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Abstract
The research presented in this dissertation has been conducted within the context
of the NEVERMIND2 project. The main objective of this PhD was to explore and
propose novel approaches for addressing the challenges associated with creating
personalised models and making predictions in real world health-related applications
when training is performed incrementally on scarce sporadic biomedical data. A
particular challenge was being able to provide reliable personalised predictions in
the early stage of data collection when insufficient data are available for training.
The solution proposed in this dissertation is centred on Bayesian Transfer Learning
techniques that allowed me to make informed predictions even in such challenging
conditions by leveraging information coming from other patients.

Firstly, I proposed a non-parametric transfer learning approach, which allowed me to
make more accurate predictions about a specific patient by combining models trained
on other “donor” patients in proportion to how well these models fit the specific
patient’s past observations. Secondly, I developed a parametric transfer learning
approach, which incorporated a modified prior that accounts for the knowledge
available from all other “donor” patients. Finally, I proposed modified versions of
the previous two approaches, where I controlled how much information is borrowed
for transfer based on the similarity in emotional profiles between the patient under
test and each “donor” patient. The results show that the proposed transfer learning
methods not only naturally dealt with the uneven, sporadic data in the dataset
but also performed very well even in the hardest forecasting scenarios, such as the
case where only seven days of data are available, and the system is required to
forecast for the next seven days. In general these approaches produced better-suited
models for participants with very few sporadic training samples and performed
significantly better than a number of competing models.

2NEurobehavioural predictiVE and peRsonalised Modelling of depressIve symptoms duriNg
primary somatic Diseases with ICT-enabled self-management procedures (online at http://www.
nevermindproject.eu/).
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1
Introduction

This chapter introduces the research topic and the problems investigated in this
thesis. It also outlines the motivation and the aim of this research, as well
as the research questions and the hypothesis explored in the study. It further
presents the main contributions alongside with a brief overview of the chapters
ahead.

Contents
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and aim . . . . . . . . . . . . . . . . . . . . . 3
1.3 Claims and contributions . . . . . . . . . . . . . . . . . . 6
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . 7

In the “era of big data”, the curse of small datasets in machine learning (ML) still

exists in medical applications where experimental datasets can be limited in size

due to high cost or complexity of patient data collection, thus making in some cases

traditional ML algorithms impractical for predictive modelling. Such a case is the

modelling of human affect which is rather challenging for traditional ML algorithms.

1.1 Problem statement

Modelling overall well-being is a difficult task since well-being is a complex internal

state consisting of several related dimensions. It is composed of multiple mental and

physical factors that are usually measured with self-reported surveys. For depression,

self-reported scores are used because studies have confirmed relationships between

self-reported affect and clinical ratings of depression [1, 2].

1



2 1.1. Problem statement

Research on constructing models with the aim of predicting future mood states of

individuals has shown that there is individual variation in how someone’s mood

is affected by different factors and what puts one person in a good or depressed

mood state. Such individual differences exist even in terms of how people’s mood is

affected by the weather [3, 4]. Hence, there is need to move toward personalised

approaches since personalised models can take advantage of attributes specific to

the individual. In addition, forecasting people’s depressed mood, based on self-

reported historical moods, behavioural profiles and medical records, collected by

their smart-phone has shown that the long-term historical information of a user

improves the accuracy of forecasting depressed mood. This fact further stresses the

need for accumulating enough data from each participant, since effective prediction

in predictive modelling, requires reliable and systematic historical data [5].

Training fully personalised models by using all the available training data for each

person would theoretically produce the most accurate model for that person because

this model would account for inter-individual variability. However, personalisation

that requires tuning/learning a model targeted for the individual user poses some

challenges. Ideally, predictions should be provided from day one. This means that

initially, when a patient has just been enrolled in a study or has just started using

such a system, the model will be expected to make meaningful predictions for that

individual despite the fact that no, or very limited patient-specific data will be

available. While it is possible to to train/update a model incrementally on the data

available at a given time, it is difficult to give reliable predictions when insufficient

data are available. Consequently, such a system will only be able to make useful

predictions after an adequate amount of data has been obtained which in practice

means that a user might not benefit from such a model, until after several weeks

or months of use have taken place. Moreover, when training data is scarce it is

difficult to adequately capture the complexity of affective states.

Datasets are also very likely to be sparse and contain sporadic observations, both

because of the nature of the data acquired and because users may have the option
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to refuse or postpone interacting with the system (e.g., answering questionnaires) or

wearing sensors, thereby exacerbating the problem. Challenges faced when training

a model on such sparse/limited datasets with traditional ML algorithms include over-

fitting, difficulties in handling outliers, and inappropriate assumptions of equivalence

between training and test data distributions, a concept known as dataset shift [6].

Moreover, models trained on datasets that have a highly unbalanced representation

due to sparsity, run the risk of being meaningless or unreliable in practice. Even

in the absence of over-fitting, in theory, there could be a large number of specific

models that could fit a sparse dataset equally faithfully, but only a small number

of those models would correspond to clinical reality. In order to account for the

uncertainty surrounding data sparsity, the models need to be of sufficient generality

but without risking creating models being of no practical value. Similarly, for

any given model, sparsity complicates assessing the effective fit to the data, since

there are not enough sample points to help meaningfully differentiate between more

specific and more generalised but meaningless models.

Based on the above, it is therefore essential to overcome these limitations by

finding new ways to build personalised well-being prediction models that can

account for individual differences in the absence of sufficient personal data of

suitable nature for training.

1.2 Motivation and aim

NEVERMIND1 is an EU-funded2 research project, which aims to provide effective

smart-phone-based self-management tools alongside clinical support, to help indi-

viduals at risk of developing depressive symptoms as a consequence of a primary

1NEurobehavioural predictiVE and peRsonalised Modelling of depressIve symptoms duriNg
primary somatic Diseases with ICT-enabled self-management procedures (online at http://www.
nevermindproject.eu/).

2NEVERMIND has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 689691.

http://www.nevermindproject.eu/
http://www.nevermindproject.eu/


4 1.2. Motivation and aim

disease (e.g., cancer, myocardial infarction, amputation, nephropathy). In this

project, sparse multimodal biomedical and subjective data, including a collection of

physiological data, body movement, speech, and the recurrence of social interactions,

are collected via a smart-phone and a lightweight sensorized shirt. The data from

individual users are collected over time and become available in a sequential manner

yet, the predictions are expected to be in real-time and from the day each patient

is enrolled, and thus the model needs to be trained/updated incrementally on the

data available at a given time. This means that initially, when the patient has just

been enrolled in the study, the model will be expected to make predictions for that

individual using only the small dataset available for that person. On top of that,

this dataset is also very likely to be sparse, since patients have the option to refuse

or postpone answering questionnaires or wearing their sensorised T-shirts.

The research presented in this dissertation has been conducted within the context

of the NEVERMIND project. The main objective of the research undertaken in

this PhD is to explore and propose novel approaches with the aim of addressing

the challenges on creating subject-specific models and making predictions in real

world health-related applications when training is performed incrementally on

scarce sporadic biomedical data. The focus of this work is on providing reliable

personalised predictions in the early stage of data collection when insufficient

personal data of suitable nature are available for training. In this dissertation, I

tackle the challenges and overcome limitations that traditional ML algorithms have,

by devising Bayesian Transfer Learning techniques that allow informed predictions

to be made by leveraging information coming from other patients in the study.

Specifically, when we have a task in a domain of interest, but we do not have

sufficient training data, as in the case studied in this PhD, transfer learning can

be used to improve learning from this domain by transferring information from a

related domain. This information transfer will be particularly beneficial in that case

because by appropriately sharing knowledge between personalised models, there

can be an opportunity to enhance performance (i.e., to improve the quality of

subject-specific models) even with scarce sporadic observations available for each



1. Introduction 5

subject. In other words, more accurate models could be built for each subject while

controlling for the risk of over fitting because the limited amount of data available

for each subject will be compensated by the presence of data from subjects with

similar characteristics. This can be achieved with Bayesian methods which use

probabilities for quantifying the uncertainty in inferences based on statistical data

analysis. The use of Bayesian methods arise from the need to quantify and reduce

uncertainty which inevitable occurs from possible errors in model structure and

inputs. Although uncertainties in data, model inputs and model structure can not

be quantified directly, they can be represented using probability distributions and

this stimulates the use of Bayesian methods. In our case, with these methods we

can include the uncertainty considering the scarce, sporadic observations and at

the same time we can incorporate any prior information into the estimates.

Formally, I address the following research questions:

Q.1 How does transfer learning affect the forecasting accuracy of personalised

models in real-world applications, when person-specific data is scarce?

Q.2 How many days worth of person-specific data are required when training such

a personalised model, before the contribution of a transfer learning component

to the model becomes negligible?

Q.3 Does transferring from patients’ groups with similar characteristics to the

patient in question have any further benefit to the transfer learning process,

over the more general transfer learning scenario based on transferring from

the entire-population?

With these research questions in mind, I formulate the following hypotheses for

formal testing:

H.1 In the presence of limited person-specific data available for training (e.g. at the

early stage of data collection), a prediction model leveraging both patient-specific
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data (i.e. the “target” domain), and knowledge gained from other patients (i.e.

a different but related “source” domain), will perform significantly better than

a model which relies on the target domain alone for training.

H.2 The benefit of transfer learning on predictive performance will be greater when

the amount of person-specific data available for training is small; as person-

specific data availability increases, the relative contribution of the transfer

learning component to the overall accuracy will diminish, until it becomes

negligible.

H.3 A transfer learning model mostly incorporating highly relevant information

from a source domain (i.e. biasing population sampling towards participants

having similar characteristics to the patient being modelled) will perform

significantly better than a model which utilizes the source domain in a general

manner (i.e. sampling the population with equal probability over all other

participants)

1.3 Claims and contributions

In this dissertation I devised Bayesian transfer learning techniques to address the

challenges on creating subject-specific models and making predictions in real world

health-related applications when training is performed incrementally on scarce

sporadic biomedical data. The proposed approaches were developed within the

scope of the EU–funded Horizon 2020 NEVERMIND project. In this thesis, the

effectiveness of these techniques has been demonstrated in the context of personalised

prediction of self-reported well-being scores, using data from the NEVERMIND

project [7, 8]. Finally, the proposed methods have been already and are still used

by the project in the context of the self-management tool. In summary, the main

claims and contributions are the following:

Chapter 3:
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(i) A non-parametric transfer learning approach based on a Markov Chain Monte

Carlo sampler and Bayesian Model Averaging, which allows to make more

accurate predictions about a specific patient by combining models trained on

other “donor” patients in proportion to how well these models fit the specific

patient’s past observations (published as [9]).

Chapter 4:

(ii) A parametric transfer learning approach based on the Fisher divergence,

which expresses external information coming from “donor” patients as a prior

probability distribution used within a Hamiltonian Monte Carlo framework.

(published as [10, 11]).

Chapter 5:

(iii) Modified versions of the previous two approaches presented in Chapters 3 &

4, which controls how much information is borrowed for transfer based on

the similarity in emotional profiles between the patient under test and each

“donor” patient.

1.4 Thesis outline

The content of this thesis report is organised in the following manner:

Chapter 2 describes the relevant background and provides an overview of related

work.

Chapter 3 presents a non-parametric Bayesian transfer learning method based on

a Markov Chain Monte Carlo sampler and Bayesian Model Averaging.

Chapter 4 presents a parametric Bayesian inference method making use of transfer

learning in the context of a Hamiltonian Monte Carlo sampling, which allows
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a population prior to be directly represented in the sampling process through

the use of the Fisher divergence.

Chapter 5 presents a similarity-based transfer learning approach mostly incor-

porating highly relevant information from the source domain by biasing

population sampling towards participants having similar characteristics, based

on their emotional profiles, to the patient being modelled.

Chapter 6 concludes the thesis by summarising the main contributions of this

thesis, discussing the limitations of the work and looking at promising avenues

for future research.



