); a and b are non-negative parameters to be estimated

such that a+ b < 1 to ensure stationarity and positive definiteness of QQQttt. Q̄QQttt can be

estimated by,

Q̄QQ =
1
T

T∑
t=1

ζζζtttζζζ
′′′.
ttt (3.14)

In general, as in [50], the DCC(M,N) GARCH model is given by

QQQt =

1−
M∑

m=1

am−

N∑
n=1

bn

Q̄QQttt+

M∑
m=1

amζζζt−1ζζζ
′′′

t−1+

N∑
n=1

bnQQQt−1. (3.15)
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This model is estimated using a two-step approach: the first implies the estimation

of univariate GARCH, and the second step is the correlation estimation. The number

of the estimated parameters in the correlation process of DCC-GARCH is independent

of the number of series correlated, hence allowing for a potentially large correlation

matrices to be feasibly estimated. The limitation of this model is to hypothesise the

same correlation dynamics of all the assets [8], [98].

3.3.2.2 Asymmetric Dynamic Conditional Correlation (aDCC)

[29] introduced an aDCC model to investigate whether conditional variances, covariances,

and correlations of assets in a portfolio are sensitive to the sign of past innovations.

Compared to the DCC model, this model further explores whether the positive and

negative shocks are of the same magnitude or have different impacts. As in Equation

3.9, the matrix HHHttt is decompose into HHHttt = DDDtttRRRtttDDDttt. HHHttt is the conditional covariance

matrix whereas hhhttt is the conditional variance. In aDCC, hhhttt is assumed to follow the

GJR-GARCH models,

hhht = ggg+
Q∑

q=1

βββihhhi,t−q+

P∑
p=1

αααiiiϵϵϵ
(2)
i,t−p+

P∑
p=1

γγγiΨΨΨ(ϵϵϵi,t−p < 0)ϵϵϵ(2)
i,t−p , (3.16)

whereΨ(.) = 1 when ϵϵϵi,t−p is negative, otherwiseΨ(.) = 0. The elements of g and the

diagonal elements of αααi and βββi are positive so that the conditional covariance matrix of

Ht is positive definite. If γγγiii > 0, then the asymmetric effects exist in the conditional

variance that is a negative correlation is found in the asset return and volatilities.
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3.3.2.3 Flexible Dynamic Condition Correlation (FDCC)

[8] proposed the FDCC model that allows equal correlation dynamics between w

groups of assets, providing a flexible parameterisation of correlation dynamics. The

FDCC model is an extension of DCC model, introduces a block diagonal structure to

solve the problem of equal correlations dynamics in the assets. The study by [8] found

that this model provides a better portfolio allocation with a lesser risk and a greater

yield when they applied to the Italian sectorial stock indexes and on a sectorial asset

allocation problem. As in [8], this model can parsimoniously be written as

xxxttt = µµµttt+ϵϵϵttt,

HHHttt =DDDtttRRRtttDDDttt,

RRRttt = (QQQ∗∗∗ttt)
−1QQQttt(QQQ

∗∗∗

ttt)
−1,

QQQttt = cc
′

+ aa
′
⊙
ζζζtζζζ

′

t+ bb
′
⊙

QQQt−1,

(3.17)

where ζζζt is the standardised residuals and ζζζt =DDD−1
t ϵϵϵt. The correlations dynamics are

described as QQQ∗t = diag(
√

q1t,
√

q2t, . . .,
√

qnt) such that QQQ∗t rescales the elements in Qt to

ensure the Rt is a correlation matrix at any t. The variables c,a and b are partitioned

n-dimensional vectors of groups of assets,

a = [a1× i′m1
,a2× i′m2

, . . .,ak× i′mk
]
′

.

mi(i = 1, . . .,k) is the number of assets in the group i; and similarly for b and c. ih

is an h-dimensional vector of ones. The coefficients must satisfy these constraints;

aia j+ bib j < 1(i, j = 1, . . .,k), such that k is the number of blocks or asset classes. The

GARCH type parameter restriction is needed as to avoid the explosive patterns of
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the correlations. a and b are non negative scalars to ensure stationarity and positive

definiteness of matrix QQQt. Furthermore, given a suitable QQQ0, the starting value of Qt, is

the sum of positive definite and semidefinite matrices. This is again to ensure that HHHt

and RRRt are also positive definite.

In this study, we divided the assets into two blocks: stock and bond indices groups.

This is reasonable since the correlation dynamics within the stock group is almost

similar from one asset to another, and this is also the same for bond indices.

3.3.2.4 Generalised Orthogonal GARCH (GO-GARCH)

OGARCH was introduced by [44] and [3]. The observed time series can be linearly

transformed to a set of uncorrelated time series using a principal component analysis.

This model has commonly been used in much research to model the conditional

covariance of financial time series due to its feasibility in estimating large covariance

matrices [138], [88]. For non-Gaussian data, the independent component analysis (ICA)

is used to perform the orthogonal transformation. [138] applies the concept of ICA to

propose the generalised OGARCH model for volatility modelling. It consists of a set of

conditionally uncorrelated univariate GARCH and a linear map that allows the linkage

between these components and the observed data [16]. The matrix in OGARCH model

is assumed to be orthogonal with a very small subset of all possible invertible matrices,

whereas in the GOGARCH model, the orthogonal requirement is relaxed.

The GOGARCH model are based on the assumption that returns are generated

by a set of unobserved underlying factors that are conditionally heteroscedastic. The

dependence structure of the factors are used to determine the type of factor it belongs

to, such that the correlated factors make up the Factor ARCH models, whereas the

uncorrelated and independent factors make the OGARCH and GOGARCH model
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respectively. The unobserved independent factors can be determine by using statistical

transformation. The GOGARCH models use the statistical transformations to place

the unobserved independent factors in an independence framework with separability

and weighted density convolution which give a large scale and feasible estimation.

This model is considered as the suitable model to model the stock markets since it

supports the random vectors with probability distributions that are asymmetric and

heavy tailed.

Most of the factor models may be represented as a special case of the BEKK model.

The GOGARCH model has a restricted BEKK as following,

Ht = ω+
m∑

i=1

Aixt−1x
′

t−1A
′

i +BHt−1B′, (3.18)

such that Ai and B are restricted to have same eigenvector Z. The eigenvalues of Ai

are same set of eigenvectors, which is stored in the matrix Z. The linear map links

the unobserved components with the observed variables is assumed to be constant

over time and invertible. The unobserved independent factors can be determine by

using statistical transformation to place the unobserved independent factors in an

independence framework with separability and weighted density convolution which

gives a large scale and feasible estimation.

Consider a set of n assets with returns xxxttt, which are observed for T periods, with

conditional mean of E[xxxt|ΦΦΦt−1] = mmmt. ΦΦΦt−1 is the information set at time t, which

is the σ-algebra generated by the lagged values of the outcome process of xxxttt, i.e.,

ΦΦΦt = σ(xt−1,xt−2, . . .). The GOGARCH model of [138] maps a vector observed process
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of xxxt−mmmt onto a set of n-vector of a linear combination of n conditionally unobserved

independent factors of fff ttt = ( fff 1t, . . ., fff nt)
′

. The process xxxttt satisfies the representation

xxxttt =mmmttt+ϵϵϵttt,

ϵϵϵttt = CCC fff ttt,

(3.19)

CCC is a non singular matrix which is invertible and constant over time. It may be

decomposed into the de-whitening matrix ΣΣΣ1/2, i.e., the square root of unconditional

covariance and an orthogonal matrix UUU0. UUU0 can be estimated using a computational

method for separating multivariate mixed signals into additive statistically independent

and non-Gaussian components using ICA [22], [141].

Let CCC be the map that links the uncorrelated components with the unobserved

process, so that

CCC = ΣΣΣ1/2UUU000. (3.20)

The factors are represented as

fff ttt =HHH1/2
t zzzttt, (3.21)

where HHHttt = E[ fff t fff
′

t|ΦΦΦt−1] is a diagonal matrix for all t with elements (h1t, . . .,hnt), which

are the conditional variances of fff ttt. The symbol zzzttt is n× 1 vector of independent

and identically distributed random errors, such that E[zzzttt] = 0 and E[zzztttzzz
′′′

ttt] = 1 implies

that E[ fff t|ΦΦΦt−1] = 0 and E[ϵϵϵt|ΦΦΦt−1] = 0. The returns for the GO-GARCH model may be

expressed as

xxxttt =mmmttt+CCCHHH1/2
ttt zzzttt. (3.22)
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For the conditional covariance matrix, it may be written as

ΣΣΣttt = E[(xxxt−mmmt)(xxxttt−mmmt)′|ΦΦΦt−1] = CCCHHHtttCCC′. (3.23)

3.3.2.5 Copula GARCH (C-GARCH)

The multivariate random variables using a copula function, is used to capture and

model non-linear relationships between the asset returns. In the multivariate GARCH,

the model assumes the stock and bond returns follow a multivariate normal or Student-t

distribution with linear correlation, and these assumptions are normally disregarded

in many empirical finance studies. This study proposes various copula GARCH

based models considering the static version of copulas and dynamic copulas (more

realistic in describing time-varying dependence structure between assets returns). The

out-of-sample performance is evaluated and compared with other models discussed

earlier.

Let F1(x1), . . .,Fn(xn) be the marginal distributions with a random vector XXX =

(x1, . . .,xn). The random vector has uniform marginal distributions when we apply the

probability integral transform to each of the component (U1,U2, . . .,Un) = F1(x1), . . .,Fn(xn).

[121] showed that the copula can be depicted as

F(x1, . . .,xn) = C(F1(x1), . . .,Fn(xn)), (3.24)

such that n-dimensional copula C(u1, . . .,un) is an n-dimensional distribution in [0,1]d

with uniform marginals. The copula can be deduced from Equation 3.24 as

C(u1, . . .,un) = F(F−1
1 (u1),F−1

2 (u2), . . .,F−1
n (un)). (3.25)
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The copula (X1,X2, . . .,Xn) is defined as the joint cumulative distribution function of

the continuous marginal distributions, which may be written as

C(u1, . . .,un) = P[F1(x1) ≤ u1,F2(X2) ≤ u2, . . .,Fn(xn) ≤ un]. (3.26)

The density function may be obtained as

f (x1, . . .,xn) = c (F1 (x1) , . . .,Fn (xn))
n∏

i=1

fi (xi), (3.27)

such that fi are marginal densities and F−1
i is the quantile function of the margins. The

density function of a copula is given by

c (u1, . . .,un) =

n∏
i=1

fi
(
F−1

i (ui)
)
.(3.28)

This study uses elliptical copulas which have been widely used in the literature

for multivariate volatility modelling, i.e., Gaussian and Student-t copulas which is

explained further in Appendix A.1. In this study, the copula GARCH models are

implemented using the multivariate Gaussian and Student-t distributions, with static

and dynamic (DCC) estimation of the correlation. The dynamic copula models are

following [102], such that the static copula approach is extended to dynamic models

for the conditional case. In an elliptical distribution setting, the dynamics is added to

the correlation matrix of the copula by allowing the estimation of a Student copula

with disparate shape parameters for the first stage. Let the vector stochastic process of
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financial returns xxxttt = xit, . . .,xnt follows a copula GARCH model with µt modelled with

joint distribution given by,

F(xt|µt,ht) = C(F1(x1t|µ1t,h1t), . . .,Fn(xnt|µnt,hnt)). (3.29)

where Fi, i = 1, . . .,n is the conditional distribution of the ith marginal series density

and C is the n-dimensional Copula. The conditional mean E[xit|Ft−1] = µit such that

Ft−1 is the information set up to time t−1 and the conditional variance rhit follows a

GARCH(1,1) process of,

xxxit = µµµit+ϵϵϵit,

ϵϵϵit =HHH
1
2
itzzzit,

(3.30)

where zit are identically independent distributed random variables which conditionally

follow a standardised skew Student distribution, zit ∼ fi(0,1,ξi,νi) such that ξi is the

skew parameter and νi is the shape parameter. Similar to other DCC models, the

conditional variances HHHttt can be estimated separately by a simple univariate GARCH

specification. The dependence structure of the margins is assumed to follow a Student

copula with conditional correlation Rt and constant shape parameter For the conditional

density, it is given by,

Ct
(
uit, . . .,unt|Rt,η

)
=

ft
(
F−1

i
(
uit|η

)
, . . .,F−1

n (unt) |Rt,η
)

n∏
i=1

fi
(
F−1

i
(
uit|η

)
|η
) , (3.31)

where uit = Fit(rit|µit,hit,ξi,νi) is the Probability Integral Transformation (PIT) of each

series, which are estimated using parametric approach via the first stage GARCH

process. R represents the standardised correlation matrix and the symbol F−1
i (uit|η)
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represents the quantile function of the margins subject to the common shape parameter

η of the multivariate density function.

The margins and PIT estimations are performed using a parametric density

approach following [69]. This approach involves estimating univariate parameters from

separately maximising univariate likelihoods, and then estimating the dependence

parameters from a multivariate likelihood. The marginal distributions are estimated

separately from the copula model such that the conditional distribution is treated

parametrically. In general, to estimate the model, it requires the estimation of the

parameters of the marginal distributions separately, and then estimate the copula

parameters conditioning on the estimated marginal distribution parameters which

simplify the estimation problem. There are other methods that can be consider, for

example, the semiparametric, non parametric, bayesian and other estimation methods

such as method of moments. In this study, the parametric density approach is chosen

as it provide a computational feasibility in carrying out inference with multivariate

models [70].

For the dependence measures, Kendall’s τ is used, as this method is based on order

statistics of the sample which makes no assumption about the marginal distribution

but depends only on copula C. The pearson’s product moment correlation R, which

measures linear correlation between two variables only characterizes the dependence

structure in the multivariate normal case which can only characterize the ellipses of

equal density when the distribution belongs to the elliptical class. Whereas, for the

multivariate Student distribution, the correlation cannot capture the tail dependence

determined by the shape parameter. The use of Kendall’s τ can overcome these

problem since it is based on correlations that makes no assumption on the marginal
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distributions but depends only on the copula C. Therefore, the use of Kendall’s τ are

able to translate into the correlation matrix as in (3.33), providing a method of moments

type of estimator. Kendall’s τ is defined as,

τ(Xi,X j) = Pr[(Xi−X j)− (Yi−Y j) > 0]−Pr[(Xi−X j)− (Yi−Y j) < 0], (3.32)

where (Xi,Yi)′ and (X j,Y j)′ are vectors of random variables. Kendall’s τmeasures the

difference between the probability of concordant and discordant pairs. The pairwise

measure of concordance may be represented in terms of copula functions as,

τ(Xi,X j) = 4E[C(Fi(Xi),F j(X j))]−1,

= 4

1∫
0

1∫
0

C(ui,u j)dC(ui,u j)−1.
(3.33)

The inputs in this study are efficient (since a large number of models are employed

for the estimation) and necessary as they are needed to perform the optimisation

procedure.

3.4 Application to portfolio optimisation

In the previous section, a variety of econometric models which are used to estimate

the variance-covariance matrix in modelling the asset return covariances has been

discussed. Different models are used to determine which econometric model produces

the best estimates for the asset return and covariances in constructing optimal portfolio.

The use of the multivariate DCC GARCH family is particularly appealing as it preserves
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the ease of estimation with a small number of parameters involved, thus solving the

problems of dealing with a large number of parameters in other multivariate models.

There are many approaches in constructing optimal portfolios, which can be found in

Section 2.2.2.

One of the earliest approaches of the portfolio theory was developed by [90], a

well-known approach known as a mean-variance optimisation. It is a myopic strategy

which assumes that the decision maker has a mean-variance criterion defined over

the single period rate of return on the portfolio. Other related studies by [117], [52],

[105], [115], [112], [11] and [4] have approached the optimisation problem using

the minimisation of mean Conditional Value at Risk (CVaR). Recently, [17] and [64]

proposed minimising the CVaR assuming that the dependence structure is modelled

by the copula parameter.

As mentioned earlier, there are many portfolio optimisation models available in the

literature, but this study chooses five of the most commonly found in the literature.

In this study, five different optimisation strategies are employed: minimum-variance,

mean-variance, maximising Sharpe ratio, minimising mean-CVaR and maximising

Sortino ratio. The purpose of employing different optimisation strategies is to find the

best optimisation strategies among the most common ones, in constructing the optimal

portfolio. This is essential as to ensure that our portfolios are giving the best possible

return from the investment.

Here, efficient portfolios with and without short sales are constructed, which sets

box and group constraints on the weights such that the weights for each asset and the

weights of groups of selected assets are restricted by lower and upper bounds, i.e., (i)

portfolio without short sales, where no more than 30% is invested in each asset (i.e.,
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0 ≤ wi ≤ 0.3, i = 1, . . .,n), and (ii) portfolio with short sales, where a percentage between

-30% to 30% is invested in each asset (i.e., −0.3 ≤ wi ≤ 0.3, i = 1, . . .,n), and 50% is the

maximum percentage to invest in bonds and stocks.

3.4.1 Minimum-variance

The asset returns are assumed to be normally distributed and each investor wants to

maximise their portfolio return at a minimal risk. This portfolio problem involves

quadratic programming with linear constraints such that we want to construct an

efficient portfolio with the lowest possible risk. The optimal proportion allocation wi

to the ith asset is written as,

n∑
i=1

wi = 1, (3.34)

with the returns xi such that i = 1,2, . . .,N. To characterise the portfolio, Rp =
∑n

i=1 xiwi

and the expected return of a portfolio is written as

E[Rp] =
n∑

i=1

µiwi,

such that µi is the mean return on asset i and the variance of the portfolio is given by

σ2
p =

n∑
i=1

n∑
j=1

σi jwiw j = wTQw,
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where Q is the covariance matrix of the assets returns. The vector w denotes the weight

of the asset, subject to the condition of 0 ≤ wi ≤ 1 for portfolio without short sales. To

solve the optimisation model, we choose to construct a portfolio of minimal risk,

Minimise wTQw, (3.35)

subject to Rp =
∑n

i=1µiwi and
∑n

i=1 wi = 1.

3.4.2 Mean-variance

In a mean-variance optimisation model, an efficient portfolio with the lowest possible

risk is constructed such that the return of the portfolio is greater than the target return.

The optimal proportion allocation wi to the ith asset is
∑n

i=1 wi = 1. The expected return

of a portfolio is similar as minimum variance, which is written as,

E[Rp] =
n∑

i=1

µiwi.

The variance of the portfolio is given by,

σ2
p =

n∑
i=1

n∑
j=1

σi jwiw j = wTQw,

The mean-variance optimisation problem has two equivalent formulations: maximisation

of the expected return or minimisation of the variance, of the followings,

1. To maximise Rp subject to σ2
p ≤ w and

∑n
i=1 wi = 1. 1

1The variance of the portfolio is a quadratic function of the vector w which has nonlinear constraints
which make it difficult to solve.
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2. To minimise 1
2σ

2
p subject to Rp ≥ rtarget and

∑n
i=1 wi = 1. 2

It is possible to generate several portfolios by varying rtarget in the variance

minimisation model. If rtarget is very large, an infeasible model may be obtained

when there is no asset with expected return greater or equal to the target return. As

rtarget decreases, portfolios of assets with expected return equal to the target return may

be obtained.

3.4.3 Maximising the Sharpe ratio

Now, instead of minimising the risk, the objective function is to maximise the Sharpe

ratio for a given risk free rate r f . Consider,

Maximise
µ̂Tw− r f

wTQw
, (3.36)

subject to Rp =
∑n

i=1 xiwi and
∑n

i=1 wi = 1. The p-dimensional vector µ̂ is the estimates of

the expected mean of the assets.

3.4.4 Minimising mean-CVaR

Given a confidence level β and a fixed x ∈ X, VaR is defined as the smallest number l

such that the probability of a loss L is not more than 1−β for losses greater than l:

VaRβ(x) = in f {l ∈R : P(L > l) ≤ 1−β} = in f {l ∈R : FL(l) ≥ β}, (3.37)

2This is a quadratic program with linear constraints which can be solve using standard optimisation
software. rtarget is the target expected return and the scaling factor 1

2 is introduced in the objective
function to simplify the calculation of derivatives.
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where FL is the distribution function of the losses. The minimisation of mean-CVaR

optimisation model is formulated as

Minimise CVaRβ(x) =Minimise E[L|L ≤ VaRβ(x)], (3.38)

such that R ≥ rtarget.

3.4.5 Maximisation of the Sortino ratio

The last optimisation strategy is the maximisation of Sortino ratio, which is a prominent

variant of the Sharpe ratio. This ratio uses downside deviation rather than standard

deviation of the returns distribution as the measure of risk. Sortino ratio is ratio of the

target return lowered by the risk-free rate and the CVaR risk, which can be written as,

Maximise
µ̂Tw− r f

(wTQw)DR
, (3.39)

subject to Rp =
∑n

i=1 xiwi and
∑n

i=1 wi = 1. The risk-free rate is set at r f = 0. In the

Sortino ratio, the denominator is replaced with (wTQw)DR such that the total risk

has been replaced by downside risk; portfolio managers will not be penalised for

upside variability but will be penalised for variability below the minimum target

return. The Sharpe ratio uses a symmetric risk concept by equally penalising downside

and upside deviations from the sample mean return, whereas the Sortino ratio only

consider the negative performance in the calculation of the squared returns. This

performance measure provides a better capture of risk if returns are not normally

distributed, for example in the case of hedge fund returns. This method is one of the

most popular portfolio performance measure in the asset management industry. But, a
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poor estimation of the semideviation may result in a biased Sortino ratio. Normally, it

is a standard practice to use the square-root-of-time rule to annualise the semideviation

when it is computed on daily or weekly returns [97].

3.5 Data and statistical characteristics

This study considers 12 assets consisting of eight stocks and four bond indices

of 10 years maturity, in the United States (US), United Kingdom (UK), Germany,

Japan, Netherlands, Canada and Hong Kong. In particular, the data set consists of

monthly observations on eight stock indices: FTSE100, MSCI Europe Excluding UK

(MSEXUK), S&P 500 composite (S.PCOMP), DAX30 (DAXINDX), AEX (AMSTEOE),

TOPIX (TOKYOSE), Hang Seng (HNGKNGI) and TSX composite (TTOCOMP). Four

bond indices were also included: UK Benchmark 10-Year Government (BMUK10Y), US

Benchmark 10-Year Government (BMUS10Y), Germany Benchmark 10-Year Government

(BMBD10Y) and FTSE Britain Government Linked Bond (BGILALL). All time series

data were collected from Datastream for 30 years from January 1985 to December

2014, yielding to 360 observations. The estimation was performed using R software.

The following R packages are used, "rmgarch" in combination with "rugarch" and

"CCgarch" for the covariance modeling. And the package "fPortfolio" was used for the

optimisation part.

The historical monthly returns of these stocks from the preceding 240 months (from

January 1985 to December 2004) are used as the in-sample period to estimate the

models. The recursive forecast approach is employed (expanding-window), where

the data from January 1985 to December 2004 are used to make the first estimation in
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January 2005, data from January 1985 to January 2005 are used to make the second

estimation in February 2005, and so on.

The monthly returns for the considered time period are shown in Figure 3.1, from

which can be clearly seen the presence of volatility clustering. It is also obvious that

the volatility of the series changes over time.
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Figure 3.1. Plots of the monthly analysed asset returns series from January 1985 to December
2014.
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Table 3.1 presents the basic statistical characteristics of the time series. There are

substantial differences in the characteristics for each of the analysed asset return series;

the stock indices have high average returns with a high volatility, while the bond

returns have relatively lower average returns and volatilities.

Table 3.1: Statistical characteristics and Ljung-Box of historical monthly returns for the analysed
assets from January 1985 to December 2014. The Ljung-box test is computed using 12 lags.

Assets
Rate of Returns, Rt Sq. returns, R2

t Abs. returns, |Rt|

Mean Stdev Skewness Kurtosis Q(12) Q(12) Q(12)

FTSE100 0.0046 0.0455 -1.1387 5.3324 7.1110 8.1196 34.587**

MSEXUK 0.0073 0.0563 -0.8630 1.8616 14.1310 55.498** 72.312**

S.PCOMP 0.0070 0.0444 -1.1008 3.6350 7.7062 20.4750 51.275**

DAXINDX 0.0069 0.0631 -0.9101 2.6948 7.3127 23.453** 35.758**

AMSTEOE 0.0044 0.0581 -1.3154 4.2702 15.0920 43.91** 57.092**

TOKYOSE 0.0012 0.0564 -0.3667 1.2278 16.2010 30.392** 11.320

HNGKNGI 0.0083 0.0782 -1.3354 8.8759 22.723** 3.5307 31.804**

TTOCOMP 0.0050 0.0437 -1.4879 6.1225 15.1270 7.1863 30.113**

BMUK10Y 0.0021 0.0206 -0.1586 1.3692 19.9310 40.983** 37.633**

BMUS10Y 0.0015 0.0218 0.0523 0.9303 16.3820 15.2260 9.5042

BMBD10Y 0.0015 0.0162 -0.2619 0.4050 27.532** 8.5521 11.2980

BGILALL 0.0044 0.0196 0.5009 2.4422 15.7770 23.109** 19.5850

Note: ** represents the p-value of < 0.05, indicating that the null hypothesis of no autocorrelation is rejected
at 95% confidence level (critical value of 21.026).

The kurtosis for all of the assets ranges from 0.4 to 8.9, indicating fat tails in the

asset return distributions. For the skewness, most of the assets are negatively skewed,

indicating a distribution with an asymmetric tail extending toward more negative

values.

The results indicate that the asset returns exhibit skewed distributions, large variance

and they are not normally distributed, which means that a time-varying conditional

volatility exists. A normal distribution must be symmetric with excess kurtosis of zero.

The evidence for serial correlations in the asset returns is examined using the

Ljung-Box Q(m) test statistics for the rates of return Rt, absolute rates of return |Rt| and

squared rates of return R2
t (see Table 3.1).
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There is evidence for a high level of autocorrelation in the absolute returns and the

squared returns in which the null hypothesis of no autocorrelation is rejected at 5%

level of significance for almost all of the assets series.

To test for normality, the Shapiro test is conducted and a p-value of 2.2e−16 is

obtained, which again rejects the null hypothesis, indicating that the distribution is

not normal. Statistical tests on these data indicate that the hypotheses for normality

cannot be accepted for the majority of the assets.

The covariance matrix of the portfolio is used to quantify the deviation from the

expected return and to capture the investment risk, given the standard deviations and

the covariance, the correlation can be determined from ρi j =
σiσ j
σi j .

Table 3.2 reports the pairwise correlation coefficients for the analysed asset returns.

It is evident that the correlations within the stock and bond indices are relatively high.

However, the pairwise correlation coefficients for the remaining pair asset returns

exhibit low to medium correlations, indicating a potential for risk diversification in the

constructed portfolio. The results confirm the presence of the stylised facts such as

heavy tails, volatility clustering and heteroskedasticity in the asset returns distributions.

The multivariate GARCH models are suitable to use to deal with these kinds of data.
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3.6 Empirical analysis

The objective of this study is to investigate which econometric model produces the

best estimates for the asset return and covariances in constructing optimal portfolio.

As mentioned in Section 3.5, the data set of 360 observations period were split into 240

initial in sample estimation period, for the parameter estimation and model selection to

get the forecast for asset return and covariance matrix. Then, an initial out-of-sample

period of 120 evaluation period were used to evaluate the performance of the portfolio

over the period. Each new forecast was generated by adding new observations and

re-estimating the model with the new observations as the data become available. The

steps were repeated for each of the optimisation strategies.

3.6.1 Evaluating the out-of-sample portfolio performance

To measure the performance of the portfolio, 120 out-of-sample periods were evaluated

and perform the optimal asset allocation with a difference covariance estimator

depending on the time period for each of the optimisation models.

The exercise is repeated several times using 26 different model specifications based

on different combination of mean and covariance modelling discussed earlier. This is

done while considering efficient portfolios with and without short sales. The models

are (the abbreviation used are given in the bracket),

• DCC GARCH Normal (DCC-MVN)

• DCC GARCH Student (DCC-MVT)

• Asymmetric DCC GJR-GARCH Normal (aDCC-MVN)

• Asymmetric DCC GJR-GARCH Student (aDCC-MVT)
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• FDCC GARCH Normal (FDCC)

• VAR DCC GARCH Normal (VAR-MVN)

• VAR DCC GARCH Student (VAR-MVT)

• ARMA DCC GARCH Normal (ARMA-MVN)

• ARMA Student (ARMA-MVT)

• GOGARCH Normal (GG-MVN)

• ARMA GOGARCH Normal (ARMA-GG-MVN)

• VAR GOGARCH Normal (VAR-GG-MVN)

• Static Copula Normal (SCop-MVN)

• Static Copula Student (SCop-MVT)

• Static ARMA Copula Normal (ARMA-SCop-MVN)

• Static ARMA Copula Student (ARMA-SCop-MVT)

• Static VAR Copula Normal (VAR-SCop-MVN)

• Static Asymmetric Copula Normal (a-SCop-MVN)

• Static Asymmetric Copula Student (a-SCop-MVT)

• Dynamic Copula Normal (DCop-MVN)

• Dynamic Copula Student (DCop-MVT)

• Dynamic ARMA Copula Normal (ARMA-DCop-MVN)

• Dynamic ARMA Copula Student (ARMA-DCop-MVT)

• Dynamic VAR Copula Normal (VAR-DCop-MVN)

• Dynamic Asymmetric Copula Normal (a-DCop-MVN)

• Dynamic Asymmetric Copula Student (a-DCop-MVT)
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3.6.1.1 Efficient minimum-variance portfolio without short sales

Table 3.3 presents the out-of-sample portfolio performance of a minimum-variance

portfolio without short sales and restricting the portfolio weights to be 0 ≤ xi ≤ 0.3, i =

1, . . .,n, and the investment of 50% in stocks and bonds. In general, the empirical results

suggest that the dynamic models are able to deliver performance gains over the static

models. The best model is the aDCC-MVT, which accrues significant average monthly

return of 0.38%, cumulative return of 45.48% and Sharpe ratio of 0.2013. The next best

model is the VAR-SCop-MVN, which recorded an average monthly return of 0.33%,

cumulative return of 39.36% and Sharpe ratio of 0.1766, but with a lower risk (1.88%)

as compared to aDCC-MVT (1.91%).

Table 3.3: Descriptive statistics and out-of-sample performance of minimum-variance efficient
portfolio without short sale for the econometric models under study from January 2005 to
December 2014.

Model Return
Cumulative

Return
Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0027 0.3272 0.0191 0.1447 -0.0141 -0.0245 -0.0508
DCC-MVT 0.0031 0.3732 0.0191 0.1643 -0.0159 -0.0215 -0.0625
aDCC-MVN 0.0033 0.4007 0.0192 0.1723 -0.0137 -0.0238 -0.0627
aDCC-MVT 0.0038 0.4548 0.0192 0.2013 -0.0151 -0.0239 -0.0663
FDCC-MVN 0.0027 0.3223 0.0192 0.1420 -0.0142 -0.0244 -0.0507
VAR-MVN 0.0026 0.3081 0.0191 0.1329 -0.0136 -0.0246 -0.0681
VAR-MVT 0.0023 0.2780 0.0188 0.1207 -0.0141 -0.0252 -0.0611
ARMA-MVN 0.0027 0.3228 0.0194 0.1430 -0.0140 -0.0229 -0.0513
ARMA-MVT 0.0027 0.3286 0.0188 0.1452 -0.0138 -0.0235 -0.0673
GG-MVN 0.0031 0.3665 0.0188 0.1653 -0.0155 -0.0255 -0.0652
ARMA-GG-MVN 0.0026 0.3119 0.0188 0.1371 -0.0165 -0.0275 -0.0656
VAR-GG-MVN 0.0026 0.3104 0.0184 0.1428 -0.0160 -0.0299 -0.0612
SCop-MVN 0.0022 0.2696 0.0191 0.1209 -0.0195 -0.0331 -0.0605
SCop-MVT 0.0021 0.2526 0.0201 0.1012 -0.0212 -0.0320 -0.0663
ARMA-SCop-MVN 0.0020 0.2388 0.0189 0.1060 -0.0191 -0.0315 -0.0656
ARMA-SCop-MVT 0.0021 0.2482 0.0187 0.1109 -0.0187 -0.0285 -0.0689
VAR-SCop-MVN 0.0033 0.3936 0.0188 0.1766 -0.0184 -0.0299 -0.0623
a-SCop-MVN 0.0022 0.2639 0.0191 0.1148 -0.0183 -0.0333 -0.0613
a-SCop-MVT 0.0020 0.2453 0.0201 0.0975 -0.0209 -0.0303 -0.0673
DCop-MVN 0.0024 0.2848 0.0191 0.1253 -0.0180 -0.0333 -0.0645
DCop-MVT 0.0024 0.2915 0.0203 0.1196 -0.0207 -0.0334 -0.0718
ARMA-DCop-MVN 0.0025 0.2968 0.0193 0.1298 -0.0177 -0.0334 -0.0777
ARMA-DCop-MVT 0.0027 0.3265 0.0192 0.1379 -0.0163 -0.0314 -0.0707
VAR-DCop-MVN 0.0026 0.3147 0.0189 0.1373 -0.0194 -0.0311 -0.0670
a-DCop-MVN 0.0024 0.2841 0.0191 0.1248 -0.0118 -0.0333 -0.0644
a-DCop-MVT 0.0024 0.2917 0.0203 0.1196 -0.0207 -0.0334 -0.0717
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Table A1 presents the average weight of an efficient portfolio without short sales

using the minimum-variance. All models invested mainly in BMBD10Y which is a

bond index, ranging from 20% to 30% out of the overall investment. The next biggest

allocation is invested in stock indices, i.e., FTSE100, S&PCOMP and TTOCOMP with

around 10% to 22% of total investment. Note that, most of the models allocate only a

very small percentage to DAXINDX with only 0 to 1% out of total investments.

3.6.1.2 Efficient minimum-variance portfolio with short sales

The results presented in Table 3.4 are based on the out-of-sample performance of

the constructed minimum-variance efficient portfolio with short sales based on the

constraints of the portfolio weights to be −0.3 ≤ xi ≤ 0.3, i = 1, . . .,n and the investment

of 50% in stocks and bonds.

By using these constraints, the multivariate aDCC-MVT once again outperforms

the other models. The aDCC-MVT has the highest cumulative return of 57.34% with

the Sharpe ratio of 0.2603, but at a higher risk of 1.89%. On the other hand, the

GOGARCH-MVN and DCC-MVT models produce a high average return at a lower

risk. By incorporating the copula function, it does not bring any improvement to the

model performance. For mean-variance portfolios with short sales, the GOGARCH,

DCC and aDCC models perform well compared to other models.

Similar to the portfolio without short sales, all models have invested mainly in

bonds, i.e., the highest allocation is to asset BMBD10Y with about 30% of the investment,

while a substantial fraction of the investment is allocated to stock indices (see Table

A2). This is expected since bond indices are known to be ‘safer’ as they have medium

volatilities with lower average returns. If the investor is risk-averse, then he will take
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Table 3.4: Descriptive statistics and out-of-sample performance of minimum-variance efficient
portfolio with short sale for the econometric models under study from January 2005 to December
2014.

Model Return
Cumulative

Return
Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0029 0.3444 0.0187 0.1611 -0.0138 -0.0219 -0.0317
DCC-MVT 0.0039 0.4670 0.0187 0.2148 -0.0107 -0.0160 -0.0374
aDCC-MVN 0.0038 0.4567 0.0187 0.2100 -0.0114 -0.0167 -0.0462
aDCC-MVT 0.0048 0.5734 0.0189 0.2603 -0.0098 -0.0163 -0.0432
FDCC-MVN 0.0029 0.3474 0.0189 0.1596 -0.0139 -0.0205 -0.0317
VAR-MVN 0.0029 0.3439 0.0185 0.1569 -0.0139 -0.0199 -0.0409
VAR-MVT 0.0027 0.3269 0.0181 0.1508 -0.0118 -0.0188 -0.0404
ARMA-MVN 0.0030 0.3588 0.0191 0.1644 -0.0116 -0.0186 -0.0281
ARMA-MVT 0.0034 0.4025 0.0184 0.1870 -0.0114 -0.0192 -0.0392
GG-MVN 0.0039 0.4676 0.0186 0.2127 -0.0134 -0.0228 -0.0379
AR-GG-MVN 0.0038 0.4513 0.0189 0.1980 -0.0164 -0.0226 -0.0428
VAR-GG-MVN 0.0035 0.4213 0.0183 0.1915 -0.0125 -0.0242 -0.0364
SCop-MVN 0.0020 0.2380 0.0184 0.1133 -0.0199 -0.0242 -0.0534
SCop-MVT 0.0018 0.2147 0.0205 0.0817 -0.0194 -0.0311 -0.0624
ARMA-SCop-MVN 0.0021 0.2525 0.0181 0.1174 -0.0161 -0.0289 -0.0532
ARMA-SCop-MVT 0.0021 0.2482 0.0178 0.1170 -0.0169 -0.0248 -0.0550
VAR-SCop-MVN 0.0035 0.4162 0.0172 0.2002 -0.0167 -0.0274 -0.0610
a-SCop-MVN 0.0019 0.2251 0.0184 0.1069 -0.0193 -0.0237 -0.0559
a-SCop-MVT 0.0018 0.2156 0.0205 0.0806 -0.0203 -0.0289 -0.0645
DCop-MVN 0.0017 0.2088 0.0187 0.0988 -0.0166 -0.0243 -0.0630
DCop-MVT 0.0016 0.1917 0.0211 0.0761 -0.0205 -0.0352 -0.0793
ARMA-DCop-MVN 0.0022 0.2689 0.0195 0.1188 -0.0152 -0.0206 -0.0804
ARMA-DCop-MVT 0.0024 0.2921 0.0188 0.1248 -0.0164 -0.0224 -0.0642
VAR-Cop-MVN 0.0027 0.3261 0.0186 0.1389 -0.0201 -0.0262 -0.0487
a-DCop-MVN 0.0017 0.2082 0.0187 0.0984 -0.0166 -0.0245 -0.0624
a-DCop-MVT 0.0016 0.1906 0.0211 0.0755 -0.0205 -0.0353 -0.0794

the risk of investing in a higher risk portfolio. Note that the allocation to DAXINDX,

AMSTEOE, HNGKNGI, BMUK10Y, and BGILALL are different across the models.

3.6.1.3 Efficient mean-variance portfolio without short sales

By using the same constraints, the results for the out-of-sample performance of

mean-variance optimisation without short sales is presented in Table 3.5.

Given a target return rtarget = 0.33%, the multivariate DCC-MVT model has the

highest cumulative return of 40.99% and achieved a higher Sharpe ratio of 0.1528.

Next, the average weight of an efficient portfolio without short sales is evaluated using

the mean-variance optimisation. On the basis of the results in Table A3, similar to
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Table 3.5: Descriptive statistics and out-of-sample performance of mean-variance efficient
portfolio without short sale for the econometric models under study from January 2005 to
December 2014.

Model Return
Cumulative

Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0031 0.3672 0.0203 0.1530 -0.0199 -0.0240 -0.0867
DCC-MVT 0.0034 0.4099 0.0213 0.1528 -0.0192 -0.0338 -0.0742
aDCC-MVN 0.0033 0.4007 0.0192 0.1723 -0.0137 -0.0238 -0.0627
aDCC-MVT 0.0030 0.3629 0.0210 0.1356 -0.0182 -0.0288 -0.0801
FDCC-MVN 0.0031 0.1533 0.0203 0.1533 -0.0199 -0.0239 -0.0867
VAR-MVN 0.0038 0.4610 0.0200 0.1852 -0.0195 -0.0240 -0.0723
VAR-MVT 0.0036 0.4379 0.0205 0.1708 -0.0183 -0.0311 -0.0745
ARMA-MVN 0.0028 0.3400 0.0205 0.1457 -0.0193 -0.0258 -0.0857
ARMA-MVT 0.0022 0.2656 0.0189 0.1159 -0.0174 -0.0317 -0.0681
GG-MVN 0.0023 0.2816 0.0188 0.1282 -0.0175 -0.0295 -0.0743
ARMA-GG-MVN 0.0029 0.3440 0.0187 0.1534 -0.0171 -0.0293 -0.0719
VAR-GG-MVN 0.0021 0.2535 0.0184 0.1194 -0.0202 -0.0334 -0.0697
SCop-MVN 0.0022 0.2690 0.0191 0.1222 -0.0189 -0.0332 -0.0610
SCop-MVT 0.0022 0.2593 0.0201 0.1038 -0.0202 -0.0326 -0.0666
ARMA-SCop-MVN 0.0018 0.2157 0.0192 0.0991 -0.0186 -0.0332 -0.0737
ARMA-SCop-MVT 0.0021 0.2519 0.0186 0.1135 -0.0189 -0.0301 -0.0699
VAR-SCop-MVN 0.0033 0.3919 0.0201 0.1624 -0.0211 -0.0302 -0.0589
a-SCop-MVN 0.0022 0.2611 0.0191 0.1176 -0.0194 -0.0336 -0.0598
a-SCop-MVT 0.0022 0.2609 0.0201 0.1039 -0.0205 -0.0516 -0.0645
DCop-MVN 0.0026 0.3142 0.0194 0.1293 -0.0160 -0.0263 -0.0674
DCop-MVT 0.0024 0.2824 0.0202 0.1167 -0.0208 -0.0329 -0.0717
ARMA-DCop-MVN 0.0026 0.3075 0.0195 0.1210 -0.0164 -0.0270 -0.0659
ARMA-DCop-MVT 0.0027 0.3265 0.0192 0.1379 -0.0163 -0.0314 -0.0707
VAR-DCop-MVN 0.0023 0.2804 0.0189 0.1238 -0.0180 -0.0320 -0.0671
a-DCop-MVN 0.0026 0.3133 0.0194 0.1283 -0.0164 -0.0266 -0.0672
a-DCop-MVT 0.0024 0.2823 0.0202 0.1167 -0.0207 -0.0329 -0.0717

minimum-variance portfolios, all models invested mainly in the bond index BMBD10Y,

ranging from 26% to 30% out of the overall investment. FTSE100 also has a high

allocation at around 10% to 22% across all models. Most of the models do not invest in

stock HNGKNGI, which has high volatility, while some models allocate only a small

proportion, i.e., around 1%.

3.6.1.4 Efficient mean-variance portfolio with short sales

The results for the optimal mean-variance portfolios with the weights constraints of

−0.3 ≤ xi ≤ 0.3, i = 1, . . .,n, and a target expected return of 0.34%, are presented in Table

3.6. The multivariate aDCC-MVT, VAR-MVT and VAR-MVN models outperform the

other competing models. In general, these models have higher Sharpe ratios, i.e., 0.2100

(aDCC-MVN), 0.1716 (VAR-MVN) and 0.1715 (VAR-MVT). These models also have
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lower values of the corresponding risk measures such as the volatility and the value

at risk values. In general, when short sales is allowed, all models short sell the stock

HNGKNGI, ranging from -1% to -6% (refer Table A4). On the other hand, all models

take long positions of their portfolios to FTSE100, S&PCOMP, TOKYOSE, TTOCOMP,

BMUK10Y, and BMUS10Y.

Table 3.6: Descriptive statistics and out-of-sample performance of mean-variance efficient
portfolio with short sale for the econometric models under study from January 2005 to December
2014.

Model Return
Cumulative

Return
Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0026 0.3081 0.0207 0.1286 -0.0184 -0.0287 -0.1004
DCC-MVT 0.0032 0.3837 0.0220 0.1336 -0.0193 -0.0370 -0.0583
aDCC-MVN 0.0038 0.4567 0.0187 0.2100 -0.0114 -0.0167 -0.0462
aDCC-MVT 0.0026 0.3095 0.0215 0.1095 -0.0220 -0.0270 -0.0767
FDCC-MVN 0.0026 0.3070 0.0207 0.1281 -0.0184 -0.0286 -0.1004
VAR-MVN 0.0038 0.4517 0.0208 0.1716 -0.0148 -0.0268 -0.0789
VAR-MVT 0.0038 0.4580 0.0209 0.1715 -0.0169 -0.0327 -0.0646
ARMA-MVN 0.0026 0.3123 0.0211 0.1568 -0.0180 -0.0279 -0.0942
ARMA-MVT 0.0021 0.2491 0.0184 0.1170 -0.0160 -0.0288 -0.0555
GG-MVN 0.0029 0.3497 0.0186 0.1558 -0.0192 -0.0303 -0.0682
AR-GG-MVN 0.0036 0.4297 0.0189 0.1916 -0.0189 -0.0278 -0.0634
VAR-GG-MVN 0.0030 0.3610 0.0183 0.1613 -0.0191 -0.0294 -0.0646
SCop-MVN 0.0020 0.2379 0.0184 0.1155 -0.0197 -0.0240 -0.0550
SCop-MVT 0.0018 0.2175 0.0206 0.0819 -0.0198 -0.0290 -0.0640
ARMA-SCop-MVN 0.0016 0.1861 0.0193 0.0871 -0.0169 -0.0263 -0.0751
ARMA-SCop-MVT 0.0023 0.2739 0.0178 0.1305 -0.0176 -0.0272 -0.0544
VAR-SCop-MVN 0.0042 0.5008 0.0192 0.2159 -0.0206 -0.0313 -0.0634
a-SCop-MVN 0.0019 0.2310 0.0184 0.1092 -0.0200 -0.0244 -0.0522
a-SCop-MVT 0.0019 0.2241 0.0205 0.0851 -0.0197 -0.0290 -0.0629
DCop-MVN 0.0023 0.2703 0.0189 0.1148 -0.0146 -0.0246 -0.0604
DCop-MVT 0.0015 0.1806 0.0211 0.0713 -0.0210 -0.0352 -0.0791
ARMA-DCop-MVN 0.0022 0.2652 0.0191 0.1112 -0.0160 -0.0225 -0.0606
ARMA-DCop-MVT 0.0024 0.2921 0.0188 0.1248 -0.0164 -0.0224 -0.0642
VAR-Cop-MVN 0.0024 0.2898 0.0181 0.1356 -0.0171 -0.0255 -0.0677
a-DCop-MVN 0.0023 0.2735 0.0189 0.1155 -0.0145 -0.0245 -0.0610
a-DCop-MVT 0.0015 0.1806 0.0211 0.0713 -0.0210 -0.0352 -0.0791
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3.6.1.5 Efficient portfolio based on maximising Sharpe ratio without short sales

In this section, an optimal portfolio based on maximising the Sharpe ratio is constructed

for a portfolio without short sales. The results are presented in Table 3.7 assuming

the risk-free rate r f to be 0%. From the results, the multivariate AR-GG-MVN model

outperforms the other models, by having the highest value in three out of five

portfolio measurements, with a high risk of 2.49%. The other best optimal models are

ARMA-MVT and ARMA-MVN. The results for the maximisation of Sharpe ratio show

that it has a better portfolio in terms of higher return and Sharpe ratio as compared to

the mean-variance optimisation. However, this optimisation strategy has a higher risk

in all of the models when compared to the mean-variance strategy.

Table A5 presents the average weight of an efficient portfolio without short sales

based on maximising the Sharpe ratio. In the mean-variance optimisation, the biggest

proportion of investment goes to BMBD10Y, while in maximising the Sharpe ratio, all

models invested mainly in a bond index BGILALL for about 20% to 30% of the overall

investment.

3.6.1.6 Efficient portfolio based on maximising Sharpe ratio with short sales

When short selling is allowed with constraints of the portfolio weights to be between

−0.3 ≤ xi ≤ 0.3, i = 1, . . .,n, a more attractive portfolio is obtained as the results have

higher monthly return, cumulative return and Sharpe ratio in most of the models as

compared to the portfolio without short sales. The risk-free rate r f is assumed to be 0%.

Table 3.8 presents the results obtained from constructing an efficient Sharpe ratio

portfolio with short sales.
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Table 3.7: Descriptive statistics and out-of-sample performance based on maximising Sharpe
ratio without short sale for the econometric models under study from January 2005 to December
2014.

Model Return
Cumulative

Return
Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0041 0.4979 0.0235 0.1843 -0.0181 -0.0298 -0.0625
DCC-MVT 0.0049 0.5863 0.0239 0.1507 -0.0169 -0.0273 -0.0698
aDCC-MVN 0.0042 0.5091 0.0246 0.1796 -0.0156 -0.0320 -0.0706
aDCC-MVT 0.0053 0.6311 0.0248 0.2111 -0.0205 -0.0274 -0.0796
FDCC-MVN 0.0042 0.5047 0.0236 0.1864 -0.0181 -0.0300 -0.0625
VAR-MVN 0.0021 0.2469 0.0241 0.0783 -0.0212 -0.0400 -0.0861
VAR-MVT 0.0023 0.2744 0.0240 0.0870 -0.0229 -0.0400 -0.0846
ARMA-MVN 0.0075 0.9058 0.0243 0.3078 -0.0194 -0.0275 -0.0735
ARMA-MVT 0.0086 1.0312 0.0230 0.3474 -0.0153 -0.0215 -0.0518
GG-MVN 0.0047 0.5622 0.0256 0.1801 -0.0258 -0.0351 -0.0807
AR-GG-MVN 0.0132 1.5850 0.0249 0.5195 -0.0155 -0.0263 -0.0667
VAR-GG-MVN 0.0024 0.2938 0.0239 0.0934 -0.0247 -0.0400 -0.0835
SCop-MVN 0.0035 0.4151 0.0191 0.1842 -0.0191 -0.0437 -0.0689
SCop-MVT 0.0034 0.4034 0.0251 0.1354 -0.0220 -0.0428 -0.0674
ARMA-SCop-MVN 0.0049 0.5856 0.0236 0.2066 -0.0202 -0.0417 -0.0728
ARMA-SCop-MVT 0.0046 0.5551 0.0226 0.2088 -0.0202 -0.0373 -0.0826
VAR-SCop-MVN 0.0047 0.5588 0.0243 0.1890 -0.0247 -0.0354 -0.0551
a-SCop-MVN 0.0033 0.4020 0.0249 0.1326 -0.0177 -0.0360 -0.0875
a-SCop-MVT 0.0035 0.4236 0.0251 0.1409 -0.0212 -0.0413 -0.0686
DCop-MVN 0.0038 0.4571 0.0248 0.1508 -0.0181 -0.0426 -0.0915
DCop-MVT 0.0032 0.3844 0.0252 0.1318 -0.0189 -0.0406 -0.0730
ARMA-DCop-MVN 0.0035 0.4221 0.0236 0.1465 -0.0193 -0.0416 -0.0794
ARMA-DCop-MVT 0.0040 0.4763 0.0242 0.1608 -0.0250 -0.0436 -0.0700
VAR-Cop-MVN 0.0043 0.5184 0.0244 0.1906 -0.0223 -0.0341 -0.0763
a-DCop-MVN 0.0040 0.4768 0.0248 0.1567 -0.0166 -0.0385 -0.0982
a-DCop-MVT 0.0030 0.3566 0.0253 0.1245 -0.0196 -0.0403 -0.0700
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Table 3.8: Descriptive statistics and out-of-sample performance based on maximising Sharpe
ratio with short sale for the econometric models under study from January 2005 to December
2014.

Model Return
Cumulative

Return
Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0047 0.5592 0.0249 0.1953 -0.0240 -0.0414 -0.0734
DCC-MVT 0.0064 0.7621 0.0252 0.2483 -0.0137 -0.0290 -0.0420
aDCC-MVN 0.0055 0.6627 0.0285 0.1932 -0.0179 -0.0321 -0.0545
aDCC-MVT 0.0072 0.8675 0.0270 0.2707 -0.0161 -0.0254 -0.0519
FDCC-MVN 0.0046 0.5510 0.0247 0.1945 -0.0130 -0.0221 -0.0554
VAR-MVN 0.0042 0.5033 0.0263 0.1608 -0.0196 -0.0306 -0.0713
VAR-MVT 0.0043 0.5216 0.0263 0.1681 -0.0181 -0.0312 -0.0702
ARMA-MVN 0.0159 1.9050 0.0263 0.5867 -0.0073 -0.0144 -0.0362
ARMA-MVT 0.0159 1.9046 0.0259 0.5961 -0.0039 -0.0145 -0.0292
GG-MVN 0.0061 0.7293 0.0279 0.2096 -0.0247 -0.0402 -0.0566
AR-GG-MVN 0.0244 2.9290 0.0263 0.9171 -0.0032 -0.0101 -0.0289
VAR-GG-MVN 0.0046 0.5485 0.0264 0.1748 -0.0238 -0.0364 -0.0734
SCop-MVN 0.0027 0.3229 0.0184 0.1508 -0.0211 -0.0524 -0.0764
SCop-MVT 0.0025 0.2992 0.0277 0.0965 -0.0257 -0.0513 -0.0758
ARMA-SCop-MVN 0.0053 0.6332 0.0258 0.2224 -0.0219 -0.0383 -0.0698
ARMA-SCop-MVT 0.0064 0.7665 0.0254 0.2668 -0.0223 -0.0423 -0.0632
VAR-SCop-MVN 0.0075 0.8961 0.0247 0.2939 -0.0177 -0.0246 -0.0496
a-SCop-MVN 0.0026 0.3094 0.0272 0.1013 -0.0188 -0.0497 -0.0953
a-SCop-MVT 0.0030 0.3620 0.0278 0.1098 -0.0246 -0.0471 -0.0755
DCop-MVN 0.0034 0.4033 0.0277 0.1143 -0.0174 -0.0452 -0.1005
DCop-MVT 0.0029 0.3462 0.0284 0.1089 -0.0281 -0.0496 -0.0810
ARMA-DCop-MVN 0.0045 0.5428 0.0262 0.1604 -0.0210 -0.0434 -0.0705
ARMA-DCop-MVT 0.0044 0.5320 0.0281 0.1516 -0.0221 -0.0489 -0.0718
VAR-Cop-MVN 0.0042 0.5087 0.0260 0.1802 -0.0262 -0.0344 -0.0748
a-DCop-MVN 0.0033 0.4000 0.0277 0.1180 -0.0222 -0.0403 -0.1063
a-DCop-MVT 0.0026 0.3175 0.0284 0.0997 -0.0279 -0.0500 -0.0816

From the results, once again, the multivariate AR-GG-MVN, ARMA-MVN and

ARMA-MVT models outperform the other models. The AR-GG-MVN and ARMA-MVN

models have the highest risk of 2.63% among all models, whereas ARMA-MVT has a

slightly lower risk of 2.59%. The average weights of the efficient portfolios with short

sales based on maximising the Sharpe ratio are presented in Table A6. Similarly as

with the portfolio without short sales, the biggest asset allocation goes to BGILALL for

about 18% to 30% out of the total investment. Note that some assets have different

allocations across the models.
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3.6.1.7 Efficient portfolio based on minimising mean-CVaR portfolio without short

sales

In the mean-CVaR optimisation, the optimised efficient portfolio which has the lowest

risk for a given return is computed by minimising the conditional value at risk using a

95% probability level, with similar restrictions as in other models. When the portfolio

is in the long position, the results are presented in Table 3.9.

Table 3.9: Descriptive statistics and out-of-sample performance based on minimising
mean-CVaR without short sale for the econometric models under study from January 2005 to
December 2014.

Model Return
Cumulative

Return
Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0158 1.8981 0.0226 0.6754 -0.0090 -0.0184 -0.0495
DCC-MVT 0.0020 0.2420 0.0197 0.1071 -0.0214 -0.0319 -0.0645
aDCC-MVN 0.0175 2.1035 0.0227 0.7545 -0.0068 -0.0156 -0.0492
aDCC-MVT 0.0022 0.2663 0.0181 0.1147 -0.0181 -0.0256 -0.0622
FDCC-MVN 0.0104 1.2471 0.0210 0.4620 -0.0144 -0.0224 -0.0581
VAR-MVN 0.0147 1.7618 0.0226 0.6176 -0.0110 -0.0288 -0.0683
VAR-MVT 0.0102 1.2266 0.0230 0.4409 -0.0011 -0.0208 -0.0766
ARMA-MVN 0.0173 2.0812 0.0227 0.7163 -0.0086 -0.0160 -0.0439
ARMA-MVT 0.0118 1.4152 0.0214 0.4847 -0.0114 -0.0208 -0.0621
GOGARCH-MVN 0.0183 2.1956 0.0232 0.7568 -0.0047 -0.0137 -0.0504
AR-GOGARCH-MVN 0.0150 1.7944 0.0230 0.6033 -0.0124 -0.0207 -0.0513
VAR-GOGARCH-MVN 0.0167 1.9996 0.0234 0.6979 -0.0099 -0.0245 -0.0554
SCop-MVN 0.0023 0.2766 0.0233 0.1025 -0.0262 -0.0396 -0.0886
SCop-MVT 0.0057 0.6888 0.0207 0.2661 -0.0174 -0.0306 -0.0648
ARMA-SCop-MVN 0.0159 1.9050 0.0229 0.6513 -0.0113 -0.0188 -0.0520
ARMA-SCop-MVT 0.0099 1.1857 0.0207 0.4368 -0.0104 -0.0221 -0.0510
VAR-SCop-MVN 0.0150 1.7993 0.0230 0.6125 -0.0091 -0.0191 -0.0728
a-SCop-MVN 0.0142 1.7008 0.0221 0.6080 -0.0111 -0.0173 -0.0514
a-SCop-MVT 0.0062 0.7433 0.0208 0.2889 -0.0170 -0.0312 -0.0671
DCop-MVN 0.0033 0.4001 0.0225 0.1482 -0.0223 -0.0310 -0.0771
DCop-MVT 0.0032 0.3847 0.0210 0.1481 -0.0193 -0.0291 -0.0634
ARMA-DCop-MVN 0.0021 0.2483 0.0222 0.0953 -0.0196 -0.0309 -0.0867
ARMA-DCop-MVT 0.0033 0.3910 0.0236 0.1452 -0.0209 -0.0408 -0.0833
VAR-Cop-MVN 0.0033 0.4009 0.0242 0.1444 -0.0289 -0.0407 -0.0840
a-DCop-MVN 0.0031 0.3684 0.0225 0.1388 -0.0216 -0.0303 -0.0802
a-DCop-MVT 0.0030 0.3550 0.0211 0.1403 -0.0210 -0.0262 -0.0810

The aDCC-MVN model once again outperforms other models with the highest

average return of 1.75%, followed by ARMA-MVN, which recorded average return of

1.73% with a similar volatility of 2.27%.
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The highest asset allocation of this model mainly goes to stock TOKYOSE, which

dominating the portfolio, for about 10% to 30% of total investment. The other allocations

are invested in bond indices, i.e., BMBD10Y and BMUS10Y with around 8% to 30%.

The average weights for the analysed assets are presented in Table A7.
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3.6.1.8 Efficient portfolio based on minimising mean-CVaR portfolio with short

sales

Table 3.10 reports the monthly average returns of the constructed portfolios, the

cumulative returns, risk and value at risk at 90%, 95%, and 99% probability levels.

The portfolio allows short selling, that is the portfolio is constructed when we restrict

the portfolio weights to be −0.3 ≤ xi ≤ 0.3, i = 1, . . .,n, with a target expected return

of 0.34%. The results show that the multivariate ARMA-SCop-MVN model has the

highest average return of 4.81% with a higher risk of 3.20%. Note that, models such as

a-SCop-MVN, have a higher average return of 4.62% and Sharpe ratio of 1.5803 with a

much lower risk of 2.92%.

Table A8 indicates that the allocation of assets to MSEXUK, S&PCOMP, DAXINDX,

AMSTEOE, HNGKNGI, BMUS10Y and BGILALL are different across models. It is also

interesting to note that, only the model a-DCop-MVT short sell the asset TOKYOSE

when the other models remain in long position. In particular, all models invested

heavily in bond indices, i.e., BMUK10Y and BMBD10Y, ranging from 15% to 22%, and

11% to 30%, respectively.

3.6.1.9 Efficient portfolio based on maximising Sortino ratio without short sales

Now, we consider the case of the efficient Sortino ratio portfolio without short sales.

This portfolio is constructed by maximising the Sortino ratio for a given risk-free rate

with the same weight restrictions as in the previous models. Table 3.11 reports the

performance results of the portfolios. The DCC-MVT model has the highest average

return of 1.94%, as well as the highest cumulative return and a Sharpe ratio. The other

best models are aDCC-MVT, a-Dcop-MVT and SCop-MVT.
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Table 3.10: Descriptive statistics and out-of-sample performance based on minimising
mean-CVaR with short sale for the econometric models under study from January 2005
to December 2014.

Model Return
Cumulative

Return
Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0465 5.5828 0.0294 1.5766 0.0200 0.0159 0.0027
DCC-MVT 0.0399 4.7859 0.0266 1.4885 0.0135 0.0051 0.004
aDCC-MVN 0.0463 5.5511 0.0293 1.5780 0.0187 0.0091 0.0028
aDCC-MVT 0.0389 4.6720 0.0267 1.4563 0.0100 0.0045 -0.0006
FDCC-MVN 0.0446 5.3541 0.0287 1.5596 0.0187 0.0073 0.0000
VAR-MVN 0.0467 5.5993 0.0314 1.4776 0.0197 0.0051 -0.0056
VAR-MVT 0.0341 4.0925 0.0296 1.1401 0.0000 0.0000 0.0000
ARMA-MVN 0.0470 5.6432 0.0303 1.5548 0.0225 0.0123 -0.0054
ARMA-MVT 0.0443 5.3178 0.0293 1.5102 0.0194 0.0082 0.0014
GOGARCH-MVN 0.0468 5.6163 0.0296 1.5741 0.0202 0.0096 -0.0050
AR-GOGARCH-MVN 0.0464 5.5669 0.0296 1.5603 0.0197 0.0081 -0.0025
VAR-GOGARCH-MVN 0.0473 5.6746 0.0315 1.4939 0.0228 0.0076 -0.0068
SCop-MVN 0.0037 0.4487 0.0293 0.1294 -0.0350 -0.0443 -0.0739
SCop-MVT 0.0408 4.8908 0.0271 1.5015 0.0177 0.0046 -0.0019
ARMA-SCop-MVN 0.0481 5.7749 0.0320 1.5049 0.0242 0.0088 0.0001
ARMA-SCop-MVT 0.0428 5.1337 0.0285 1.4939 0.0171 0.0125 -0.0027
VAR-SCop-MVN 0.0477 5.7228 0.0305 1.5573 0.0249 0.0094 0.0019
a-SCop-MVN 0.0462 5.5412 0.0292 1.5803 0.0233 0.0105 -0.0019
a-SCop-MVT 0.0410 4.9226 0.0273 1.4946 0.0171 0.0062 -0.0068
DCop-MVN 0.0041 0.4881 0.0292 0.1343 -0.0334 -0.0405 -0.0771
DCop-MVT 0.0045 0.5391 0.0307 0.1388 -0.0350 -0.0500 -0.0806
ARMA-DCop-MVN 0.0008 0.0926 0.0299 0.0144 -0.0364 -0.0450 -0.1046
ARMA-DCop-MVT 0.0033 0.3964 0.0317 0.1126 -0.0363 -0.0547 -0.1073
VAR-Cop-MVN 0.0041 0.4975 0.0292 0.1368 -0.0353 -0.0391 -0.0625
a-DCop-MVN 0.0365 4.3811 0.0263 1.4062 0.0121 0.0072 0.0000
a-DCop-MVT 0.0045 0.5382 0.0306 0.1472 -0.0325 -0.0469 -0.1015
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Table 3.11: Descriptive statistics and out-of-sample performance based on maximising Sortino
ratio without short sale for the econometric models under study from January 2005 to December
2014.

Model Return
Cumulative

Return
Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0171 2.0530 0.0233 0.7480 0.0000 -0.0131 -0.0440
DCC-MVT 0.0194 2.3319 0.0231 0.8408 0.0000 -0.0119 -0.0440
aDCC-MVN 0.0170 2.0407 0.0230 0.7624 0.0000 -0.0129 -0.0450
aDCC-MVT 0.0191 2.2893 0.0228 0.8322 0.0000 -0.0119 -0.0397
FDCC-MVN 0.0172 2.0604 0.0232 0.7497 0.0000 -0.0131 -0.0440
VAR-MVN 0.0087 1.0493 0.0229 0.3914 -0.0161 -0.0420 -0.0755
VAR-MVT 0.0031 0.3677 0.0242 0.1460 -0.0178 -0.0466 -0.0902
ARMA-MVN 0.0110 1.3225 0.0228 0.4989 0.0000 -0.0156 -0.0647
ARMA-MVT 0.0137 1.6495 0.0225 0.6074 0.0000 -0.0139 -0.0438
GOGARCH-MVN 0.0155 1.8607 0.0232 0.6801 0.0000 -0.0128 -0.0448
AR-GOGARCH-MVN 0.0149 1.7886 0.0229 0.6515 0.0000 -0.0144 -0.0576
VAR-GOGARCH-MVN 0.0080 0.9571 0.0236 0.3316 0.0000 -0.0254 -0.0629
SCop-MVN 0.0174 2.0886 0.0227 0.7775 0.0000 -0.0128 -0.0440
SCop-MVT 0.0186 2.2354 0.0228 0.8038 0.0000 -0.0119 -0.0440
ARMA-SCop-MVN 0.0118 1.4117 0.0226 0.5306 -0.0011 -0.0167 -0.0775
ARMA-SCop-MVT 0.0148 1.7713 0.0228 0.6398 0.0000 -0.0128 -0.0479
VAR-SCop-MVN 0.0083 0.9946 0.0238 0.3338 0.0000 -0.0200 -0.0538
a-SCop-MVN 0.0168 2.0194 0.0226 0.7585 0.0000 -0.0115 -0.0440
a-SCop-MVT 0.0190 2.2784 0.0231 0.8197 0.0000 -0.0119 -0.0440
DCop-MVN 0.0168 2.0131 0.0229 0.7536 0.0000 -0.0128 -0.0440
DCop-MVT 0.0187 2.2452 0.0229 0.8165 0.0000 -0.0119 -0.0440
ARMA-DCop-MVN 0.0104 1.2483 0.0221 0.4692 0.0000 -0.0142 -0.0618
ARMA-DCop-MVT 0.0103 1.2419 0.0212 0.4978 0.0000 -0.0156 -0.0446
VAR-Cop-MVN 0.0087 1.0434 0.0234 0.3681 -0.0012 -0.0173 -0.0643
a-DCop-MVN 0.0170 2.0385 0.0230 0.7669 0.0000 -0.0128 -0.0440
a-DCop-MVT 0.0188 2.2518 0.0229 0.8177 0.0000 -0.0119 -0.0440
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The highest asset allocation of this model mainly goes to bond indices, i.e., BMUK10Y,

BMUS10Y, and BMBD10Y dominates the portfolio with about 7% to 20% of total

investment. This is true for the entire model in mean-CVaR efficient portfolios without

short sales. The average weights for the analysed assets are presented in Table A9.

3.6.1.10 Efficient portfolio based on maximising Sortino ratio with short sales

We construct an optimal portfolio based on maximising Sortino ratio, with short sales

such that the portfolio weight is restricted to be between −0.3 ≤ xi ≤ 0.3, i = 1, . . .,n at

95% probability level. Table 3.12 reports the performance measure for this optimisation

strategy.

Table 3.12: Descriptive statistics and out-of-sample performance based on maximising Sortino
ratio with short sale for the econometric models under study from January 2005 to December
2014.

Model Return
Cumulative

Return
Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%

DCC-MVN 0.0362 4.3470 0.0272 1.3446 0.0014 0.0007 0.0000
DCC-MVT 0.0540 6.4811 0.0325 1.6599 0.0285 0.0172 0.0052
aDCC-MVN 0.0333 3.9977 0.0263 1.2776 0.0090 0.0000 0.0000
aDCC-MVT 0.0283 3.3954 0.0252 1.1447 0.0091 0.0000 0.0000
FDCC-MVN 0.0369 4.4271 0.0274 1.3605 0.0140 0.0074 0.0000
VAR-MVN 0.0268 3.2168 0.0292 0.9214 0.0000 0.0000 0.0000
VAR-MVT 0.0164 1.9721 0.0304 0.5471 0.0000 0.0000 0.0000
ARMA-MVN 0.0229 2.7496 0.0276 0.8444 0.0000 0.0000 0.0000
ARMA-MVT 0.0149 1.7829 0.0259 0.5799 0.0000 0.0000 0.0000
GOGARCH-MVN 0.0326 3.9096 0.0256 1.2733 0.0095 0.0000 0.0000
AR-GOGARCH-MVN 0.0125 1.4958 0.0254 0.4953 0.0000 0.0000 0.0000
VAR-GOGARCH-MVN 0.0294 3.5317 0.0303 0.9507 0.0000 0.0000 0.0000
SCop-MVN 0.0359 4.3089 0.0262 1.3844 0.0114 0.0000 0.0000
SCop-MVT 0.0339 4.0714 0.0257 1.3242 0.0122 0.0000 0.0000
ARMA-SCop-MVN 0.0275 3.2972 0.0283 0.9672 0.0000 0.0000 0.0000
ARMA-SCop-MVT 0.0231 2.7711 0.0265 0.8740 0.0000 0.0000 0.0000
VAR-SCop-MVN 0.0317 3.8009 0.0301 1.0673 0.0000 0.0000 0.0000
a-SCop-MVN 0.0362 4.3458 0.0263 1.3909 0.0123 0.0000 0.0000
a-SCop-MVT 0.0339 4.0639 0.0259 1.3170 0.0142 0.0000 0.0000
DCop-MVN 0.0358 4.2960 0.0261 1.3823 -0.0117 0.0000 0.0000
DCop-MVT 0.0333 3.9993 0.0257 1.3110 -0.0130 0.0000 0.0000
ARMA-DCop-MVN 0.0254 3.0434 0.0287 0.8573 0.0000 0.0000 0.0000
ARMA-DCop-MVT 0.0197 2.3607 0.0253 0.7462 0.0000 0.0000 0.0000
VAR-Cop-MVN 0.0283 3.3995 0.0300 0.9370 0.0000 0.0000 0.0000
a-DCop-MVN 0.0365 4.3811 0.0263 1.4062 0.0072 0.0000 0.0000
a-DCop-MVT 0.0329 3.9475 0.0259 1.2847 0.0000 0.0000 0.0000



3.7 Conclusion 81

The results show that the DCC-MVT model has the highest monthly average

return, cumulative return and Sharpe ratio. However, this model has the highest

risk as compared to the other models. On the other hand, models like FDCC-MVN,

aDCC-MVN, SCop-MVN also have a high return with a high Sharpe ratio at a much

lower risk.