2
Background and Related Work

This chapter gives the readers the relevant background and material on Bayesian
method and transfer learning techniques and provides an overview of related
work.
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2.1 Markov Chain Monte Carlo inference . . . . . . . . . . 9

2.1.1 Metropolis Hastings algorithm . . . . . . . . . . . . . . 11
2.1.2 Hamiltonian MCMC . . . . . . . . . . . . . . . . . . . . 12

2.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Bayesian transfer learning approaches . . . . . . . . . . 18

2.3 Well-being modelling and prediction . . . . . . . . . . . 20
2.3.1 Monitoring systems in health research . . . . . . . . . . 22
2.3.2 Machine learning approaches for well-being prediction . 24

2.1 Markov Chain Monte Carlo inference

Bayesian methods can be used in many fields, from ecology [12] to bioinformatics [13]

conservation biology [14], drug discovery, epidemiology and biostatistics [15], just

to mention a few. They have a number of advantages over other statistical

modelling and data analysis techniques. In Bayesian methods, the models can

easily accommodate unobserved variables, the use of prior probability distributions

allows to incorporate prior information and the posterior probability can be used as

easily interpretable alternative to p value. As a result, there are a large number

of articles, books and courses that present the foundations and key theoretical

concepts of Bayesian methods and approaches. Well structured descriptions of the

9
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rationale together with a brief overview of Bayesian data analysis can be found

in [16] and [17] or see [18] for a comprehensive review.

Markov Chain Monte Carlo (MCMC) are techniques for estimating posterior

distributions in Bayesian inference or more general for obtaining information about

distributions. MCMC is a very general and powerful framework which allows

sampling from a large class of distributions and it constitutes the most popular

method for sampling from high-dimensional distributions. A particular strength

of this method is that it can be used when we cannot directly draw samples and

works well even for complicated distributions in high-dimensional spaces. It can

be used to obtain posterior parameter estimates when these are difficult to express

in closed form. However, MCMC presents the drawback that it is often very slow,

especially for high-dimensional models [19].

MCMC generates samples from the posterior distribution by constructing a Markov

chain that has as its equilibrium distribution the target posterior distribution.

According to Bayes’ theorem, the posterior probability of the model parameters

θ given the data D is:

p(θ|D) = p(D|θ)p(θ)
p(D) . (2.1)

The posterior is a probability distribution representing what we think about the

parameters after having seen the data. It can be found by combining the prior

p(θ), which is what we think about the parameters θ before we have seen any data

D, with the likelihood p(D|θ), i.e., how we think our data is distributed. In the

denominator, we have the normalizing constant p(D), which is called the evidence

and can be regarded as a normalizing constant to ensure that p(θ|D) is a proper

density and can be computed by integrating over all possible parameter values:

p(D) =
∫
θ
p(D, θ)dθ =

∫
θ
p(D|θ)p(θ)dθ. (2.2)

In several cases, this integral can be high-dimensional and thus difficult to compute.

Moreover, the MCMC technique uses only θ to find how good the fit is and p(D)
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does not rely on θ. Therefore, we can ignore p(D) because we are just trying to get

the target distribution, which needs to be proportional to the posterior distribution

(2.3) and this normalization factor makes no difference to that. That is:

p(θ|D) ∝ p(D|θ)× p(θ). (2.3)

2.1.1 Metropolis Hastings algorithm
Metropolis-Hastings (MH) is a specific implementation of MCMC, which works

well in high dimensional spaces. This technique requires a simple distribution q

called the proposal distribution to help draw samples from an intractable posterior

distribution. In MH, at each step, we propose to move from the current θ to a new

proposed θ′ that is a random sample drawn from q(θ′|θ). The proposal distribution

is used to randomly walk in the distribution space and to accept or reject jumps

to new positions based on how likely the sample is. The likelihood of each new

sample θ′ is decided by an acceptance function which must be proportional to the

posterior we want to sample from. It is common to choose the acceptance function

being a probability density function that expresses this proportionality. In the

case of symmetric proposals, where q(θ′|θ) = q(θ|θ′), the acceptance probability

α is given by:

α = min
(

1, p(θ
′)

p(θ)

)
(2.4)

This means that if θ′ is more likely than the current θ, then we always accept

the move. If it is less probable than the current θ, we might reject the move

or still accept it and move there anyway depending on the relative probabilities.

So instead of greedily moving to only high density regions, we occasionally allow

visiting low-density regions.

In order to be able to use an asymmetric proposal distribution, where q(θ′|θ) 6=

q(θ|θ′), the Metropolis-Hastings algorithm includes an additional correction factor

in the acceptance probability:

α = min

(
1, p(θ

′)
p(θ) × c

)
where c = q(θ|θ′)

q(θ′|θ) . (2.5)
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This correction is needed to compensate for the fact that the proposal distribution

itself (rather than the target distribution) might favour certain states [20].

2.1.2 Hamiltonian MCMC
Hamiltonian Monte Carlo (HMC) is a gradient-based MCMC sampler that uses the

derivatives of the density function being sampled to generate efficient transitions

spanning the posterior. It avoids random walk behaviour by simulating a physical

system governed by Hamiltonian dynamics. It uses an approximate Hamiltonian

dynamics simulation based on numerical integration which is then corrected by

performing a Metropolis acceptance step. In other words, it uses Hamiltonian

dynamics to make proposals as part of an MCMCmethod. To do so, HMC introduces

auxiliary momentum variables p and draws from a joint density p(p, θ) = p(p|θ)p(θ).

The auxiliary momentum variables p are introduced to create an auxiliary probability

distribution which admits the target distribution as a marginal. The joint density

p(p, θ) defines a Hamiltonian H(p, θ) = − log p(p, θ) = − log p(p|θ)− log p(θ) where

we can interpret the first term as a “kinetic energy” T (p|θ) = − log p(p, θ) and the

second term as a “potential energy” V (θ) = − log p(θ) [21].

With HMC, the basic idea is to think of the parameters as a particle in a multi-

dimensional space and create auxiliary variables which represent the “momentum”

of this particle. The algorithm works as follows:

- Starting from the current value of the parameters θ, a transition to a new

state is generated in two stages:

1. a value for the momentum p is drawn independently of the current

parameter values

2. the joint system (θ, p) made up of the current parameter values θ and

new momentum p is evolved via Hamilton’s equations obtaining (p′, θ′).

- Finally, we apply a Metropolis acceptance step, where the probability of

keeping the proposal (p′, θ′) generated by transitioning from (p, θ) is:
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α = min
(

1, p(p
′, θ′)q(p, θ|p′, θ′)

p(p, θ)q(p′, θ′|pθ)

)
= min (1, exp (H(p, θ)−H(p′, θ′))) . (2.6)

In summary, the HMC approach involves alternating between a series of leapfrog

updates and a re-sampling of the momentum variables from their marginal distri-

bution. The decision whether to update the new state or keep the existing state

is taken by applying the Metropolis acceptance step.

2.2 Transfer Learning

In machine learning, we have a model defined up to some parameters, and learning

is the execution of a computer program to optimise the parameters of the model

using the training data or the past experience [22]. The model may be predictive

to make forecasts in the future or descriptive to gain knowledge from data or both.

For machine learning tasks, it is essential to use a training set of data to discover

potential predictive relationships, while a test and validation set is further used for

evaluating whether the discovered relationships hold more generally that just for the

training data. In other words, machine learning focuses on designing algorithms that

can learn from data and make predictions based on properties learned from them.

Traditional ML algorithms work under the common assumption that the training and

test data are drawn from the same feature space and have the same distribution [23].

These methods make predictions on future data using mathematical models that are

trained on previously collected (labelled or unlabelled) data, which are similar in

nature to future data. However, in many real-world applications these assumption

does not hold. There are cases where the feature space or the distribution of the

test data changes, and, so, the prediction models cannot be used and must be

rebuilt after having collected enough new training data, which is very expensive

and sometimes not practically possible. This issues is particularly relevant to our

research since the data gathered in the NEVERMIND project have the problems

of being sparse and non-stationary.
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Transfer Learning (TL) methods are a recent class of techniques, which enable

one to work around the strict requirement that the test and training data should

necessarily conform to the same probability distribution [24]. These methods can

use data from unrelated or partially related tasks [25], and allow the domains, tasks,

and distributions used in training and testing to be different up to a certain point,

thereby solving the problem of otherwise having to build a completely new model

from scratch [26]. They rely on the basic assumption that the source and target

domains, while not necessarily of the same underlying distribution, may still be

related in other ways, i.e., via an explicit or implicit relationship between the feature

space of the two domains. The goal of TL is to improve learning in the target

domain by leveraging previously acquired knowledge gained in the source domain.

There are three common measures by which transfer learning might improve

learning [27]: (1) the initial performance, (2) the learning time and (3) the final

performance. In more detail, as shown in Fig. 2.1, with transfer learning we can

achieve a better initial performance in the target task (a higher start), less time

spent to fully learn the target task (a higher slope) or a higher final performance

level in the target task (a higher asymptote). However, the effectiveness of a transfer

learning method depends on the source task and how it is related to the target task.

If the relationship is strong and the transfer method can take advantage of it, the

performance in the target task can significantly improve through transfer. On the

other hand, if the source task is not sufficiently related to the target task or if the

relationship is not well leveraged by the transfer method, with many approaches the

performance may fail to improve or even worsen [28]. If the source domain/task data

yields a reduced performance of learning in the target domain/task then negative

transfer has occurred [29]. Avoiding transfer that actually decrease performance is

a very important issue. Ideally, a transfer learning method must produce positive

transfer between appropriately related tasks while avoiding negative transfer when

the tasks are not a good match. Following the description and notation in [23], a

domain D = {X , P (X)} is defined by two parts, a feature space X and a marginal

probability distribution P (X), where X = {x1, ..., xn} ∈ X . The example given
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Figure 2.1: How transfer might improve learning (image taken from [27])

by Pan et.al [23] is a document classification learning task where each term is

taken as a binary feature. Then, X is the space of all possible term vectors, xi
is the i-th term vector corresponding to some documents, n is number of term

vectors in X and X is a particular learning sample.

Also, a task T = {Y , f(·)} is defined by two components, a label space Y and

an objective predictive function f(·) which is not observable but can be learned

from the training data which consist of pairs {xi, yi}, where xi ∈ X and yi ∈ Y.

The function f(·) can be used to predict the corresponding label, f(xi), of a new

instance xi. From a probabilistic point of view f(xi) can be written as P (yi|xi)

thus, the task can be also denoted as T = {Y , P (Y |X)}.

With this notation, transfer learning is defined as follow:

Definition 1: (Transfer Learning) Given a source domain DS and learning task TS,

a target domain DT and learning task TT , transfer learning aims to help improve

the learning of the target predictive function fT (·) in DT using the knowledge in

DS and TS, where DS 6= DT , or TS 6= TT .

In the above definition, a domain is a pair D = {X , P (X)}. Thus, if two domains

DS and DT are different, i.e., DS 6= DT , this implies that either the feature
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spaces between the domains are different (XS 6= XT ) or the marginal probability

distributions between domain data are different (P (XS) 6= P (XT ) where XSi ∈ XS

and XTi ∈ XT ) or both. Similarly, a task is defined as a pair T = {Y , P (Y |X)}

thus, if the learning tasks TS and TT are different, this implies that either the label

spaces between the domains are different (YS 6= YT ) or the conditional probability

distributions between the domains are different (P (YS|XS) 6= P (YT |XT ), where

YSi ∈ YS and YTi ∈ YT ) or both. When DS = DT and TS = TT , the learning

problem becomes a traditional ML problem.

Based on the availability of labelled data and the different situations in relation

to the source and target domains and tasks, transfer learning approaches can be

categorized as inductive, transductive or unsupervised. Inductive learning refers

to learning techniques which try to learn the objective predictive function fT (·).

Transductive learning techniques try to learn the relationship between instances.

Unsupervised transfer learning focuses on solving tasks such as clustering and

dimensionality reduction.

As Pan et.al [23] explain in their survey for transfer learning, in inductive transfer

learning the target task TT is different from the source task TS whereas the source

domain DS and target domain DT can be the same or different. In cases where

a lot of labelled data are available in the source domain DS, inductive transfer is

similar to multi-task learning (MTL). When there are no labelled data available in

the source domain DS, inductive transfer is similar to self-taught learning. In both

cases, a few labelled data in the target domain DT are required. On the other hand,

in transductive learning, the source task TS and the target task TT are the same,

while the source domain DS and the target domain DT are different. This means

that either the feature spaces between the domains are different (XS 6= XT ) or the

marginal probability distributions of the input data are different (P (XS) 6= P (XT ))

which is a case related to domain adaptation. As for the data, in both these cases, a

lot of labelled data are available in the source domain DS but there are no labelled

data available in the target domain DT . Finally, in unsupervised transfer learning,
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the target task TT is different from the source task TS but related to it. In this case,

there are no labelled data available in either source domain DS or target domain DT .