The average weights of asset portfolios constructed based on maximising Sortino

ratio are reported in Table A10. The asset allocation for assets MSEXUK, DAXINDX,

AMSTEOE, HNGKNGI, and BGILALL are different across models. The allocation to

TOKYOSE asset is high; around 10% to 25% of total investment in most of the models.

It is interesting to note that only the ARMA-DCop-MVN model involves short sell for

this optimisation strategy.

3.7 Conclusion

This chapter provides a comparative analysis of various multivariate DCC GARCH

models using a portfolio allocation strategy as the loss function. The portfolio’s

performance is examined in terms of the returns, variance of returns, Sharpe ratio,

and the value-at-risk. Different multivariate GARCH models are applied, i.e., VAR,

ARMA, DCC, aDCC, FDCC, GOGARCH and Copula GARCH models by using the

normal and Student-t distributions involving static and dynamic copulas. The use of

the multivariate DCC GARCH family is particularly appealing as it preserves the ease

of estimation with a small number of parameters involved, thus solving the problems

of dealing with a large number of parameters in other multivariate models.

For asset allocation process and also for risk management purposes, different

models are used to see which is the best model in optimising the portfolio return. The



3.7 Conclusion 82

analysis focuses on 12 assets consisting of four bonds and eight stock indices in the

US, UK, Germany, Japan, Netherlands, Canada and Hong Kong. The results confirm

the presence of heteroskedasticity, fat tails and volatility clustering in the asset returns

of the data. The multivariate GARCH models are fitted to the portfolio returns to get

the estimation of the variance-covariance matrix. Then, for the asset allocation, the

box-group constrained portfolio are used, whereby the weights for each asset and the

weights of groups of selected assets are constrained by lower and upper bounds.

Specifically, for the minimum-variance portfolios, the multivariate aDCC-MVT

model outperformed the other models, by having the highest average monthly return,

cumulative return and Sharpe ratio for both portfolios, with or without short sales.

Portfolios using the mean-variance optimisation strategy have good performance

measures as compared to the other models such as the multivariate DCC-MVT,

aDCC-MVN, VAR-MVN and VAR-SCop-MVN models. As for maximising the Sharpe

ratio, the AR-GOGARCH-MVN and ARMA-MVN models outperformed the other

models. For the mean-CVaR optimisation, the models DCC-MVT, aDCC-MVT, FDCC

and a-DCop-MVT are comparatively the best models. Finally, when maximising the

Sortino ratio, once again the models DCC-MVT, aDCC-MVT, a-DCop-MVT and FDCC

provide the best out-of-sample performance. Among the optimisation strategies, the

maximisation of the Sortino ratio provides the best out-of-sample performance, but

this strategy is rarely used in the literature.

Two important results emerged from this study. Firstly, the dynamic models are

more capable of delivering better performance gains than the static models. These

models reduce portfolio risk and improve the realised return in the out-of-sample

period. Secondly, the results show that adding copula functions to the models does
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not give a better performance when compared to the dynamic correlation models.

While adding copula may capture additional characteristics in the data, it does not

improve model selection outcomes in the performance of the portfolio. The results

from this study are consistent with [137] and [110]; the DCC models are not easily

outperformed by any of the parametric copula models. That is, the copula model may

not perform well when involving many related assets since only stock and bond indices

are considered in the portfolio. Overall, these findings are useful for practitioners who

are involved in portfolio optimisation and risk measurement in pension schemes. It

will help the fund manager to decide the best investment strategies to ensure maximum

benefit for its members.

The analysis in this chapter can be extended in several ways. The problem has

been solved using limited restrictions on the weights of the constructed portfolios.

Future studies could incorporate different constraints to examine the robustness of

the constructed portfolio and make a comparison. There are also other possible ways

to extend the study by looking at different situations in which the copula model

may perform better, i.e., by using other copula models, by looking at different asset

allocation horizons, using multiple asset class in the portfolio or considering other

frequency of asset returns. Future studies could also consider incorporating exogenous

factors variables in the models, to see the effects it may have to the estimation of mean

and variance-covariance matrix. It is interesting to note that, so far in this chapter,

this study has evaluated the asset management in a portfolio, the research could be

extended by including the liabilities which will be discuss in the next few chapters.

In this context, the methodology proposed could be useful to pension managers and
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asset managers in determining amount of assets that is sufficient to support pension

liabilities. This study, therefore, can be a good benchmark for future related research.



Chapter 4

Mortality modelling for single and

multiple population

This chapter presents a novel approach for modelling mortality in single and multiple

population. Existing mortality models are mostly dealing with single population

based on the famous Lee Carter model and its extension. While in this study, a novel

modification of singular value decomposition (SVD) and principal component analysis

(PCA) methodology are proposed to different mortality models in a single and multiple

population. It is known that the mortality rates are declining quite rapidly in most

developed countries which presents challenges to the pension providers. As mortality

declines, it becomes essential to plan and save for retirement. A study on mortality

modelling is vital in projecting the future mortality as close as possible to the actual

rates to avoid future systematic losses. This study provides a novel estimation methods

in modelling the mortality rates for a single and also multiple population in order to

project future life expectancy across populations.

85
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4.1 Introduction

During the past twenty years, the life expectancy in most countries has increased

significantly. For example, the Human Mortality Database shows that the UK life

expectancy at birth from 1922 to 2016 rose from 58.85 years to 82.84 years for females

and from 55.18 years to 79.18 years for males [65]. The increase in life expectancy,

demonstrating improvements in health and social welfare, presents challenges to

insurers and governments which clearly give major threats to the planning of public

retirement systems as well as for the private life annuities. The ageing population and

rising longevity has contributed to the risk of underestimating the survival probability,

thus determining inappropriate premiums. Insurance companies charge premiums to

their members for covering risks in which the premium is collected in advance but the

claim amounts are not known beforehand. Most of the time the amount of premium

is fixed to prevent the insurer from charging additional premiums due to adverse

mortality trends over time.

There is a risk for the pension provider underestimating the survival risk which

may lead to inaccurate prediction of future mortality and facing difficulties in meeting

pension liabilities in the future. The pension provider has to estimate the future

mortality rates in advance as close as possible to the actual ones to ensure that they

are capable to meet future liabilities. In a pension scheme, a good asset and liability

management is crucial to plan a good investment strategy, accurate mortality rates

projection and applying these results to the pension scheme. Reasonable asset modelling

and good mortality modelling are essential to ensure accurate values (funding level of
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the scheme, actuarial liabilities and future benefit commitments) can be determined to

avoid future systematic losses.

increases in life expectancy have emphasis the importance of mortality modelling

and forecasting. There are many models have been proposed since the Law of Gompertz

in 1825. The past two decades have seen many sophisticated models are proposed and

introducing the use of stochastic modelling in predicting future mortality.

One of the most influential stochastic models of mortality rates is the Lee Carter

(LC) model [82]. The LC model is robust, has a good fit over wide age ranges but lacks

the smoothness of age effect, especially in small populations, and has no cohort effect.

It applies the use of singular value decomposition (SVD) to decompose the age-time

vector into a bilinear combination of age and period parameters with minimised

modelling error. Other related methods like SVD include the principal component

analysis (PCA) which have been widely used to forecast the time series of mortality

and it is also a popular method when dealing with multivariate data. As an example,

the paper of [24] uses PCA to estimate the mortality rates for different age groups in

the United States. [140] and [67] have applied the PCA approach to the logarithm of

central mortality rates in estimating the age and period effects.

The LC model has inspired various extensions (see for example; [83], [23], [14],

[41] and [104]). They are different to one another based on different basis such as

assumptions on the ease of implementation, age and period dimensions, incorporation

of cohort effects, forecasting properties and methods of estimation. [109] generalised

the LC model by incorporating the cohort effect while [127] include the multiple bilinear

age-period components in the equation. A study by [23] estimates the parameter

embedded in the LC model into a Poisson regression setting.
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The most famous extension of the LC model is the two-factor Cairns-Blake-Dowd

(CBD) model proposed by [25]. This model assumes a linear relationship between

age and the logit of initial mortality rates. It assumes that each of the two parameters

follows a random walk with drift (RWD), such that the rate of drift is constant and

changes in the parameters are correlated. This suggests that this approach is suitable

for the pricing of mortality related derivatives for a short time period. A later study

by [124] has found that for a long term period, the CBD model does not necessarily

resemble a random walk with drift process but for most of the periods, each of the

factors can actually be modelled as a random fluctuation around a trend that are

changing periodically. [14] have also found that the level of drift is not constant and

allowing the fitting to their model only for the period that shows apparent linear trend

of mortality only.

The CBD model has then been extended to include combinations of a quadratic age

term and a cohort effect [27]. A model by [104] combined the CBD model with some

features in the LC model to propose another model that is applicable to a full age range

and captures the cohort effect and has a non-trivial correlation structure. Some other

papers have carried out the comparisons between a wider range of models derived

from the famous LC model (see, [26], [13] and [49]). The CBD model is designed for

modelling mortality at higher ages, suitable for annuities and pensions.

Most of the mortality models work well for a single population. In the academic

literature, there has been little study of mortality forecasting in multiple population

settings. A multi population mortality model considers more than one population at

one time in a joint mortality model. For example, these models may be used to model

both male and female UK mortality data into one model as well as the interactions



4.1 Introduction 89

between both populations. Or, we can model the mortality across different populations

at one time. In a multiple population, the mortality data set is bigger which combines

the data from different sources (which can be from different countries, regions or

genders), allowing a robust mortality modelling by identifying "similar" characteristics

within the sub-populations. When the dimension of data increases, it gets more

difficult to summarise these data. PCA provides a way to condense multivariate

data by extracting the components that can best describe the data properties. It is

interesting to be able to model mortality simultaneously in a multiple population to

determine the relationship between the populations. Given the rapid increase in the

number of mortality models introduced in the literature, there has been some recent

attempts to extend these models in a multiple population setting. [131] has provided

a comparative study of two population models for the assessment of basis risk in

longevity hedges and gave an overview of existing multiple population mortality

modelling methodologies in the actuarial and statistical literature. Generally, these

stochastic models are a variation of mortality modelling from age, period and cohort

effects.

The purpose of this chapter is threefold. First, this study gives structured overview

of existing mortality modelling in a single and multiple population, scattered within the

actuarial and demographic literature. The study provides evaluation of using different

estimation methodologies in estimating the parameters in the mortality modelling. The

novelty of this study, is that alternative estimation methods are proposed in modelling

the mortality rates for a single and multiple population. As mentioned earlier, the

mortality rates are declining rapidly which presents challenges to insurer and pension

providers. Therefore, it is essential to find the best estimation methods for the mortality



4.2 Notation 90

modelling so that the future liabilities can be meet. Also, to the best of our knowledge,

such a comprehensive analysis covering different methodologies for both types of

populations has not been performed before. Finally, the third goal is to analyse the

performance of individual models as compared to multiple population models using

the United Kingdom data. We believe that providing such an overview and comparison

is an important contribution to the mortality modelling literature.

The remainder of the chapter is organised as follows: Section 2 displays the notation

used in the chapter. In Section 3, the base model for the mortality modelling which

is the Lee Carter model is discussed. Section 4 represents the individual population

models to model the mortality rates. Section 5 describes the multiple population

mortality modelling. Section 6 presents the data, empirical analysis and results of

the proposed models and methods, while Section 6 provides concluding remarks and

identifies the shortcomings and future implications of the study.

4.2 Notation

The variables used in the models are defined below:

D(x, t): The number of deaths in a population at age x during calendar year t.

E(x, t): The number of exposure to risk in a population at age x during calendar year t.

d(x, t): The observed number of deaths at age x during calendar year t.

E0(x, t): The initial exposure to risk at age x during calendar year t.

Ec(x, t): The central exposure to risk at age x during calendar year t. 1

q(x, t): The one-year death rate for an individual age x during calendar year t can be

1If only central exposures are available, the initial exposures can be approximated by adding half of
the reported number of deaths to the central exposures E0(x, t) ≈ Ec(x, t)+ 1

2 d(x, t). When the context is
clear, E(x, t) is used to refer E0(x, t) or Ec(x, t).
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estimated as q̂(x, t) = d(x,t)
E0(x,t) .

µ(x, t) : The force of mortality at age x during calendar year t.

m(x, t) : The central death rate at age x during calendar year t. 2

m̄(x, t) : The average mortality rate at age x during calendar year t.

α(x) : The average age specific pattern by age of mortality.

β(x) : The sensitivity of the logarithm of the hazard rate at age x to the time trend

represented by κ(t).

κ(t) : The underlying time trend for the general mortality during calendar year t.

ϵ(x, t) : The effects not captured by the model, which are Gaussian distributed N(0,σ2)

randoms effects by age and time.

4.3 Lee Carter model : The base model

The first mortality model known as Lee Carter model is proposed by [82] which has

been used extensively in the literature. This model describes the log of a time series of

age specific death rates m(x, t) as the sum of an age specific component α(x) which is

independent of time with κ(t) and β(x). The Lee Carter model proposes the following

mortality model,

ln(m(x, t)) = α(x)+β(x)κ(t)+ϵ(x, t), (4.1)

with the term ϵ(x, t) is the error term which is independent and identically distributed

with N(0,σ2). This term reflects the age-specific influences that are not captured by the

2When the force of mortality is assumed to be constant over each year, then the force of mortality
µ(x, t) and the death rate m(x, t) correspond each other.
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model. αx describes the average age specific pattern by age of mortality, βx describes

which rates decline rapidly and slowly in response to changes in the index κt and κt

denotes the underlying time trend for the general mortality in year t. The term βxκt

in this model capture the joint tendency of age-specific mortality rates to evolve over

time. In general, βx can be negative for some ages implying that mortality at those

ages tends to rise when falling at other ages; but in practise this does not seem to

happening over the long run. Whereas when κt is linear in time, mortality at each age

changes as its own constant exponential rate, and when κt goes to negative infinity,

each age-specific rate goes to 0 (but negative death rates cannot occur in this model,

which gives advantage for forecasting) [83].

This model is a regression framework with no observed variable on the right

hand side. It is based on two-stage process: (i) estimation of parameters using a

close approximation of the classical singular value decomposition (SVD) method by

assuming that errors are homoscedastic such that the
∑

xβ(x) = 1 and
∑

tκ(t) = 0 are

imposed to distinguish a unique solution and (ii) α(x) is estimated as the logarithm of

the geometric mean of the mortality rates, average values over time of the ln(m(x, t))

such that, we want to minimise the ϵx,t for a given t value. κ(t) is refitted so that the

observed number of deaths coincide with those estimated. κ(t) is usually modeled by

an ARIMA(0,1,0) process such that,

κ(t) = δ+κ(t−1)+ξt ξ(t) ∼N(0,σ2
κ), (4.2)

where δ is the drift parameter and ξt is a Gaussian white noise process which are

normally distributed with mean zero and variance σ2
κ. The Equation 4.1 states the

mortality rate at age x in the particular year t. To predict the mortality rate in the
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following year, all parameters in the LC model need to be estimated. To obtain the

estimation for αx, we have,

T∑
t=1

ln(m(x, t)) =
T∑

t=1

(α(x)+β(x)κ(t)+ϵ(x, t))

T∑
t=1

ln(m(x, t)) =
T∑

t=1

α(x)+
T∑

t=1

β(x)κ(t)+
T∑

t=1

ϵ(x, t)

T∑
t=1

ϵ(x, t) =
T∑

t=1

ln(m(x, t))−
T∑

t=1

α(x)−
T∑

t=1

β(x)κ(t)

T∑
t=1

ϵ(x, t) =
T∑

t=1

ln(m(x, t))−Tαx−βx

T∑
t=1

κt

(4.3)

As mentioned above, we have the following constraints
∑

t=1 ϵ(x, t) = 0,
∑

t=1κ(t) = 0

and
∑

t=1β(x) = 1 then,

T∑
t=1

ln(m(x, t))−Tαx = 0

Tαx =

T∑
t=1

ln(m(x, t)).

(4.4)

The parameter value for α(x) can be then estimated as, α̂(x), that is,

α̂(x) =
1
T

T∑
t=1

ln m(x, t). (4.5)

The mortality rates are observed for T number of available time periods. Once the

estimated values, α̂x is obtained, the estimated values for β̂x and κ̂t can be found using

SVD methods which will be explained further in the next section.
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4.4 Single population model

In this section, we will discuss the variation of the single population stochastic mortality

models which are based on modification of different singular value decomposition

(SVD) estimation methods. In general, the predictor (systematic component), m(x, t) is

able to capture the effects of age x, year t and cohort effect (year of birth), c = t−x to the

model.

Consider the mortality rates in k populations. The realised mortality rates m̃i(x, t) at

age x in year t = 1, . . .,T for a life aged x = x1, . . .,xn in population i = 1, . . .,k, is observe.

In general, for a single population, we have i = 1, then,

m̃i(x, t) =
di(x, t)
Ei(x, t)

. (4.6)

The number of deaths in a population can follow either a Poisson or a Binomial

distribution such that di(x, t)∼Poisson(Ec
i (x, t)µi(x, t)) or di(x, t)∼Binomial(E0

i (x, t),qi(x, t)).

The average mortality rate, m̄i(x), which is actually equivalent to α(x) for a life aged x

in population i is written as,

α(x) = m̄i(x) =
1
T

T∑
t=1

ln m̃i(x, t). (4.7)

The centralised log mortality rates is defined as follows,

mi(x, t) = m̃i(x, t)−α(x). (4.8)
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mi represents the matrix of the observed centralised log mortality rates in a particular

population, which is,

mi =


mi(x1,1) . . . mi(x1,T)

...
. . .

...

mi(xn,1) . . . mi(xn,T)


. (4.9)

The mortality rates are observed for n different ages, for a total of T years. The

ages x1, . . .,xn and the years 1, . . .,T are the same for all populations and it is assumed

that T > n. The individual models of order p for the centralised mortality rates mi in a

population i, is an extension of the LC model to p age and period effects, that is,

ln mi(x, t) = β
(1)
i (x)κ(1)

i (t)+ · · ·+β(p)
i (x)κ(p)

i (t)+ϵi(x, t). (4.10)

This can be written in matrix form as,

ln mi =pβi pκi+ϵi (4.11)

such that,

pβi =


β(1)

i (x1) . . . β(p)
i (x1)

...
. . .

...

β(1)
i (xn) . . . β(p)

i (xn)


. (4.12)

pκi =


κ(1)

i (1) . . . κ(1)
i (T)

...
. . .

...

κ
(p)
i (1) . . . κ(p)

i (T)


. (4.13)
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The age effect pβi is a n×p and the period effect pκi is a p×T matrix. The residuals of ϵi

is a n×T matrix with E[ϵi(x, t)] = 0 for population i. The extended form of the matrix

multiplication can be found in Appendix A.3.

The maximum number of age effects is p = n since there are only n ages. For

simplification, we have,

βi =nβi (4.14)

It is expected that by adding a second order, third or higher order age effect, the

mortality model will be improved [76]. To tackle the identifiability issue, we assume

||β
( j)
i || = 1 (column j in matrix βi) for all i and j, where ||.|| refers to the Frobenius norm,

which can be written as, ||β( j)
i || =

√
β2

i + · · ·+βn
2 = 1. The Frobenius norm is calculated

as square root of the sum of the absolute squares of its elements which measures the

length of the vector β( j)
i .

There are different ways in fitting the single population model. One of the way is

by using the maximum likelihood estimation. Or, other methods based on generalised

linear models can also be used. These methods are based on models for the number of

deaths rather than models for the mortality rates, and therefore the obtained estimates

for the age and period effects are strongly dependent on those ages and periods in

which large number of deaths have been observed and less dependent on ages and

periods in which relatively few deaths have been observed [76]. But, since this study

extend the individual modelling to a model considering multiple population setting

with different sizes of populations, a model that can attach the same weight to all

observed mortality rates is desirable.
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In the next subsection, we will review the different estimation methodologies in

estimating the parameters in the mortality modelling for a single population model.

4.4.1 Singular value decomposition (SVD)

The Lee Carter model cannot be fitted by ordinary regression methods, since there

are no given regressors. This is true because on the right hand side of the Equation

4.1, there are only parameters to be estimated and the unknown index κt. One way

to estimate the parameters of the Lee Carter model is by using the singular value

decomposition fitting. Once the estimation of parameters αx is obtained, the value of

βx and κt are estimated by using the SVD of the residuals, essentially approximating a

matrix as the product of the two vectors. The SVD method can be used to find a least

squares solution when applied to the matrix of the logarithms of the rates after the

averages over time of the log age-specific rates have been deducted. The first right and

left vectors and the leading value of the SVD after the normalisation will give a unique

solution.

Specifically, first we estimate the α̂(x) as the Equation 4.5. Then, the parameters

κ̂(t) and β̂(x) in Equation 4.1 are estimated as the first right and first singular vectors

in the SVD of the matrix log mi. Using SVD, we have a factorisation of the matrix,

that is a n×T matrix of mi = UiDiVT
i . Ui is a n×n orthogonal matrix, Di is a n×T

diagonal matrix and Vi is a T×T orthogonal matrix which is known as the SVD of

the matrix mi. The σi values of Di are known as the singular values of mi, such that
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Di = diag(σi(1),σi(2), . . .,σi(n)) with σi(1) ≥ σi(2) ≥ · · · ≥ σi(n). The rank of matrix mi is

assume to have full rank, which is equivalent to n since we assumed T > n. In general,

log (mi) = β(x)κ(t), (4.15)

The matrix U, D and V are constructed based on the definition of SVD which gives us,

SVD(mi(x, t)) =UDVT

=D1Ux,1Vt,1+ · · ·+DrUx,rVt,r

=

r∑
i=1

DiUx,iVt,i

(4.16)

such that Di,Ui,Vi are the ordered singular values and vectors and β(x)κ(t) =D1Ux,1Vt,1

subject to the constraints on κ(t) and β(x). U is a value that is dependent to age x, V is a

value that is dependent to time t. Therefore, we have,

SVD(mi(x, t)) =UDVT

= σ1Ux,1Vt,1+ · · ·+σrUx,rVt,r

=

r∑
i=1

σiUx,iVt,i.

(4.17)

The Lee Carter model use rank r = 1 to estimate the parameters β(x) and κ(t), where

mi(x, t) = σ1Ux,1Vt,1 = β(x)κ(t). The estimated parameter β̂ can be obtained as the result

in the first column of matrix U in which β(x)= (u1,1u2,1. . .,ux,1)T. Whereas the parameter

of κ̂t can be obtained by the multiplication of first singular value with the first column
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of the matrix V, where κt = σ1× (v1,1,v2,1, . . .,vt,1). With the constraints of
∑

tκ(t) = 0

and
∑

xβ(x) = 1, the estimated value of β̂(x) and κ̂(t) can be obtained as following,

β̂(x) =
1∑

x ux,1
(u1,1u2,1. . .,ux,1)T (4.18)

and

κ̂(t) =
∑

x
ux,1×σ1× (v1,1v2,1. . .,vt,1) (4.19)

κ̂(t) are adjusted for all t due to the fact that the result for the fitted and the actual date

of mortality rate may not be the same. Therefore, to ensure that
∑

all,x dxt =
∑

all,x d̂xt for

all t, the parameter κ̂(t) is reestimated for all t which satisfies,

d̂xt = Ext exp(α̂(x)+ β̂(x)κ̂(t)). (4.20)

Subsequently, the Lee Carter model has been extended in the mortality forecasting

literature (see [23]; [109]). The model can also be formulated within a generalised linear

model framework such that the parameters in the LC model can be estimated using the

maximum likelihood (ML) methods based on the choice of error distribution. The SVD

is a valuable tool in estimating the parameters in the Lee Carter model. However, this

method requires a full data matrix (no missing values). If there is even one missing

value, then the computation is implausible. The SVD also uses a least squares method

which is very sensitive to outliers. This study proposes a novel and robust modification

of the SVD methodologies in estimating the parameters in the LC model by using the

robust SVD, regularised SVD and also robust regularised SVD which are explained in

more details in the next few subsections.
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4.4.2 Robust Singular Value Decomposition (Robust SVD)

An alternative estimation for these parameters is to apply the individual mortality

modeling using a robust SVD approach. The standard SVD are useful in multivariate

methods because it provides the most reliable method to estimate the rank of the

matrix, finding the eigenvalues and eigenvectors, define principal components and

perform principal component factor analysis, and many more [5]. The robust SVD uses

alternating iteratively re-weighted least squares methods. The values of eigenvalues

and eigenvectors are obtained from the standard SVD, and eventually the covariance

matrix is found by solving the minimisation problems using a series of weighted QR

decompositions. The robust SVD is obtained by replacing the least squares regression

fit in the standard SVD with a robust regression fit, which can then be applied to robust

location and covariance matrix estimation.

The robust SVD uses projection pursuit method to obtain robust eigenvector

estimates by explicitly solving the minimisation problem such that it finds the direction

of eigenvector vn which minimises ρ(mivn), where ρ(·) is known as the projection

index [113]. This method estimates each eigenvector and eigenvalue separately which

provides a better estimate and more robust as compared to estimation of all parameters

simultaneously as in the minimum volume ellipsoid (MVE) estimation. The projection

pursuit approach is used to estimate the eigenvectors of the covariance matrix, such

that we find vn to minimise,

n∑
i=1

ρ(mivn), (4.21)
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subject to the condition of ||vn||
2 = 1, such that mi, is the data matrix of the observed

centralised log mortality rates in a particular population.

The above equation defines a generalised estimation problem for the estimation of

the eigenvectors. For the ordinary eigenvectors, it can be obtained by setting ρ(·) = || · ||2,

while the projection pursuit approach uses other functions. The iterative methods are

used due to no closed form solution for both methods of the eigenvectors to solve the

minimisation problem. For the ordinary eigenvectors, the QR iteration can be used,

while the projection pursuit approach uses the iterative optimisation methods as in [5].

The last eigenvector vn defines the hyperplane that minimises the sum of squared

of the orthogonal distances between the data points and the hyperplane such that

vn represents the residual subspace. Let Dn denotes the projection matrix onto the

subspace spanned by vn, . . .,vr, 2 ≤ n ≤ r, we have the following,

Pn = [vr. . .vn][vr. . .vn]T, (4.22)

After determining the last eigenvector estimate, the data is projected to the subspace

orthogonal to the eigenvector by removing the last column of the current data matrix

mi. The steps are repeated until all eigenvectors are estimated such that the first

eigenvector is determined by the orthogonality constraints. The final weights for

each of the columns are then stored in a matrix. The covariance matrix D can then be

estimated such that the ordinary SVD(mi(x, t)) =UDVT. The estimated value of β̂x and

κ̂t can then be obtained and similarly as previous section, the value of κ̂t are adjusted
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to make sure the distance of the fitted and the actual values to be as close as possible.

Therefore,

SVD(mi(x, t)) =UDVT

= τ1Ux,1Vt,1+ · · ·+τrUx,rVt,r

=

r∑
i=1

τiUx,iVt,i.

(4.23)

where τ now represents the adjusted eigenvalues. The details of the methods are well

discussed in the literature; see [5].

4.4.3 Regularised Singular Value Decomposition (SSVD)

In this section, the regularised SVD method is used to estimate the parameters using

two-way functional data as in [142]. The two-way functional data works in two ways;

ie. both index x and t of data matrix mi(x, t) are structured in a way that both rows and

columns of the matrix are structured with some underlying smooth functions [24]. For

example, in our empirical analysis in Section 4.6, the UK mortality data were obtained

from Human Mortality Database [40]. The mortality data set were gathered such that,

every column exhibits an age group between 18 to 87 years, with every row exhibits a

year between 1948-2007 and every cell shows the mortality rate for a particular age

group during that year. The data are essentially two-way functional data because each

row vector is a mortality curve of different age groups in a specific year and every

column is a time series of mortality rate of a given age group. Therefore, the mortality

rate is consider as a smooth function of both age and time period.

The regularised SVD method was proposed by [24] by introducing the left and right

singular vectors in the SVD of the data matrix, involving two-way functional data. The
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method is based on minimisation of a regularised sum of squared reconstruction errors

of a low rank matrix approximation.

mi is a n×T matrix of the observed centralised log mortality rates in a particular

population such that both effects x and t are structured with an underlying smooth

function. The element of mortality rates mi(x, t) of the data matrix mi is viewed as

evaluation of an underlying function mi(·, ·) on a rectangular grid of sampling points

(x, t), where x represents age, x = x1, . . .,xn and t is the period of t = 1, . . .,T. The SSVD

for the two-way functional data is a fitting of a smooth rank r approximation model of,

ln mi(x, t) = β
(1)
i (x)κ(1)

i (t)+ · · ·+β(p)
i (x)κ(p)

i (t)+ϵi(x, t). (4.24)

whereβi(x) andκi(t) are smooth on their respective domains which has been incorporated

in two-way regularised SVDs. According to [24], this model is consider as a

regularisation with penalisation.

We denote β1 ≡ (β1(x1), . . .,β1(xn))T and κ1 ≡ (κ1(1), . . .,κ1(T))T as the discretised

realisations in extracting the first pair of the components in β1(x) and κ1(t) respectively.

This is known as sequential approach where subsequent pairs are extracted sequentially

after removing the effects of the preceding pairs which allows different pairs of

components to have different smoothing.

Generally, by solving a least square problem, the first pair of singular vectors of a

data matrix mi can be found, such that,

(
β̂, κ̂

)
= argmin

(β,κ)
||mi− (βκ)T

||
2. (4.25)
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β is a n×1, κ is a 1×T matrix and || · || if the Frobenius norm of a matrix. The SSVD for

a two-functional data as following [24], can be solve as,

(
β̂, κ̂

)
= argmin

(β,κ)
{||X− (βκ)T

||
2+Pλ(β,κ)}. (4.26)

Pλ(β,κ) is a regularisation penalty to ensure the smoothness of β and κ and λ is a vector

of regularisation parameters. The penalty function, Pλ(β,κ) has the following form,

Pλ(β,κ) = λββTΩββ · ||κ||
2+λκκ

TΩκκ · ||β||
2+λββ

TΩββλκκ
TΩκκ. (4.27)

such that the Ωβ and Ωκ are symmetric and nonnegative penalty matrices with || · || is

the Frobenius norm. The singular vectors (β̂, κ̂) measured the smoothness as measured

by the penalties βTΩββ and κTΩκκ.

4.4.4 Robust Regularised Singular Value Decomposition (RobRSVD)

[142] have proposed the Robust regularised SVD (RobRSVD) based on the two-way

roughness penalty function introduced in [24] to ensure smoothness along each of the

two functional domain for two-way functional data. This model was developed as a

penalised loss minimisation problem where a robust loss function is used to measure

the reconstruction error of a low-rank matrix approximation of the data.

To achieve robustness, the squared error is removed from Equation 4.26. Let ρ(t) be a

non-negative, symmetric function and let ρ(·) denotes the summation over elementwise
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applications when the scalar function ρ(·) is applied to a matrix. Then, we can write

the loss function for the rank-one approximation of the matrix mi as,

ρ
(m−βκT

σ

)
=

xn∑
n=1

T∑
t=1

ρ
(mi−βiκt

σ

)
, (4.28)

such that σ is a scale parameter that measures the variability in the approximation

errors. Following [142], we define the first pair of singular vectors as,

(
β̂, κ̂

)
= argmin

(β,κ)
ρ
(mi−βκT

σ

)
+Pλ(β,κ). (4.29)

Similarly as in SSVD model, we have Pλ(β,κ) as the penalty function. The parameter

σ can be estimated from the data using residuals from the preliminary rank-one

approximation of mi. The standard SVD is sufficient to use in estimating the scale

parameter [142]. To define the loss function ρ
(mi−βκ

T

σ

)
, we use the Huber’s function as

follows,

ρθ(x) =


x2, if |x| ≤ θ ,

2θ|x| −θ2, if |x| > θ,

θ is the parameter which controls the robustness level such that a lower value of θwill

give a more robut estimation. In this study, θ = 1.345 is used, following a study by

[113], which is a value that has been commonly used in robust regression that produces

95% efficiency for normal errors. The Huber’s function is used due to its simplicity

and faster computation.

For the single population model, we used the normal SVD, the robust SVD (RobSVD),

the regularised SVD (SSVD) and also the robust regularised SVD (RobRSVD) to estimate

the parameters in modelling the mortality. When we use a robust loss function, the
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framework generally robustifies the regularised SVD method to becoming a robust

regularised SVD method. Whereas, when we remove the penalty term in the framework,

the loss function generally becomes a robust SVD. In general, the robust regularised

SVD method can be viewed as a smoothing of a robust SVD method. We used different

modification of SVD methods in estimating the parameters for the mortality modeling

to obtain the best forecasting performance which have not been studied previously.

4.5 Multiple population model

The multiple population mortality models are structured in a way assuming that the

forecasted mortality experiences of different populations are related together and do

not diverge in a long run. This is justified by the long term mortality co-movements

and applicable to longevity risk modelling. There are not many multiple population

stochastic mortality models proposed in the literature. We will be discussing different

estimation methods based on the principal component methods to estimate the

parameters in the multiple population data.