Transfer learning techniques can be further grouped into homogeneous and heteroge-

neous [30]. In the case that the two domains DS and DT are different (DS 6= DT )

but the feature spaces are the same (XS = XT ), the transfer learning is defined as

homogeneous, whereas when the feature spaces between the domains are different

(XS 6= XT ), the transfer learning is defined as heterogeneous.

Transfer learning techniques can be also categorised into classification, regression

and clustering problems [23, 30] or transfer learning for reinforcement learning [31].

Lastly, based on what knowledge can be transferred across domains and tasks, the

existing transfer learning approaches fall into four categories [23, 26, 32]:

(1) Instance transfer where some samples/instances from the source domains

are reused for learning in the target domain by re-weighting them. These

techniques work well when the feature spaces are the same (XS = XT ).

(2) Feature-representation transfer where a good feature representation of

the data is used to reduce the differences between the source feature space XS
and target feature spaces XT . These methods try either to make the target

and the source distributions look similar, or they try to find an abstracted

representation for domain-specific features.

(3) Parameter transfer where the main assumption is that the source task

TS and the target task TT share some parameters or prior distributions. The

knowledge can be transferred across tasks by discovering the shared parameters

or learning the prior distributions shared between the source and the target

datasets.

(4) Relational-knowledge transfer where the main assumption is that in

cases where the data are not independent and identically distributed (i.i.d.)

but represented by multiple relationships, the knowledge to be transferred is
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a similarity relationship among the data in the source domain DS and the

target domain DT .

Alternative categorisations can been also found in studies based on applications in

different research areas. For instance, in the transfer-based activity recognition [32],

authors categorise the existing approaches by sensor modality, by differences between

source and target environments, by data availability, and by type of information that

is transferred. As another example, in Brain-Computer Interface (BCI) classification

problems [33] authors organise the existing transfer learning methods into three

different settings based on the transfer strategies: (a) feature representation-transfer

learning, (b) instance-transfer learning and (c) classifier-transfer learning.

For a more general overview of the history, taxonomy, and state of the art in

transfer learning methods for classification, regression, and clustering problems,

see [23, 26, 30–33].

2.2.1 Bayesian transfer learning approaches
Bayesian transfer learning methods have been successfully applied in making

predictions or classification tasks. These techniques refer to methods that are

related to statistical inference and rely on Bayes theorem.

Hierarchical Bayesian approaches have been widely considered for transfer learning

because they can effectively combine data from multiple sources [25, 34]. For

instance, it has been shown that when tasks are hierarchically related, a hierar-

chical Bayesian transfer framework can significantly improve learning speed [35].

This framework can be adapted to solve sequential decision problems where the

training examples, unlike the standard supervised setting, are not independently

identically distributed.

In non-transfer learning settings, Gaussian Process Regression (GPR) has been

recently successfully applied to personalised time-series modelling [36] where the

Gaussian Process (GP) inference was expressed in a Bayesian framework for the



2. Background and Related Work 19

optimisation of this specific domain. Likewise, in traditional ML, the standard naïve

Bayes is among the most popular and effective classification algorithms [37]. In a

relatively recent work, a hierarchical extension of the classic naïve Bayes classifiers

has been proposed as an alternative and efficient method for MTL [25]. In that

work, the focus was on making prediction from multiple related datasets via transfer

learning. The main idea was to partition the dataset into a number of clusters, such

that the data for all tasks in a cluster had the same distribution. In particular,

the naïve Bayes classifier was extended to a multi-task setting by training one

classifier for each cluster and then, all classifiers were combined using a Dirichlet

process. The resulting model was tested on real data, in a multi-task classification

problem. To evaluate the clustered model, its predictive performance was assessed

in a transfer learning setting, predicting labels for a user1 with sparse data, having

observed all the labelled data for the remaining users. Results suggested that the

clustered Naïve Bayes model, which uses a Dirichlet process prior to coupling the

parameters of several models applied to separate tasks, improved the performance

in situations where the model was presented with multiple, related tasks. The

clustered model could use data from related users to provide better prediction even

with very few examples. This approach could immediately be applicable to any

collection of tasks the data of which are modelled by the same parametrised family

of distributions, whether those models were generative or discriminative.

A rather similar approach has been proposed in [34] where a hierarchical non-

parametric Bayesian model was developed, although this time the model learns

from single training examples. This model transfers the acquired knowledge from

previously learned categories to a novel category, in the form of a prior over

category means and variances. However, in the case where only a single example

from a new category is provided, estimating the variance and similarity metric

for categorising an object is very difficult. Thus, the proposed model initially

discovers how to group categories into meaningful super-categories that express

1the terms user, participant and subject will be used interchangeably throughout this thesis
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different priors for new classes and then, when given a single example of a novel

category, the model can efficiently infer the super-category that the novel category

belongs to. Consequently, the model estimates not only the new category’s mean

but also an appropriate similarity metric based on parameters inherited from the

super-category. This method was tested on image datasets where, according to

the authors, the model learned useful representations of novel categories based

on just a single training example and performed significantly better than simpler

hierarchical Bayesian approaches.

2.3 Well-being modelling and prediction

Affect is a collective term for describing feeling states like emotions and moods.

Emotions and moods are mainly distinguished by their duration and by whether

they are directed at a specific cause [38]. In contrast to emotion, mood is defined as

a transient, low-intensity, non-specific and subtle affective state that often has no

clear cause. The mood states are short-term and transient feelings, whereas affective

traits are stable, long-term individual differences in the tendency to experience a

certain mood state [39]. The affective states provide valuable information about

personal traits, sociability and well-being.

Well-being can be described as the experience of happiness, health and prosperity. It

can be understood as how people feel and how they function, both on a personal and

a social level and how they evaluate their lives as a whole. Studies have investigated

the role of mood-related factors in judgements of general well-being and results have

shown that people use their momentary affective states in making judgements of how

happy and satisfied they were with their lives in general [40]. Similarly, there is strong

evidence that the global judgements of affect depends on how people feel at the time

they provide their affective state [41]. Important contributors to subjective well-

being, like happiness and life satisfaction, are associated with depression. A recent

cross-sectional study in Korea [42] has shown that life satisfaction and happiness
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were significantly associated with a lower risk of depression. In that study, university

students with depression showed a lower level of life satisfaction and happiness

than the non-depressed students. Results also indicated that individuals with

higher levels of life satisfaction and happiness had a decreased probability of having

depression. In another longitudinal study [43], self-reported life satisfaction strongly

predicted subsequent depressive symptoms in a 15-year follow-up of healthy adults.

Results also showed that life satisfaction is strongly associated with concurrent

depressive symptoms and the level of life satisfaction can help to detect a group

of people from the general population with low subjective well-being and a high

risk of having, or developing, depressive symptoms.

According to the World Health Organization (WHO), depression is estimated to

affect more than 264 million people of all ages, in all communities across the

world [44]. It is a leading cause of disability worldwide, the third leading contributor

to the global burden of disease for females and a major contributor to the overall

global burden of disease. In the United States of America (U.S.) alone, it is

estimated that 17.3 million adults had at least one major depressive episode in

their lifetime (7.1% of all U.S. adults [45]). The major depressive disorder, also

known as clinical depression, which is a mood disorder characterized by persistent

feelings of sadness, low self-esteem, and loss of interest [46]. It affects both men and

women (although major depression is more prevalent in women), across all ages and

ethnicities worldwide [47]. In general, depression is a common mental disorder and

is characterized by sadness, loss of interest or pleasure, feelings of guilt or low self-

esteem, disturbed sleep or appetite, feelings of tiredness, poor concentration and even

medically unexplained symptoms. It often also comes with symptoms of anxiety [48],

it is associated with increased risk of mortality [49, 50] and there is evidence for

the strong bi-directional association between physical illness and depression [51].

Research has shown that having a physical illness is a strong risk factor for

depression and especially people with severe (primary somatic) disease have a

higher risk of depression [52]. At the same time, depression is a risk factor for
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developing or exacerbating existing physical illness and is also related to the onset

or worsening/improvement of a chronic medical illness [53, 54]. The co-occurrence

can make the symptoms worse and recovery more difficult in both cases. In order

to understand the complexities of this association and the best ways to treat each,

both the depression and the medical illness need to be considered. Based on

the comorbidity and the fact that the onset of depressive symptoms can be an

aggravating factor of psychosomatic diseases, identifying early warning signs or

predicting the severity and onset of these symptoms is of great importance and

can play a key role for effective interventions to mitigate or even prevent negative

consequences. This was the reason for the NEVERMIND project too.

2.3.1 Monitoring systems in health research
In the last decade, researchers have developed monitoring systems that incorporate

wearable sensors. The key benefits of these systems, in addition to enabling

ubiquitous service provision, are their low-cost, small size, lightness and low-power

consumption. They mainly are devices for monitoring blood pressure, blood glucose

levels, cardiac activity, respiratory activity [55] and electrodermal activity [56]. The

applications of such systems related to medicine and healthcare include wearable

sensors in the form of, e.g., gloves [57] or sensorized t-shirts [58] that have been

developed for the characterization of depressive states in bipolar patients [59] and

the physiological monitoring in affective computing studies [60].

Monitoring systems for automatic depression assessment based on visual cues

is another rapidly growing research domain [61]. These systems employ visual

cues for automatic diagnosis and/or severity assessment of depression. Significant

progress has also been made on the automatic detection and prediction of depression

through the analysis of speech acoustics [62], vocal prosody [63], head pose and

movement analysis [64], facial expression and gesture analysis [65] as well as

combinations of these [65–67].
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The rapid growth in the use of smart-phones has also played an important role in the

integration of these devices in health research. Nowadays, researchers have begun to

explore the use of healthcare apps utilizing the built-in sensors that are available in

smart phones. Current research includes apps for clinical assessment, care screening

and symptom monitoring. For example, apps are available for monitoring dementia

patients [68], detect falls for the elderly [69] and testing cholesterol [70]. The sensing

data collected from smart-phones have been also used to extract features related

to depressive mood [71] or to recognize depressive and manic states and detect

state changes of patients suffering from bipolar disorder [72].

In recent years, there has been an increase in the number of mental health

applications, including those related to depression, available to the public. However,

many of the proposed systems and their purported benefits are often not properly

backed up by evidence obtained from appropriate scientific research or clinical

studies [73]. The effectiveness of these applications has not yet been established

and research has shown that although they have the potential to improve treatment

accessibility and reduce symptoms [74], the majority of them lack of proof about

their efficacy [75]. Therefore, finding a tool supported by robust evidence to manage

the depression has become a challenge [76].

Recently, transfer learning has been introduced into medical predictive modelling.

For example, Cheng et al. [77] developed a domain transfer learning method to

predict mild cognitive impairment (MCI) conversion using a multimodal dataset

(MRI, FDG-PET, and cerebrospinal fluid data) from normal control (NC) subjects

and patients with MCI and Alzheimer’s disease (AD). In the proposed framework,

MCI converters (MCI-C) and MCI nonconverters (MCI-NC) patients were recognized

by using AD and NC subjects as auxiliary domain. The authors implemented a

Domain Transfer Support Vector Machine (DTSVM) which was used to classify

MCI-C and MCI-NC patients (i.e., target data) with the help of AD and NC patients

as the auxiliary data. This approach showed a great performance improvement,
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compared to traditional Support Vector Machine (SVM) classification algorithm,

with an overall MCI-C and MCI-NC classification accuracy of 79.4%.