PCA method is a statistical analysis that uses orthogonal transformation to convert

a set of observations of possibly correlated variables into a set of uncorrelated

variables known as principal components. This method is widely used in dealing

with multivariate data as it is suitable for data reduction and for making predictive

modelling. As the dimensions of data increase, it becomes more difficult to analyse

these data. PCA is able to condense the data by extracting the components that can

best describe the data properties. The components extracted are linear combinations

of the original variables. The PCA can be done by using eigenvalue decomposition
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of a data covariance matrix or using a singular value decomposition of a data matrix.

Suppose, we have x1, . . .,xk and the components are denoted by y1, . . ., yk, we have,

y1 = a11x1+ a12x2+ · · ·+ a1kxk,

y2 = a21x1+ a22x2+ · · ·+ a2kxk,

...

yk = ak1x1+ ak2x2+ · · ·+ akkxk,

(4.30)

such that we have uncorrelated principal components. The PCA method involves the

uses of covariance and its eigenvalues. Generally, we have the following mortality

model,

ln(m(x, t)) = α(x)+β(x)κ(t)+ϵ(x, t). (4.31)

For the generalisation of the PCA, we can express the mortality model as follows,

ln(m(x, t)) = α(x)+
J∑

j=1

β(x)( j)κ(t)( j)+ϵ(x, t), (4.32)

such that κ(t)( j) is treated as the principal components. There are many variation of

the PCA decomposition that can be used in estimating the parameters in the mortality

model. We will be looking at the common age effect model of [76] and the multi

group PCA models. Similarly, as in the previous section, the age and period effects are

evaluated simultaneously for multiple population of i = 1, . . .,k.
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4.5.1 Common Age Effect model

[76] introduce a model in which age has the same effect on the centralised log mortality

rates for all countries. The common age effect (CAE) model of order p has the

same structure as the individual model, but now assuming that the impact of age is

independent of the population i, that is,

mi =pβ pκ
C
i +ϵi (4.33)

where pβ is a n× p matrix and the pκC
i is a p×T matrix for all populations i. These

matrices are defined similarly as in Section 4.4. The period effects pκC
i are dependent

on the specific population. Note that we use the notation pκC
i to denote the period

effects in the CAE model, whilst in the single population model, we use pκi to represent

the period effects. Whereas, for pβi in the single population, some of their columns can

be used in the multiple population for all i. This is true because, all period effects are

population specific, but some age effects are the same for all populations.

To estimate the common age effect pβ in Equation 4.33, we applied the common

principal component analysis (cPCA) method as in [56], but instead of using the

maximum likelihood estimation, we use a modification on the least squares estimation.

As in Equation 4.14, we simplify the notation β = nβ.

Assume that we have a CAE model with order p, we are looking to find the

orthogonal matrix β = nβ and diagonal matrices L such that, the βi can be computed

from calculating the eigenvectors of mimT
i , where

Qi =mimT
i = βLβ

T for all i = 1, . . .,k. (4.34)
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We have the following,

mi = βiLiUT
i . (4.35)

Therefore,

mimT
i = βLiUT

i β
T
i LT

i Ui,

= βiLiLT
i β

T
i ,

= βiLβ
T
i where L = LiLT

i .

(4.36)

Therefore, we have the diagonal matrix L = βTQiβ for all i = 1, . . .,k. But, in general, it

is difficult to find β using this way. Alternatively, the estimate of β̂ for the CAE model

is estimated as the orthogonal matrix which gives βTQiβ as close as possible to the

diagonal matrices. Therefore, β can be estimated by minimising T(β) which is the sum

of squares of the off diagonal elements of βTQiβ, as,

T(β) =
k∑

i=1

||βTQiβ−diag(βTQiβ)||2. (4.37)

We denote ||A|| =
√∑

i
∑

j a2
i j as the Frobenius-norm of the matrix A = (ai j)i=1,...,I, j=1,...,J

such that ai j is the element in row i and column j, and β is the n×n orthogonal matrices.

So, we have the estimate β̂ as following,

β̂ = argmin
β

T(β) (4.38)

Then, we can now find the estimates for the diagonal matrices L, as,

L̂ = diag(β̂TQiβ̂). (4.39)
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These estimation method is known as the F-G algorithm which was proposed by

[35]. We can now estimate the pκC
i , similarly, such that,

pκ̂
C
i =p β̂

Tmi, (4.40)

and the residuals are given as,

ϵi =mi - pβ̂ pκ̂C
i (4.41)

Other estimation methods such as Maximum Likelihood estimation can be used to

find the estimates for the parameters in the CAE model. But, the value of the estimators

obtained, will strongly depend on the mortality of a larger populations. Since we are

only interested in common features such as the age effects across mortality rates in a

number of populations that are of different sizes, we used the modification of the SVD

and PCA methods in estimating the parameters in the mortality models.

The PCA method is used extensively for dimensionality reduction in multivariate

analysis by performing linear mapping of the data to a lower dimensional space. It

is common to measure the same variables for each individual. The individuals are

divided into few groups so that same variables can be measured on a set of individuals

rather than measuring it on its own. This partitioning is known as multi-group datasets

which might cause instability to the solution, so rather than estimating separates PCA

on the particular group, several methods based on a parsimonious models have been

introduced.
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To determine the common vector in the group is not easy and may lead to a

complicated algorithm. For the multi-group PCA, this study discusses a general

framework in determining the common variance covariance matrix using the cPCA

model of [56]. Then, the multi-group principal components analysis (MGPCA)

proposed by [80] and the dual generalised procrustes model are also discuss further.

4.5.2 Common PCA model of Flury(1984)

The common principal components analysis (cPCA) was first introduced by [56].

The previous CAE model by [76] also are using cPCA in the model estimation but a

modification on least square estimation is applied. While for the cPCA by [56], the

estimation of the parameters were rather based on the maximum likelihood estimation.

Similarly as CAE model, we consider a multiple population of i, . . .,k. The covariance

matrix Q1, . . .,Qk is expressed by L := mimT
i = βQiβT, where β is an orthogonal n×n

matrix. Assume that we have a simultaneously transformed variables Ui = βTmi which

is known as the common principal components. Note that the rank order of the

diagonal elements of the L is probably not the same for all groups in the populations.

By assuming that the approach is similar to the previous section, we want to find

the orthogonal matrix β = nβ and diagonal matrices L such that,

Qi = βLβ
T for all i = 1, . . .,k. (4.42)

where β is an orthogonal n×n matrix. The steps are similar as previous CAE model,

apart that in here, the estimation are based on maximum likelihood estimation which
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will gives us the estimate of β and L. Once we have the estimate of pβ, the pκi, can be

found similarly as,

pκ̂i =p β̂
Tmi, (4.43)

and the observed residuals are given as ϵi =mi - pβ̂ pκ̂i. By using the maximum

likelihood estimation method, the estimated parameter would strongly depend on

the mortality in larger populations. While, in CAE, the estimation are based on least

square estimation which allow us to see the common age effects across mortality rates

in a number of populations with different sizes.

In general, the PCA of [56] considers the variance covariance matrices involving

the multi group populations which are looking for a common orthogonal vector of

loadings associated with the components in the groups. The determination of the

common vectors of loadings are based on the maximum likelihood estimation.

4.5.3 Multi Group PCA model of Krzanowski(1984)

Another PCA method for determining the common vector of loadings involving

multiple population dataset was proposed by [80]. The dataset mi is the observed

centralised log mortality rates in a particular population. This dataset is described

as when both common effects βi and κt are measured on a set of N individuals. This

dataset is a priori partitioned into G groups, (m1, . . .,mG) groups. Note that mg =mi and

mG = mk. Each group represents Ng individuals such that
∑G

g=1 Ng = N. We assume

that each group mg is a column centered in order to have mean 0, and therefore the

variance covariance matrix of group g is given be Qg =
1

Ng
mT

gmg.
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The PCA method is used as a tool to reduce the dimensionality in multivariate

analysis which may be performed on each group separately. However, this strategy

involves a very large number of parameters which may cause instability problem due

to insufficient data. Therefore, as in [53], a more parsimonious model such as the

common PCA (cPCA) method can be applied to the multi group datasets. The cPCA

model is expressed in terms of the variance covariance matrices associated with the

group m, that is,

Qg =mgmT
g = βLβ

T for all g = 1, . . .,G. (4.44)

The linear combination of the variance covariance matrices (Q1, . . .,QG), is as follows,

G∑
g=1

Ng

N
Qg =

G∑
g=1

Ng

N
βLβT = β

( G∑
g=1

Ng

N
L

)
βT (4.45)

The matrix of common loadings β can be obtained from the eigenanalysis of the matrix

QW =
∑G

g=1
Ng
N Qg which is the within groups variance covariance matrix. The QW is a

common variance covariance matrix to the various groups which is the closest matrix

to Q1, . . .,QG that minimises the following,

min
Qc

G∑
g=1

Ng||Qg−Qc||
2. (4.46)
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Qc =
∑G

g=1αgQg such that α = (α1, . . .,αG)T is the eigenvector of the matrix R which is

associated to the largest eigenvalue. This strategy computes the QW, the within group

variance covariance matrix and also for any linear combination of Qg, as

G∑
g=1

αgQg =

G∑
g=1

αgβLβ
T = β(

G∑
g=1

αgL)βT, (4.47)

such that αg ≥ 0. Therefore, the estimate values of β and L can be found which is then

can be used to find the pβ and pκg. Finally,

pκ̂g =p β̂
Tmg, (4.48)

and the observed residuals are given as ϵg =mg - pβ̂ pκ̂g.

4.5.4 Dual generalised procrustes model

The previous model aimed at computing a variance covariance matrix common to the

various groups. Another estimation method which can be used is the dual generalised

procrustes method. In this model, instead of computing a common variance-covariance

matrix of Qi, a dataset that would be an average of groups 1
√

Ni
mT

i can be computed

through orthogonal transforms. Similarly as before, the dataset mi is the observed

centralised log mortality rates in a particular group.

Suppose that m1 and m2 are two centered datasets with n×T matrix refering to the

same βi and κt variables but not necessarily to the same number of individuals. We

assume that these two datasets have the same number of individuals. If this is not

true, then the dataset with the smallest number of rows can be augmented with the

necessary number of rows containing zeroes. The equality m1mT
1 =m2mT

2 holds if and
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only if mT
1 =mT

2β where β is an orthogonal matrix. This method is similar as in [61],

but the method used in this chapter is known as dual GPA as it is based on mT
i instead

of mi.

If mT
1 =mT

2β then m1mT
1 =m2ββTmT

2 =m2mT
2 . Suppose that we have mT

1 m1 =mT
2 m2,

then the SVD of mT
1 and mT

2 can be written as mT
1 =UDVT

1 and mT
2 =UDVT

2 where U

is the matrix of eigenvectors of mT
1 m1 =mT

2 m2 associated with the eigenvalues in the

diagonal matrix D. Then, we will have mT
1 = UDVT

1 = UDVT
2 V2VT

1 = mT
2β such that

β = V2VT
1 is an orthogonal matrix.

As mentioned earlier, instead of looking at the common variance covariance matrix

Qi, one could look for a dataset which gives the average of groups ( 1
√

Ni
mT

i ) through

orthogonal transforms. This strategy is based on mT
i instead of mi and hence it is

known as the dual generalised procrustes model. For this, we want to minimise the

followings,

k∑
i=1

||
1
√

Ni
mT

i βi−C||2 (4.49)

such that 1
√

Ni
mT

i is orthogonally transformed towards the common matrix of C by

the orthogonal matrix associated with group i, βi. When C is calculated, the common

vector of loadings β can be calculated as the left singular vectors of the C and pκi can

be find as,

pκ̂i =p β̂
Tmi. (4.50)

Finally, the observed residuals can be calculated as ϵi =mi - pβ̂ pκ̂i.
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4.6 Empirical analysis & data descriptions

This study is split into three areas. First, looking at the single population model; i.e.

by doing a comparison of the performance for each model in UK and US. Second, to

investigate the area modelling in which the sub-population data is obtained for the UK

(England & Wales, Scotland and Northern Ireland) from the Human Mortality Database

and carried out the multiple population modelling. The objective is to see whether

the multiple population models will perform better as compared to the individual

modelling in the UK. To further extend the analysis, the population is grouped together

consisting of seven different countries with similar socio-characteristics and carried

out comparison to see which type of modelling performs better.

This empirical study is based on three age groups with n = 35 for young or old age

group or n= 70 for mix age group, with 60 years of observations, from 1948-2007 (T = 60).

The analysis was done using several R packages including ‘StMoMo‘, ‘RobRSVD‘,

‘robustSvd‘, ‘demography‘, ‘cpca‘, ‘multigroup‘ and ‘rpca‘. The obtained results are

shown in the next few tables.

4.6.1 Single population modelling: UK & US data

This analysis is carried out for a single population modelling for the data in UK and

US.
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Figure 4.1. Logarithm of death rates according to age and time in UK and US total population.

From the above figure, both populations show that mortality is falling for all years

with different behaviour of log death rates according to different ages. They are

observed values and each colour is representing a different time period (most recent

ones in violet, earliest in red). The aim of these graphs is not to differentiate each

year but to give a rough indication of how the mortality moved over time in both

populations. There were significantly bigger reductions in mortality rates for men over

100 years old in US than in the UK total population.

For the single population modelling, the overall mean squared error is evaluated as

a function of the number of the age period effects p for the individual model, that is

m̂i(x, t) =pβ̂i pκ̂i. (4.51)

The mean square error (MSE) for the individual model is defined as,

MSE(p) =
1

nT

n∑
j=1

T∑
t=1

(
mi(x j, t)− m̂i(x, t)

)2
. (4.52)
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Table 4.1: MSE(p)× 103 & BIC for the different models and different age group for United
Kingdom as an individual modelling.

Model
Young: 18-52 years old Old: 53-87 years old Mix: 18-87 years old

MSE (p=1) BIC (p=1) MSE (p=1) BIC (p=1) MSE (p=1) BIC (p=1)

SVD 8.25676 -9,346 1.23078 -13,344 7.20499 -19,634
Robust SVD 8.47942 -9,291 1.25033 -13,310 7.58473 -19,418
Regularised SVD 8.31406 -9,332 1.46773 -12,974 7.32621 -19,564
Robust Reg SVD 8.54535 -9,274 1.50837 -12,916 7.67804 -19,367
LC 9.44140 -9,065 1.31702 -13,201 8.25393 -19,063
LC Binomial 9.44126 -9,065 1.56367 -12,841 8.36236 -19,008

Table 4.2: MSE(p)×103 & BIC for the different models and different age group for United States
as an individual modelling.

Model
Young: 18-52 years old Old: 53-87 years old Mix: 18-87 years old

MSE (p=1) BIC (p=1) MSE (p=1) BIC (p=1) MSE (p=1) BIC (p=1)

SVD 4.79298 -10,489 0.84850 -14,125 3.42694 -22,755
Robust SVD 4.82233 -10,476 0.90251 -13,995 3.50152 -22,665
Regularised SVD 4.83064 -10,472 0.91578 -13,964 3.48138 -22,689
Robust Reg SVD 4.86374 -10,458 0.96758 -13,849 3.55045 -22,606
LC 5.11038 -10,354 0.88387 -14,039 3.65847 -22,480
LC Binomial 5.11340 -10,353 1.00958 -13,760 3.73713 -22,398

The results obtained for UK and US are shown in Table 4.1 and 4.2, respectively.

From the observation, as expected, the individual model using SVD fits the data

better for all age groups. This can be seen from the lowest MSE obtained using the

SVD model for all age groups. This is true for both UK and US data.

4.6.2 Area population modelling: UK data

The analysis is conducted specifically on the UK’s data where the sub-area modelling

is based on the data in the UK (England & Wales, Scotland and Northern Ireland).

Figure 4.2 present the pattern of logarithm of death rates based on age and time for the

UK’s sub populations. From the plots, the mortality rates are falling at all ages with a

different behaviour according to different ages.
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Figure 4.2. Logarithm of death rates according to age and time in UK’s sub-populations
(England & Wales, Scotland and Northern Ireland).

The area modelling performance is evaluated as a multiple population (p = 1 and

p = 2) and also as a single population (p = 1). These are observed values and each

colour is representing a different time period (most recent ones in violet, earliest in red).

The results are presented in Table 4.3, 4.4 and 4.5 for young age group of 18-52 years

old, old age group of 53-87 years old and mix age group 18-87 years old, respectively.
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Table 4.3: MSE(p)×103 for the different models for 18-52 years old, for each population in the
UK.

Panel A: Individual model, p=1

Eng & Wales Scotland NI UK(Eq.)a UK(Exp.) b

SVD 8.74606 25.3410 73.7986 35.96187 12.1918
Robust SVD 8.92738 25.6968 68.5813 34.40184 12.2262
Regularised SVD 8.80409 25.8124 71.0572 35.22455 12.1920
Robust Reg SVD 8.99008 26.1651 71.6453 35.60018 12.4155
LC 9.91362 27.21338 71.0316 36.05288 13.3041
LC Binomial 9.91408 27.21425 71.0343 36.05421 13.3047

Panel B: Multi model, p=1

England & Wales Scotland NI UK(Eq.)a UK(Exp.) b

CAE 9.07726 25.5433 68.6930 34.43784 12.3477
Multi 9.17237 25.6363 68.4419 34.41687 12.4322
Flury’s 8.95021 25.8002 69.0059 34.58220 12.2684
Dual Generalised 9.12262 25.5927 68.5483 34.42119 12.3877

Panel B.1: Multi model, p=2

England & Wales Scotland NI UK(Eq.)a UK(Exp.)b

CAE 4.76636 15.37384 57.04255 25.72758 7.2893
Multi 5.94245 15.96928 54.35336 25.42170 8.2975
Flury’s 3.28989 17.51678 63.33848 28.04668 6.3718
Dual Generalised 5.25979 15.50713 55.80462 25.52384 7.6984

a Equal weighted.
b Exposure weighted.

 

 
 

 

Figure 4.3. First age α̂x, β̂x and period effects κ̂t estimated using individual SVD model for
UK’s sub-populations (England & Wales, Scotland and Northern Ireland) for 18-52 younger
age group.
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Table 4.4: The table shows MSE(p)×103 for the different models for 53-87 years old, for each
population in the UK.

Panel A: Individual model, p=1

Eng & Wales Scotland NI UK(Eq.)a UK(Exp.)b

SVD 1.30168 2.38565 7.54079 3.74271 1.5864
Robust SVD 1.32209 2.39526 7.28779 3.66838 1.5976
Regularised SVD 1.54672 2.80231 8.22138 4.19013 1.8599
Robust Reg SVD 1.58831 2.81734 8.25687 4.22090 1.8989
LC 1.39599 2.72134 7.1032 3.32137 1.6865
LC Binomial 1.64231 2.72143 7.1034 3.32969 1.9033

Panel B: Multi model, p=1

England & Wales Scotland NI UK(Eq.)a UK(Exp.)b

CAE 1.36658 2.48932 7.43298 3.76296 1.6496
Multi 1.35741 2.49816 7.43159 3.76239 1.6423
Flury’s 1.31442 2.47546 7.56836 3.78609 1.6065
Dual Generalised 1.36193 2.49394 7.43172 3.76253 1.6459

Panel B.1: Multi model, p=2

England & Wales Scotland NI UK(Eq.)a UK(Exp.)b

CAE 0.87848 1.87862 6.65933 3.13881 1.1419
Multi 0.88474 1.90240 6.62369 3.13695 1.1485
Flury’s 0.87767 1.78844 6.99687 3.22051 1.1432
Dual Generalised 0.88374 1.87841 6.65437 3.13884 1.1464

a Equal weighted.
b Exposure weighted.

A similar behaviour of parameters is observed across the population in the UK. As

expected the average mortality rate increases as age increases which is clearly seen

from ˆα(x) pattern. For b̂(x), there is a greater value as approaching retirement. In

addition, it is clearly from Figure 4.3, there is young mortality hump for males in the

range of 30-36 years old which may be due to accidental deaths. For κ̂(t), as expected,

it has a decreasing trend across the time.

Similarly as in previous section, the individual models fit the data better. It is

interesting to note that when p = 2, the multiple population model has a lower MSE

than the individual models with p = 1 for all age groups. This shows that the fit of

a multiple population model with p = 1 can be improved by adding a second age or
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Table 4.5: The table shows MSE(p)×103 for the different models for 18-87 years old, for each
population in the UK.

Panel A: Individual model, p=1

Eng & Wales Scotland NI UK(Eq.)a UK(Exp.)b

SVD 7.34371 16.82684 44.6435 22.9380 9.3162
Robust SVD 7.68275 17.0796 43.5833 22.7819 9.6055
Regularised SVD 7.47085 17.1483 44.2182 22.9458 9.4442
Robust Reg SVD 7.78039 17.3429 44.6976 23.2736 9.7485
LC 8.36119 17.59083 46.0339 23.9953 10.3220
LC Binomial 8.46724 17.70442 46.1593 24.1103 10.4293

Panel B: Multi model, p=1

England & Wales Scotland NI UK(Eq.)a UK(Exp.)b

CAE 7.75406 17.6065 44.2387 23.1997 9.7353
Multi 7.73358 17.8005 44.0179 23.1840 9.7281
Flury’s 7.42099 17.93856 44.6212 23.3269 9.4836
Dual Generalised 7.74195 17.71467 44.1045 23.1871 9.7304

Panel B.1: Multi model, p=2

England & Wales Scotland NI UK(Eq.)a UK(Exp.)b

CAE 3.37444 9.29570 34.28899 15.6530 4.8348
Multi 3.63672 9.38247 33.76336 15.5942 5.0576
Flury’s 2.72446 9.85404 35.78046 16.1197 4.3578
Dual Generalised 3.49523 9.33526 34.01061 15.6137 4.9363

a Equal weighted.
b Exposure weighted.

period effect. The multiple population models tend to have a better fit as compared to

the individual age effects for each country.

By adding age/period effects to the model, the multiple population models will have

more parameters than an individual model with p = 1. Therefore, the approximation

of the Bayesian Information Criterion (BIC) is considered to penalise the MSE for the

number of parameters used. The BIC is estimated as,

BIC(p) = 3nT log (MSE(p))+ k log (3nT). (4.53)

Following the BIC definition, a model is a better model when it has a smaller BIC value.

BIC(p) corrects MSE(p) for the number of parameters and therefore can be used to

provide a good measure for the goodness of fit for all models, following [76].
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The total number of observed mortality rates in the area modelling is, 3nT = 6,300.

The number of parameters in the models for the centralised log rates is denoted

by k. For the individual, k = 3p(n+T) and for multiple population model, we have

k = p(3T+n). The results are tabulated in Table 4.6. All multiple population models

have the best fitting qualities as compared to individual models except the Robust

SVD model which also has a good BIC value. This is true for both young and old age

groups.

Table 4.6: Approximate value of BIC for the different models in each age group for area
population in the UK.

Model
Young: 18-52 years old Old: 53-87 years old

BIC (p=1) BIC (p=2) BIC (p=1) BIC (p=2)

SVD -18,456 - -32,711 -
Robust SVD -18,736 - -32,837 -
Regularised SVD -18,587 - -31,999 -
Robust Reg SVD -18,520 - -31,953 -
CAE -18,729 -18,073 -32,677 -31,326
Flury’s -18,703 -17,529 -32,638 -31,164
Multi -18,733 -18,148 -32,678 -31,330
Dual Generalised -18,732 -18,123 -32,678 -31,326

The projection is carried out based on ARIMA extrapolation for 10 years period

where the predicted values of κt is rescaled to zero in the last observed year (2007). The

model is fitted based on the in-sample period of 1948-2007 and applying the expanding

forecast window approach to obtain forecasts for the period 2008-2017. The recursive

forecast (expanding-window) approach, is where data from 1948 to 2007 was used to

make the first estimation in 2008, data from 1948 to 2008 to make the second estimation

in 2009, and so on.
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4.6.3 Multiple population modelling: seven countries analysis

So far in the previous sections, we have look at the mortality modelling for a single

population model and also the sub-area population modelling. Now, in this section,

the study has been extended to evaluate the multiple population modelling for a bigger

population.

The model is applied to the mortality rates observed for males aged 18-87 in the

following k = 7 countries: Austria, Australia, Canada, France, the United Kingdom,

New Zealand and the United States. These countries are chosen since they are all well

developed countries with similar socio-economic characteristics. Therefore, from this

study, it is expected that a mortality model with common factors will allow us to jointly

model mortality rates in those countries. The empirical results are based on observed

mortality rates for the calendar years 1948-2007 (T=60). Similarly, the ages are split

into three groups of n = 35, that is the young age group of 18-52 and older age group of

53-87 and n = 70 for the mix age group of 18-87 years old. The data are obtained from

Human Mortality Database.

The estimated first age effects β(1)
i for the seven countries in our study are shown

in Figure 4.4. It can be seen in this figure that the age effects for older age groups are

indeed rather similar for different countries and might therefore be replaced by an age

effect that is the same for all countries. For younger ages, this is less obvious.
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Figure 4.4. First order age effects for the period of 1948 to 2007 in seven countries.

In the plot, it appears that it is rather close at least for high ages, but it cannot

directly conclude and suggest that the differences do not matter. To decide whether the

individual βi can be replaced with a common β, the impact of common age effect on

the estimated period effects is examined and the goodness of fit of individual models

with the goodness of fit in the multiple population models are compared.

Figure 4.5 shows the estimated first period effect κ̂i and κ̂i
c for the UK (solid line)

and the US (dotted line) using individual SVD model and CAE model. These models

were chosen as to see whether the individual βi can be replace with a common β by

looking at the impact of a common age effect on the estimated period effects. The

models are fitted to the young (18-52) and old (53-87) age group.
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Figure 4.5. First period effects estimated in a single population model and in the CAE model
for the UK and the US

From the plot, it looks like the first period for these two countries do not really

change when individual age effects are replace by the common age effect. A very similar

picture is observed for all countries. The result is also true when other models are fitted

to the mix group (18-87) age range. To investigate further, the MSE is calculated using,

MSE(p) =
1

7nT

7∑
i=1

n∑
j=1

T∑
t=1

(
mi(x j, t)− m̂i(x, t)

)2
, (4.54)

such that the log mortality rates for the multiple population is defined as,

m̂i(x, t) =p β̂pκ̂i
multi, (4.55)

and similarly as in previous section, the BIC is approximated as,

BIC(p) = 7nTlog(MSE(p))+ klog(7nT). (4.56)

The results for young age group are presented in Table 4.7.
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Table 4.7: MSE(p)×103 & BIC for the different models for 18-52 years old for 7 countries.

Country
Young: 18-52 years old

MSE (p=1) BIC (p=1) MSE (p=2) BIC (p=2)

SVD 9.61019 -67,369 - -
Rob SVD 9.69728 -67,236 - -
Regularised SVD 9.75974 -67,142 - -
Robust Reg SVD 9.86671 -66,982 - -
CAE 11.51560 -61,256 7.56869 -63,059
Multi 11.48878 -64,744 7.50389 -71,006
Flury’s PCA 11.78839 -64,366 7.56137 -70,894
Dual Generalised 11.49305 -64,739 7.66325 -70,697

From Table 4.7, the individual SVD fits the data better as compared to the other

models. But, similarly as explained earlier, when p = 2, better results are obtained for

the multiple population models which resulting in a lower MSE values as compared to

the individual models with p = 1.

The result of the MSE for an individual country are synthesise within the multiple

population using the following,

MSEi =
1

nT

n∑
j=1

T∑
t=1

(
mi(x j, t)− m̂i(x, t)

)2
. (4.57)

The results are tabulated in Table 4.8.

When modelling the multiple population for an older age group, the MSE for the

multiple population model using Dual Generalised PCA method is found to be lower

as compared to all other models. Based on the BIC values, this model outperforms the

other models for the age group 53-87 years old. When p = 2, all multiple population

models have a better fit as compared to the single population model of p = 1. As seen

in Figure 4.4, the age effects for each countries are close to each other for older age

group which consequently will makes the multiple population models works better
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Table 4.8: MSE(p)×103 for the different models for 18-52 years old, for each country in the
multiple population.

Panel A: Individual model, p=1
Australia Austria Canada France UK Sweden US

SVD 11.35293 12.20227 6.41170 8.90545 8.25676 15.34902 4.79298
Robust SVD 11.40452 12.2473 6.44639 9.02207 8.47942 15.45890 4.82230
Regularised SVD 11.56147 12.42571 6.63033 9.11379 8.31406 15.44222 4.82230
Robust Reg SVD 11.69342 12.44628 6.67585 9.22756 8.54535 15.61475 4.86374
Panel B: Multi model, p=1

Australia Austria Canada France UK Sweden US
CAE 15.78582 16.3798 6.76642 9.8517 8.79951 17.3676 5.65798
Multi 16.42700 15.69730 6.79103 9.64716 8.99515 16.98684 5.87696
Flury’s 19.34534 13.77723 7.46741 9.19394 9.67125 16.45238 6.61199
Dual Generalised 16.17206 15.95471 6.77862 9.71909 8.91467 17.12405 5.78814
Panel B.1: Multi model, p=2

Australia Austria Canada France UK Sweden US
CAE 8.59401 11.26091 5.37859 6.14444 3.57303 15.32668 2.70321
Multi 8.40226 10.85556 5.52205 6.24993 3.34798 15.33326 2.81621
Flury’s 8.47691 10.8691 5.6361 6.45294 3.19049 15.5938 2.71034
Dual Generalised 8.80249 11.30025 5.15387 5.77628 3.78470 15.52792 3.29727

for this age group. This can be seen through the smaller MSE and BIC for older age

group in Table 4.9 and Table 4.10.

Table 4.9: MSE(p)×103 & BIC for the different models for 53-87 years old for 7 countries.

Country Old:53-87 years old
MSE(p=1) BIC (p=1) MSE (p=2) BIC (p=2)

SVD 1.62558 -93,490 - -
Rob SVD 1.64763 -93,292 - -
Regularised SVD 1.88067 -91,347 - -
Robust Reg SVD 1.90712 -91,142 - -
CAE 2.15990 -85,858 1.32926 -88,628
Flury’s PCA 2.19228 -89,094 1.33227 -95,504
Multi 2.15793 -89,326 1.32402 -95,595
Dual Generalised 1.62358 -93,596 1.46287 -94,129

The result for the mix age group ranging from 18 to 87 years old is presented in

Table 4.11.

Looking at the results in Table 4.7, 4.8, 4.9, 4.10 and 4.11 all considered multiple

population models fit the mortality rates poorly for the younger and mix age group

with large mean squared errors as compared to the older age group. The models’
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Table 4.10: MSE(p)×103 for the different models for 53-87 years old

Panel A: Individual model, p=1
Australia Austria Canada France UK Sweden US

SVD 11.35293 12.20227 6.41170 8.90545 8.25676 15.34902 4.79298
Robust SVD 11.40452 12.2473 6.44639 9.02207 8.47942 15.45890 4.82230
Regularised SVD 11.56147 12.42571 6.63033 9.11379 8.31406 15.44222 4.82230
Robust Reg SVD 11.69342 12.44628 6.67585 9.22756 8.54535 15.61475 4.86374
Panel B: Multi model, p=1

Australia Austria Canada France UK Sweden US
CAE 15.78582 16.3798 6.76642 9.8517 8.79951 17.3676 5.65798
Multi 16.42700 15.69730 6.79103 9.64716 8.99515 16.98684 5.87696
Flury’s 19.34534 13.77723 7.46741 9.19394 9.67125 16.45238 6.61199
Dual Generalised 16.17206 15.95471 6.77862 9.71909 8.91467 17.12405 5.78814
Panel B.1: Multi model, p=2

Australia Austria Canada France UK Sweden US
CAE 8.59401 11.26091 5.37859 6.14444 3.57303 15.32668 2.70321
Multi 8.40226 10.85556 5.52205 6.24993 3.34798 15.33326 2.81621
Flury’s 8.47691 10.8691 5.6361 6.45294 3.19049 15.5938 2.71034
Dual Generalised 8.80249 11.30025 5.15387 5.77628 3.78470 15.52792 3.29727

Table 4.11: MSE(p)×103 & BIC for the different models for 18-87 years old for 7 countries.

Country Mix:18-87 years old
MSE(p=1) BIC (p=1) MSE (p=2) BIC (p=2)

SVD 6.68621 -146,249 - -
Rob SVD 6.81952 -145,669 - -
Regularised SVD 6.85465 -145,158 - -
Robust Reg SVD 6.97824 -144,992 - -
CAE 8.60937 -135,113 5.51292 -143,537
Multi 8.60629 -138,827 5.49603 -151,035
Flury’s PCA 8.90777 -137,815 5.53699 -150,817
Dual Generalised 8.60746 -138,823 5.57700 -150,605

performance may be improved by including more age/period effects to the models.

For the older age group, the multiple population models performed better than other

models. The performance gets even better when additional parameters are added

to the model. These models allows estimation of age and period effects in different

countries simultaneously which are better than comparing age and period effects that

are country specific.
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4.7 Conclusion

This chapter proposes various approaches to estimate the parameters in the mortality

models in a single and multiple populations to obtain better and more consistent

mortality forecasts. The age effects are assume to be the same for all populations while

the period effects are country specific. By doing this, the estimation of the period

effects can be done for different countries which are better as compared to estimation

of period effects that are the same for all populations. The empirical results obtained

in Section 4.5, suggest that by adding a second factor in the mortality model is more

relevant to the fitting than looking at differences in the age effects in the estimation

methods in the single populations.

The LC and CAE models are extended by using SVD and PCA method respectively.

The LC model is modified by estimating the parameters using SVD rather than

maximum likelihood methods. This study also concentrated on the use of PCA by

applying the use of the common PCA model of [56], the multi group of [80] and the

dual generalised PCA to obtain estimates of the age effects. In addition, other different

methods such as Robust SVD, Regularised SVD and Robust Regularised SVD are also

included in modelling the mortality for a single population instead of the normal SVD

in the classical LC model.

This study contributes to existing literature by proposing alternative estimation

methods in estimating the parameters from using the modification of the normal SVD

and PCA for the single and multiple population groups and applying it to the mortality

models in order to get the best model for forecasting life expectancy across populations.
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The proposed models allow us to estimate the period effects in multiple population

simultaneously which provides a better comparison rather than looking at period

effects in a single population. It is learned that these proposed modification gives a

better mortality models for multiple population such that these model outperforms

the individual models which is reflected by the smaller MSE and BIC for the older age

group. However, the proposed models fit the mortality rates at young ages poorly

with larger MSE values as compared to the older age groups. This shows that the

mortality rates for younger age group are more difficult to model, and this result might

be improved by including more age period effects to the model. But, this is beyond

the scope of this chapter since we are interested to look at the older age group for the

liability calculation in the pension schemes.

This study is extended to examine the area modelling of the sub-populations in the

UK (Scotland, Northern Ireland and England & Wales) and compared the performance

of the multiple population with the individual population of the UK. The multiple

population model performs better as compared to the other models for the older age

groups. The model can be further improved, when the additional common age period

effect is added to the model.

For future studies, the proposed model can be extended in different ways, for

example, by including a cohort effect that is country specific or common to all

population which may improve the goodness of fit. It would also be interesting to

examining common factors for mortality rates in different sets of populations (i.e.

looking at the mortality rates for males and females in different countries). The

robustness of these multiple population models may be examined by looking at

different perspectives, such as employing exposure weightings to the countries in the
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population rather than equal weighting, as it may be appropriate for a certain group

of population but not for others. Further studies also may incorporate models where

age terms are given by smooth parametric functions. In addition, other estimation

method which are based on the observed rates may be consider rather than looking at

the observed numbers of deaths and exposures. Different estimation methodologies

would provide a further potential development in the mortality modeling studies as it

might gives a better model.



Chapter 5

Multiple population mortality models:

A DCC GARCH and Copula approach

In Chapter 3, the DCC GARCH models has been used for asset modelling purposes.

This chapter extends the analysis by proposing the use of DCC GARCH models in

modelling mortality for a multiple population to jointly capture the evolution of the

aggregate mortality rates for different countries.

5.1 Introduction

The previous chapter used different types of SVD and PCA analysis based on the Lee

Carter model to a single and multiple population groups to get a model for forecasting

life expectancy across populations. The Lee Carter model has been used widely in

mortality fitting and forecasting. This model assumes that the dynamic of the logarithm

of central death rates is driven by an age specific constant plus the speed of change at

each age, multiplied by the overall period trend of mortality rates. LC model is robust,

has a good fit over wide age ranges but lacks the smoothness of age effect, especially

133
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in small populations, and has no cohort effect. This model has motivated various

extensions (see for example; [83], [109], [25], [23], [14], [27], [41], and [104]). Another

model known as the Cairns-Blake-Dowd (CBD) model proposed by [25] assumes a

linear relationship between age and the logit of initial mortality rates. It is designed

for modelling mortality at higher ages and suitable for modelling longevity risk in

pension and annuities. There are many extensions introduced from these two models

which are useful for mortality forecasting. But, all of the models, however, focus on

modelling the mean level of mortality rates and ignoring the variance level of mortality

rates and the temporal dependence structure between inter-age mortality rates [87].

Other methods have been introduced to tackle the problem in Lee Carter or CBD

based models. A study by [93] used the modification of the LC model and expresses

the change in the logarithm of mortality rates for each age group rather than looking at

the logarithm of mortality rates as an age dependent linear transformation of mortality

index. This study uses SVD to calibrate the parameters and to capture the dependence

structure between mortality rates and ages but ended up giving a limited dependence

structure.

Some methods of modelling mortality using econometric models have also been

proposed in the literature. Studies by [31], [39], [21] and [86] apply the modelling

of mortality in a single population at a time. These models are able to capture the

characteristics of the data such as skewness and volatility clustering. In addition, the

GARCH copula model proposed by [121] provides alternative to the use of multivariate

normal distribution which constructs a highly flexible and non standard multivariate

dependence structure. However, these models focus on modelling mortality in a single

population and therefore are not capable to incorporate the cross correlations among
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the mortality dynamic in different population at a same time. Hence, the models may

not be appropriate to do a pricing for mortality bonds or pension products which are

linked to the mortality experience across different populations.

To date, there are only a few research attempts to model the mortality dependence

across countries. [134] address the issue of pricing the catastrophic mortality bonds

using DCC GARCH model, while [133] uses a dynamic copula approach to pricing

the survivor index swaps. A study by [32] applied a factor copula approach to model

mortality co-movements for multiple populations. Since these models are able to

capture the cross population dependency, it prevents the pricing inaccuracy which

may potentially occurs due to independence assumption in the population.

This chapter contributes to the existing literature by proposing a full multivariate

DCC GARCH models to modelling the mortality dependence across multiple populations.

In general, this study uses the variations of the DCC GARCH models such that the

correlations are captured within the model structure and are allowed to vary over

time. This chapter also employs the copula method in the mortality model considering

the multiple population which are able to capture the inter-age mortality dependence

structure. To the best of our knowledge, such comprehensive analysis in the multiple

population has not been performed before.

5.2 Notation

The variables used in this chapter are defined below:

D(x, t): The number of deaths in a population at age x during calendar year t.

E(x, t): The number of exposure to risk in a population at age x during calendar year t.

d(x, t): The observed number of deaths at age x during calendar year t.
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E0(x, t): The initial exposure to risk at age x during calendar year t.

Ec(x, t): The central exposure to risk at age x during calendar year t. 1

q(x, t): The one-year death rate for an individual age x during calendar year t can be

estimated as q̂(x, t) = d(x,t)
E0(x,t) .

µ(x, t) : Force of mortality at age x during calendar year t.

m(x, t) : Central death rate at age x during calendar year t. 2

α(x) : Describes the average age specific pattern by age of mortality.

β(x) : Describes the sensitivity of the logarithm of the hazard rate at age x to the time

trend represented by κ(t).

κ(t) : Describes the underlying time trend during calendar year t.

ϵ(x, t) : Describes the effects not captured by the model, which are Gaussian distributed

N(0,σ2) randoms effects by age and time.

5.3 Multi-country mortality modelling using multivariate

DCC GARCH models

In this section, different econometric methodologies are used to model mean asset

return and covariances for the mortality modelling. As discussed in Chapter 4, the

1If only central exposures are available, the initial exposures can be approximate by adding half of
the reported number of deaths to the central exposures E0(x, t) ≈ Ec(x, t)+ 1

2 d(x, t). When the context is
clear, E(x, t) is used to refer E0(x, t) or Ec(x, t).

2When the force of mortality is assumed to be constant over each year, then the force of mortality
µ(x, t) and the death rate m(x, t) correspond each other.
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classical LC model expresses the logarithm of age specific death rates mx,t as the sum of

an age specific component αx which is independent of time with κt and βx written as,

log(mx,t) = αx+βxκt+ϵx,t, (5.1)

where κt represents the general mortality level and βx is the age-specific reaction to the

time varying factor and ϵx,t is the error term with N(0,σ2). The LC model represents

the log central deaths as a linear function of mortality index which misrepresents

the age-specific dependence structure or variance of mortality rates [87]. This study

proposes DCC GARCH mortality models and employing copula function to the models

to look at their performance in forecasting mortality rates.

Consider the vector stochastic process xxxttt = (x1,t, . . .,xk,t)′ which is the n×1 vector of

log mortality rates at time t such that k is the total countries in the population, i = 1, . . .,k.

Each country is represented as i and ςi is the n×1 vector of constant. The conditional

mean of xi,t of the process is modelled by ARMA (Mi,Ni),

xxxi,t = ςςςiii+

Mi∑
m=1

ϕϕϕi,mxxxi,t−m−

Ni∑
n=1

θθθi,nϵϵϵi,t−n+ϵϵϵi,t, (5.2)

where the autoregressive coefficients are denoted by ϕi,m,m = 1, . . .,Mi, and moving

average coefficients are denoted by θi,n,n = 1, . . .,Ni. The parameter ϵi,t is the linear

innovation process of xi,t, following a certain distribution with mean 0 and time-varying

conditional covariance matrix HHHttt. ϕi,m and θi,n are n×n matrices with ϕi,m , 0 and
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θi,n , 0. As discussed in Chapter 3, the conditional covariance matrix HHHttt of xi,t may be

defined following the DCC specification of [50],

HHHttt =DDDtttRRRtttDDDttt. (5.3)

RRRttt is the time-varying correlation dynamics. DDDttt is the n× n diagonal matrix of

time-varying standard deviations from univariate GARCH models,

DDDttt = diag(
√

h1,t, . . .,
√

hk, t),

The conditional variances, hi,t can be estimated separately by a GARCH(Pi,Qi)

specification of,

hi,t = gi+

Pi∑
p=1

βi,ph2
i,t−p+

Qi∑
q=1

αi,qa(2)
i,t−q, i = 1, . . .,k, (5.4)

where gi > 0, and αi,q, βi,p ≥ 0 . a(2)
i,t−q is the Hadamard product and HHHttt is a positive

definite matrix. RRRttt is also a positive definite conditional correlation matrix of the

standardised disturbances of zzzttt. Therefore, the elements of HHHttt =DDDtttRRRtttDDDttt is modelled as

[RRRttt]mn =
[
QQQttt

]
mn

√[
QQQttt

]
mm

[
QQQttt

]
nn. (5.5)

The conditions for the positivity of the covariance matrix HHHttt requires RRRttt to be positive

definite, gi, all diagonal elements of matrices βi,p and αi,q are non-negative parameters
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to be estimated such that a+b < 1 to ensure stationarity and positive definiteness of QQQttt.

RRRttt is decomposed into,

RRRttt = (QQQ∗∗∗ttt)−1QQQttt(QQQ
∗∗∗ttt)−1. (5.6)

As in [50], Q̄QQttt is estimated as,

Q̄QQttt =
1
T

T∑
t=1

zzztttzzz
′′′

ttt , (5.7)

such that Q̄QQ = Cov
[
zzztttzzz

′′′

ttt

]
= E

[
zzztttzzz

′′′

ttt

]
is a n×n unconditional matrix of the standardised

errors, where zzzttt = DDD−1
ttt ϵϵϵttt and QQQ∗∗∗t=diag

(√
q1t,
√

q2t, . . .,
√

qnt
)
. In general, the DCC

GARCH model is given by,

QQQttt =

1−
M∑

m=1

am−

N∑
n=1

bn

Q̄QQttt+

M∑
m=1

amzzzt−mzzz
′′′

t−m+

N∑
n=1

bnQQQt−n. (5.8)

M is the unconditional correlation matrix of ϵϵϵttt, and am,m = 1, . . .,M, and bn,n = 1. . .,N,

are constant scalars.

5.3.1 DCC GARCH with copula

This study also proposes DCC GARCH with copula models to modelling the covariances

for the mortality rates in multiple population. We examine the performance of these

models and compare with other models discussed earlier.

Let F1(xi,1), . . .,Fn(xi,n) be the marginal distributions with a random vector X =

(xi,1, . . .,xi,n) for country i, following [121]. The random vector has uniform marginal

distributions when we apply the probability integral transform to each of the component



5.4 Data & model checking 140

(Ui,1,Ui,2, . . .,Ui,n) = F1(xi,1), . . .,Fn(xi,n). To capture the dependence between inter age

mortality rates, the copula can be depicted as,

F(xi,1, . . .,xi,n) = C(F1(xi,1), . . .,Fn(xin)), (5.9)

such that n-dimensional copula C(ui,1, . . .,ui,n) is an n-dimensional random vector on

[0,1]d with uniform marginals. The copula can be deduced from Eq. 5.9 as,

C(ui,1, . . .,ui,n) = F(F−1
1 (ui,1),F−1

2 (ui,2), . . .,F−1
n (ui,n)). (5.10)

5.4 Data & model checking

In this study, the model is applied to the mortality rates observed for males in

the following k = 10 countries: Belgium, Denmark, Finland, France, Iceland, Italy,

Netherlands, Norway, Sweden and Switzerland which are respectively represented by

i = 1, . . .,10. These countries are chosen since they are all well developed countries with

similar population characteristics. Therefore, a mortality model with common factors

is expected which allows a joint model mortality rates in these countries. The empirical

results are based on observed mortality rates for the calendar years 1900-2011, t = 112.

The data are obtained from Human Mortality Database.

Let m̃i(x, t) be the aggregate death rate which is the ratio of the total number of

deaths to the total number of exposures for a life aged x ∈ x1, . . .,xn in population

i = 1, . . .,k, is observe, then,

m̃i(x, t) =
di(x, t)
Ei(x, t)

. (5.11)
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Figure 5.1 refers to the aggregate death rates for each of the country in time t. From

the figure, the trend appears to be non-stationary.

The aggregated death rates, 1900−2011
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Figure 5.1. The aggregated death rates for ten countries under consideration, 1900-2011.

To confirm the observation, we evaluated the descriptive statistics of the time series

which is presented in Table 5.1.

The kurtosis for all of the assets ranges from -0.3 to 5.97, indicating fat tails in the

mortality distributions for all countries. The results show that the log mortality rates

exhibit positive skewed distribution and a time-varying conditional volatility exists.

From the results, it can be confirmed the presence of the stylised facts such as heavy

tails, volatility clustering and heteroskedasticity in the mortality distributions data.
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Table 5.1: Descriptive statistics of historical log mortality rates for the ten countries from 1900
to 2011.

Mean Std dev Skewness Kurtosis

Belgium 0.01337 0.00243 0.41243 -0.30286
Denmark 0.01145 0.00177 1.24737 1.54405
Finland 0.01366 0.00507 1.93386 5.97155
France 0.01509 0.00588 1.40299 2.43035
Iceland 0.00994 0.00383 1.09394 0.03086
Italy 0.01422 0.00539 1.65908 3.56573
Netherlands 0.01032 0.00288 1.58523 1.34233
Norway 0.01113 0.00198 0.98744 0.64434
Sweden 0.01177 0.00181 1.32447 1.60563
Switzerland 0.01161 0.00291 1.13827 0.70993

As in Chapter 3, the multivariate GARCH models are suitable to use to deal with

these kinds of data. Therefore, we model instead

mi(x, t) = m̃i(x, t)−α(x), (5.12)

such that,

α(x) =
1
T

T∑
t=1

ln m̃i(x, t). (5.13)

After differencing T = 111 observations remain. It is desirable for the mortality model

to be as parsimonious as possible. Hence, the order of the models are set to be the

smallest values so that the resulting model can capture the serial correlations in the

conditional mean and variances.

To examine the null hypothesis of a unit root, the Augmented Dickey Fuller (ADF)

test is used (see Table 5.2). There is evidence for a high level of autocorrelation in which

the null hypothesis of no autocorrelation is rejected, at 5% level of significance, for

almost all of the countries for all models, indicating that the mortality improvement

rates for all country is stationary.
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Table 5.2: The value of the ADF test statistics(lag 1-5) for the log mortality improvement rates
for each country. The corresponding p-values are shown in parenthesis.

lag 0 lag 1 lag 2 lag 3 lag 4 lag 5

Belgium -16.10 -9.42 -7.71 -6.01 -4.80 -4.41
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Denmark -13.54 -9.84 -7.44 -5.46 -3.77 -4.17
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Finland -13.67 -10.11 -7.86 -6.79 -5.73 -5.11
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

France -17.52 -9.5 -8.51 -6.33 -4.93 -5.45
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Iceland -16.83 -12.81 -8.58 -7.10 -7.62 -6.29
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Italy -12.76 -7.87 -6.53 -6.41 -6.16 -6.49
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Netherlands -13.94 -9.81 -8.29 -6.00 -4.96 -5.20
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Norway -14.39 -8.75 -6.12 -4.65 -4.11 -4.06
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Sweden -15.48 -11.60 -7.74 -5.90 -5.05 -4.87
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Switzerland -17.50 -13.73 -9.59 -7.37 -6.00 -5.65
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

mi(x, t) is the log mortality improvement rate which can be illustrated as in Figure 5.2.

5.5 Model estimation and diagnostic checks

The DCC GARCH models provide a further simplification in modelling multivariate

time series. There are various models for time series which are commonly used, such

as ARMA or VAR models. As in Chapter 3, the mean returns are modelled using

different estimation processes, either using a constant mean, ARMA or VAR models.

ARMA model has both stationary stochastic processes of the autoregression and

moving average methods. VAR model is one of the most commonly used multivariate

econometric models which generalise the AR model and useful for describing the

dynamic behaviour of financial time series and for forecasting. For the covariances
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The log mortality improvement rates, 1900−2011
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Figure 5.2. The log mortality improvement rates for ten countries under consideration,
1900-2011.

modelling, different specifications of DCC GARCH with and without copulas are

examined.

This study evaluated 16 different model specifications of the mortality modelling

for the multiple population. The models include,

• DCC GARCH Normal (DCC-MVN)

• DCC GARCH Student (DCC-MVT)

• Asymmetric DCC GJR-GARCH Normal (aDCC-MVN)

• Asymmetric DCC GJR-GARCH Student (aDCC-MVT)

• FDCC GARCH Normal (FDCC)

• VAR DCC GARCH Normal (VAR-MVN)
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• VAR DCC GARCH Student (VAR-MVT)

• ARMA DCC GARCH Normal (ARMA-MVN)

• ARMA Student (ARMA-MVT)

• Copula Normal (Cop-MVN)

• Copula Student (Cop-MVT)

• ARMA Copula Normal (ARMA-Cop-MVN)

• ARMA Copula Student (ARMA-Cop-MVT)

• VAR Copula Normal (VAR-Cop-MVN)

• Asymmetric Copula Normal (a-Cop-MVN)

• Asymmetric Copula Student (a-Cop-MVT)

The resulting model’s adequacy is assessed using the Ljung-Box test, which tests the

null hypothesis of no auto correlations. The adequacy in modelling the conditional

means and the conditional variances is tested on standardised residuals and squared

standardised residuals respectively. The lag parameter is set to m = 5 with 5%

significance level, following [134].

The Bayesian information criteria (BIC) is defined as:

BIC = −2 ln(L)+m ln(n), (5.14)

where L = p(x|θ̂,M) is the maximised value of the likelihood function of the model M,

θ̂ is the parameter values that maximise the likelihood function, n is the sample size

and m is the number of parameters estimated by the model. The best model is the

one that provides the minimum BIC. So based on the AIC and BIC, ARMA Copula

with t distributed innovation model outperformed the other models since it has the
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Table 5.3: The AIC,BIC, Loglikelihood and number of parameters values per observation for
all models.

Model AIC BIC Loglik No. of Parameters [VAR GARCH DCC UncQ]

DCC-MVN -29.383 -27.260 1717.78 87 [0+40+2+45]
DCC-MVT -32.775 -30.383 1917.01 98 [0+50+3+45]
aDCC-MVN -29.829 -27.680 1743.49 88 [0+40+3+45]
aDCC-MVT -33.660 -31.512 1956.12 88 [0+40+3+45]
FDCC-MVN -29.337 -27.165 1717.21 89 [0+40+4+45]
VAR-MVN -30.242 -25.677 1865.43 187 [110+30+2+45]
VAR-MVT -32.330 -27.741 1982.31 188 [110+30+3+45]
ARMA-MVN -30.583 -27.971 1804.35 107 [0+60+2+45]
ARMA-MVT -33.658 -30.778 1986.05 118 [0+70+3+45]
Cop-MVN -30.175 -29.149 1716.70 87 [0+40+2+45]
Cop-MVT -35.159 -33.865 2004.30 98 [0+50+3+45]
ARMA-Cop-MVN -31.288 -29.775 1798.16 107 [0+60+2+45]
ARMA-Cop-MVT -36.199 -34.417 2082.04 118 [0+70+3+45]
VAR-Cop-MVN -35.403 -34.622 1996.89 287 [210+30+2+45]
a-Cop-MVN -30.246 -29.197 1721.68 88 [0+40+3+45]
a-Cop-MVT -35.143 -33.825 2004.43 99 [0+50+4+45]

lowest value as compared to the rest of the models. The parameter estimates for

ARMA-Cop-MVT is presented in Table 5.4.

Table 5.4: Estimates of the parameters in the VAR-COP-MVT model.

ςk ϕk,1 θk,1 ω αk,1 βk,1

Belgium -0.0075 -0.1096 -0.3736 0.0001 0.2138 0.7774
Denmark -0.0047 -0.1565 -0.1495 0.0000 0.0205 0.9661
Finland -0.0036 -0.2938 -0.10000 0.0005 0.6612 0.6678
France -0.0058 -0.2623 -0.2658 0.0002 0.4142 0.5848
Iceland -0.0080 0.1066 -0.7108 0.0000 0.0405 0.9397
Italy -0.0026 -0.1659 -0.1952 0.0002 0.4582 0.5408
Netherlands -0.0033 -0.2116 -0.1200 0.0004 0.5710 0.4280
Norway -0.0046 -0.5346 0.2521 0.0015 0.4431 0.0000
Sweden -0.0067 -0.2438 -0.1927 0.0000 0.0607 0.9155
Switzerland -0.0086 -0.1616 -0.3920 0.0000 0.0521 0.9168
a1 0.0000 v 0.9051
St.errors (0.0000) (0.0393)

5.6 Conclusion

As mortality rates have been improving dramatically, the longevity risk has become

important to annuity and pension providers. In this chapter, DCC GARCH mortality

models were proposed. This study built DCC GARCH models for modelling the
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mortality rates in multiple population simultaneously. Further, DCC GARCH models

with copulas were also evaluated.

Using mortality data from 10 different countries with similar socio-characteristics,

this study demonstrate that the DCC GARCH with copulas gives better performance

than the basic DCC GARCH models. This study has contributed to the literature by

attempting to model mortality in multiple population using full multivariate DCC

GARCH with and without copulas which to our knowledge has not been done before.

Most of the mortality models in the literature are using the standard LC model or its

extension. These models are useful for mortality forecasting but all of them focuses on

modelling the mean level of mortality rates and ignoring the variance level of mortality

rates and the temporal dependence structure between the inter-age mortality rates.

Therefore, by proposing the DCC GARCH mortality models, it can help to capture the

correlations between the inter age mortality rates, coupled with the copula methods

which other LC based models are not capable of.

This chapter extends the mortality modelling in the previous chapters by using the

econometric models in capturing the evolution of the aggregate mortality rates for

different countries simultaneously. From the analysis, it is learnt that these models are

able to capture the correlations between the age parameter in mortality rates function

with the copula methods which other mortality models are not capable with. It will be

much interesting to explicitly compare and stated its capabilities as opposed to the

traditional Lee Carter model. However, the use of econometric models in modelling

mortality is particularly new, especially involving multiple population models. There

were very few references, which means a longer research time is anticipated. The

whole purpose of this thesis is to do the asset and liability management and therefore
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to compare the performance of econometric on mortality modelling as opposed to

traditional models, would need a further depth research on mortality modelling. This

chapter proposed a short idea on the mortality modelling using the DCC GARCH

based models which may be extend in the future to compare its performance opposed

to the traditional LC or CBD models.

Future studies may also consider other improved version of DCC GARCH models

such as the corrected DCC model by [18] or GOGARCH models by [138]. The study

can also be applied to price mortality bonds, survivor index swaps or other annuity

products involving a multiple population to see its performance. However, due to the

limitation of data and timing constraint, this study is unable to provide application

of the DCC GARCH mortality modelling as yet. This will be leave for future studies.

In addition, the forecasting performance can be evaluated and compare among the

models.



Chapter 6

Asset & liability valuation in pension

schemes

This chapter combines volatility and mortality modelling obtained in Chapter 3 and 4

to design a tool for the asset and liability management in modelling different pension

schemes. The funding value and actuarial liability in the pension schemes are evaluated.

This study provides understanding to the source of risks to which pension schemes are

exposed, enabling a better management of these risks.

6.1 Background

A pension scheme exists to provide income to its members in retirement. However,

pension schemes are exposed to different types of risks, primarily financial risk and

longevity risks. Financial risks are those associated with the performance of the portfolio

of assets underlying in the relevant pension schemes. While longevity risks refer to

the uncertainty over the average future mortality in a population which consequently,

if a person lives longer than expected, the pension assets may be insufficient. Some

149
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pension providers have not explicitly integrated these risks to the pension liability’s

evaluation wisely, which may result in underfunded pension schemes. Proper risk

management is important for pension schemes, to ensure sustainability and sufficient

pension benefits are available.

ALM modelling is widely used by financial institutions in managing their assets

and liabilities to ensure their pension objectives can be achieved. The duration of the

liabilities is normally very long (more than 20 years), which means realistic models

for long term investment returns and liability flows are crucial. A pension scheme

model consists of three integral parts: investment returns projection, mortality rates

projection and application to pension schemes to examine the funding level of the

schemes, actuarial liabilities and outgoing benefit payment.

There are different pension schemes available with the most commonly used being

Defined Contribution (DC) and Defined Benefit (DB) schemes. Each scheme has

significantly different characteristics with respect to the risks faced by employers

and employees, benefits provided and the structure of the schemes which have been

discussed in Chapter 2. This study proposes a structure for the pension schemes

that is explicitly defined by parameters that control the variability of benefits and

contributions using the model developed by [46] and [74]. The mathematical equations

derived by these studies has been modified to suit the structure of our proposed

pension schemes.

6.1.1 The population model

Assume that there are lx ∈ {1,2,3,. . . } individuals participating in the fund which

are independent copies of one another: same age x, same wealth amount, same risk
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preferences and same deterministic force of mortality. For simplicity, we further assume

that no new entrants are allowed in the scheme after time 0 and, once an individual

joins one of the schemes, they are not permitted to leave the scheme unless they die.

First, the following indicator for each life is assumed as,

Nk(t) =


0 if kth person is alive at time t,

1 otherwise.

dt is the total number of deaths occurred at time t, which can be defined as,

dt =

lx∑
k=1

Nk
t . (6.1)

In terms of the future lifetime random variables, if Tk is the future lifetime of the kth

member, then using I[·] to denote the zero-one indicator function,

Nk
t = I[Tk ≤ t]. (6.2)

The distribution of Tk is defined by,

P(Tk > t) = exp−
∫ t

0 λudu
≡ tpx. (6.3)

T1,T2, . . .,Tl0 are independent random variables. lt represents the number of

individuals alive at time t such that

lt = l0−dt. (6.4)

Hence, dt is a Poisson process with rate λx+tlt−, following the definition of Nk.
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6.2 Investment strategy

Based on Chapter 3, this study applies the best performing multivariate DCC GARCH

model that minimises the mean-CVAR to obtain the investment return for the portfolios.

As discussed previously, the DCC GARCH model is given by

QQQt =

1−
M∑

m=1

am−

N∑
n=1

bn

Q̄QQttt+

M∑
m=1

amzzzt−1zzz
′′′

t−1+

N∑
n=1

bnQQQt−1. (6.5)

Given a confidence level β and a fixed x ∈ X, VaR is defined as the smallest number l

such that the probability of a loss L is not more than 1−β for losses greater than l and

FL is the distribution function of the losses,

VaRβ(x) = in f {l ∈R : P(L > l) ≤ 1−β} = in f {l ∈R : FL(l) ≥ β}, (6.6)

The objective function for the optimisation model is to minimise the mean-CVaR as

Minimise CVaRβ(x) =Minimise E[L|L ≤ VaRβ(x)], (6.7)

such that R ≥ rtarget.

Similar to Chapter 3, this study considers 12 assets consisting of 8 stocks which are

FTSE100, MSCI Europe Excluding UK (MSEXUK), S&P 500 composite (S.PCOMP),

DAX30 (DAXINDX), AEX (AMSTEOE), TOPIX (TOKYOSE), Hang Seng (HNGKNGI),

and TSX composite (TTOCOMP). The bond indices that were included: UK Benchmark

10-Year Government (BMUK10Y), US Benchmark 10-Year Government (BMUS10Y),

Germany Benchmark 10-Year Government (BMBD10Y), and FTSE Britain Government

Linked Bond (BGILALL).
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The time series data were examined for 30 years from January 1985 to December

2014, yielding 360 observations. The in-sample period used to estimate the model is

from January 1985 to December 2004, yielding 240 observations. The recursive forecast

approach is employed (expanding-window), where the data from January 1985 to

December 2004 are used to make the first estimation in January 2005, data from January

1985 to January 2005 are used to make the second estimation in February 2005, and so

on.

To measure the performance of the portfolio, 120 out-of-sample periods were

evaluated from January 2005 to December 2014 where the optimal asset allocation is

performed with a different mean returns and covariances depending on the time period.

These are monthly observations and therefore it is essential to calculate AR, which

is the annualised return for the investments to see how the investment performed

annually. To annualise the monthly returns,

AR =
12∑

m=1

(1+ im). (6.8)

The annualised return for the out-of-sample period appear in the Figure 6.1.

6.3 Mortality model

The mortality model used in this study follows the LC model by [82]. In general, the

LC model is fitted to the matrix of UK death rates, from year 1985 to 2004. The data for

the UK population are obtained from the Human Mortality Database.
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Figure 6.1. Annualised return on investment for a minimised mean-CVaR portfolio using
DCC GARCH with Student-t distribution for the out-of-sample period, from 2005 to 2014.
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The realised log mortality rates m̃x,t at age x in year t = 1, . . .,T for a life aged x in

population i is observed, that is,

m̃i(x, t) =
di(x, t)
Ei(x, t)

, (6.9)

such that dx,t denotes the number of deaths in a population and Ex,t denotes the number

of exposure to risk in a population at age x during calendar year t. The LC model

describes the log of a time series of age specific death rates mx,t as the sum of an age

specific component αx which is independent of time with κt and βx as below,

log(mx,t) = αx+βxκt+ϵx,t, (6.10)

αx is the base mortality rate for age x, βx describes the different of time t at each age,

explaining the sensitivity of age x in response to κt which is an index that describes the
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variation in the level of mortality to t. ϵx,t is an independent and identical distributed

random variables N(0,σ2) considering the age and time specific trends that is not

captured by the model. These parameters are estimated using the LC model with a

maximum age equal to 100. The diagram is presented in Figure 6.2.

Figure 6.2. First age α̂x, β̂x and period effects κ̂t estimated using LC model for UK total
population.

As expected, the average mortality rate increases as age increases which is clearly

seen from α̂x pattern. For β̂x, there is a greater value at younger age and greatest

improvement in the age range (40-100 years old) showing the death rate at age x

varies significantly when the general level of mortality changes. b̂x gets smaller as it

approaches older ages. For κ̂t, as expected, it has a decreasing trend across the time.

The forecast for the parameter κ̂t is then evaluated for the out-of-sample period

from 2005 to 2014 based on ARIMA extrapolation.
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Figure 6.3. Past and forecasted mortality rates for individuals aged 65 in UK total population.
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After obtaining the projected κ̂t, the past and forecasted rates are binded in the

same matrix. This is essential to produce the cohort life table using the results from the

LC model based on a person aged 65 at 2005 (which means he was born in 1940).

Cohort refers to a group of people with the same year of birth. The values obtained

in the cohort table is an appropriate measure of how long a person, of a given age,

would be expected to live on average. On the other hand, the life table represents

mortality rates for a fixed period in time of a certain population.

As mentioned above, the cohort life table is depending on the year of birth which is

created using the results from the Lee Carter model. To get a projected life table for a

given cohort of birth, it is essential to blend the fitted rates from historical data to the

projected rates are within the same cohort. Then, the life table is produced for ages

0,1, . . ., t based on the Lee Carter model as in the following equation,

log(m̂x,t) = α̂x+ β̂xκ̂t,

tpx = exp−
∫ t

0 λudu
(6.11)
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The actuarial cohort life tables are presented for the out-of-sample period of 10 years

(cohort 1940 to cohort 1949) in Appendix A.4. By producing the life table, the number

of people alive, tpx for a particular age group in a particular year can be determine,

showing the relationship between the two equations above. The table is essential to

perform the actuarial projection in calculating the actuarial present value, APV of ä(12)
65

for the selected cohorts.

6.4 Description of the schemes

This section discusses five pension schemes that are studied and looks at how the

schemes evolves. The schemes are listed below:-

• Defined Benefit with no risk sharing (DBnrs)

• Defined Benefit with risk sharing (DBrs)

• Defined Contribution Scheme with draw down of assets at retirement (DCasset)

• Defined Contribution Scheme with life annuity purchase at retirement (DCannuity)

• Group Self Annuitisation Scheme (GSA)

6.5 Notation

In this study, the model used in [74] are improvised. In his study, a stationary population

is assumed which simplifies the calculations. Whereas, in here, we are looking at

more realistic assumptions, with a non stationary population assumption in which if a

member dies, no new entrant is allowed to replace and no further benefit accrued. To
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simplify, all members are assume to enter the fund at the same age with same target

benefit.

The variables used in the study are described below:

l∗x+t = number of people alive at time t

Bt = benefit payment made at time t

Ct = contribution payment paid by the employer at time t

Ft = fund value at time t

dt = total number of death occurred at time t

it = investment return obtained from the fund value between time t-1 and t

r f = risk free rate

σ2 = the variance of it

TB = target benefit

ALt = actuarial liability at time t

äx = annuity due whose payments are made at the beginning of each period.

kc = spread parameter for contribution income

kb = spread parameter for benefit income

In this study, there is no member contributions and the target benefit is defined as,

TBt = TB× l∗x+t. s.t., TB = 1. (6.12)
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6.6 Scheme Dynamics

The scheme dynamics for each pension scheme will be describe to see how each scheme

evolves over time. In general,

Ft+1 = (Ft+Ct−Bt)(1+ it+1), (6.13)

Ct = kc(ALt−Ft). (6.14)

kc represents the spread parameter in the contribution income. For example, a value of

kc = 0.2 means that the employer will make up 20% of the difference from surplus or

deficit to the scheme. During unfavourable market conditions, the asset values decline

and impact the employer since they have to give extra contribution to cover the deficit.

Whereas, a funding surplus arises when the value of the assets exceeds the calculated

value of the liability, allowing the employer to reduce their contribution rate, or even

stop contributing to the scheme altogether. Such action is known as contribution holiday.

The parameter kb is the spread parameter for benefit payment. It indicates that

when the scheme is in deficit, the benefit payout will be less then the target benefit. If

the scheme has surpluses, the benefit payout is greater than the target benefit such that

the surplus is used to provide additional benefits to the members.

Bt = TBt
[
1− kb

(ALt−Ft

ALt

)]
. (6.15)
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By substituting for Ct and Bt in 6.13,

Ft+1 =
[
(1− kc− kb

TBt

ALt
)Ft+ kcALt−TBt(1− kb)

]
(1+ it+1). (6.16)

From the cohort actuarial life table, the number of people alive at each period of

time is obtained. To examine the funding level after retirement, the total number of

people alive aged 65 to 85 is calculated as below.

Table 6.1: Total number of people aged 65 to 85 alive for the out-of-sample period, from 2005
to 2014 obtained from the cohort tables (refer Appendix A.3).

l65,...,85+t
2005 1187311
2006 1200466
2007 1235931
2008 1240628
2009 1248268
2010 1246470
2011 1235220
2012 1220068
2013 1192203

The benefit payment is adjusted based on the actual investment and mortality

experience using the models described in Section 6.2 and Section 6.3.

Let π be the proportion of wealth invested in the equity and the rest (1−π) invested

in the bond. No withdrawal is allowed in the fund. The risk free rate, r f is set at 5%

and it is the investment return obtained from the DCC GARCH modelling as in Table

6.2.