2.3.2 Machine learning approaches for well-being predic-
tion

Monitoring and predicting mood states through non-invasive means has attracted

a significant research interest over the past decade. This has mainly arose from

evidence which suggest that well-being is at least as sensitive a predictor for the risk

of adverse outcomes as formal clinical assessment of depression based on established

diagnostic criteria [78–83]. While some of these approaches involve laboratory-

based techniques such as electroencephalography (e.g. [84]), or elaborate, bespoke

equipment (e.g. the “Smart Mirrors” project [85]), smart-phones and wearable

devices due to their ubiquity and convenience have now become the predominant

research focus for the non-invasive collection of information and signals for the

purpose of predicting mood states (e.g. [5, 71, 86–91]). For example is Suhara

et al. [5] a deep-learning-based approach was used to forecast people’s depression

mood, using self-reported historical moods, behavioural types and medical records,

collected by a smart-phone. The method used long short-term memory (LSTM)

neural network models to predict the mood in the following day given two weeks

of daily mood reports. Results showed that the method can forecast the severely

depressed mood of a user based on self-reported histories with high accuracy,

while the history of the previous two weeks was sufficient to forecast future severe

depression. In addition, the analysis indicated that the present mental state of

a user depends not only on the mood in the previous day but also on the mood

in other days. Still, the results showed that long-term historical information on

the mood state of a user improves the accuracy over a systems that relies only

on information from the previous day, which stresses the need for accumulating

enough data from each participant. These findings are also inline with outcomes

from the MoodScope study [86], where a mood inference classifier managed to

statistically infer a user’s daily mood average with an accuracy of 93% after a
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two-month personalised training period. In that study, smart-phone usage logs and

self-reported mood data were collected over two months from a small size, fairly

homogeneous, population. For the initial stages of data collection, when the training

data for a new user are not enough, authors proposed the use of an all-user model

created from an aggregate of all of the users’ data to predict the mood.

Regarding transfer learning, related work includes a Multi-task, Multi-Kernel

learning approach applied to the problem of predicting students’ well-being using

survey, mobility, smart-phone and physiology data obtained over a period of 30

days [92]. In that work, the proposed method combines data from multiple modalities

and shares information among multiple related tasks. More specifically, the classifier

combines the kernels for each modality using a set of kernel weights for each

task and these weights are then regularised globally, allowing information about

the weights to be shared across tasks. According to preliminary results, this

method could successfully classify five dimensions of well-being (happiness, health,

alertness, energy and stress) within a single model. Furthermore, this approach

provided performance improvements compared to both traditional SVM classifiers

and Multiple Kernel Learning (MKL).

In [93], researchers treated well-being prediction as an MTL problem. The method

uses MTL to predict future well-being of college students by treating the classification

of different well-being states as related tasks. In that work, a Multi-task, Multi-

Kernel learning (MTMKL) method, a Hierarchical Bayesian model and a Deep

Neural Network, which are three formulations of MTL, were compared. In MTMKL

method, information across tasks was shared through kernel weights on feature types.

In the Hierarchical Bayesian model, tasks shared a common Dirichlet prior in order

to constrain the tasks to be similar. Lastly, in the Deep Neural Network, several

hidden layers were shared between tasks, while the final layers were task specific.

The experimental results have shown that accounting for individual differences

through MTL, dramatically improved the well-being prediction performance. This
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improvement was based on the fact that MLT allows to have a model specifically

trained for each user which also benefits from the data of other users.

MTL has been also employed in [88] to train personalised ML models which were

customized to the needs of each individual, but still leveraged data from across the

population. The goal of this work was to predict students well-being (mood, stress

and health). The models were again (as in [93]) a MTL deep neural network that

share several hidden layers but have final layers unique to each task, a MTMKL

that feeds information a cross tasks through kernel weights on feature types and

finally a Hierarchical Bayesian model in which tasks share a common Dirichlet

Process prior. In binary classification, dramatic improvements to mood prediction

performance were observed when MTL was used to personalise ML models by

multi-tasking over clusters of similar people.

Transfer learning techniques that take into account population heterogeneity have

been also proposed in domains involving sequential data modelling. Recently, an

online transfer learning technique for hidden Markov models with Gaussian mixture

models [94] was proposed for addressing the problem of inferring a sequence of

hidden states associated with a sequence of observations produced by an individual

within a population. This approach learns different transition and emission models

(it estimates the parameters of the transition and emission distributions) for each

individual in the training population. These models are then treated as basis

models to speed up the online learning process for new individuals. In this way,

individuals in the population are used to make predictions about similar individuals

by identifying those individuals who closely resemble each other. The approach

appears to outperform online EM and online Variational Bayes when tested in

real-world applications, which included activity recognition, sleep classification and

prediction of packet flow direction in telecommunication networks.

Transfer learning methodologies have also been employed to improve model accuracy

in the presence of scarce data. In [91], objective data (measurements deriving from
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smart-phone sensors) and subjective data (self-reported questionnaires) were used

to model stress behaviour of healthy employees. The labelled data for subjects were

scarce. To cope with that, information obtained from other subjects in the study

was transferred. The proposed approaches were based on defining a distance among

models and using similar models to improve predictions. Given a set of previously

learned models along with their respective data, the method either transferred

instances from another, close model (sampling based approach) or simply used close

models from other subjects (ensemble approach). Results showed that transferring

from a few, similar, subjects was better than using more subjects which are not

close to the target model. Furthermore, transferring using other models (ensemble

approach) was better than transferring instances.

The literature previously outlined indicates that transfer learning could be considered

for cases with limited training data, multiple or partially related datasets (one for

each participant) or even sparse datasets, to overcome issues related to personalised

predictive modelling. Moreover, the literature reports different ML algorithms

and transfer learning techniques, such as Bayesian or hierarchical methods, that

could be explored to attempt to construct the effective and efficient algorithms

for personalised prediction in the presence of sparse and scarce data. However,

the majority of studies in this field are conducted in a healthy population and

focus on mood detection and classification, and only very few focus on the more

challenging problem of long-term forecasting. Studies commonly employ neural

network methods long-term forecasting. E.g. Spathis et al. [89] used smartphones

to acquire a sequence of self-reported mood states over three weeks, by asking users

to select a point into a two-dimensional grid the dimensions of which represent

“valence” and “arousal”. They then trained a multi-task encoder-decoder recurrent

neural network to produce a sequence of valence/arousal forecasts (expressed as

points on the same grid) for up to 7 days. Their model performed well, though

the authors noted performance was less reliable in participants with high mood

variability. Similarly, Yu et al. [90] used data from the SNAPSHOT study [95], which

comprised detailed data from 251 college students, including data from surveys,



28 2.3. Well-being modelling and prediction

mobile phones, wearables and weather information. These were used to define mood,

health, and stress scores, on which they compared a series of MTL approaches

including regularized linear models and several varieties of neural networks, in

next-day, and up to 7-day forecasts. Their findings showed good performance for

next-day scenarios; however, even after selecting the best-performing algorithm,

there was a significant reduction in accuracy in 7-day forecasts.

One limitation of neural-network based approaches like the above mentioned ones,

is that any transfer learning is typically applied to provide an initial estimate of the

network’s parameters. This is typically then either used as an initialization point for

subsequent fine-tuning, or the topmost layers are “frozen”, meaning that they are

excluded from subsequent training [96]. While this approach can achieve a significant

initial speed-up in terms of learning, it is less robust, in that it does not allow for

any uncertainty present in the transfer domain to be propagated to the prediction.

Expressing the transfer learning component as a prior probability in the context

of Bayesian inference methods [18] could potentially allow us to make use of this

information. However, this is not necessarily a straightforward thing to do: when

dealing with complicated distributions defined in high-dimensional spaces, obtaining

posterior parameter estimates expressed in closed form is typically not feasible, as

the integrals involved in the inference process tend to be computationally intractable.
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Non-parametric Transfer Learning based

on Bayesian Model Averaging
This chapter introduces a Bayesian Transfer Learning modelling method based on
a Markov Chain Monte Carlo sampler and Bayesian Model Averaging (BMA) for
dealing with the challenge of building user-specific predictive models able to make
predictions of self-reported well-being scores when scarce sporadic observations
used for training the model.1
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3.1 Introduction

Within the NEVERMIND project, the proposed method for modelling participants

and predict their self-reported well-being scores is based on a Linear Dynamic

1Published as: Eirini Christinaki, Riccardo Poli, and Luca Citi. “Bayesian Transfer Learning for
the Prediction of Self-reported Well-being Scores”. In: 2018 40th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, July 2018, pp. 41–44
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System (LDS) [97, 98]. The method assumes that the well-being of the user

is represented by a state vector, and that its dynamics can be captured by an

LDS of the following form:

x(t) = Ax(t− 1) + Bu(t) + εx(t) (3.1a)

y(t) = Cx(t) + µy + εy(t) (3.1b)

where x(t) ∈ Rnx is the latent state for the model, reflecting the user’s underlying

state of well-being; y(t) ∈ Rny is a vector of observations corresponding to the

measurements collected from the user (including biomedical signal features and

self-reported well-being scores); u(t) ∈ Rnu is the input vector (representing external

interventions, or influences from the external environment, e.g., weather or day of

the week); and µy is the baseline value of the observation vector. In addition, εx and

εy represent noise (i.e. uncertainty) over the state and observation vectors, and are

assumed to be distributed as εx(t) ∼ N (0,Sx) and εy(t) ∼ N (0,Sy) respectively.

Finally, the A, B and C are the transition, input and observation matrices of

the LDS model, while the parameters of this model hereinafter will be collectively

referred to as θ. In the initial work done within the NEVERMIND project [97],

model fitting, i.e. the identification of such matrices, was accomplished by using

the Expectation Maximization (EM) method.

3.1.1 Model inputs
In this work, we use the “NEVERMIND pilot study dataset” which includes data

collected from 45 participants enrolled in the pilot study of the NEVERMIND

project and the “NEVERMIND clinical trial dataset” which includes data collected

from the first 47 participants enrolled in the recently initiated clinical trial of the

same project. Both datasets consist of participants aged 18 or older, who have

received a diagnosis of a severe somatic disease, including myocardial infarction,

breast cancer, prostate cancer, kidney failure and lower limb amputation. Each

participant takes part in the study for a period of around 12 weeks from the time

of their enrolment (which is independent per participant). The data are collected
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in Pisa, Turin and Lisbon [8]. Kidney disease patients were recruited from the

Cisanello University Hospital, University of Pisa, Italy. Breast and prostate cancer

patients were recruited from the following centres within the Piedmont Oncological

Network, at San Luigi Gonzaga University Hospital, Turin, Italy and Breast Unit-

Oncology Department and Urology Department at Città della Salute e della Scienza

University Hospital, Turin, Italy. Myocardial infarction patients were recruited

from the Cardiology Department at the Santa Maria Hospital, Lisbon. Patients

with lower limb amputations were recruited at the Rehabilitation Department at the

Santa Maria Hospital, Lisbon. Appropriate informed consent is obtained from the

patients in writing. The studies further received ethical approval by the European

Commission as a prerequisite of funding approval for the project. Ethical approval

was also sought in each of the site where the intervention is implemented (Pisa,

Turin and Lisbon) by the local Research Ethics Committees:

• Pisa-Italy: Comitato Etico di Area Vasta Nord Ovest (Comitato Etico

Spermentazione Farmaco – CESF)

• Turin-Italy: Turin Ethical Committee of Città della Salute e della Scienza

University Hospital and Ethical Committee of San Luigi Gonzaga University

Hospital, Orbassano

• Lisbon-Portugal: Ethics Committee of the Medical Academic Centre of the

University of Lisbon.

These datasets consist of subjective data in the form of questionnaires, as well as

other multimodal data, collected over time from individual subjects via a smart-

phone and a specialised lightweight sensorised T-shirt. The full datasets include a

collection of physiological signals, accelerometer data, and voice recordings; however,

for the purposes of this work, we will only consider the three self-reported well-being

scales that the user is prompted to provide on a daily basis. The resulting daily

scores from each scale will be fed into the LDS model as the observation vector
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y(t). Each scale’s numerical input is obtained from the participant via a sliding

scale, which takes values from 1.0 to 6.8 (at 0.2 increments), where lower values

represent better outcomes. The three scales correspond to the following questions:

- “How are you feeling today?” — the Feel score: a measure of the participant’s

subjective assessment of their morning / waking mood;

- “How was your sleep?” — the Sleep score: a measure of the participant’s

subjective assessment of sleep quality for the night before; and

- “How was your day?” — the Day score: a measure of the participant’s

subjective assessment of the quality of (potentially stressful) events over the

course of the day.