Therefore, Equation 6.16 is modified to consider the investment experience, and

hence the fund value is given by,

Ft+1 =
[
(1− kc− kb

TBt

ALt
)Ft+ kcALt−TBt(1− kb)

][
π(1+ it+1)+ (1−π)(1+ r f )

]
. (6.17)
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Table 6.2: Investment return on fund for the out-of-sample period 2005 to 2014 based on
multivariate DCC GARCH with Student-t innovation with a minimisation mean-CVaR portfolio.

Returns, it+1
2005 0.0809
2006 0.0347
2007 0.0107
2008 -0.1327
2009 0.0299
2010 0.0742
2011 0.0174
2012 0.0471
2013 0.0637
2014 0.1120

6.6.1 DB scheme with no risk sharing (DBnrs)

In the DBnrs scheme, kb is set to be zero, which means there is no benefit risk involved

and the benefit payout will be equal to the total target benefit times the number of

people alive at time t. At time 0, the fund value is assumed to be equal as actuarial

liability such that,

F0 = AL0 = TB0× äx, (6.18)

where äx is an annuity due whose payments are made at the beginning of each period.

And from Equation 6.17, we have:

Ft+1 =
[
(1− kc)Ft+ kcALt−TBt

] [
π(1+ it+1)+ (1−π)(1+ r f )

]
. (6.19)

6.6.2 DB scheme with risk sharing (DBrs)

A DB scheme with risk sharing works similarly to a DB scheme with no risk sharing

scheme, except that a value for kb is set to allow for benefit risk sharing among members

in the scheme. Different choices of kb will give impact to the members’ benefit payout
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such that if the scheme is in surplus, a greater value of kb will give the member a higher

benefit income. In contrast, if the scheme is in deficit, a greater value of kb will give

the member a lower benefit income payment. The formula for the fund value is as in

Equation 6.16.

6.6.3 DC scheme with life annuity purchase at retirement (DCannuity)

DC schemes appear to be riskier, compared to DB schemes, because there is no

guaranteed income at retirement. Each retiree must decide how much money to

withdraw from a pension fund and how to invest the remaining funds. DC members

may choose to get the best annuity products available from the insurance company

to provide retirement income. The pension life annuity can be purchased using

the amount of funds available in the pension pot. When buying a life annuity, the

member bears inflation risk, the risk of losses in the real value of the pension due to

unanticipated inflation, and they are also exposed to a higher longevity risk due to

pooling of individual risk.

Each DC member needs to pay for the annuity cost plus loading cost, k. Loading

cost is a charge imposed by the insurer or pension provider as a operating cost of

administering the pension scheme. The life insurance company charges the DC

members £(1+ k)ä65 for £1 per annum paid continuously until death. So, assuming

that everyone is aged 65 at time 0, the initial fund value will be,

F0 = ä65× (1+ k).
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And in general, the benefit payment can be written as:-

Bt =
F0

(1+ k)äx
. (6.20)

For example, assuming that a DC member retires at the age of 65 and each of them

have £100 to pay to the life insurance company. Each DC member will get a level

benefit payment of Bt per annum from age 65. With £100, the DC member can buy an

income of:

100
(1+ k)ä65

.

per annum paid until death.

6.6.4 DC scheme with draw down of asset at retirement (DCasset)

Another option for the DC member to manage their retirement savings is by investing

it. This will protect the member from outliving his DC savings in the retirement period.

It is important for the employees to realise the implications of not having a secure

pension income and the possible consequences that might occur.

In some countries, such as Malaysia and Singapore, the retirees are required to buy

annuity to provide retirement income. However, in some countries like the UK, the

retiree has an option to delay the purchase of an annuity until a certain age and receive

income directly from the pension fund. This option is known as drawdown of asset. In

this scheme, the individual’s pension fund remains invested and members are able

to draw income from it, as and when required. The member of the scheme bears the
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financial risk as there is no guarantee of a fixed benefit level at retirement because it

depends on the investment returns.

Assuming at retirement, a DC member with drawdown of asset, who is aged 65

and have £100, the first benefit payout,B0 is

B0 =
100
ä65
.

Even though this is the drawdown situation, we use ä65 to calculate the withdrawal

amount to simplify the calculations.

After paying out the first benefit, the balance in the fund will be 100(1− 1
ä65

). The

fund value and retirement income will then be depending on the investment returns

obtained each year. In general, the fund value is:

Ft+1 = (Ft−Bt)× (1+ it+1). (6.21)

6.6.5 Group self annuitisation scheme (GSA)

GSA is a scheme that protects against the longevity risk that is the risk that the member

will live longer than expected. This is true because, for example, there are ten members

in a GSA scheme, each investing £100 in the scheme which gives 5% investment

return over the year. At the end of the year, if no one dies, each person will get

100×10
10 ×1.05 = £105 and if nine members out of ten dies, the last member alive will

receive 100×10
1 ×1.05 = £1050, based on actual mortality experience. Meaning that the

longer a person lives with a reducing number of people in the scheme, the higher

benefit they will get. The member has benefited from the longevity risk and the scheme

allows the members to pool mortality risk together. In return, the member will receive a
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regular benefit annuity payment, calculated based on chosen mortality and investment

basis. In this study, everyone is assumed to have the same investment strategy to avoid

complicated calculations.

Now, assuming the initial fund value is £100 with l∗65 = 10, the benefit paid to each

person at time 0 is,

B0 =
F0

l∗65× ä65
=

100
10
×

1
ä65
.

The scheme will pay out to each of its member B0× l∗65 = £10 , leaving the fund value

to be 100−10 = £90. Therefore, at time 1, the total fund is F1 = £90× (1+ i1) such that i1

is the investment return over the year. And at time 1, when l∗66 = 9, the benefit payout

to each survivor at time 1,

B1 =
F1

l∗66× ä66
=

90(1+ i1)
9× ä66

=
10× (1+ i1)

ä66
.

In general, for GSA, the fund value is evaluated as,

Ft+1 = (Ft− l∗x+tBt)× (1+ it+1). (6.22)

Ct = 0, then,

Bt =
Ft

l∗x+t× äx+t
. (6.23)

There is not much literature studying GSA. [103] has studied the implications

of pooling longevity risk through GSA. [106] has expand the study by [103] and

proposed a method for collective risk pooling of systematic mortality in GSA rather

than individual bearing the risk.
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6.7 Results

In this section, based on the assumptions made in previous sections, the valuation of

the liabilities can be evaluated. The actuarial liabilities are obtained as,

ALt = TBt× äx+t. (6.24)

Figure 6.4. Liabilities value for the DB schemes from 2005 to 2014.

Time

A
ct

ua
ria

l l
ia

bi
lit

ie
s

2006 2008 2010 2012 2014

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

Note that the liabilities value for DBnrs and DBrs scheme are similar since the

smoothing factor, kb does not involve in the actuarial liabilities formula. As expected,

the liabilities value for the DB schemes decreasing as time increases (refer Figure 6.4).

This is due to the fact that many members have left the fund, meaning lesser liabilities

to the pension providers.

The fund value in defined benefit schemes are illustrated in Figure 6.5. Initially, the

DBrs performed better as expected than the DBnrs. This is because the DBrs benefited

in risk sharing among members in the scheme, while in DBnrs there is no benefit
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Figure 6.5. Fund value for the DB scheme with no risk sharing and DB scheme with risk
sharing scheme from 2005 to 2014.
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risk involved and the benefit payout will be equal to the total target benefit times the

number of people alive at time t. As the DBrs approaches the last period, the fund value

deteriorated extremely, which may be due to fewer people in the fund. According to

Deloitte, during 2014 and 2015, pension deficits have been on the rise for most of the

DB schemes which was driven by long term UK government gilt yields and falling

expectation of future inflation [42].

A funding deficit arises in both schemes where the value of the assets is less than the

expected cost of promised benefits. This means that there are insufficient funds to pay

the pension benefits promised to the members. When there is a deficit, the sponsoring

employer pays most, if not all of the additional contributions, over a sustained period
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to ensure that the funding level can be increased. The employer is responsible for the

contribution to ensure the funding level can be improved during economic downturn

while allowing contribution holidays during good times. This may affect investment

strategies as when equity prices boom, pension schemes may not always rebalance

the portfolio, leading to growing equity allocations in portfolios. Whereas during the

downturn, pension scheme may sell some of their equities, which eventually drive

markets down further. The funding level of these schemes can be improved by setting

a minimum funding levels that are consistent with the pension goals.

As explained earlier, there are not many people participating in the DB schemes

anymore. In 2011, only 3% of workers participated solely in a DB scheme compared

to 28% in 1979 [48]. This is because there are not many employers providing pension

schemes since the employers face difficulties in estimating the DB scheme liabilities

to evaluate the retirement benefit expenditures. Consequently, employers made a

significant shift from DB to DC schemes whereby through DC schemes, since these

are more favourable to pension providers due to the benefits paid out being linked to

investment performance.

Figure 6.6 shows the funding level for the other three schemes which are DCannuity,

DCasset and GSA scheme. The fund values in these three schemes are in surplus with

GSA scheme having the highest fund values among all schemes at the end of 2014. In

GSA scheme, surviving members will receive a continuous mortality credit and the

bigger wealth of the dying members have, the larger mortality credit will the surviving

members receive. This scheme protects against the longevity risk such that a higher

benefit will be given to those surviving longest. GSA is a hybrid pension scheme

in which the members bear the pool’s systematic risk but share idiosyncratic risk in
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Figure 6.6. Fund value for the DC scheme with life annuity purchase at retirement, DC scheme
with draw down of asset at retirement and Group self annuitisation scheme from 2005 to 2014.

providing its members with a more evenly pension risks while giving the best benefit

available.

6.8 Conclusion

In this chapter, we have presented an application of the volatility modelling and

mortality modelling underpinning the multivariate DCC GARCH and LC methodology

for forecasting mortality rates.

In particular, this study has focused on forecasting the mean and variance covariance

matrix using the best performing model in modelling volatility based on the finding in

Chapter 3 which is the DCC GARCH with Student-t distribution. The rates obtained

were used to get the investment returns which is based on a portfolio that minimises

mean-CVaR. From our previous finding, the multivariate DCC GARCH with Student-t
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has proven to be the best model that has a better performance as compared to the other

models. The purpose of this asset modelling is to produce an asset model that would

be useful to investors or pension managers in managing the pension assets.

While the asset modelling is done using mean-CVAR and DCC-GARCH volatility

modelling for the return data, which is the best performing strategy in Chapter 3, it

uses the traditional LC model for liabilities modelling. This is a potential limitation

of this study. It would have been interesting to explore this aspect. However, this

will be left for our future research. As mentioned in the thesis, modelling mortality in

multiple population is particularly new and there were very few studies on this subject.

This study produced the cohort actuarial table for the out-of-sample period, from 2005

to 2014, which is used to calculate the actuarial present value for the selected cohorts.

The number of people alive in the pension fund can be projected which were essential

to calculate the actuarial liability. But, to do this based on multiple population are not

straightforward. Therefore, for now, this study uses the traditional LC modelling to

estimate the parameters and project future liabilities. We will extend this study in the

future to incorporate the multiple population in the mortality modeling.

From the modellings, this study has found that GSA scheme has a better funding

level as compared to the other pension schemes. The defined benefit schemes is

underfunded which may be improved by adjusting the contribution of the employers

to the scheme.

The model built for this study was created for asset and liability modelling in UK

pension funds, which can also be used for applications in life and longer term general

insurance products.
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This study has only applied the mortality modelling for a single population which

is the UK total population using the classical LC model to simplify the calculation. As

mentioned above, it would be interesting to extend the study to include the multiple

population model in the mortality modelling for pension schemes as the results may

be improved. Similarly, it would be interesting to allow other assumptions in the study,

for example allowing a variable or increasing salary which may change the values of

various parameters in the pension schemes.



Chapter 7

Conclusion & proposed future work

7.1 Conclusions

The aim of this thesis was to examine three different but interconnected problems,

(which were presented in chapters 3, 4, 5 and 6) which lie in the broad area of asset

liability management for long term financial investors, with the focus on pension

schemes. Several new models were proposed, mainly as extension of existing models.

Chapter 1 (Introduction) described the problem statement of the thesis, namely,

the challenging environments due to increasing life expectancy and highly volatile

markets, which is faced by governments and financial institutions worldwide. The

study of ALM has become important for organisations in managing their assets and

liabilities to ensure the sustainability in their funding responsibilities. The research

objectives, structure of the thesis and the scientific contributions were presented in this

chapter.

Chapter 2 was a comprehensive literature review presented to help the reader

understand and get the idea of the fundamental knowledge relating to asset liability

172
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management, mortality modelling and pension schemes structure, which are the

most important elements for the next chapters in the thesis. The importance of asset

allocations and diversification were discussed in detail explaining the purpose of ALM

study, especially for long term investors including pension providers, insurers and

governments. This chapter provided a review of the latest asset modelling, used widely

in the literature, to forecast the mean and covariances used as input parameters to

construct portfolios with the best out-of-sample performance. It described the most

widely used models to solve the ALM problems such as DCC models and its extensions

including copula models. The discussion continued with the most popular portfolio

optimisation model of [90] and other related studies. Chapter 2 also reviewed the

mortality modelling that exists in the literature including the famous LC model and

other recent studies involving a single and multiple population mortality models.

The structure of pension schemes were also discussed in detailed, which includes the

defined benefit, defined contribution and hybrid pension schemes.

In chapter 3, the multivariate GARCH models were evaluated for volatility

modelling which is based on different optimisation strategies. This study examined

a large class of different advance multivariate DCC GARCH models in modelling

the mean returns and variance covariance matrices, using five different optimisation

strategies: the minimum-variance, mean-variance, maximising Sharpe ratio, minimising

mean-CVaR and maximising Sortino ratio for the portfolio optimisation. The best

performing model was the multivariate DCC GARCH with Student-t distribution

which clearly had a better out-of-sample in most of the optimisation strategies. The use

of multivariate GARCH models in the analysis were appealing as it kept the estimation

to be as parsimonious as possible, with a small number of parameters involved, even
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dealing with a larger number of parameters than any other multivariate volatility

modelling. From the study, it is found that the dynamic models have better performance

than the static models which reduces portfolio risk and improve the realised return in

the out-of-sample period. The addition of copula functions to the models may capture

additional characteristics in the data but has been found that it does not give any better

performance than the existing dynamic models. The study would be beneficial to

practitioners working in the portfolio optimisation for investment in pension schemes

and other financial options involving a long term investment decision.

Chapter 4 analysed the empirical mortality modelling using a single and multiple

population data. This study has modified the existing mortality models available

in the literature and proposed a novel alternative estimation methods using the

modification of singular value decomposition (SVD) and principal component analysis

(PCA) in modelling the mortality models. It is found that the mortality rates are

decreasing worldwide, which shows an improvement in healthcare but clearly presents

challenges as the longevity increases meaning people may live longer than expected,

and the pension providers may underestimate the survival probabilities and, therefore,

suggest inaccurate premiums. The insurer or pension provider charge premiums

initially without knowing, for certain the liabilities that they have to meet in the

future. Therefore, a study of mortality modelling is very important as it will help

the insurers and pension providers to plan properly and be able to project future

mortality as accurate as possible to avoid systematic losses. This chapter analysed

different types of SVD and PCA estimation methods to propose different mortality

modelling which are suitable for a single and multiple population in order to obtain

a model for projecting life expectancy across populations. The area modelling of the
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sub-population in the UK data is also carried out in which the multiple population

modelling has better out-of-sample performance than the single population modelling.

The proposed models allow us to estimate the period effects in multiple population

simultaneously which provides a better comparison rather than looking at period

effects in a single population. It is learned that these proposed modification gives a

better mortality models for multiple population such that these model outperforms

the individual models which is reflected by the smaller MSE and BIC for the older

age group. As for the younger age group, the result might be improved by including

more age period effects to the model. The results indicate that the proposed models are

suitable for modelling mortality for a older age group and suitable to apply in pension

schemes.

For Chapter 5, the study has been extended to test econometric models in modelling

mortality data to capture the evolution of the aggregate mortality rates for different

countries simultaneously. This study analysed the use of multivariate DCC GARCH

models and also adding copula function to forecast the life expectancy across multiple

population. The use of econometric models in modelling mortality is particularly

new. These models are able to capture the correlations between the age parameter in

mortality rates function with the copula methods which other mortality models are

not capable with. The models are evaluated based on the BIC values such that it is

found that the ARMA DCC GARCH with Copula using Student-t distribution has the

best performance as compared with the other models. It will be much interesting to

explicitly compare and stated its capabilities as opposed to the traditional Lee Carter

or CBD model. However, the use of econometric models in modelling mortality is
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particularly new, especially involving multiple population models. There were very

few references available, and therefore we will leave this for our future study.

Finally, chapter 6 demonstrated the use of volatility and mortality modelling on

how these models can be used in managing asset and liability in pension schemes.

This study use the DCC GARCH with Student-t distribution to forecast the mean

and covariances to obtained the best investment return for the pension schemes. For

the mortality modelling, the LC model is used to project the future mortality for the

out of sample period using a UK total population data. This study also incorporates

significant feature not previously mentioned in the relevant pension literature such as

using a non-stationary population in the analysis. In addition, this study produces

cohort life table which are used to determine the number of people alive in the scheme to

estimate the actuarial present value which is needed to calculate the actuarial liabilities

and to determine funding level in each scheme. This chapter has examined a wide

range of different pension schemes which include the defined benefit schemes, defined

contribution schemes and the hybrid scheme known as the Group self annuitisation

scheme .

The choice of volatility and mortality modelling in a pension scheme is very

important as it will help the pension providers in making investment decisions and

projecting future mortality to ensure the pension liabilities can be meet and avoiding

the schemes closing. In addition, the on-going financial instability worldwide has

made pension schemes face losses, and this study will contribute to society by giving

the insurers and pension providers ideas on how to re-examine their asset allocation

strategies in providing the best pension schemes to retirees. To conclude, the new

models introduced in this thesis are flexible models that can be used to analyse and
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forecast the investment returns and human mortality. Also, as discussed earlier, the

multivariate DCC GARCH models is a powerful tool for analysing uncertainty and

investment risk.

7.2 Suggestions for future research

Undoubtedly, any research is subject to further improvement and extensions. This

section will provide some ideas for potential future research.

To further increase the understanding in modelling volatility, one could consider

different forecasting methodologies by looking at different forecast horizons and

consider more complex conditional mean and covariances models, using other

distributions or considering different constraints in examining the robustness of

the portfolios. It is interesting to see the performance of other recent multivariate DCC

GARCH models in modelling volatility such as the Bayesian GARCH, the dynamic

equicorrelation (DECO) model or the smooth transition conditional correlation (STCC

GARCH). Furthermore, the use of copulas in the study may be adjusted to involve a

diversified portfolio in the asset modelling as this study has only uses equities and

bonds in the portfolio and the results may be improved in the future. Other asset

classes, such as property, alternative investments, such as commodities and hedge

funds, may be considered. The use of futures and options may enhance the risk return

trade off by hedging risk on the liability side and future research could explore the

benefits of investing in this area.

In chapter 4, modification of SVD and PCA methods was applied to the mortality

modelling. Future research could investigate other methods such as the use of

maximum likelihood methods in estimating parameters in the mortality modelling.
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The proposed model could also be improved and extended in a number of ways. The

extension of the model may include a cohort effect which is common to all countries or

may be country dependent. It is also interesting to model mortality rates in other sets

of populations; i.e. by looking at mortality rates for males and females in a different

populations rather than just looking at only males in the populations as in this thesis.

Chapter 5 produced mortality modelling which is based on multivariate DCC

GARCH models. Again, it is interesting to look at other recent multivariate GARCH

models such as the corrected DCC or GOGARCH models in modelling the mortality

rates. However, due to the limitation of data and timing constraint, this study is unable

to provide application of the DCC GARCH mortality modelling. Future studies may

use the finding obtained in this thesis to price mortality bonds, survivor index swaps or

any other annuity products which involving multiple populations. The performance

of the DCC GARCH mortality modelling may also be examined by comparing with

other mortality modelling and evaluate them in a single population. It will also be

much interesting to explicitly compare and stated its capabilities as opposed to the

traditional Lee Carter model. But, the use of econometric models in modelling mortality

is particularly new, especially involving multiple population models. There were very

limited references available in the literature. The study may be extend in the future to

compare its performance as compared to the traditional LC or CBD models in multiple

population settings.

Chapter 6 focused on using DCC GARCH with Student-t distribution for the asset

modelling and using LC model in modelling the mortality rates. Currently, this model

was based on a single population. While the asset modelling is done using the best

performing strategy in Chapter 3, it uses the traditional LC model for the liabilities
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modelling. This is a potential limitation of this study. It would have been interesting

to extend the study to multiple population settings. However, this will be left for

our future research. As mentioned in many part of the thesis, modelling mortality

in multiple population is particularly new and there were very few studies on this

subject. Therefore, for now, this study uses the traditional LC modelling to estimate

the parameters and project future liabilities. This study will be extended in the future

to incorporate the multiple population in the mortality modeling.

In further research, the study can be extended to a multiple populations and

including other mortality model specifications can be explored as well. A more

complex model for the population modelling can be considered, for example, by

allowing a salary increment and withdrawal in the fund. This study considered the

decumulation phase in the pension scheme (retirement until death). Future study

could incorporate a more detailed study by involving the accumulation phase as well

(working period), which could add value to, and improve the reliability of, this study.



Appendix

A.1 Copula GARCH

The d-dimensional Gaussian copula CGA(u1,u2, . . .,un) is an n-dimensional distribution
over the unit hypercube [0,1]n with uniform margins. The dependence structure is
determined by the standardised correlation matrix RRR, such that the dispersion parameter
ρ1,n is estimated using Kendall’s τmethod. The Gaussian copula is represented by

CGA(u1,u2, . . .,un;R) =

Φ−1(u1)∫
−∞

...

Φ−1(un)∫
−∞

1
2πn/2|R|1/2

· e
{
−

1
2 x′R−1x

}
dx1, . . .,dxn. (1)

The density of the Gaussian copula, of the d-dimensional random vector X may be
written as in [19]:

CGA(u1,u2, . . .,un;R) =
1
|R|1/2

e
{
−

1
2ς
′(R−1

−I)ς
}
, (2)

where ς = (ϕ−1(u1), . . .,ϕ−1(un))′ represents the quantile of the Probability Integral
Transformation (PIT) values of X and I is the identity matrix. The Gaussian copula
cannot account for tail dependence.

For the Student-t copula model, it is possible to joint fat tails and an increased
probability of joint extreme events. This copula may be represented as

CT(u1,u2, . . .,un;R,ν) =

t−1
ν (u1)∫
−∞

...

t−1
ν (un)∫
−∞

Γ(ν+n
2 )|R|−1/2

Γ(ν2 )(νπ)n/2 · (1+
1
ν

x′R−1x)−
ν+n

2 dx1. . .dxn, (3)

and the density of the Student-t copula as

CT(u1,u2, . . .,un) = |R|−1/2 Γ(
ν
2 )

Γ(ν+1
2 )

(
Γ(ν+n

2 )
Γ(ν2 )

)n (1+ 1
νς
′R−1ς)−

ν+n
2

n∏
j=1

(1+
ς2

j
ν )−

ν−n
2

. (4)
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where ς= (t−1
ν (u1), . . ., t−1

ν (un))′. In Student-t copula, the dependence structure introduces
an additional parameter which is the degree of freedom ν. As the value of ν increases,
the tendency to exhibit extreme co-movements decreases.

A.2 Average weights of the analysed assets
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A.3 Lee Carter model for a single population

The individual models of order p for the centralised mortality rates mi in a population
i, is an extension of the LC model to p age and period effects, that is,

mi(x, t) = β
(1)
i (x)κ(1)

i (t)+ · · ·+β(p)
i (x)κ(p)

i (t)+ϵi(x, t). (5)

This can be written in matrix form as,

mi =pβi pκi+ϵi (6)

such that,

mi =


β(1)

i (x1) . . . β(p)
i (x1)

...
. . .

...

β(1)
i (xn) . . . β(p)

i (xn)



κ(1)

i (1) . . . κ(1)
i (T)

...
. . .

...

κ
(p)
i (1) . . . κ(p)

i (T)

+

ϵi(x1,1) . . . ϵi(x1,T)
...

. . .
...

ϵi(xn,1) . . . ϵi(xn,T)

 (7)

A.4 Cohort life tables

Actuarial table cohort 1940.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3634892.00 6630.06 30098.23 1550247.00
1 93239.94 91446.87 3534892.00 875.81 23468.17 1520149.00
2 92329.45 88812.47 3443445.00 305.98 22592.37 1496681.00
3 92005.12 86798.55 3354633.00 232.43 22286.38 1474088.00
4 91753.92 84896.92 3267834.00 175.59 22053.96 1451802.00
5 91560.43 83088.70 3182937.00 145.41 21878.37 1429748.00
6 91397.05 81345.43 3099848.00 96.40 21732.96 1407870.00
7 91286.62 79684.70 3018503.00 83.11 21636.56 1386137.00
8 91189.54 78069.19 2938818.00 55.95 21553.45 1364500.00
9 91122.90 76511.91 2860749.00 49.21 21497.50 1342947.00
10 91063.15 74991.32 2784237.00 38.31 21448.29 1321449.00
11 91015.72 73510.87 2709246.00 36.62 21409.98 1300001.00
12 90969.49 72060.58 2635735.00 36.32 21373.37 1278591.00
13 90922.74 70638.48 2563674.00 37.96 21337.05 1257218.00
14 90872.93 69242.09 2493036.00 35.17 21299.09 1235880.00
15 90825.87 67875.35 2423794.00 48.51 21263.93 1214581.00
16 90759.68 66521.54 2355919.00 47.02 21215.41 1193317.00
17 90694.27 65195.26 2289397.00 55.92 21168.39 1172102.00
18 90614.95 63885.58 2224202.00 60.37 21112.47 1150934.00
19 90527.64 62596.64 2160316.00 73.26 21052.09 1129821.00
20 90419.61 61319.60 2097720.00 73.03 20978.84 1108769.00
21 90309.82 60067.35 2036400.00 64.30 20905.81 1087790.00
22 90211.25 58847.91 1976333.00 67.20 20841.51 1066884.00
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23 90106.22 57649.02 1917485.00 58.21 20774.31 1046043.00
24 90013.46 56482.18 1859836.00 56.53 20716.11 1025269.00
25 89921.60 55339.45 1803354.00 55.06 20659.58 1004553.00
26 89830.38 54220.17 1748014.00 53.58 20604.51 983892.90
27 89739.87 53123.90 1693794.00 49.99 20550.94 963288.40
28 89653.76 52052.29 1640670.00 47.30 20500.94 942737.50
29 89570.69 51003.98 1588618.00 51.45 20453.64 922236.50
30 89478.57 49971.69 1537614.00 50.26 20402.19 901782.90
31 89386.81 48960.44 1487642.00 49.91 20351.93 881380.70
32 89293.90 47968.97 1438682.00 48.62 20302.02 861028.80
33 89201.62 46997.87 1390713.00 52.52 20253.40 840726.70
34 89099.99 46041.55 1343715.00 60.11 20200.88 820473.30
35 88981.38 45096.03 1297673.00 59.58 20140.77 800272.50
36 88861.52 44169.22 1252577.00 64.33 20081.19 780131.70
37 88729.57 43255.48 1208408.00 66.00 20016.87 760050.50
38 88591.52 42357.64 1165152.00 75.33 19950.87 740033.60
39 88430.88 41467.74 1122795.00 78.17 19875.53 720082.80
40 88260.90 40592.11 1081327.00 81.85 19797.36 700207.20
41 88079.44 39729.65 1040735.00 86.72 19715.51 680409.90

Table A11: Actuarial table cohort 1940.

Actuarial table cohort 1940 [cont’d].

x lx Dx Nx Cx Mx Rx
42 87883.42 38878.90 1001005.00 89.62 19628.79 660694.30
43 87676.88 38041.61 962126.40 98.89 19539.18 641065.60
44 87444.49 37211.15 924084.80 104.30 19440.29 621526.40
45 87194.58 36391.25 886873.70 119.47 19335.99 602086.10
46 86902.71 35571.94 850482.40 127.66 19216.51 582750.10
47 86584.71 34760.20 814910.50 130.56 19088.85 563533.60
48 86253.12 33961.18 780150.30 143.58 18958.29 544444.70
49 85881.31 33164.50 746189.10 146.82 18814.71 525486.50
50 85493.66 32379.90 713024.60 158.80 18667.89 506671.70
51 85066.15 31598.41 680644.70 167.85 18509.09 488003.90
52 84605.41 30822.89 649046.30 176.99 18341.23 469494.80
53 84110.06 30053.15 618223.40 195.48 18164.24 451153.50
54 83552.25 29279.73 588170.20 191.53 17968.77 432989.30
55 82994.99 28525.13 558890.50 212.87 17777.24 415020.50
56 82363.48 27763.70 530365.40 224.42 17564.36 397243.30
57 81684.66 27005.36 502601.70 244.21 17339.94 379678.90
58 80931.51 26241.82 475596.30 257.41 17095.73 362339.00
59 80122.06 25479.75 449354.50 258.99 16838.32 345243.20
60 79291.68 24730.77 423874.70 277.91 16579.33 328404.90
61 78383.17 23977.26 399144.00 281.79 16301.42 311825.60
62 77443.93 23234.37 375166.70 298.14 16019.63 295524.20
63 76430.68 22489.42 351932.30 310.34 15721.49 279504.60
64 75355.29 21746.58 329442.90 315.73 15411.14 263783.10
65 74239.78 21012.65 307696.30 320.52 15095.41 248371.90
66 73085.15 20288.04 286683.70 330.89 14774.89 233276.50
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67 71869.80 19567.00 266395.70 336.99 14444.01 218501.60
68 70607.77 18853.72 246828.70 362.05 14107.02 204057.60
69 69225.28 18129.10 227974.90 363.23 13744.96 189950.60
70 67811.12 17417.23 209845.80 369.08 13381.74 176205.60
71 66345.98 16713.20 192428.60 390.21 13012.65 162823.90
72 64766.61 16001.59 175715.40 401.05 12622.45 149811.20
73 63111.51 15292.81 159713.80 414.87 12221.39 137188.80
74 61365.83 14583.85 144421.00 429.79 11806.52 124967.40
75 59521.89 13873.60 129837.10 455.92 11376.73 113160.90
76 57527.51 13150.88 115963.50 460.88 10920.81 101784.10
77 55471.88 12437.10 102812.70 648.28 10459.93 90863.34
78 52523.72 11549.64 90375.57 652.34 9811.65 80403.41
79 49498.93 10675.19 78825.93 652.02 9159.31 70591.76
80 46416.35 9817.88 68150.74 654.03 8507.29 61432.45
81 43263.64 8975.04 58332.87 653.32 7853.26 52925.17
82 40052.60 8149.13 49357.82 649.32 7199.94 45071.91
83 36798.66 7343.09 41208.70 639.49 6550.62 37871.98
84 33531.14 6562.39 33865.61 624.96 5911.13 31321.36
85 30275.26 5811.24 27303.21 595.86 5286.18 25410.23
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Actuarial table cohort 1940 [cont’d].

x lx Dx Nx Cx Mx Rx
86 27110.10 5103.62 21491.97 575.24 4690.32 20124.05
87 23994.56 4430.24 16388.35 701.75 4115.08 15433.73
88 20119.32 3643.30 11958.11 743.55 3413.33 11318.65
89 15932.74 2829.69 8314.81 706.78 2669.79 7905.32
90 11875.13 2068.49 5485.13 611.16 1963.01 5235.53
91 8297.70 1417.55 3416.64 483.60 1351.85 3272.53
92 5411.45 906.70 1999.08 350.74 868.25 1920.68
93 3277.07 538.52 1092.39 232.92 517.51 1052.42
94 1831.87 295.24 553.87 141.19 284.59 534.91
95 938.68 148.38 258.63 77.73 143.40 250.32
96 437.26 67.79 110.25 38.61 65.67 106.92
97 183.32 27.87 42.46 17.15 27.06 41.25
98 68.32 10.19 14.59 6.73 9.91 14.19
99 22.28 3.26 4.40 2.30 3.17 4.29
100 6.23 0.89 1.14 0.67 0.87 1.11
101 1.45 0.20 0.25 0.16 0.20 0.24
102 0.27 0.04 0.04 0.03 0.04 0.04
103 0.04 0.01 0.01 0.00 0.01 0.01
104 0.00 0.00 0.00 0.00 0.00 0.00
105 0.00 0.00 0.00 0.00 0.00 0.00
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Actuarial table cohort 1941.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3639981.00 7003.77 30000.36 1550596.00
1 92858.90 91073.16 3539981.00 583.41 22996.59 1520596.00
2 92252.39 88738.34 3448908.00 280.14 22413.18 1497599.00
3 91955.45 86751.69 3360170.00 200.39 22133.04 1475186.00
4 91738.87 84883.00 3273418.00 161.68 21932.65 1453053.00
5 91560.70 83088.95 3188535.00 101.15 21770.97 1431120.00
6 91447.06 81389.94 3105446.00 93.90 21669.82 1409349.00
7 91339.49 79730.85 3024056.00 70.50 21575.92 1387679.00
8 91257.14 78127.06 2944325.00 58.52 21505.42 1366103.00
9 91187.44 76566.10 2866198.00 37.69 21446.90 1344598.00
10 91141.68 75055.99 2789632.00 41.43 21409.21 1323151.00
11 91090.38 73571.17 2714576.00 33.47 21367.78 1301742.00
12 91048.12 72122.87 2641005.00 29.42 21334.31 1280374.00
13 91010.25 70706.47 2568882.00 32.65 21304.89 1259040.00
14 90967.40 69314.07 2498176.00 37.65 21272.23 1237735.00
15 90917.02 67943.46 2428862.00 38.64 21234.58 1216463.00
16 90864.30 66598.22 2360918.00 52.04 21195.94 1195228.00
17 90791.91 65265.45 2294320.00 58.73 21143.91 1174032.00
18 90708.60 63951.61 2229055.00 69.83 21085.17 1152888.00
19 90607.61 62651.93 2165103.00 76.02 21015.34 1131803.00
20 90495.51 61371.06 2102451.00 73.51 20939.31 1110788.00
21 90384.99 60117.34 2041080.00 61.46 20865.81 1089848.00
22 90290.77 58899.78 1980963.00 62.41 20804.34 1068983.00
23 90193.21 57704.68 1922063.00 63.75 20741.93 1048178.00
24 90091.62 56531.22 1864358.00 60.18 20678.18 1027436.00
25 89993.84 55383.91 1807827.00 49.35 20618.00 1006758.00
26 89912.07 54269.48 1752443.00 56.02 20568.65 986140.10
27 89817.44 53169.82 1698174.00 48.06 20512.63 965571.50
28 89734.67 52099.26 1645004.00 46.02 20464.57 945058.80
29 89653.85 51051.34 1592905.00 47.79 20418.56 924594.30
30 89568.28 50021.78 1541853.00 48.55 20370.76 904175.70
31 89479.65 49011.28 1491831.00 53.76 20322.22 883804.90
32 89379.57 48015.00 1442820.00 54.22 20268.46 863482.70
33 89276.67 47037.42 1394805.00 54.87 20214.24 843214.30
34 89170.49 46077.98 1347768.00 54.74 20159.37 823000.00
35 89062.48 45137.13 1301690.00 58.35 20104.64 802840.70
36 88945.09 44210.76 1256553.00 60.40 20046.28 782736.00
37 88821.18 43300.15 1212342.00 67.60 19985.88 762689.70
38 88679.81 42399.85 1169042.00 67.40 19918.28 742703.90
39 88536.08 41517.08 1126642.00 72.13 19850.89 722785.60
40 88379.25 40646.54 1085125.00 86.69 19778.76 702934.70
41 88187.06 39778.19 1044478.00 88.34 19692.07 683155.90