Each question is prompted daily and participants may refuse to provide an answer,

contributing to the scarce, sporadic nature of the dataset. According to the clinical

protocol used in the randomised controlled trial (RCT) [8], human review may

be triggered if no significant interaction has occurred for a certain time interval.

Participants for whom there were no available data (e.g. patients who had already

been enrolled in NEVERMIND, but had not yet started using the system) or have

answered less than 10% of the time on average or those that their total data length

was less than two weeks, were excluded from the analysis carried out here.

3.1.2 Model parameters
The LDS model (3.1) can describe the current state as an auto-regression of arbitrary

order simply by extending the state to include its most recent values, e.g. by writing

x(t) = [ξ(t − 2), ξ(t − 1), ξ(t)]T where ξ(t) is the original latent state and x(t) is

the extended one. In this work, we consider a unit-root third-order autoregressive

model with a single state capturing all three observations, which can be represented
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by the LDS model (3.1) with:

A =

 0 1 0
0 0 1
a∗0 a2 a1

, B =

0
0
b

, Sx =

0 0 0
0 0 0
0 0 s1

,

C =


c1 c2 c3
c4 c5 c6
c7 c8 c9
c10 c11 c12

, Sy =


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

.
The diagonal of the Sy matrix has been chosen empirically by estimating the

variance of the error made by the subjects when using the slider to provide answers

to the questionnaires, also accounting for the fact that the scales were quantized.

In addition, the observation vector y(t) includes only the three self-reported well-

being scales while the baseline value of the observation vector (µy), was set as

the mean state. Finally, the a∗0 represent parameters computed via the constraint

a∗0 = 1−a1−a2 to ensure the model has a unit root.

While in [97] estimates of the unknown model matrices were obtained using EM, i.e.

maximising the likelihood (marginalised over the latent state), here we parametrise

them through θ = [a1, a2, b, c1, . . . , c12, s1]T and follow a Bayesian approach to

obtain their posterior probabilities and perform transfer learning, as explained

in the following sections.

3.2 Method

The proposed TL technique is a non-parametric method based on an MCMC

sampler and BMA for sharing knowledge between personalised models with a

focus on providing reliable predictions for a given patient even when scarce and

sporadic observations or inconsistent and irregular data is available for that patient.

Non-parametric models assume that the data distribution are defined in terms of

an infinite-dimensional parameter space. This approach initially requires that we

sample from the posterior distribution of the parameters, i.e., our beliefs about the

parameters after having seen the data for a given patient. This can be achieved by
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using an MCMC sampler, which constructs a Markov chain of samples (i.e. parameter

sets), having as their equilibrium distribution the target posterior distribution. The

MCMC sampler can use the data from each patient to create his/her own chains

while the TL will occur because the model will make predictions about a specific

patient under test by combining models trained on other patients (“donor patients”)

according to how well they fit the patient’s under test past observations. As we

have seen in Sec. 2.2, this TL method could fall under the category of instance

transfer where some samples/instances from the source domains are reused for

learning in the target domain by re-weighting them.

3.2.1 Markov Chain Monte Carlo sampler
Bayesian inference offers an alternative to maximum likelihood and allows us to

determine the posterior probability of the model parameters given the data. MCMC

methods can be used to obtain posterior parameter estimates when these are

difficult to express in closed form and works well even for complicated distributions

in high-dimensional spaces. Although MCMC tends to be more computationally

intensive method than other methods like e.g. variational inference, it provides

guarantees of producing (asymptotically) exact samples from the target density [99].

MCMC constructs a Markov-chain having as its equilibrium distribution the target

posterior distribution. To sample from the posterior distribution of the parameters

(our beliefs about the parameters after having seen the data), in this work, we

use the affine invariant ensemble sampler for MCMC (emcee) proposed in [100].

emcee has been chosen as an easy to use, well tested, pure Python module, where

the underlying algorithm also has an affine invariance property that allows it to

perform equally well under all linear transformations, and therefore be insensitive

to covariances among parameters. It is also an ensemble method which relies on

multiple walkers (the members of the ensemble) sampling in parallel. For any

given walker in the ensemble, their next position is proposed by choosing another

walker from the ensemble at random and choose a new position that is a random

linear combination of the positions of both walkers. This proposed move is called
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“stretch move” since, the proposal is generated by stretching along the straight line

connecting the two walkers [100, 101]. However, as we will discuss in Chapter 4 (see

Sec. 4.2), emcee method also has disadvantages like facing issues in high-dimensional

parameter spaces or with models whose parameters are highly correlated.

According to Bayes Theorem, given a vector of observations y, and a vector of

parameters θ, the posterior probability p(θ |y) is related to the likelihood term

p(y |θ) and the prior term p(θ) via:

p(θ |y) ∝ p(y |θ) p(θ) (3.2)

Therefore, given a way to compute the product p(y|θ) p(θ), the ensemble sampler

generates random vectors θ distributed according to p(θ|y). The likelihood p(y|θ)

is in our case the marginal likelihood of the LDS model in Sec. 3.1 marginalised

over the latent state x:

p(y |θ) =
∫

x
p(y |x,θ) p(x |θ) dx. (3.3)

This likelihood term can be readily obtained from the LDS model using a Kalman

filter applied to the participant’s data (see [97]). Additionally, we specify a prior

probability distribution p(θ) to inform and constrain our model. Specifically, for

the model parameters described in Sec. 3.1.2, we place a Gaussian prior over the

ci coefficients and an inverse gamma prior over the non-zero diagonal element s1

of Sx. We adopt diffuse priors because they express vague or general information

so they are dominated by the likelihood function and have minimal effect, relative

to the data, on the final inference.

3.2.2 Bayesian Model Averaging
When making a prediction, we want to take into consideration information coming

from both the patient under test, as well as more general information available from

other patients under a transfer learning framework. Formally, we want to obtain

the posterior predictive distribution p(ỹ |y,YN ) for a given patient (without loss of

generality we consider the one with index N+1), where ỹ is the desired prediction, y
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represents the patient’s existing observations, and YN = {y1, . . . ,yN} corresponds

to the information coming from all other N “donor” participants’ observations. In

theory, this expression can be obtained by marginalising θ out as follows:

p(ỹ |y,YN) =
∫
θ
p(ỹ |y,θ) p(θ |y,YN) dθ. (3.4)

Unfortunately, in practice this integral is generally intractable. Alternatively,

assuming conditional independence with respect to θ across data coming from

different participants, we can expand equation (3.4) as:

p(ỹ |y,YN) =
∫
p(ỹ |y,θ) p(y |θ) p(θ |YN)∫

p(y |θ′) p(θ′|YN) dθ′ dθ ≈

≈
K∑
k=1

p(ỹ |y,θk)
p(y |θk)∑K
j=1 p(y |θj)

.

(3.5)

with each of the K samples in {θk}Kk=1 distributed according to p(θ |YN), as

approximated by running the MCMC sampler (described in Sec. 3.2.1) on each

of the N participants and then pooling together the resulting samples. Under

this scheme, assuming each run creates S samples, we obtain the K vectors of

parameters used in equation (3.5) via uniform random sampling from the mixed

sample pool of N × S model parameters. The probabilities p(ỹ |y,θk) and p(y |θk)

are then obtained by using the Kalman filter as described earlier.

The fractional term in the summation shown in equation (3.5) represents the

probability that, out of the K models considered, the given model θk generated

the observed data y. Therefore, using equation (3.5) to estimate equation (3.4)

corresponds to performing BMA [102] over the K candidate models.

Calling µk(t) and σ2
k(t) the mean and variance of the future self-reported well being

ỹ(t) as predicted by the k-th model θk through the Kalman filter, the mean and

variance of the Bayesian model-averaged ỹ(t) are obtained as follows:

µ(t) =
∑K
k=1 µk(t) p(y|θk)∑K

k=1 p(y|θk)
, (3.6a)

σ2(t) =
∑K
k=1 [σ2

k(t) + (µk(t)− µ(t))2] p(y|θk)∑K
k=1 p(y|θk)

(3.6b)
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The pipeline of our proposed method can be seen in Fig. 3.1.
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Figure 3.1: Pipeline of the proposed non-parametric TL method.

3.3 Results

In this section we first present the initial evaluation of this approach on a subset

of the “NEVERMIND pilot study dataset”. The proposed method is evaluated for

K = 1000 candidate models per participant since here we have a non-parametric

method which requires a lot of data-points. We further compare this transfer learning

approach with the previously non-transfer method used by the NEVERMIND project

and we present the results from this comparison. Finally, the proposed approach

is validated on the NEVERMIND clinical trial and the MIMIC II dataset [103]

and it is also compared against four standard baselines.

3.3.1 Evaluation on NEVERMIND pilot study dataset
To evaluate the transfer learning model, denoted here as Mbma, we assess its

predictive performance and compare it against the non-transfer model that uses

the EM method (trained by maximum likelihood) denoted as Mem. Both models
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are evaluated using real-world data collected within the NEVERMIND project

during the pilot study (details in Sec. 3.1.1).

For the MCMC method, we train a separate ensemble for each of the N participants.

Each ensemble comprised 130 walkers that samples our 16-dimensional parameter

space for 4,500 iterations, of which the first 1,500 are considered as a “burn-in”

period during which all samples are discarded. The fraction of steps accepted for

each walker was around 0.37, which is within the suggested range 20%-50% [100].

The corner plot in Fig. 3.2 shows the one- and two-dimensional projections of

the samples obtained by MCMC using the actual self-reported well-being data

y from one of our participants. These can be interpreted as sampled estimates

of the marginal (diagonal plots):

p(θi|y) =
∫
p(θ|y) dθ1 . . . dθi−1dθi+1 . . . dθn (3.7)

and joint (off-diagonal plots) posterior distributions:

p(θi,θj|y) =
∫
p(θ|y) dθ1...dθi−1dθi+1...dθj−1dθj+1...dθn. (3.8)

In this section, we present the evaluation results from 17 randomly selected test

patients. Initially, for each patient under test, the models are trained with 7 days

(1 week) of historic data y from the same patient to predict the observations ỹ of

the next 7 days (test week). The predictions are then compared with the actual

observations for the test week. For comparing and quantifying the prediction

ability of each model we use metrics including accuracy and Root Mean Squared

Error (RMSE). The accuracy is computed considering a prediction as correct if

the predicted value is less than 0.5 away from the actual observation. In addition,

the actual forecasting error for the predictions of each individual, is assessed with

the more traditional RMSE calculated as RMSE =
[

1
n

∑
t(rt − µt)2

] 1
2 , where t here

corresponds to time-points within the forecasting period, rt is the corresponding

actual value of a well-being score observed at time t and used as a target value for

validation, n is the number of targets present when missing values are excluded,
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Figure 3.2: Corner plot of the 16 parameters of the model. The histograms along the
diagonal presents the marginalized distribution for each parameter independently. The
other panels show the marginalized two dimensional distributions (the covariance between
parameters).

and where rt − µt def= 0 when rt is missing. Note that RMSE ignores how accurate

our estimates of the prediction variance are.

An indicative example of the predicted mean and the variance as learned by

our model along with the sporadic self-reported well-being scores from one of

our participants can be seen in Fig. 3.3. The figure illustrates the mean and

standard deviation, respectively, of the state predicted by the model according to

equations (3.6a) and (3.6b). As can be seen from this figure, our method adequately
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deals with the uneven, sporadic data representation in the dataset and performs

well in a difficult forecasting scenario that requires to train on previous seven days

and predict next seven days. However, this is a very initial result.

Feel

Sleep

Day

2 nd week

observed predicted

1st week

Figure 3.3: Example of self-reported well-being score modelling and prediction (this is a
very initial result). The model was trained with one week of data (the leftmost 21 points
at 8-hour resolution) and tested on the following week. The solid red circles represent the
reported scores that were used by the model, while the empty ones in the second week
are only reported for reference. The blue triangles and the associated whiskers represent
the mean and standard deviation.

For the same forecasting scenario, we compare the performance of our transfer

learning approach (Mbma) against the competing no-transfer learning model (Mem).