Table A14: Actuarial table cohort 1941.
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Actuarial table cohort 1941[cont’d].

x lx Dx Nx Cx Mx Rx
42 87987.36 38924.88 1004700.00 90.83 19603.72 663463.90
43 87778.03 38085.49 965775.10 93.04 19512.90 643860.10
44 87559.38 37260.04 927689.60 100.90 19419.85 624347.20
45 87317.61 36442.60 890429.60 114.80 19318.95 604927.40
46 87037.16 35626.98 853987.00 119.82 19204.15 585608.40
47 86738.70 34822.03 818360.00 129.12 19084.33 566404.30
48 86410.76 34023.25 783538.00 134.21 18955.21 547319.90
49 86063.22 33234.75 749514.70 140.93 18821.00 528364.70
50 85691.12 32454.69 716280.00 153.56 18680.07 509543.70
51 85277.72 31677.00 683825.30 157.21 18526.51 490863.70
52 84846.20 30910.62 652148.30 175.78 18369.30 472337.10
53 84354.25 30140.41 621237.70 179.24 18193.53 453967.80
54 83842.76 29381.54 591097.30 192.54 18014.28 435774.30
55 83282.56 28623.97 561715.80 209.23 17821.74 417760.00
56 82661.85 27864.27 533091.80 216.64 17612.51 399938.30
57 82006.56 27111.78 505227.50 226.01 17395.87 382325.80
58 81309.53 26364.39 478115.70 240.74 17169.86 364929.90
59 80552.50 25616.64 451751.30 251.26 16929.11 347760.10
60 79746.93 24872.76 426134.70 260.59 16677.86 330830.90
61 78895.03 24133.84 401261.90 271.77 16417.26 314153.10
62 77989.19 23397.96 377128.10 292.27 16145.50 297735.80
63 76995.90 22655.73 353730.10 281.95 15853.23 281590.30
64 76018.91 21938.10 331074.40 306.55 15571.28 265737.10
65 74935.83 21209.66 309136.30 314.49 15264.73 250165.80
66 73802.91 20487.29 287926.70 325.68 14950.24 234901.10
67 72606.70 19767.62 267439.40 330.90 14624.56 219950.90
68 71367.47 19056.58 247671.80 346.70 14293.66 205326.30
69 70043.62 18343.41 228615.20 356.15 13946.96 191032.60
70 68657.01 17634.50 210271.80 374.85 13590.81 177085.70
71 67168.96 16920.52 192637.30 376.83 13215.96 163494.90
72 65643.74 16218.30 175716.70 402.27 12839.13 150278.90
73 63983.62 15504.14 159498.50 397.80 12436.86 137439.80
74 62309.77 14808.18 143994.30 442.32 12039.06 125002.90
75 60412.09 14081.09 129186.10 450.31 11596.74 112963.90
76 58442.26 13359.99 115105.00 626.33 11146.43 101367.10
77 55648.71 12476.74 101745.00 634.86 10520.11 90220.69
78 52761.59 11601.95 89268.31 640.42 9885.25 79700.58
79 49792.06 10738.41 77666.36 641.41 9244.82 69815.33
80 46759.67 9890.50 66927.95 644.72 8603.42 60570.51
81 43651.85 9055.58 57037.46 646.16 7958.70 51967.09
82 40475.99 8235.27 47981.88 643.94 7312.54 44008.39
83 37248.99 7432.96 39746.61 635.87 6668.60 36695.85
84 33999.95 6654.15 32313.66 623.19 6032.73 30027.25
85 30753.27 5902.99 25659.51 595.44 5409.54 23994.52
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Actuarial table cohort 1941[cont’d].

x lx Dx Nx Cx Mx Rx
86 27590.33 5194.03 19756.52 764.47 4814.10 18584.98
87 23449.92 4329.68 14562.49 837.76 4049.63 13770.89
88 18823.58 3408.66 10232.81 817.40 3211.87 9721.26
89 14221.13 2525.70 6824.16 722.64 2394.47 6509.38
90 10072.50 1754.50 4298.45 583.24 1671.83 4114.91
91 6658.52 1137.52 2543.96 430.82 1088.60 2443.08
92 4087.27 684.83 1406.44 291.08 657.78 1354.48
93 2315.93 380.58 721.61 179.39 366.70 696.70
94 1202.90 193.87 341.03 100.36 187.31 330.00
95 567.99 89.78 147.16 50.64 86.95 142.69
96 241.38 37.42 57.38 22.84 36.32 55.74
97 91.18 13.86 19.96 9.10 13.48 19.42
98 30.14 4.49 6.09 3.16 4.38 5.94
99 8.54 1.25 1.60 0.94 1.22 1.56
100 2.02 0.29 0.35 0.23 0.28 0.34
101 0.38 0.05 0.06 0.05 0.05 0.06
102 0.05 0.01 0.01 0.01 0.01 0.01
103 0.01 0.00 0.00 0.00 0.00 0.00
104 0.00 0.00 0.00 0.00 0.00 0.00
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Actuarial table cohort 1942.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3680047.00 6164.33 29229.86 1566783.00
1 93714.81 91912.60 3580047.00 564.70 23065.53 1537553.00
2 93127.75 89580.35 3488135.00 250.65 22500.84 1514488.00
3 92862.06 87607.00 3398554.00 187.36 22250.18 1491987.00
4 92659.57 85734.89 3310947.00 136.53 22062.82 1469737.00
5 92509.12 83949.61 3225213.00 114.61 21926.29 1447674.00
6 92380.34 82220.58 3141263.00 83.10 21811.68 1425748.00
7 92285.15 80556.32 3059042.00 65.39 21728.58 1403936.00
8 92208.76 78941.77 2978486.00 56.89 21663.19 1382208.00
9 92141.02 77366.77 2899544.00 41.49 21606.31 1360544.00
10 92090.63 75837.46 2822178.00 34.06 21564.81 1338938.00
11 92048.46 74344.99 2746340.00 30.84 21530.75 1317373.00
12 92009.53 72884.44 2671995.00 29.59 21499.92 1295842.00
13 91971.45 71453.23 2599111.00 32.30 21470.33 1274343.00
14 91929.06 70046.83 2527657.00 34.41 21438.03 1252872.00
15 91883.01 68665.36 2457611.00 43.02 21403.62 1231434.00
16 91824.32 67301.86 2388945.00 42.23 21360.60 1210031.00
17 91765.57 65965.36 2321643.00 54.19 21318.37 1188670.00
18 91688.70 64642.60 2255678.00 62.54 21264.18 1167352.00
19 91598.25 63336.93 2191035.00 68.23 21201.63 1146087.00
20 91497.64 62050.68 2127698.00 69.03 21133.40 1124886.00
21 91393.85 60788.36 2065648.00 68.52 21064.37 1103752.00
22 91288.81 59550.83 2004859.00 59.13 20995.84 1082688.00
23 91196.38 58346.49 1945309.00 57.71 20936.71 1061692.00
24 91104.41 57166.73 1886962.00 54.70 20879.00 1040755.00
25 91015.53 56012.68 1829795.00 55.90 20824.30 1019876.00
26 90922.93 54879.61 1773783.00 48.26 20768.41 999052.20
27 90841.41 53775.98 1718903.00 47.71 20720.15 978283.80
28 90759.23 52694.12 1665127.00 48.25 20672.44 957563.60
29 90674.50 51632.52 1612433.00 46.01 20624.19 936891.20
30 90592.12 50593.58 1560800.00 50.09 20578.18 916267.00
31 90500.66 49570.53 1510207.00 45.14 20528.09 895688.80
32 90416.63 48572.11 1460636.00 50.47 20482.95 875160.70
33 90320.84 47587.56 1412064.00 53.55 20432.48 854677.80
34 90217.21 46618.86 1364477.00 52.82 20378.93 834245.30
35 90112.98 45669.52 1317858.00 51.79 20326.10 813866.40
36 90008.78 44739.47 1272188.00 58.80 20274.31 793540.30
37 89888.16 43820.29 1227449.00 65.96 20215.51 773265.90
38 89750.19 42911.63 1183629.00 67.58 20149.54 753050.40
39 89606.08 42018.83 1140717.00 66.34 20081.97 732900.90
40 89461.84 41144.44 1098698.00 76.56 20015.63 712818.90
41 89292.11 40276.64 1057554.00 80.50 19939.07 692803.30

Table A17: Actuarial table cohort 1942.



A.4 Cohort life tables 200

Actuarial table cohort 1942[cont’d].

x lx Dx Nx Cx Mx Rx
42 89110.14 39421.59 1017277.00 83.73 19858.57 672864.20
43 88917.16 38579.75 977855.40 93.61 19774.84 653005.70
44 88697.19 37744.22 939275.70 100.26 19681.23 633230.80
45 88456.97 36918.11 901531.50 106.33 19580.97 613549.60
46 88197.20 36101.82 864613.40 117.01 19474.64 593968.60
47 87905.75 35290.55 828511.50 129.55 19357.63 574494.00
48 87576.72 34482.33 793221.00 126.79 19228.08 555136.40
49 87248.40 33692.42 758738.70 143.04 19101.29 535908.30
50 86870.73 32901.46 725046.20 150.79 18958.26 516807.00
51 86464.78 32117.94 692144.80 165.23 18807.47 497848.70
52 86011.26 31335.06 660026.80 171.77 18642.24 479041.30
53 85530.51 30560.69 628691.80 186.00 18470.47 460399.00
54 84999.74 29786.98 598131.10 193.89 18284.46 441928.50
55 84435.61 29020.27 568344.10 198.85 18090.57 423644.10
56 83845.70 28263.33 539323.80 214.38 17891.72 405553.50
57 83197.24 27505.43 511060.50 245.82 17677.34 387661.80
58 82439.13 26730.66 483555.10 225.17 17431.52 369984.50
59 81731.07 25991.44 456824.40 245.85 17206.35 352552.90
60 80942.84 25245.76 430833.00 266.31 16960.51 335346.60
61 80072.24 24493.95 405587.20 274.63 16694.19 318386.10
62 79156.84 23748.27 381093.30 293.63 16419.56 301691.90
63 78158.92 22997.94 357345.00 293.51 16125.92 285272.30
64 77141.87 22262.17 334347.10 302.90 15832.42 269146.40
65 76071.69 21531.15 312084.90 314.75 15529.51 253314.00
66 74937.86 20802.34 290553.70 320.97 15214.77 237784.50
67 73758.94 20081.33 269751.40 322.34 14893.80 222569.70
68 72551.76 19372.81 249670.10 336.57 14571.46 207675.90
69 71266.56 18663.68 230297.30 336.78 14234.88 193104.40
70 69955.35 17967.98 211633.60 357.44 13898.10 178869.60
71 68536.41 17265.00 193665.60 366.69 13540.66 164971.50
72 67052.25 16566.29 176400.60 397.99 13173.97 151430.80
73 65409.81 15849.72 159834.30 413.57 12775.98 138256.80
74 63669.60 15131.35 143984.60 429.70 12362.42 125480.80
75 61826.07 14410.67 128853.30 616.23 11932.72 113118.40
76 59130.44 13517.31 114442.60 617.68 11316.49 101185.70
77 56375.48 12639.69 100925.30 627.82 10698.82 89869.21
78 53520.36 11768.79 88285.59 634.88 10070.99 79170.39
79 50576.54 10907.59 76516.79 637.12 9436.11 69099.40
80 47564.39 10060.71 65609.20 641.72 8798.99 59663.28
81 44471.04 9225.52 55548.49 645.27 8157.28 50864.29
82 41299.55 8402.83 46322.98 644.78 7512.00 42707.01
83 38068.36 7596.46 37920.15 638.36 6867.23 35195.01
84 34806.59 6812.01 30323.68 627.39 6228.87 28327.78
85 31538.02 6053.62 23511.67 840.68 5601.47 22098.92



A.4 Cohort life tables 201

Actuarial table cohort 1942[cont’d].

x lx Dx Nx Cx Mx Rx
86 27072.36 5096.52 17458.05 946.14 4760.79 16497.44
87 21947.96 4052.37 12361.53 941.84 3814.64 11736.66
88 16746.86 3032.60 8309.17 846.67 2872.81 7922.01
89 11979.64 2127.61 5276.57 693.52 2026.14 5049.21
90 7998.18 1393.18 3148.96 519.28 1332.62 3023.07
91 4958.54 847.10 1755.78 355.36 813.34 1690.45
92 2837.62 475.45 908.68 221.69 457.97 877.11
93 1488.56 244.61 433.23 125.50 236.28 419.14
94 709.88 114.41 188.62 64.05 110.78 182.86
95 304.68 48.16 74.21 29.21 46.73 72.07
96 116.24 18.02 26.05 11.77 17.52 25.34
97 38.80 5.90 8.03 4.13 5.75 7.82
98 11.10 1.66 2.13 1.24 1.61 2.07
99 2.65 0.39 0.47 0.31 0.38 0.46
100 0.51 0.07 0.08 0.06 0.07 0.08
101 0.07 0.01 0.01 0.01 0.01 0.01
102 0.01 0.00 0.00 0.00 0.00 0.00
103 0.00 0.00 0.00 0.00 0.00 0.00



A.4 Cohort life tables 202

Actuarial table cohort 1943.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3700878.00 5833.49 28829.28 1576780.00
1 94052.13 92243.43 3600878.00 461.93 22995.79 1547951.00
2 93571.91 90007.59 3508634.00 230.63 22533.86 1524955.00
3 93327.44 88046.05 3418627.00 154.61 22303.23 1502421.00
4 93160.35 86198.25 3330580.00 119.29 22148.62 1480118.00
5 93028.90 84421.30 3244382.00 91.03 22029.34 1457969.00
6 92926.62 82706.79 3159961.00 71.68 21938.31 1435940.00
7 92844.51 81044.60 3077254.00 57.21 21866.63 1414002.00
8 92777.69 79428.84 2996210.00 44.70 21809.42 1392135.00
9 92724.45 77856.66 2916781.00 38.63 21764.72 1370326.00
10 92677.54 76320.79 2838924.00 30.83 21726.09 1348561.00
11 92639.37 74822.25 2762603.00 25.90 21695.26 1326835.00
12 92606.67 73357.46 2687781.00 33.74 21669.36 1305140.00
13 92563.25 71913.00 2614424.00 28.56 21635.62 1283470.00
14 92525.77 70501.50 2542511.00 36.15 21607.07 1261835.00
15 92477.39 69109.55 2472009.00 38.56 21570.91 1240228.00
16 92424.79 67741.96 2402900.00 53.06 21532.36 1218657.00
17 92350.97 66386.17 2335158.00 61.50 21479.29 1197124.00
18 92263.74 65048.01 2268771.00 67.78 21417.79 1175645.00
19 92165.71 63729.31 2203723.00 72.28 21350.01 1154227.00
20 92059.14 62431.47 2139994.00 73.00 21277.74 1132877.00
21 91949.38 61157.86 2077563.00 68.76 21204.73 1111599.00
22 91843.97 59912.99 2016405.00 59.55 21135.97 1090395.00
23 91750.89 58701.26 1956492.00 59.61 21076.42 1069259.00
24 91655.89 57512.78 1897790.00 50.29 21016.81 1048182.00
25 91574.16 56356.47 1840278.00 46.19 20966.51 1027165.00
26 91497.64 55226.50 1783921.00 50.94 20920.32 1006199.00
27 91411.58 54113.51 1728695.00 51.19 20869.38 985278.70
28 91323.41 53021.67 1674581.00 47.14 20818.19 964409.30
29 91240.62 51954.88 1621560.00 47.72 20771.04 943591.10
30 91155.17 50908.03 1569605.00 53.50 20723.32 922820.00
31 91057.50 49875.53 1518697.00 43.66 20669.83 902096.70
32 90976.22 48872.72 1468821.00 54.61 20626.16 881426.90
33 90872.57 47878.25 1419948.00 50.22 20571.55 860800.70
34 90775.39 46907.30 1372070.00 53.29 20521.33 840229.20
35 90670.24 45951.95 1325163.00 63.19 20468.04 819707.80
36 90543.12 45005.07 1279211.00 60.91 20404.86 799239.80
37 90418.16 44078.67 1234206.00 63.89 20343.94 778834.90
38 90284.54 43167.11 1190127.00 67.85 20280.05 758491.00
39 90139.83 42269.12 1146960.00 67.85 20212.20 738210.90
40 89992.31 41388.40 1104691.00 74.18 20144.35 717998.70
41 89827.86 40518.30 1063303.00 77.34 20070.17 697854.40

Table A20: Actuarial table cohort 1943.



A.4 Cohort life tables 203

Actuarial table cohort 1943[cont’d].

x lx Dx Nx Cx Mx Rx
42 89653.05 39661.76 1022784.00 84.16 19992.84 677784.20
43 89459.07 38814.87 983122.50 93.34 19908.67 657791.40
44 89239.72 37975.09 944307.60 101.73 19815.33 637882.70
45 88995.98 37143.07 906332.50 109.05 19713.60 618067.40
46 88729.57 36319.73 869189.40 114.23 19604.55 598353.80
47 88445.03 35507.05 832869.70 126.29 19490.32 578749.20
48 88124.29 34697.93 797362.60 133.31 19364.03 559258.90
49 87779.08 33897.35 762664.70 137.72 19230.73 539894.90
50 87415.46 33107.77 728767.40 150.77 19093.01 520664.20
51 87009.58 32320.31 695659.60 155.76 18942.24 501571.10
52 86582.02 31543.00 663339.30 166.98 18786.48 482628.90
53 86114.70 30769.43 631796.30 177.91 18619.50 463842.40
54 85607.01 29999.80 601026.90 188.99 18441.59 445222.90
55 85057.13 29233.88 571027.10 204.19 18252.59 426781.30
56 84451.40 28467.51 541793.20 215.18 18048.41 408528.70
57 83800.52 27704.87 513325.70 218.96 17833.22 390480.30
58 83125.22 26953.12 485620.80 235.38 17614.26 372647.10
59 82385.07 26199.42 458667.70 243.21 17378.88 355032.90
60 81605.30 25452.37 432468.30 268.07 17135.68 337654.00
61 80728.95 24694.83 407015.90 264.60 16867.60 320518.30
62 79846.99 23955.33 382321.00 278.60 16603.00 303650.70
63 78900.15 23216.05 358365.70 286.02 16324.40 287047.70
64 77909.06 22483.57 335149.70 298.00 16038.38 270723.30
65 76856.20 21753.19 312666.10 304.89 15740.38 254684.90
66 75757.86 21029.97 290912.90 307.34 15435.49 238944.50
67 74629.00 20318.21 269882.90 315.64 15128.15 223509.00
68 73446.94 19611.84 249564.70 315.58 14812.52 208380.90
69 72241.90 18919.11 229952.90 339.92 14496.93 193568.40
70 70918.49 18215.36 211033.80 354.01 14157.02 179071.40
71 69513.17 17511.05 192818.40 366.94 13803.00 164914.40
72 68027.99 16807.36 175307.40 394.27 13436.07 151111.40
73 66400.87 16089.87 158500.00 403.60 13041.79 137675.30
74 64702.59 15376.85 142410.10 596.91 12638.19 124633.50
75 62141.68 14484.23 127033.30 603.87 12041.28 111995.40
76 59500.10 13601.82 112549.10 605.81 11437.41 99954.08
77 56798.07 12734.43 98947.25 617.45 10831.60 88516.67
78 53990.14 11872.10 86212.82 625.90 10214.16 77685.06
79 51087.97 11017.89 74340.72 629.34 9588.26 67470.91
80 48112.62 10176.67 63322.83 635.15 8958.92 57882.65
81 45050.92 9345.81 53146.17 640.76 8323.77 48923.73
82 41901.64 8525.33 43800.35 641.95 7683.02 40599.96
83 38684.59 7719.43 35275.02 637.21 7041.06 32916.94
84 35428.71 6933.77 27555.59 900.15 6403.85 25875.88
85 30739.13 5900.28 20621.83 1044.92 5503.70 19472.02



A.4 Cohort life tables 204

Actuarial table cohort 1943[cont’d].

x lx Dx Nx Cx Mx Rx
86 25188.61 4741.89 14721.55 1063.94 4458.79 13968.32
87 19426.21 3586.76 9979.66 974.33 3394.84 9509.53
88 14045.69 2543.46 6392.90 811.16 2420.52 6114.69
89 9478.39 1683.38 3849.44 616.45 1609.36 3694.17
90 5939.39 1034.56 2166.06 427.76 992.91 2084.82
91 3435.48 586.91 1131.49 270.41 565.15 1091.91
92 1821.56 305.21 544.59 155.05 294.73 526.76
93 878.03 144.29 239.38 80.12 139.68 232.03
94 380.90 61.39 95.10 36.99 59.56 92.35
95 146.88 23.22 33.71 15.09 22.57 32.79
96 49.56 7.68 10.49 5.36 7.48 10.22
97 14.33 2.18 2.81 1.62 2.13 2.74
98 3.45 0.52 0.63 0.41 0.50 0.61
99 0.67 0.10 0.11 0.08 0.10 0.11
100 0.10 0.01 0.02 0.01 0.01 0.01
101 0.01 0.00 0.00 0.00 0.00 0.00
102 0.00 0.00 0.00 0.00 0.00 0.00



A.4 Cohort life tables 205

Actuarial table cohort 1944.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3713512.00 5544.87 28586.30 1585083.00
1 94346.41 92532.05 3613512.00 428.70 23041.43 1556497.00
2 93900.73 90323.89 3520980.00 194.85 22612.74 1533455.00
3 93694.19 88392.04 3430656.00 153.74 22417.88 1510842.00
4 93528.03 86538.45 3342264.00 106.62 22264.14 1488425.00
5 93410.54 84767.63 3255726.00 84.51 22157.52 1466160.00
6 93315.59 83052.98 3170958.00 65.95 22073.01 1444003.00
7 93240.03 81389.85 3087905.00 54.26 22007.06 1421930.00
8 93176.65 79770.40 3006515.00 39.89 21952.80 1399923.00
9 93129.15 78196.46 2926745.00 35.73 21912.91 1377970.00
10 93085.76 76656.95 2848548.00 32.92 21877.18 1356057.00
11 93044.99 75149.86 2771892.00 29.62 21844.25 1334180.00
12 93007.60 73675.05 2696742.00 28.25 21814.63 1312336.00
13 92971.24 72229.97 2623067.00 35.98 21786.38 1290521.00
14 92924.02 70804.95 2550837.00 32.42 21750.40 1268735.00
15 92880.64 69410.90 2480032.00 42.94 21717.98 1246984.00
16 92822.05 68033.13 2410621.00 53.23 21675.04 1225266.00
17 92748.00 66671.58 2342588.00 69.54 21621.81 1203591.00
18 92649.37 65319.89 2275916.00 73.82 21552.28 1181969.00
19 92542.61 63989.92 2210596.00 75.08 21478.45 1160417.00
20 92431.90 62684.27 2146606.00 71.58 21403.38 1138939.00
21 92324.28 61407.22 2083922.00 64.41 21331.79 1117535.00
22 92225.55 60161.90 2022515.00 67.29 21267.39 1096204.00
23 92120.38 58937.66 1962353.00 53.39 21200.10 1074936.00
24 92035.30 57750.85 1903415.00 50.56 21146.71 1053736.00
25 91953.15 56589.70 1845664.00 54.48 21096.16 1032589.00
26 91862.89 55446.96 1789075.00 48.38 21041.68 1011493.00
27 91781.17 54332.30 1733628.00 47.72 20993.30 990451.60
28 91698.97 53239.72 1679295.00 43.90 20945.58 969458.30
29 91621.89 52171.99 1626056.00 52.98 20901.69 948512.70
30 91527.02 51115.70 1573884.00 54.66 20848.70 927611.00
31 91427.21 50078.04 1522768.00 52.97 20794.04 906762.30
32 91328.62 49062.03 1472690.00 53.24 20741.07 885968.20
33 91227.57 48065.29 1423628.00 50.41 20687.83 865227.20
34 91130.01 47090.55 1375563.00 54.79 20637.42 844539.30
35 91021.90 46130.17 1328472.00 57.92 20582.63 823901.90
36 90905.38 45185.13 1282342.00 58.02 20524.71 803319.30
37 90786.37 44258.17 1237157.00 59.95 20466.69 782794.60
38 90660.99 43347.11 1192899.00 61.68 20406.75 762327.90
39 90529.45 42451.82 1149552.00 70.55 20345.06 741921.10
40 90376.04 41564.89 1107100.00 72.13 20274.51 721576.10
41 90216.13 40693.43 1065535.00 80.38 20202.38 701301.60

Table A23: Actuarial table cohort 1944.



A.4 Cohort life tables 206

Actuarial table cohort 1944[cont’d].

x lx Dx Nx Cx Mx Rx
42 90034.43 39830.49 1024841.00 84.21 20122.00 681099.20
43 89840.35 38980.30 985010.90 91.99 20037.79 660977.20
44 89624.18 38138.70 946030.60 101.38 19945.80 640939.40
45 89381.27 37303.88 907891.90 107.01 19844.42 620993.60
46 89119.86 36479.49 870588.00 117.77 19737.41 601149.20
47 88826.51 35660.20 834108.50 113.48 19619.65 581411.80
48 88538.30 34860.94 798448.30 129.06 19506.17 561792.10
49 88204.08 34061.47 763587.40 134.79 19377.10 542286.00
50 87848.19 33271.66 729525.90 140.24 19242.31 522908.90
51 87470.64 32491.57 696254.20 153.45 19102.07 503666.50
52 87049.44 31713.29 663762.70 173.20 18948.62 484564.50
53 86564.71 30930.22 632049.40 180.26 18775.42 465615.90
54 86050.32 30155.14 601119.20 194.08 18595.16 446840.40
55 85485.62 29381.15 570964.00 198.03 18401.08 428245.30
56 84898.14 28618.10 541582.90 214.96 18203.04 409844.20
57 84247.95 27852.79 512964.80 218.97 17988.09 391641.20
58 83572.64 27098.20 485112.00 230.90 17769.12 373653.10
59 82846.56 26346.18 458013.80 238.09 17538.22 355883.90
60 82083.19 25601.43 431667.60 249.22 17300.13 338345.70
61 81268.48 24859.87 406066.20 255.27 17050.91 321045.60
62 80417.61 24126.53 381206.30 272.85 16795.63 303994.70
63 79490.31 23389.70 357079.80 281.57 16522.78 287199.10
64 78514.65 22658.33 333690.10 289.85 16241.22 270676.30
65 77490.56 21932.74 311031.70 288.96 15951.36 254435.10
66 76449.64 21222.00 289099.00 309.39 15662.41 238483.70
67 75313.26 20504.50 267877.00 310.55 15353.02 222821.30
68 74150.23 19799.63 247372.50 318.37 15042.47 207468.30
69 72934.53 19100.50 227572.90 339.53 14724.09 192425.80
70 71612.61 18393.64 208472.40 355.00 14384.56 177701.70
71 70203.36 17684.92 190078.70 382.49 14029.56 163317.10
72 68655.22 16962.33 172393.80 394.53 13647.06 149287.60
73 67027.04 16241.60 155431.50 563.23 13252.53 135640.50
74 64657.09 15366.03 139189.90 581.08 12689.30 122388.00
75 62164.06 14489.45 123823.80 588.96 12108.22 109698.70
76 59587.72 13621.85 109334.40 591.34 11519.26 97590.47
77 56950.22 12768.55 95712.55 604.33 10927.92 86071.21
78 54201.95 11918.67 82944.00 614.06 10323.60 75143.29
79 51354.65 11075.40 71025.33 618.63 9709.53 64819.69
80 48429.92 10243.78 59949.93 625.57 9090.90 55110.16
81 45414.38 9421.21 49706.15 633.14 8465.33 46019.26
82 42302.54 8606.90 40284.93 635.98 7832.19 37553.93
83 39115.45 7805.41 31678.03 949.31 7196.21 29721.74
84 34264.87 6705.99 23872.63 1135.68 6246.90 22525.53
85 28348.26 5441.36 17166.64 1181.22 5111.23 16278.63



A.4 Cohort life tables 207

Actuarial table cohort 1944[cont’d].

x lx Dx Nx Cx Mx Rx
86 22073.67 4155.49 11725.28 1100.43 3930.00 11167.40
87 16113.66 2975.15 7569.79 929.86 2829.58 7237.40
88 10978.69 1988.07 4594.64 716.25 1899.71 4407.82
89 6945.80 1233.59 2606.57 503.31 1183.46 2508.11
90 4056.32 706.56 1372.98 322.00 680.15 1324.65
91 2171.46 370.97 666.43 186.77 358.15 644.50
92 1056.77 177.06 295.46 97.60 171.38 286.35
93 462.86 76.06 118.40 45.56 73.79 114.96
94 180.21 29.04 42.34 18.78 28.23 41.18
95 61.39 9.70 13.29 6.74 9.45 12.95
96 17.93 2.78 3.59 2.06 2.71 3.50
97 4.36 0.66 0.81 0.52 0.65 0.79
98 0.85 0.13 0.15 0.11 0.12 0.14
99 0.12 0.02 0.02 0.02 0.02 0.02
100 0.01 0.00 0.00 0.00 0.00 0.00
101 0.00 0.00 0.00 0.00 0.00 0.00



A.4 Cohort life tables 208

Actuarial table cohort 1945.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3735473.00 5110.34 28163.98 1596508.00
1 94789.46 92966.58 3635473.00 359.26 23053.64 1568345.00
2 94415.97 90819.50 3542506.00 204.63 22694.38 1545291.00
3 94199.06 88868.34 3451687.00 116.45 22489.74 1522596.00
4 94073.20 87042.88 3362819.00 94.45 22373.29 1500107.00
5 93969.12 85274.52 3275776.00 81.09 22278.84 1477733.00
6 93878.01 83553.54 3190501.00 60.29 22197.75 1455455.00
7 93808.94 81886.45 3106948.00 48.89 22137.46 1433257.00
8 93751.83 80262.82 3025061.00 37.78 22088.57 1411119.00
9 93706.84 78681.53 2944798.00 30.32 22050.79 1389031.00
10 93670.02 77138.10 2866117.00 28.52 22020.47 1366980.00
11 93634.71 75626.16 2788979.00 25.88 21991.95 1344960.00
12 93602.04 74145.93 2713353.00 33.59 21966.07 1322968.00
13 93558.81 72686.46 2639207.00 30.65 21932.48 1301002.00
14 93518.58 71257.99 2566520.00 33.47 21901.83 1279069.00
15 93473.80 69854.18 2495262.00 32.74 21868.37 1257167.00
16 93429.13 68478.09 2425408.00 51.63 21835.63 1235299.00
17 93357.31 67109.57 2356930.00 65.92 21784.00 1213463.00
18 93263.81 65753.09 2289820.00 71.74 21718.08 1191679.00
19 93160.07 64416.87 2224067.00 77.79 21646.35 1169961.00
20 93045.37 63100.30 2159650.00 67.98 21568.56 1148315.00
21 92943.17 61818.85 2096550.00 63.63 21500.58 1126746.00
22 92845.63 60566.40 2034731.00 56.23 21436.95 1105246.00
23 92757.74 59345.44 1974165.00 53.52 21380.73 1083809.00
24 92672.45 58150.65 1914819.00 53.41 21327.20 1062428.00
25 92585.65 56978.96 1856669.00 49.77 21273.79 1041101.00
26 92503.20 55833.44 1799690.00 49.92 21224.02 1019827.00
27 92418.87 54709.80 1743856.00 47.41 21174.10 998603.00
28 92337.21 53610.28 1689147.00 53.66 21126.69 977428.90
29 92242.98 52525.65 1635536.00 49.95 21073.03 956302.20
30 92153.55 51465.60 1583011.00 48.79 21023.09 935229.20
31 92064.48 50427.09 1531545.00 49.38 20974.30 914206.10
32 91972.55 49407.95 1481118.00 52.21 20924.92 893231.80
33 91873.46 48405.59 1431710.00 51.06 20872.71 872306.90
34 91774.66 47423.66 1383304.00 53.60 20821.65 851434.20
35 91668.90 46458.07 1335881.00 59.29 20768.06 830612.50
36 91549.63 45505.36 1289423.00 57.76 20708.77 809844.40
37 91431.15 44572.50 1243917.00 61.99 20651.01 789135.70
38 91301.50 43653.35 1199345.00 62.08 20589.02 768484.70
39 91169.11 42751.78 1155691.00 65.65 20526.94 747895.60
40 91026.36 41863.98 1112940.00 82.20 20461.29 727368.70
41 90844.13 40976.70 1071076.00 76.61 20379.09 706907.40

Table A26: Actuarial table cohort 1945.



A.4 Cohort life tables 209

Actuarial table cohort 1945[cont’d].

x lx Dx Nx Cx Mx Rx
42 90670.97 40112.08 1030099.00 90.85 20302.49 686528.30
43 90461.58 39249.84 989986.90 92.16 20211.64 666225.80
44 90245.00 38402.88 950737.10 97.27 20119.47 646014.20
45 90011.93 37567.09 912334.20 108.72 20022.20 625894.70
46 89746.33 36735.93 874767.10 121.07 19913.48 605872.50
47 89444.76 35908.40 838031.20 116.76 19792.41 585959.00
48 89148.20 35101.09 802122.80 126.04 19675.65 566166.60
49 88821.81 34300.02 767021.70 133.42 19549.60 546491.00
50 88469.53 33506.98 732721.70 145.91 19416.18 526941.40
51 88076.71 32716.71 699214.70 147.52 19270.27 507525.20
52 87671.79 31940.02 666498.00 157.33 19122.75 488254.90
53 87231.47 31168.46 634558.00 171.99 18965.42 469132.20
54 86740.70 30397.08 603389.50 189.01 18793.44 450166.80
55 86190.78 29623.51 572992.40 188.21 18604.43 431373.30
56 85632.44 28865.62 543368.90 199.62 18416.22 412768.90
57 85028.64 28110.90 514503.30 210.57 18216.60 394352.70
58 84379.22 27359.73 486392.40 219.75 18006.03 376136.10
59 83688.22 26613.83 459032.70 222.74 17786.28 358130.00
60 82974.07 25879.29 432418.80 245.24 17563.54 340343.80
61 82172.38 25136.37 406539.50 258.16 17318.31 322780.20
62 81311.88 24394.82 381403.20 268.58 17060.14 305461.90
63 80399.12 23657.11 357008.30 281.03 16791.57 288401.80
64 79425.32 22921.14 333351.20 279.88 16510.54 271610.20
65 78436.48 22200.47 310430.10 284.94 16230.66 255099.70
66 77410.02 21488.60 288229.60 297.40 15945.72 238869.00
67 76317.65 20777.95 266741.00 310.32 15648.32 222923.30
68 75155.49 20068.06 245963.10 316.17 15338.00 207274.90
69 73948.22 19365.97 225895.00 334.98 15021.83 191937.00
70 72644.03 18658.56 206529.00 350.97 14686.85 176915.10
71 71250.81 17948.78 187870.50 377.94 14335.89 162228.30
72 69721.11 17225.68 169921.70 537.43 13957.95 147892.40
73 67503.22 16356.98 152696.00 551.92 13420.52 133934.40
74 65180.86 15490.51 136339.00 570.66 12868.60 120513.90
75 62732.57 14621.96 120848.50 579.45 12297.95 107645.30
76 60197.82 13761.32 106226.60 582.26 11718.50 95347.36
77 57600.82 12914.42 92465.26 596.64 11136.24 83628.86
78 54887.53 12069.43 79550.84 607.68 10539.60 72492.62
79 52069.82 11229.64 67481.42 613.37 9931.92 61953.02
80 49169.99 10400.32 56251.78 621.45 9318.56 52021.10
81 46174.33 9578.86 45851.45 630.98 8697.11 42702.54
82 43073.10 8763.68 36272.59 999.27 8066.13 34005.44
83 38065.42 7595.87 27508.91 1231.87 7066.86 25939.31
84 31771.05 6217.93 19913.04 1307.81 5834.98 18872.45
85 24957.64 4790.54 13695.11 1238.27 4527.17 13037.47



A.4 Cohort life tables 210

Actuarial table cohort 1945[cont’d].

x lx Dx Nx Cx Mx Rx
86 18380.05 3460.15 8904.58 1061.00 3288.90 8510.30
87 12633.59 2332.61 5444.43 827.58 2227.91 5221.40
88 8063.47 1460.17 3111.82 588.36 1400.33 2993.49
89 4750.68 843.73 1651.65 380.60 811.97 1593.17
90 2565.67 446.90 807.92 223.11 431.37 781.20
91 1259.66 215.20 361.02 117.80 208.25 349.83
92 556.60 93.26 145.82 55.54 90.46 141.58
93 218.62 35.93 52.56 23.13 34.91 51.12
94 75.13 12.11 16.64 8.38 11.79 16.21
95 22.13 3.50 4.53 2.59 3.41 4.42
96 5.43 0.84 1.03 0.66 0.82 1.01
97 1.07 0.16 0.19 0.14 0.16 0.18
98 0.16 0.02 0.03 0.02 0.02 0.03
99 0.02 0.00 0.00 0.00 0.00 0.00
100 0.00 0.00 0.00 0.00 0.00 0.00



A.4 Cohort life tables 211

Actuarial table cohort 1946.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3730654.00 5336.72 28256.65 1595622.00
1 94558.64 92740.21 3630654.00 394.44 22919.94 1567366.00
2 94148.58 90562.30 3537914.00 165.32 22525.50 1544446.00
3 93973.35 88655.40 3447351.00 117.56 22360.18 1521920.00
4 93846.29 86832.92 3358696.00 76.87 22242.61 1499560.00
5 93761.58 85086.19 3271863.00 71.24 22165.75 1477317.00
6 93681.54 83378.68 3186777.00 51.83 22094.51 1455152.00
7 93622.17 81723.42 3103398.00 45.67 22042.68 1433057.00
8 93568.82 80106.14 3021675.00 32.05 21997.01 1411014.00
9 93530.65 78533.59 2941569.00 28.34 21964.96 1389017.00
10 93496.24 76994.99 2863035.00 28.92 21936.62 1367052.00
11 93460.43 75485.40 2786040.00 24.95 21907.70 1345116.00
12 93428.94 74008.81 2710555.00 27.94 21882.76 1323208.00
13 93392.98 72557.62 2636546.00 27.39 21854.82 1301325.00
14 93357.03 71134.89 2563988.00 29.64 21827.43 1279471.00
15 93317.36 69737.27 2492853.00 35.83 21797.78 1257643.00
16 93268.48 68360.34 2423116.00 50.20 21761.95 1235845.00
17 93198.65 66995.52 2354756.00 59.57 21711.75 1214083.00
18 93114.15 65647.57 2287760.00 73.94 21652.18 1192372.00
19 93007.23 64311.18 2222113.00 70.16 21578.25 1170719.00
20 92903.77 63004.27 2157802.00 67.38 21508.08 1149141.00
21 92802.46 61725.27 2094797.00 63.05 21440.71 1127633.00
22 92705.81 60475.20 2033072.00 54.54 21377.66 1106192.00
23 92620.56 59257.67 1972597.00 50.13 21323.12 1084815.00
24 92540.67 58067.96 1913339.00 46.57 21272.98 1063492.00
25 92465.00 56904.71 1855271.00 47.25 21226.41 1042219.00
26 92386.71 55763.13 1798366.00 50.89 21179.16 1020992.00
27 92300.74 54639.87 1742603.00 50.94 21128.27 999813.10
28 92213.01 53538.17 1687963.00 44.72 21077.33 978684.80
29 92134.47 52463.87 1634425.00 44.59 21032.61 957607.50
30 92054.63 51410.35 1581961.00 47.63 20988.02 936574.90
31 91967.68 50374.07 1530551.00 46.96 20940.39 915586.90
32 91880.26 49358.37 1480177.00 49.59 20893.43 894646.50
33 91786.13 48359.58 1430819.00 54.99 20843.84 873753.10
34 91679.72 47374.60 1382459.00 51.69 20788.85 852909.20
35 91577.74 46411.87 1335084.00 49.13 20737.17 832120.40
36 91478.89 45470.20 1288673.00 49.16 20688.03 811383.20
37 91378.04 44546.61 1243202.00 54.36 20638.87 790695.20
38 91264.35 43635.58 1198656.00 59.32 20584.51 770056.30
39 91137.85 42737.12 1155020.00 69.10 20525.19 749471.80
40 90987.60 41846.15 1112283.00 75.00 20456.09 728946.60
41 90821.33 40966.42 1070437.00 75.87 20381.09 708490.50

Table A29: Actuarial table cohort 1946.



A.4 Cohort life tables 212

Actuarial table cohort 1946[cont’d].

x lx Dx Nx Cx Mx Rx
42 90649.84 40102.74 1029471.00 79.45 20305.23 688109.40
43 90466.73 39252.08 989367.80 81.80 20225.78 667804.20
44 90274.51 38415.44 950115.70 88.85 20143.98 647578.40
45 90061.63 37587.83 911700.30 98.85 20055.13 627434.40
46 89820.14 36766.14 874112.40 104.35 19956.28 607379.30
47 89560.21 35954.75 837346.30 113.68 19851.93 587423.00
48 89271.49 35149.63 801391.60 110.90 19738.25 567571.10
49 88984.32 34362.78 766241.90 130.07 19627.36 547832.80
50 88640.88 33571.88 731879.10 134.59 19497.28 528205.50
51 88278.55 32791.68 698307.30 147.19 19362.69 508708.20
52 87874.55 32013.89 665515.60 160.35 19215.51 489345.50
53 87425.78 31237.89 633501.70 173.19 19055.16 470130.00
54 86931.56 30463.97 602263.80 167.18 18881.97 451074.80
55 86445.16 29710.94 571799.80 179.85 18714.79 432192.90
56 85911.63 28959.73 542088.90 191.44 18534.95 413478.10
57 85332.57 28211.38 513129.20 210.42 18343.51 394943.10
58 84683.62 27458.43 484917.80 204.46 18133.09 376599.60
59 84040.70 26725.93 457459.40 216.92 17928.63 358466.50
60 83345.21 25995.05 430733.40 233.38 17711.71 340537.90
61 82582.28 25261.76 404738.40 246.38 17478.33 322826.20
62 81761.07 24529.58 379476.60 250.86 17231.96 305347.80
63 80908.52 23807.00 354947.00 255.32 16981.10 288115.90
64 80023.81 23093.86 331140.00 269.28 16725.78 271134.80
65 79072.42 22380.47 308046.20 269.00 16456.50 254409.00
66 78103.37 21681.07 285665.70 283.04 16187.50 237952.50
67 77063.76 20981.09 263984.60 293.50 15904.46 221765.00
68 75964.58 20284.10 243003.60 309.78 15610.96 205860.50
69 74781.70 19584.24 222719.50 332.08 15301.18 190249.60
70 73488.81 18875.55 203135.20 347.51 14969.10 174948.40
71 72109.31 18165.04 184259.70 509.55 14621.59 159979.30
72 70046.89 17306.16 166094.60 524.79 14112.04 145357.70
73 67881.15 16448.56 148788.50 540.02 13587.25 131245.70
74 65608.86 15592.23 132339.90 559.55 13047.23 117658.40
75 63208.21 14732.82 116747.70 569.21 12487.67 104611.20
76 60718.26 13880.29 102014.90 572.41 11918.47 92123.55
77 58165.22 13040.96 88134.56 588.09 11346.06 80205.08
78 55490.79 12202.08 75093.60 600.37 10757.97 68859.02
79 52706.99 11367.05 62891.52 607.12 10157.60 58101.05
80 49836.68 10541.34 51524.47 616.30 9550.48 47943.44
81 46865.85 9722.32 40983.13 1040.36 8934.18 38392.96
82 41752.54 8495.00 31260.81 1321.39 7893.83 29458.78
83 35130.60 7010.24 22765.82 1430.73 6572.43 21564.95
84 27820.15 5444.69 15755.58 1375.52 5141.70 14992.52
85 20654.02 3964.47 10310.89 1194.01 3766.19 9850.82



A.4 Cohort life tables 213

Actuarial table cohort 1946[cont’d].

x lx Dx Nx Cx Mx Rx
86 14311.54 2694.23 6346.42 942.22 2572.18 6084.64
87 9208.39 1700.19 3652.19 677.12 1629.96 3512.46
88 5469.13 990.38 1952.00 442.50 952.84 1882.50
89 2977.59 528.83 961.62 261.95 510.33 929.66
90 1473.73 256.70 432.80 139.62 248.38 419.33
91 656.47 112.15 176.09 66.44 108.76 170.95
92 259.93 43.55 63.94 27.92 42.32 62.18
93 90.06 14.80 20.39 10.20 14.41 19.86
94 26.74 4.31 5.59 3.18 4.20 5.45
95 6.62 1.05 1.28 0.82 1.02 1.25
96 1.31 0.20 0.24 0.17 0.20 0.23
97 0.19 0.03 0.03 0.03 0.03 0.03
98 0.02 0.00 0.00 0.00 0.00 0.00
99 0.00 0.00 0.00 0.00 0.00 0.00



A.4 Cohort life tables 214

Actuarial table cohort 1947.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3746777.00 4918.07 27946.59 1608362.00
1 94985.49 93158.85 3646777.00 291.00 23028.52 1580415.00
2 94682.97 91076.34 3553618.00 141.20 22737.52 1557387.00
3 94533.30 89183.67 3462542.00 100.88 22596.32 1534649.00
4 94424.27 87367.72 3373358.00 80.42 22495.44 1512053.00
5 94335.65 85607.15 3285991.00 58.58 22415.02 1489557.00
6 94269.83 83902.27 3200384.00 52.24 22356.43 1467142.00
7 94209.99 82236.53 3116481.00 39.35 22304.19 1444786.00
8 94164.02 80615.71 3034245.00 35.26 22264.84 1422482.00
9 94122.04 79030.15 2953629.00 26.27 22229.59 1400217.00
10 94090.13 77484.07 2874599.00 32.90 22203.32 1377987.00
11 94049.40 75961.09 2797115.00 26.00 22170.42 1355784.00
12 94016.58 74474.30 2721154.00 30.53 22144.42 1333613.00
13 93977.29 73011.58 2646679.00 26.92 22113.90 1311469.00
14 93941.96 71580.59 2573668.00 31.58 22086.98 1289355.00
15 93899.70 70172.46 2502087.00 38.12 22055.39 1267268.00
16 93847.69 68784.87 2431915.00 52.33 22017.28 1245213.00
17 93774.90 67409.75 2363130.00 71.63 21964.95 1223195.00
18 93673.30 66041.78 2295720.00 77.16 21893.32 1201231.00
19 93561.71 64694.59 2229678.00 80.53 21816.16 1179337.00
20 93442.96 63369.93 2164984.00 67.89 21735.63 1157521.00
21 93340.88 62083.38 2101614.00 61.89 21667.73 1135785.00
22 93246.00 60827.58 2039531.00 57.24 21605.84 1114118.00
23 93156.53 59600.57 1978703.00 55.10 21548.59 1092512.00
24 93068.72 58399.31 1919102.00 47.00 21493.50 1070963.00
25 92992.35 57229.24 1860703.00 51.84 21446.49 1049470.00
26 92906.46 56076.84 1803474.00 52.22 21394.65 1028023.00
27 92818.24 54946.22 1747397.00 48.91 21342.43 1006629.00
28 92734.00 53840.65 1692451.00 44.18 21293.52 985286.20
29 92656.41 52761.07 1638610.00 44.95 21249.34 963992.70
30 92575.93 51701.49 1585849.00 42.68 21204.39 942743.30
31 92498.02 50664.55 1534148.00 49.07 21161.72 921538.90
32 92406.67 49641.17 1483483.00 48.47 21112.65 900377.20
33 92314.68 48638.06 1433842.00 49.01 21064.18 879264.60
34 92219.83 47653.70 1385204.00 49.05 21015.17 858200.40
35 92123.05 46688.23 1337550.00 54.78 20966.12 837185.20
36 92012.84 45735.60 1290862.00 54.15 20911.34 816219.10
37 91901.76 44801.92 1245126.00 59.24 20857.19 795307.80
38 91777.87 43881.11 1200324.00 56.77 20797.95 774450.60
39 91656.80 42980.47 1156443.00 62.47 20741.18 753652.60
40 91520.98 42091.46 1113463.00 66.62 20678.71 732911.50
41 91373.29 41215.39 1071371.00 78.55 20612.09 712232.70

Table A32: Actuarial table cohort 1947.



A.4 Cohort life tables 215

Actuarial table cohort 1947[cont’d].

x lx Dx Nx Cx Mx Rx
42 91195.74 40344.24 1030156.00 80.48 20533.55 691620.70
43 91010.25 39487.91 989811.70 88.32 20453.07 671087.10
44 90802.71 38640.21 950323.80 91.71 20364.75 650634.00
45 90582.97 37805.41 911683.50 96.24 20273.04 630269.30
46 90347.85 36982.15 873878.10 103.33 20176.80 609996.20
47 90090.45 36167.62 836896.00 107.53 20073.46 589819.50
48 89817.35 35364.56 800728.40 123.67 19965.93 569746.00
49 89497.10 34560.80 765363.80 130.86 19842.26 549780.10
50 89151.59 33765.31 730803.00 133.22 19711.40 529937.80
51 88792.94 32982.75 697037.70 144.85 19578.18 510226.40
52 88395.33 32203.62 664055.00 153.85 19433.33 490648.20
53 87964.75 31430.46 631851.30 161.69 19279.48 471214.90
54 87503.36 30664.34 600420.90 173.60 19117.79 451935.40
55 86998.27 29901.05 569756.50 182.69 18944.19 432817.60
56 86456.31 29143.34 539855.50 192.65 18761.50 413873.40
57 85873.58 28390.24 510712.10 200.42 18568.85 395111.90
58 85255.46 27643.85 482321.90 205.11 18368.43 376543.10
59 84610.48 26907.12 454678.10 211.06 18163.32 358174.60
60 83933.78 26178.62 427770.90 220.47 17952.26 340011.30
61 83213.05 25454.71 401592.30 234.32 17731.78 322059.10
62 82432.04 24730.88 376137.60 237.21 17497.47 304327.30
63 81625.87 24018.08 351406.70 256.91 17260.26 286829.80
64 80735.65 23299.29 327388.60 262.16 17003.35 269569.60
65 79809.39 22589.06 304089.40 266.98 16741.19 252566.20
66 78847.62 21887.67 281500.30 287.24 16474.20 235825.00
67 77792.59 21179.51 259612.60 298.06 16186.96 219350.80
68 76676.34 20474.15 238433.10 316.30 15888.90 203163.90
69 75468.56 19764.12 217959.00 339.70 15572.60 187275.00
70 74146.00 19044.34 198194.80 472.49 15232.91 171702.40
71 72270.36 18205.61 179150.50 496.03 14760.41 156469.40
72 70262.67 17359.47 160944.90 511.63 14264.38 141709.00
73 68151.23 16514.01 143585.40 527.52 13752.75 127444.70
74 65931.54 15668.91 127071.40 547.76 13225.23 113691.90
75 63581.48 14819.82 111402.50 558.20 12677.47 100466.70
76 61139.65 13976.62 96582.66 561.76 12119.26 87789.21
77 58634.10 13146.08 82606.04 578.66 11557.50 75669.94
78 56002.56 12314.61 69459.96 592.10 10978.85 64112.44
79 53257.09 11485.69 57145.34 599.86 10386.74 53133.59
80 50421.10 10664.95 45659.65 1078.20 9786.88 42746.85
81 45223.70 9381.66 34994.70 1406.95 8708.68 32959.97
82 38308.60 7794.29 25613.04 1549.81 7301.73 24251.29
83 30542.01 6094.59 17818.75 1509.69 5751.92 16949.56
84 22828.12 4467.70 11724.16 1325.03 4242.24 11197.63
85 15925.00 3056.75 7256.46 1055.96 2917.20 6955.40
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Actuarial table cohort 1947[cont’d].

x lx Dx Nx Cx Mx Rx
86 10315.83 1942.01 4199.71 765.78 1861.25 4038.19
87 6168.32 1138.89 2257.70 504.75 1095.47 2176.95
88 3380.96 612.24 1118.81 301.26 590.72 1081.47
89 1684.70 299.21 506.57 161.85 289.46 490.75
90 755.52 131.60 207.36 77.62 127.61 201.29
91 301.17 51.45 75.76 32.86 49.99 73.67
92 105.05 17.60 24.31 12.10 17.13 23.68
93 31.41 5.16 6.71 3.80 5.03 6.54
94 7.82 1.26 1.55 0.99 1.23 1.51
95 1.56 0.25 0.29 0.21 0.24 0.28
96 0.23 0.04 0.04 0.03 0.04 0.04
97 0.02 0.00 0.00 0.00 0.00 0.00
98 0.00 0.00 0.00 0.00 0.00 0.00
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Actuarial table cohort 1948.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3781965.00 3842.64 27269.91 1630993.00
1 96082.02 94234.29 3681965.00 269.66 23427.27 1603723.00
2 95801.68 92152.43 3587730.00 139.71 23157.61 1580296.00
3 95653.59 90240.55 3495578.00 99.16 23017.90 1557138.00
4 95546.42 88406.00 3405337.00 71.42 22918.74 1534120.00
5 95467.72 86634.47 3316931.00 63.45 22847.33 1511202.00
6 95396.43 84904.97 3230297.00 44.95 22783.88 1488354.00
7 95344.93 83227.23 3145392.00 47.25 22738.92 1465570.00
8 95289.74 81579.46 3062165.00 32.08 22691.67 1442831.00
9 95251.54 79978.55 2980585.00 34.66 22659.60 1420140.00
10 95209.45 78405.83 2900607.00 29.29 22624.93 1397480.00
11 95173.18 76868.74 2822201.00 27.06 22595.64 1374855.00
12 95139.02 75363.43 2745332.00 29.41 22568.58 1352260.00
13 95101.16 73884.72 2669969.00 29.12 22539.17 1329691.00
14 95062.94 72434.74 2596084.00 36.86 22510.04 1307152.00
15 95013.61 71004.90 2523649.00 37.04 22473.18 1284642.00
16 94963.08 69602.38 2452644.00 60.25 22436.15 1262169.00
17 94879.26 68203.63 2383042.00 77.68 22375.89 1239732.00
18 94769.08 66814.33 2314838.00 78.85 22298.21 1217357.00
19 94655.05 65450.59 2248024.00 73.01 22219.36 1195058.00
20 94547.39 64118.92 2182573.00 61.85 22146.35 1172839.00
21 94454.40 62824.01 2118455.00 63.12 22084.50 1150693.00
22 94357.63 61552.74 2055631.00 59.80 22021.38 1128608.00
23 94264.17 60309.23 1994078.00 58.53 21961.58 1106587.00
24 94170.90 59090.91 1933769.00 51.44 21903.05 1084625.00
25 94087.31 57903.11 1874678.00 53.19 21851.61 1062722.00
26 93999.19 56736.40 1816775.00 48.95 21798.43 1040870.00
27 93916.51 55596.37 1760038.00 48.18 21749.48 1019072.00
28 93833.52 54479.03 1704442.00 48.49 21701.30 997322.60
29 93748.36 53382.86 1649963.00 50.92 21652.81 975621.30
30 93657.19 52305.35 1596580.00 48.35 21601.89 953968.50
31 93568.91 51251.12 1544275.00 47.28 21553.54 932366.60
32 93480.90 50218.25 1493023.00 48.59 21506.26 910813.10
33 93388.68 49203.92 1442805.00 49.34 21457.67 889306.80
34 93293.20 48208.35 1393601.00 51.13 21408.33 867849.10
35 93192.31 47230.14 1345393.00 56.48 21357.20 846440.80
36 93078.68 46265.39 1298163.00 52.51 21300.72 825083.60
37 92970.96 45323.15 1251897.00 59.88 21248.20 803782.90
38 92845.72 44391.67 1206574.00 64.56 21188.32 782534.70
39 92708.04 43473.43 1162183.00 64.89 21123.76 761346.40
40 92566.95 42572.51 1118709.00 71.92 21058.87 740222.60
41 92407.50 41681.89 1076137.00 73.68 20986.95 719163.70

Table A35: Actuarial table cohort 1948.
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Actuarial table cohort 1948[cont’d].

x lx Dx Nx Cx Mx Rx
42 92240.95 40806.63 1034455.00 85.28 20913.27 698176.80
43 92044.41 39936.61 993648.10 91.98 20827.99 677263.50
44 91828.27 39076.62 953711.50 94.13 20736.02 656435.50
45 91602.74 38231.02 914634.90 100.95 20641.89 635699.50
46 91356.11 37394.86 876403.80 102.55 20540.94 615057.60
47 91100.67 36573.18 839009.00 110.52 20438.39 594516.70
48 90819.97 35759.32 802435.80 117.47 20327.87 574078.30
49 90515.78 34954.18 766676.50 128.15 20210.40 553750.40
50 90177.43 34153.84 731722.30 132.65 20082.25 533540.00
51 89820.32 33364.38 697568.50 145.23 19949.60 513457.80
52 89421.68 32577.53 664204.10 151.73 19804.37 493508.20
53 88997.05 31799.31 631626.60 161.60 19652.65 473703.80
54 88535.91 31026.19 599827.20 170.41 19491.05 454051.10
55 88040.08 30259.12 568801.10 188.83 19320.63 434560.10
56 87479.91 29488.38 538541.90 186.06 19131.81 415239.50
57 86917.13 28735.24 509053.60 197.82 18945.75 396107.70
58 86307.04 27984.82 480318.30 209.82 18747.93 377161.90
59 85647.26 27236.83 452333.50 220.01 18538.11 358414.00
60 84941.87 26493.04 425096.70 229.43 18318.10 339875.90
61 84191.86 25754.13 398603.60 237.80 18088.67 321557.80
62 83399.24 25021.06 372849.50 248.06 17850.88 303469.10
63 82556.19 24291.82 347828.40 252.20 17602.81 285618.20
64 81682.29 23572.47 323536.60 259.27 17350.62 268015.40
65 80766.25 22859.88 299964.10 279.68 17091.34 250664.80
66 79758.73 22140.59 277104.30 282.72 16811.66 233573.40
67 78720.31 21432.09 254963.70 309.74 16528.94 216761.80
68 77560.34 20710.20 233531.60 325.94 16219.21 200232.80
69 76315.74 19985.98 212821.40 450.94 15893.27 184013.60
70 74560.06 19150.69 192835.40 460.53 15442.32 168120.40
71 72731.89 18321.88 173684.70 484.87 14981.79 152678.00
72 70769.40 17484.67 155362.80 500.85 14496.92 137696.30
73 68702.45 16647.57 137878.20 517.41 13996.07 123199.30
74 66525.30 15810.02 121230.60 538.39 13478.66 109203.30
75 64215.43 14967.59 105420.60 549.62 12940.27 95724.59
76 61811.15 14130.13 90452.97 553.52 12390.65 82784.33
77 59342.36 13304.88 76322.85 571.64 11837.13 70393.68
78 56742.74 12477.37 63017.97 586.25 11265.49 58556.55
79 54024.39 11651.17 50540.59 1120.05 10679.24 47291.05
80 48729.11 10307.07 38889.42 1497.39 9559.19 36611.82
81 41511.02 8611.46 28582.35 1674.28 8061.80 27052.62
82 33282.00 6771.57 19970.89 1649.36 6387.52 18990.82
83 25016.51 4991.99 13199.32 1461.25 4738.16 12603.30
84 17550.15 3434.75 8207.33 1174.22 3276.91 7865.15
85 11432.73 2194.48 4772.58 858.06 2102.70 4588.23
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Actuarial table cohort 1948[cont’d].

x lx Dx Nx Cx Mx Rx
86 6874.76 1294.21 2578.11 569.66 1244.63 2485.54
87 3789.45 699.67 1283.89 342.35 674.98 1240.91
88 1898.90 343.86 584.23 185.15 332.63 565.93
89 856.39 152.10 240.37 89.37 147.47 233.30
90 343.31 59.80 88.27 38.08 58.10 85.83
91 120.42 20.57 28.47 14.11 20.03 27.73
92 36.21 6.07 7.90 4.46 5.91 7.70
93 9.07 1.49 1.83 1.17 1.46 1.79
94 1.82 0.29 0.34 0.24 0.29 0.33
95 0.27 0.04 0.05 0.04 0.04 0.05
96 0.03 0.00 0.00 0.00 0.00 0.00
97 0.00 0.00 0.00 0.00 0.00 0.00
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Actuarial table cohort 1949.

x lx Dx Nx Cx Mx Rx
0 100000.00 100000.00 3785896.00 3647.37 27194.31 1640025.00
1 96281.11 94429.55 3685896.00 227.00 23546.95 1612830.00
2 96045.13 92386.61 3591466.00 136.72 23319.95 1589283.00
3 95900.21 90473.22 3499080.00 87.80 23183.23 1565963.00
4 95805.32 88645.55 3408606.00 71.44 23095.43 1542780.00
5 95726.60 86869.39 3319961.00 52.30 23023.99 1519685.00
6 95667.84 85146.53 3233091.00 47.67 22971.70 1496661.00
7 95613.23 83461.43 3147945.00 39.53 22924.03 1473689.00
8 95567.06 81816.87 3064483.00 36.58 22884.50 1450765.00
9 95523.49 80206.89 2982667.00 30.91 22847.92 1427880.00
10 95485.96 78633.54 2902460.00 27.14 22817.01 1405033.00
11 95452.35 77094.21 2823826.00 26.84 22789.87 1382215.00
12 95418.47 75584.80 2746732.00 28.98 22763.03 1359426.00
13 95381.17 74102.26 2671147.00 33.71 22734.05 1336663.00
14 95336.92 72643.50 2597045.00 32.55 22700.34 1313929.00
15 95293.36 71213.96 2524401.00 37.29 22667.78 1291228.00
16 95242.49 69807.18 2453187.00 58.99 22630.50 1268560.00
17 95160.43 68405.74 2383380.00 75.43 22571.51 1245930.00
18 95053.43 67014.81 2314974.00 74.03 22496.07 1223358.00
19 94946.37 65652.03 2247960.00 62.88 22422.04 1200862.00
20 94853.65 64326.62 2182308.00 57.95 22359.16 1178440.00
21 94766.52 63031.61 2117981.00 65.06 22301.21 1156081.00
22 94666.78 61754.40 2054949.00 56.91 22236.15 1133780.00
23 94577.84 60509.91 1993195.00 58.07 22179.24 1111544.00
24 94485.29 59288.19 1932685.00 61.20 22121.17 1089365.00
25 94385.85 58086.83 1873397.00 50.62 22059.97 1067243.00
26 94301.98 56919.16 1815310.00 49.83 22009.35 1045183.00
27 94217.81 55774.73 1758391.00 53.36 21959.52 1023174.00
28 94125.89 54648.77 1702616.00 47.84 21906.16 1001215.00
29 94041.88 53549.99 1647967.00 46.56 21858.31 979308.40
30 93958.50 52473.62 1594417.00 50.72 21811.75 957450.10
31 93865.90 51413.80 1541944.00 46.22 21761.03 935638.30
32 93779.87 50378.85 1490530.00 47.86 21714.81 913877.30
33 93689.04 49362.17 1440151.00 47.52 21666.96 892162.50
34 93597.08 48365.38 1390789.00 49.97 21619.44 870495.50
35 93498.48 47385.31 1342424.00 53.69 21569.47 848876.10
36 93390.46 46420.36 1295038.00 59.97 21515.78 827306.60
37 93267.45 45467.69 1248618.00 63.32 21455.81 805790.80
38 93135.01 44529.99 1203150.00 60.71 21392.49 784335.00
39 93005.55 43612.94 1158620.00 66.93 21331.78 762942.60
40 92860.02 42707.30 1115007.00 74.16 21264.85 741610.80
41 92695.62 41811.84 1072300.00 82.02 21190.69 720345.90

Table A38: Actuarial table cohort 1949.
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Actuarial table cohort 1949[cont’d].

x lx Dx Nx Cx Mx Rx
42 92510.23 40925.76 1030488.00 87.41 21108.68 699155.20
43 92308.77 40051.31 989562.40 86.09 21021.27 678046.60
44 92106.47 39195.01 949511.00 92.23 20935.18 657025.30
45 91885.50 38349.03 910316.00 93.01 20842.96 636090.10
46 91658.27 37518.54 871967.00 109.42 20749.94 615247.20
47 91385.72 36687.61 834448.50 112.02 20640.53 594497.20
48 91101.22 35870.06 797760.90 116.71 20528.51 573856.70
49 90798.99 35063.54 761890.80 123.82 20411.80 553328.20
50 90472.07 34265.43 726827.20 141.35 20287.98 532916.40
51 90091.53 33465.12 692561.80 143.41 20146.63 512628.40
52 89697.88 32678.15 659096.70 152.93 20003.22 492481.80
53 89269.88 31896.80 626418.50 161.04 19850.29 472478.50
54 88810.35 31122.36 594521.70 169.82 19689.25 452628.30
55 88316.26 30354.04 563399.40 172.20 19519.43 432939.00
56 87805.42 29598.11 533045.30 181.41 19347.23 413419.60
57 87256.69 28847.50 503447.20 195.76 19165.82 394072.30
58 86652.96 28096.98 474599.70 210.74 18970.06 374906.50
59 85990.27 27345.91 446502.80 215.03 18759.32 355936.50
60 85300.83 26605.00 419156.80 226.13 18544.29 337177.10
61 84561.59 25867.23 392551.90 230.12 18318.16 318632.80
62 83794.57 25139.66 366684.60 239.25 18088.04 300314.70
63 82981.46 24416.96 341545.00 245.06 17848.78 282226.70
64 82132.29 23702.34 317128.00 263.05 17603.72 264377.90
65 81202.92 22983.48 293425.70 275.94 17340.68 246774.10
66 80208.88 22265.55 270442.20 288.32 17064.74 229433.50
67 79149.87 21549.04 248176.60 303.39 16776.42 212368.70
68 78013.68 20831.25 226627.60 417.14 16473.03 195592.30
69 76420.86 20013.52 205796.30 437.72 16055.89 179119.30
70 74716.66 19190.92 185782.80 447.31 15618.17 163063.40
71 72940.97 18374.55 166591.90 472.29 15170.86 147445.20
72 71029.37 17548.90 148217.40 488.57 14698.57 132274.40
73 69013.10 16722.85 130668.50 505.69 14210.00 117575.80
74 66885.26 15895.57 113945.60 527.29 13704.31 103365.80
75 64623.01 15062.59 98050.05 539.22 13177.01 89661.51
76 62264.23 14233.70 82987.46 543.42 12637.79 76484.50
77 59840.49 13416.56 68753.76 562.64 12094.37 63846.71
78 57281.77 12595.91 55337.19 1150.62 11531.73 51752.33
79 51946.55 11203.06 42741.29 1576.95 10381.11 40220.60
80 44491.12 9410.66 31538.23 1789.66 8804.15 29839.50
81 35864.20 7440.03 22127.58 1782.52 7014.50 21035.34
82 27103.17 5514.43 14687.55 1593.66 5231.97 14020.85
83 19116.83 3814.72 9173.12 1290.94 3638.32 8788.87
84 12520.65 2450.42 5358.40 950.33 2347.38 5150.56
85 7569.65 1452.97 2907.98 635.29 1397.05 2803.18
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Actuarial table cohort 1949[cont’d].

x lx Dx Nx Cx Mx Rx
86 4195.04 789.74 1455.01 384.32 761.76 1406.13
87 2113.51 390.23 665.27 209.19 377.43 644.37
88 958.33 173.54 275.04 101.60 168.25 266.94
89 386.25 68.60 101.50 43.55 66.65 98.69
90 136.22 23.73 32.90 16.24 23.09 32.04
91 41.18 7.03 9.17 5.16 6.86 8.95
92 10.37 1.74 2.14 1.36 1.70 2.09
93 2.09 0.34 0.40 0.29 0.34 0.39
94 0.32 0.05 0.06 0.04 0.05 0.06
95 0.03 0.01 0.01 0.00 0.00 0.01
96 0.00 0.00 0.00 0.00 0.00 0.00
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