The results presented in Fig. 3.4 show that the transfer learning model yields the

lowest RMSE in most cases (for 11 patients out of 17). The overall RMSE for this

scenario was 0.62 for our method and 0.67 for the no-transfer Mem model. The

accuracy measured from the average predicted results was 62.74% for the transfer

learning approach and 60.55% for the no-transfer Mem method.

To investigate how the predictive performance changes as more data become

available, we trained the models for each participant with 14 days (2 weeks),

21 days (3 weeks) and 28 days (4 weeks) of historic data to predict the following 7

days (test week). The average RMSE and accuracy for the experiments performed
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Figure 3.4: RMSE per participant for the transfer and non-transfer prediction models
trained with only 1 week data and forecast next week.

Table 3.1: Comparison of prediction results for the transfer (Mbma) and no-transfer
learning (Mem) models.

RMSE Accuracy [%]
Data length Mbma Mem Mbma Mem participants

1 week 0.62 0.67 62.74 60.55 17
2 weeks 0.61 0.74 63.93 56.62 16
3 weeks 0.66 0.77 52.44 49.81 11
4 weeks 0.55 0.91 61.45 34.05 13

Average 0.61 0.77 60.14 50.26
Bold values show the best evaluation scores (lowest error, highest accuracy)
among the predictive models. Note that there is a different number of “valid”
participants per data length because the analysis includes only participants
who have data within this period.

with varying training data length are presented in Table 3.1. These results are

based only on “valid” participants (i.e. participants who have data within this

period) and given the fact that patients are allowed to refuse to answer some or

all questions on any particular day, the number of observations present within

that time-interval may well differ between patients. The evaluation metrics for

the predictive models show that the best scores were obtained using the transfer

learning method in all four scenarios.
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3.3.2 Validation on NEVERMIND clinical trial data
The previously presented model has been extended by increasing the number of

parameters to be estimated. However, the focus again is on performing inferences

about the model parameters θ ≡ {A,B,C, Sx, µy}, where this time instead of setting

µy, the baseline value of the observation vector, as the mean state, we parametrize

it through θ in order to be able to set this baseline based on information we

borrow from other patients:

µy =

µy1

µy2

µy3


This configuration has been chosen in order to produce comparable results with

the validation of our approach on an external dataset presented in Sec. 3.3.3. After

setting a Gaussian prior over the µy coefficients, we re-compute an estimate of the

posterior probability from which the affine invariant ensemble sampler for MCMC

will draw samples. Once we obtain the chain of the samples, we compute the

marginalized posterior probability distribution of each parameter and the joint

posterior between the parameters. Now, for the MCMC simulation, we specify 150

samplers to sample our 19-dim parameter space, 1500 steps length of “burn-in”

period and 4.500 iterations. The average fraction of steps accepted for each walker

for this example is 0.3 (suggested acceptance rate 20%-70%).

Since the data from the pilot study and the newly collected data from participants

enrolled in the clinical trial of the NEVERMIND project were both collected in

a similar way, we follow the same criteria as before for the data cleaning. Thus,

we remove from this analysis subjects that have answered less than 10% of the

time on average or those that their total data length is less than two weeks. In

total, these criteria remove 14 patients out of 47 available at that time thus, the

remaining dataset consists of a total of 33 patients.

The predictive performance of the current TL approach, namely the BMA approach

(Mbma model), is evaluated this time in relation to the following “baseline” models:

a) A patient-average prediction model (Ma), b) A population-average model (Mp),



3. Non-parametric Transfer Learning based on Bayesian Model Averaging 43

c) A last-datapoint model (Ml), and d) An ordinary least squares regression model

(Mr). Given that the new data arrive incrementally, it is necessary to rebuild each

patient’s chains on a daily basis in order to keep the models up-to-date, and ensure

that all observations available for that participant are being used. It is important

to note that, for any given time-interval, given the fact that patients are allowed

to refuse to answer some or all questions on any particular day, the number of

observations present within that time-interval may well differ between patients.

We further define the following notation. Let:

- Ltr be the length of the “training period”, i.e., the number of weeks used for

training (regardless of the number of actual observations that happen to be

contained within), chosen from the set {1, 2, ..., 10},

- Lfc be the length of the “forecasting period”, i.e., the number of future

data-points (three per day) to be forecasted, chosen from the set {1, 3, 7},

- µt and σ2
t be the mean and variance of the forecasted prediction at the

time-point t,

- rt be the corresponding actual value of a well-being score observed at time t,

(which may be missing if no answer was provided), used as a target value for

validation.

In these experiments, we evaluate the forecasting scenarios that result from all

possible combinations of training and forecasting period-length pairs {Ltr, Lfc}.

However, for brevity, we only show here a representative subset from these results

(more results will be presented in the following chapters), namely: a) train for

Ltr=1 week and predict for Lfc=7, and b) train for Ltr∈{1, 2, 3, 4} and predict for

Lfc=7. Please, note that the number of participants for which it possible to obtain

predictions, depends on the choice of Ltr and Lfc.
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Since our goal is to obtain predictions with an associated measure of uncertainty

(i.e., how much we can trust the prediction itself), the quality of our predictive

algorithms must be assessed using a measure of accuracy that takes both the mean

prediction accuracy and the estimated uncertainty into account.

One such measure is the Log Likelihood (LL), which, for a predictive model

Mi, is given by

LL =
∑
t

log p(rt |µt, σ2
t ) =

∑
t

log 1√
2πσ2

t

e
− (rt−µt)2

2σ2
t (3.9)

where t corresponds to time-points within the forecasting period for which an actual

observations is available. The higher the LL measure, the better the probabilistic

predictions are. Note also that, while the output of Mbma is not strictly speaking

i.i.d Gaussian, for the purposes of obtaining an LL measure, we represent them

as i.i.d Gaussians of their respective mean and variance.

While we believe LL is a better measure to account for both mean prediction accuracy

and accuracy in the uncertainty around the prediction, we further calculate the

actual forecasting error for the predictions of each individual, using again the RMSE

as we did during the evaluation presented in Sec. 3.3.1.

Furthermore, for any pair of competing models, we calculate a “winning percent-

age”, as a measure of predictive superiority for one model over another. This

is computed as:

wins = games− ties− losses,
winning percentage = [wins + (ties/2)] / games, (3.10)

where games represents the total number of participants for whom it was possible

to obtain predictions given a specific {Ltr, Lfc} pair, and wins corresponds to the

subset of those participants, for whom the model in question performs better than

its counterpart, with respect to a particular performance measure (i.e. either LL or

RMSE). Furthermore, we used the exact Wilcoxon Signed-Rank test-statistic [104]

to make pairwise comparisons for these methods, effectively investigating the extent
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to which the winning percentages represent a genuine and statistically significant

improvement, per pair of competing models.

The results presented in Fig. 3.5 show the winning percent based on LL for the

Mbma when training with only 1 weeks of past data, and predicting 7 days ahead.

As can be seen, the Mbma model scores more wins compared to all of its competitors,

when both the accuracy and the uncertainty of the predictions is taken into account

(i.e. when using LL as the performance measure). In addition, it scores significantly

better (at the 5% level, using a one-tailed hypothesis) compared to three out of the

four competitors, but shows no significant difference compared to its Mp competitor

(the population-average model). These results confirm our first hypothesis (H.1),

that in the presence of limited person-specific data available for training (i.e. at

the early stage of data collection), the transfer learning based prediction model

performs significantly better than models which rely only on the limited patient-

specific data (i.e. the ‘target’ domain).
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Figure 3.5: Comparison of the winning results based on LL for the Mbma against the
four competing models when training with 1 week of past data and predicting 7 days
ahead. The * indicates statistical significance.

We further present results for the experiments performed with varying training
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Table 3.2: Effect of training period length on performance

LL
1-week 2-weeks 3-weeks 4-weeks

Mbma -13.08 -14.12 -7.24 -8.45
Mp -15.75 -16.11 -12.18 -12.53
Ma -48.27 -21.50 -10.95 -8.85
Ml -66.03 -29.36 -13.09 -21.14
Mr -14328.78 -1016.50 -41.16 -257.75

participants 26 25 19 18
RMSE

1-week 2-weeks 3-weeks 4-weeks
Mbma 0.805 0.861 0.608 0.535
Mp 0.961 0.912 0.856 0.827
Ma 0.883 0.862 0.549 0.634
Ml 0.979 0.912 0.834 0.829
Mr 1.838 1.008 1.142 1.044

participants 26 25 19 18
Bold values show the best validation scores (highest likelihood, lowest
error) among the baselines and the transfer learning predictive model.
Note that there is a different number of “valid” participants per data
length because the analysis includes only participants who have data
within this period.

data length in order to investigate how the predictive performance changes as

more data become available. This analysis has been conducted for training periods

Ltr∈{1, 2, 3, 4} and forecasting period Lfc = 7. Table 3.2 shows the results obtained

with respect both to the LL and the RMSE evaluation measure. The top half

of the table shows the mean LL values while the bottom half presents the mean

RMSE values, both obtained over all patients for whom data was available for the

corresponding {Ltr, Lfc} pair. The values closer to zero represent better performance.

These results show that the better the probabilistic predictions were obtained using

the transfer learning method in all four scenarios. However, based on the actual

error for the predictions (RMSE), when we train with 3 weeks of past data, the

patient-average prediction model (Ma) is superior to all other competitors.

3.3.3 Validation on MIMIC II dataset
In this section, we study the accuracy of the proposed method using the openly

available MIMIC-II database [105]. The data used for this validation is a subset of
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the data used on the PhysioNet/CinC Challenge 2012. The focus of this challenge

was to develop methods for patient-specific prediction of in-hospital mortality. The

full data used for the challenge consisted of records from 12,000 Intensive Care Unit

(ICU) stays. According to [106] “each record contained general descriptors recorded

at the time of admission to the ICU (age, gender, weight, height, and type of ICU)

and up to 37 time-series measurements (for example, the diastolic/mean/systolic

arterial blood pressure and lab tests) that may be observed (never, once, or more than

once) during the first 48 hours after admission. For each time series measurement,

the associated time stamp indicating the time elapsed since admission, was also

recorded. Two subsets, A and B, each one made of 4,000 of the 12,000 records, were

available to the participants”. In this work, we decided to use the first 72 entries

from the set-a with ids 132618 to 132705 used for test and ids 132539 to 132617

used for training. These data can be found online at https://physionet.org/

physiobank/database/challenge/2012/. Finally, from our analysis we removed

patients that have less than 5 measurements in total or the total data length was

less than 3.5 hours. These two criteria removed 1 patient out of 36 from the test

set and thus, the remaining dataset consists of a total of 71 patients.

Once more, in order to perform a similar validation to the one previously presented

in Sec. 3.3.2 where the NEVERMID dataset was used, we decided out of the 37

measurements included in this dataset, to select Heart Rate, Temperature and

Urine to be used as our three observations. These variables were selected as they

were among the ones more often observed. Regarding the Urine, we take the

log due to heavy-tailed distribution [106]. Since these observations have very

different ranges, the data pre-processing further includes rescaling them such that

their ranges extend from 0 to 1. We have also empirically chosen the non-zero

diagonal elements of Sy by estimating the error made by the person taking the

measurement in the ICU also accounting the nature of the different observations.

Thus, in this case the state variance was set as Sy = diag(.008, .013, .014, .001).

The rest of the approach regarding the MCMC simulation and the BMA is the

same as previously and the focus again is on performing inferences about the model

https://physionet.org/physiobank/database/challenge/2012/
https://physionet.org/physiobank/database/challenge/2012/
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parameters θ ≡ {A,B,C, Sx, µy} and make predictions based on scarce, sporadic

observations. The predictive performance of the current TL approach is evaluated

again in relation to the same ‘baseline’ models.

An indicative example of the predicted mean and the variance as learned by our

model along with the sparse ICU observations from one of the patients can be seen

in Fig. 3.6. The figure illustrates the mean and standard deviation, respectively,

of the state predicted by the model according to equations (3.6a) and (3.6b). The

time interval between two consecutive points is 10 minutes (10 minutes resolution).

As can be seen from this figure, our method again adequately deals with the uneven

sparse data representation in the dataset and performs well in a difficult forecasting

scenario that requires to train on previous three hours and predict next three hours.

In particular, we can notice that when there is an interval without observations,

the confidence of the prediction made by the model is low while after seeing an

observation, the prediction variance shrinks since the model is more confident for

the prediction and the mean changes towards the observed direction.

The results presented in Fig. 3.7 show the winning percent based on LL for the

Mbma when training with only 3 hours of past data, and predicting as far as 3 hours

ahead. As can be seen, the Mbma model scores more wins compared to all of its

competitors, when both the accuracy and the uncertainty of the predictions is taken

into account (i.e. when using LL as the performance measure). In addition, it

scores significantly better (at the 5% level, using a one-tailed hypothesis) compared

to three out of the four competitors, but shows no significant difference compared

to its Mp competitor (the population-average model). These results are in-line

with the results presented in Sec. 3.3.2 and further confirm our first hypothesis

(H.1), that in the presence of limited person-specific data available for training

(i.e. at the early stage of data collection), the transfer learning based prediction

model performs significantly better than models which rely only on the limited

patient- specific data (i.e. the ‘target’ domain).
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Figure 3.6: Example of ICU observations’ modelling and prediction. The model was
trained with three hours of data (the leftmost 18 points at 10-minutes resolution) and
tested on the three hours. The solid red circles represent the reported scores that were
used by the model, while the empty ones in the predict part on the right are only reported
for reference. The blue triangles and the associated bars represent the mean and standard
deviation.
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Figure 3.7: Comparison of the winning results based on LL for the Mbma against the
four competing models when training with 3 hours of past data and predicting 3 hours
ahead. The * indicates statistical significance.
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Finally, we present again results for the experiments performed with varying training

data length in order to investigate how the predictive performance changes as more

data become available. Following the previous notation, the {Ltr, Lfc} pair now

refers to hours instead of weeks. The analysis was conducted for training periods

Ltr∈{3, 6, 9, 12} and forecasting periods Lfc = 3. Table 3.3 shows the results

obtained with respect both to the LL and the RMSE evaluation measure. The

top half of the table shows the mean LL values while the bottom half presents the

mean RMSE values, both obtained over all patients for whom data was available for

the corresponding {Ltr, Lfc} pair. These results show that the better probabilistic

predictions were obtained using the transfer learning method in all four scenarios.

However, based on the actual error for the predictions (RMSE), when we train with

3 hours of past data, the patient-average prediction model (Ma) is superior to all

other competitors. This could probably be explained due to the nature of the data

used and thus, the naive baseline of the average of the patient’s observations over

the past 3 hours could potentially constitute a good predictor for the next 3 hours.

3.4 Discussion

In this chapter, we proposed a Bayesian TL framework based on an MCMC sampler

and a BMA approach that deals with the challenge of building user-specific predictive

models able to make predictions in the presence of scarce, sporadic observations.

According to the experimental results, the TL model shows an improvement over

previous work, which relied on Maximum Likelihood parameter estimation using a

standard Expectation Maximisation approach [97]. It also performs better than

a population-based model and achieves a significant improvement over training

separate models for each participant by using solely their examples. Its overall

performance shows the advantage of delivering better results for participants with

very few training samples. This method adequately deals with the inconsistent and

irregular data representation in the dataset and produces a better suited model for
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Table 3.3: Effect of training period length on performance

LL
3-hours 6-hours 9-hours 12-hours

Mbma 3.38 6.42 7.29 8.16
Mp -1.89 1.45 2.20 2.72
Ma -60.21 -13.98 -71.65 -17.07
Ml -165.27 -72.07 -45.44 -51.10
Mr -5895.64 -3449.16 -1913.66 -2399.82

participants 32 34 35 35
RMSE

3-hours 6-hours 9-hours 12-hours
Mbma 0.145 0.117 0.093 0.077
Mp 0.167 0.156 0.153 0.149
Ma 0.136 0.129 0.119 0.097
Ml 0.158 0.146 0.138 0.137
Mr 0.186 0.185 0.168 0.119

participants 32 34 35 35
Bold values show the best validation scores (highest likelihood, lowest
error) among the baselines and the transfer learning predictive model.
Note that there is a different number of “valid” participants per
data length because the analysis includes only participants who have
measurements within this period.

participants with very few training samples. In addition, our proposal of obtaining

probabilistic predictions, expressed as having a mean and a variance, is beneficial

since we are producing a prediction and an associated measure of uncertainty over

each prediction that allows a measure of how much we can trust the prediction itself.

The previously presented framework is also flexible and can be used in different

applications by making the appropriate configurations i.e. adding or removing

parameters. For example, in the NEVERMIND we know that we have three

questions all of them taking values from 1-6 thus, the baseline value of the observation

vector can be initially empirically set to the mean state while in the ICU dataset,

the three observations take different values which empirically can not be justified.

In such case, our model gives us the flexibility to parametrize the observation

vector in order to get this baseline value.

However, such an approach does not exploit the full potential of the MCMC
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sampler with respect to estimating the integral in equation (3.4). The proposed

BMA approach makes use of MCMC, simply in order to explore and generate

samples from p(θ |YN); these samples are then adjusted using p(y |θk) as shown

in equation (3.5), to obtain the probability p(θ |y,YN) required to approximate

equation (3.4). To make fuller use of the potential of the MCMC sampler for the

estimation of the integral in equation (3.4), we formulated a new approach, which

allows MCMC to explore and sample from p(θ |y,YN) directly. This improved

framework will be described in the next chapter.



4
Parametric Transfer Learning based on

the Fisher divergence
This chapter introduces a personalised Bayesian inference method making use of
Transfer Learning in the context of Hamiltonian Monte Carlo sampling, which
allows a population prior to be directly represented in the sampling process
through the use of the Fisher divergence.1,2
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4.1 Introduction

In the early stages of a patient’s enrolment, when data are limited and sporadic,

rather than facing the risk of over-fitting with an inappropriately personalised

approach, we propose a model that initially relies on a more generalised prediction,

borne from prior knowledge and as more personal data become available, the model

will slowly starts transitioning to more personalised predictions, in an organic, data-

driven manner. The prior knowledge required for the initial generalised predictions

will be obtained from other participants in the study, and will be used to inform the

prediction of a specific patient through an appropriate transfer learning mechanism.

The technique presented in this chapter is a parametric transfer-learning approach

based on the Fisher divergence (FD), which expresses external information coming

from other patients as a prior probability distribution used within a Hamiltonian

Monte Carlo framework. Parametric models assume that the data distribution

is defined in terms of a finite set of parameters. This approach allows us to

create patient-specific models and make informed predictions about a specific

individual, even in the early stages of data collection, when data are sporadic,

limited, and acquired slowly over time, by leveraging general information available

from other patients in the form of priors. This technique allows for a seamless

transition from generalised to highly personalised models, as data become gradually

available. The effectiveness of that method will be demonstrated in the context of

personalised prediction of self-reported well-being scores, using data from the

NEVERMIND project [8].

4.1.1 Model inputs
For the purposes of this work, we will use data collected from 112 participants

(66 Male, 46 Female) during the NEVERMIND clinical trial [8] for the period

between end of December 2017 and end of March 2019. The dataset includes

patients who have a diagnosis of myocardial infarction (19 Male, 1 Female), breast
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cancer (39 Female), prostate cancer (32 Male), kidney failure (8 Male, 3 Female)

and lower limb amputation (7 Male, 3 Female).

In this study, we will again only consider the three self-reported well-being scales,

mentioned earlier in Sec. 3.1.1. This time though, each scale’s numerical input

takes values from 1.0 to 6.0∗ (at 0.2 increments), where lower values represent

better outcomes. Each question is still prompted daily and participants may

refuse to provide an answer, contributing to the scarce, sporadic nature of the

dataset. Participants for whom there were no available data (e.g. patients who

had already been enrolled in NEVERMIND, but had not yet started using the

system), or whose total data recording-length is less than two weeks, are excluded

from the analysis carried out here.

A comparison of the data distribution of self-report “Day”, “Feel” and “Sleep”

scores to a normal distribution with mean and standard deviation corresponding

to the data can be seen in Fig. 4.1.

4.1.2 Model parameters
As described earlier in Sec. 3.1.2, the latent state of the LDS model (3.1) at any

time t can be extended to describe an auto-regression of arbitrary order, simply by

extending the state-vector to include its most recent values, e.g. by writing:

x(t) = [ξ(t), ξ(t− 1), ξ(t− 2), ...]T (4.1)

where ξ(t) is the original, “base” latent state, and x(t) is the extended one. In

this work, we use a simplified version of the LDS model described by (3.1), which

ignores the influences from the external environment; in other words, the inputs

u(t) are absent and, therefore, the matrix B is unused since we are not considering

external inputs at this stage. Furthermore, the observation vector y(t) is limited to

∗The upper limit of the scale was 6.8 during the pilot study and the early stages of the clinical
trial but this was later capped at 6.0, following interface and user design considerations. This does
not affect our data, since in the current dataset approximately only 0.15% of the observations are
> 6.
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Figure 4.1: Empirical distribution of self-report well-being scales.

reflect only self-reported well-being scales. Given the above, we consider a unit-root,

third-order autoregressive model with a single state capturing all three observations,

which can be represented by the LDS model in (3.1) with:

A =

a
∗
0 a1 a2

1 0 0
0 1 0

 , C =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 ,

Sx =

sx 0 0
0 0 0
0 0 0

 , Sy =

sy 0 0
0 sy 0
0 0 sy

 ,
B=[], µy=[µy, µy, µy]T and x(0) = [ξ1, ξ1, ξ1]T. The a∗0 represents parameters

computed via the constraint a∗0 = 1−a1−a2 to ensure the model has a unit root.

The transition matrix A is totally equivalent to the one presented in Sec. 3.1.2

since if we re-order it, we will still get the same result, since it corresponds to a

re-ordering of the state vector. Finally, the estimates of the unknown model matrices

are parametrised again through θ, where θ = [a1, a2, c11 . . . c33, sx, sy, µy, ξ1].
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4.2 Method

In the previous method [9] presented in Chapter 3, we used the affine invariant

ensemble sampler for MCMC (emcee) proposed in [100]. However, there are cases

where the affine-invariant ensemble sampler may not perform well or shows unusual

and undesirable properties. In particular, when the target density is a multi-

modal landscape, the walkers can become stuck in different modes [107] or in lower

dimensional subspaces. Furthermore, in high dimensions, the chains can show

insufficient convergence and slow mixing, or appear to have converged when they

have not [101]. For these reasons, in this work, we decided to utilise an HMC

sampler [108], written in the Stan language [109], and more specifically its adaptive

extension, the No-U-Turn Sampler (NUTS) [110].

4.2.1 Hamiltonian Monte Carlo sampler
The HMC approach exploits Hamiltonian dynamics in order to propose future

states in the Markov chain. Effectively, the system simulates the movement of

particles over a surface, such that the overall energy of the system is conserved, and

can be expressed as the sum of two energy components a “kinetic energy”, and a

“potential energy” component. The kinetic energy component is generated via a

pre-determined probability distribution, and thus plays the part of the proposal

component in MCMC, whereas the potential energy component maps directly to

the underlying probability distribution we are trying to sample from. Standard

HMC algorithms generally depend on, and are sensitive to an appropriate choice of

hyperparameters, namely the step-size and number of steps to use during exploration

of the domain. The NUTS variant modifies the proposal component of the base

algorithm slightly, in that it evolves the initial system both forwards and backwards

in time to form a balanced binary tree. The system then stops automatically

when the algorithm detects that the sampler has started retracing earlier steps

(i.e. making a “U-turn”), thus eliminating the need to define a pre-determined
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number of steps. At the same time, the step-size parameter is adapted on the fly,

completely eliminating the need to hand-tune HMC.

The HMC algorithm is advantageous, in that it organically makes use of gradient

information, enabling it to move faster toward regions of high probability and

explore the parameter space more efficiently compared to standard random walks.

Consequently, with this sampler we obtain faster convergence in high-dimensional

target distributions, while the resulting Markov chain is less correlated. In addition,

like in emcee, multiple chains can be allowed to run in parallel. Finally, the use of

HMC allows for straightforward scaling up of models to even higher dimensionality

and complexity, which could be required in future work.

As previously mentioned in Sec. 3.2.1, according to Bayes Theorem, given a vector

of observations y, and a vector of parameters θ, the posterior probability p(θ |y) is

related to the likelihood term p(y |θ) and the prior term p(θ) via equation (3.2).

Given a way to compute the product p(y|θ)p(θ), the HMC sampler allows us to

generateK random vectors θk, distributed according to p(θ|y). We can then use this

fact to estimate a posterior expectation Eθ|y
[
h(θ)

]
=
∫
h(θ) p(θ|y) dθ with respect

to an arbitrary function h(θ), as the sample average 1
K

∑K
k=1 h(θk), evaluated at

the posterior samples θk [18, Sec. 10.1].

Both our previously described in Sec. 3.2.2 TL approach based on BMA [9] and the

one described in this section, also presented in [10], are essentially ML techniques

for estimating the intractable integral in equation (3.4); however, they do so in

a substantially different way.

The approach delineated in this section is a parametric TL method based on

the Fisher divergence, which can be used to fit a sample of data points to given

probabilistic models defined up to a normalisation constant [111–113]. In this

approach, the HMC sampler uses the data from each participant directly, to create

chains of parameter vectors reflecting the posterior probability distribution of their

personalised models. However, in doing so, the MCMC process itself makes use
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of a TL component internally, in the sense that the generated chains are obtained

based on a modified prior, where this prior accounts for the knowledge available

from all other participants, in a manner reminiscent of empirical Bayes approaches.

Stated formally, we estimate equation (3.4) as

p(ỹ |y,YN) ≈ 1
K

K∑
k=1

p(ỹ |y,θk), (4.2)

where the samples θk ∼ p(θ |y,YN) are obtained via MCMC using the likelihood

p(y|θ) from equation (3.3) and a prior p(θ |YN) obtained as a mixture of the

posterior distributions of the N previous participants:

p(θ |YN) = 1
N

N∑
n

p(θ |yn), (4.3)

that we approximate in parametric form as:

p(θ |YN) ≈ qβ(θ) p(θ), (4.4)

where qβ(θ) is a function governed by a vector of hyperparameters β. By design,

this is not a standard variational inference, it is just a way (a choice) to approximate

the likelihood in order to modify a weak prior into a prior that accounts for the

information from the other “donor” patients. Note also that while p(θ |YN) in

equation (4.3) is, from a theoretical point of view, the same as in the BMA approach,

the fact that we now consider an approximation of it in parametric form allows us

to explore it fully using the HMC sampler, rather than being constrained to using

only the N × S samples previously obtained from the N other participants.

In this work, the specific qβ(θ) used is an exponentiated quadratic w.r.t. a non-

linear mapping of θ:

qβ(θ) ∝ exp
(
− 1

2 g(θ)TQβ g(θ)− vT
βg(θ)

)
, (4.5)

where β = vec([Qβ,vβ]) and g is a vector function such that its i-th element is

log(θi) if θi is a parameter representing a variance (e.g. sx) and θi otherwise. The

quadratic parameter Qβ is chosen in the set of positive semi-definite matrices so

that qβ(θ) is bounded and qβ(θ) p(θ) is a proper prior. The hyperparameters β

leading to the best approximation equation (4.4) can then be found by minimising

the Fisher divergence from qβ(θ) p(θ) to p(θ |YN).
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4.2.2 Fisher Divergence
The Fisher divergence from a distribution q(x) to a distribution p(x), denoted

DF (p‖q), is defined as:

DF (p‖q) =
∫

x
p(x)

∥∥∥∥∥∇xp(x)
p(x) − ∇xq(x)

q(x)

∥∥∥∥∥
2

dx = (4.6)

=
∫

x
p(x)

∥∥∥∇x log p(x)−∇x log q(x)
∥∥∥2

dx

Much like its better known counterpart — the Kullback-Leibler divergence (also

known as relative entropy) — the Fisher divergence can be understood as an

asymmetric measure of distance between a target distribution p, and an approx-

imating distribution q serving as a model for p. In the same manner that the

Kullback-Leibler divergence is tightly linked to the concept of entropy (in that

it corresponds to the entropy difference between p and q) the definition of the

Fisher divergence is similarly tightly linked to the concept of the Fisher information,

defined3 by J(p) =
∫
p(x)

∥∥∥∇x log p(x)
∥∥∥2

dx.

A practical disadvantage of the Kullback-Leibler divergence is that, for the result

to be meaningful, it requires that both the target, and approximating function

be expressed as appropriately normalised probability density functions. However,

when one only has unnormalised quantities to work with, the computation of an

appropriate normalisation constant, whose proper evaluation requires integration

over the entire domain of the function, tends to be intractable in the context

of high-dimensional problems. By contrast, the Fisher divergence obviates the

need for computing such a normalisation constant, since the fractional nature of

the calculation with respect to both the target and the approximating function,

means that a normalization constant would cancel out from either of those two

terms anyway, and therefore lack of appropriate normalization does not affect

the final result. This makes the Fisher divergence an advantageous measure of

distance to use when dealing with high-dimensional, unnormalised probability

3 As also noted in [111, 113], while the Fisher information can be defined with respect to
any parameter, this particular formulation is specifically defined with respect to a hypothetical
location parameter.
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density functions; this is indeed the case in our TL approach, since both our qβ(θ)

model, and any distribution represented by the output of an MCMC sampler, will

necessarily represent unnormalised quantities.

4.2.2.1 Minimising the Fisher divergence of the mixture distribution

Initially we derive a relationship between the Fisher divergence of a mixture

distribution and those of its mixture components. Given a mixture distribution

p(x) = ∑
iwipi(x) with ∑iwi = 1 and wi≥ 0, the Fisher divergence between p and

an approximating distribution qβ can be computed as:

DF (p‖qβ) =
∫

x
p(x) ‖∇x log p(x)−∇x log qβ(x)‖2 dx =

=
∫

x
p(x)

∥∥∥∥∥∇xp(x)
p(x) −∇x log qβ(x)

∥∥∥∥∥
2

dx =

=
∫

x

{
‖∇xp(x)‖2

p(x) − 2∇xp(x)T∇x log qβ(x) (4.7)

+ p(x)‖∇x log qβ(x)‖2
}
dx

Since we have based our choice of the divergence on the original paper by [111]

(Equation 2), we follow the same direction therefore the selection of the direction

DF (p‖qβ) instead of DF (qβ‖p). Now, if we rearrange the equation (4.7) by adding

and subtracting a convenient term, then breaking up the mixture distribution

and regrouping, we will obtain:

DF (p‖qβ) =
∫

x

{
‖∇xp(x)‖2

p(x) −
∑
i

wi
‖∇xpi(x)‖2

pi(x)

+
∑
i

wi

[
‖∇xpi(x)‖2

pi(x) − 2∇xpi(x)T∇x log qβ(x)

+ pi(x)‖∇x log qβ(x)‖2
]}

dx = (4.8)

= J(p)−
∑
i

wi J(pi) +
∑
i

wiDF (pi‖qβ),

where J(p) =
∫

x p(x)‖∇x log p(x)‖2dx is the Fisher information [113] of p while

J(pi) is that of pi. This is especially useful when looking for the best approximation

qβ to a mixture distribution p. Interestingly, since J(p) and J(pi) do not depend

on qβ, the best approximation to the mixture distribution can be computed by
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minimising a weighted sum of the Fisher divergence between the approximant

and the mixture components:

β̂ = arg min
β
DF (p‖qβ) = arg min

β

∑
i

wiDF (pi‖qβ). (4.9)

Regarding our parametric TL approach, as we showed above, for a mixture

distribution, the Fisher divergence of the mixture is simply the weighted sum

of the individual divergences from qβ(θ) p(θ) to the mixture components. From

a collection of samples distributed according to p(θ |yn), obtained by running

MCMC separately for each one of the N “prior” patients, we can derive the Fisher

divergence for each mixture component as follows:

Fn(β) = DF

(
p(θ|yn)

∥∥∥ qβ(θ) p(θ)
)

=

=
∫
θ
p(θ|yn)

∥∥∥∥∥∇θ
[

log p(yn|θ) p(θ)
p(yn)

]

−∇θ
[

log
(
qβ(θ) p(θ)

)]∥∥∥∥∥
2

dθ ≈ (4.10)

≈ 1
K

K∑
k=1

∥∥∥∥∇θ[log p(yn|θk)]−∇θ[log qβ(θk)]
∥∥∥∥2

with θk ∼ p(θ|yn). In this case, w = 1/n because we borrow equally from all n

“donor” patients and therefore, it becomes possible to obtain an optimal value β∗

by solving the following constrained optimisation problem:

β∗ = arg min
β : Qβ∈S+

1
N

N∑
n=1

Fn(β); (4.11)

where S+ is the set of symmetric positive semi-definite matrices. Given our choice

of qβ, the problem in equation (4.11) is an instance of a cone quadratic program,

which we solve efficiently using the cvxopt library [114].

The prior qβ∗(θ) p(θ) so obtained is then used alongside the likelihood provided

by the LDS model in the context of MCMC, to produce the K samples required

for equation (4.2), thus giving rise to our final prediction as the average of K

individual prediction components.
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The mean and variance of the overall prediction can be obtained at each future time-

point by pooling the means and variances of the individual prediction components

(i.e. µk and σ2
k respectively) as follows:

µ(t) = 1
K

K∑
k=1

µk(t), (4.12a)

σ2(t) = 1
K

K∑
k=1

{
σ2
k(t) +

[
µk(t)− µ(t)

]2}
. (4.12b)

The pipeline the proposed method can be seen in Fig. 4.2.
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Figure 4.2: Pipeline of the proposed parametric TL method.

4.3 Model instantiation for the NEVERMIND
data

This section describes the specific values and implementation of the model defined

above, as used in the experiments, as well as the approach used to validate the

method on the “NEVERMIND dataset”. The predictive performance of the current

TL approach, namely the Fisher-divergence minimization approach (referred to

as the Mfd model henceforth), is evaluated in relation to a number of competing
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models. In the first instance, we compare this model against the BMA approach

(model Mbma) presented in Chapter 3 and used in [9]. To ensure a fairer comparison

between Mfd and Mbma, the chains for Mbma were created using HMC rather than

emcee as previously done in [9]. In addition, we compare Mfd against a Maximum A

Posteriori (MAP) model (Mmap) and the 4 “baseline” models Ma, Mp, Ml, and Mr

previously presented in Sec. 3.3.2. The Mmap model was obtained by running Stan

in ‘optimization’ mode instead of “sampling” mode, which uses the Limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithm under the

hood [109]; this directly provides a single “best” estimate for the parameter vector

θ, corresponding to the MAP estimate of the posterior distribution, as computed

by Stan. This time, since we have a parametric method which does not require

as much data as our previous non-parametric method, the proposed approach

is evaluated for K = 1000 candidate models in total as opposed to K = 1000

candidate models per “donor” participant used in our previous method in Sec. 3.3

which is computationally very expensive.

Regarding the priors on model parameters, we have chosen for the “donor” model

priors to use weakly informative priors expressing vague or general information,

while the “recipient” priors are a combination of these “donor” model priors and

the transfer. This has the effect that model selection is primarily driven by the

likelihood function, such that in the presence of adequate data, the specific choice

of prior has a minimal effect on the final inference, relative to the data. Specifically,

with regard to the parameters described in Sec. 4.1.2, we place a diffuse Gaussian

prior over elements a1, a2 ∼ N (0, 0.52) of the transition matrix A, and over the

coefficients ci ∼ N (0, 1) of the observation matrix C. A diffuse Gaussian prior is

also placed over the initial state vector x(0) where ξ1 ∼ N (1, 2); this distribution

was centred away from zero to break the symmetry of the problem and reduce the

occurrence of multiple equivalent modes. We further place an inverse gamma prior

over the non-zero diagonal element of the state-noise matrix Sx, as sx ∼ Γ-1(α, β)

with shape parameter α=2 and scale parameter β ≈ 0.06. Small values of α lead

to wide distributions and in particular α=2 corresponds to a prior with infinite
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variance, thus allowing the inference mechanism to explore values of sx as large as

needed. The mode of the inverse gamma distribution is given by s∗x = β(α+ 1)-1.

We also set the baseline value of the observation vector to the fixed value µy=3,

and the parameter sy to the fixed value of 0.04 (i.e. 0.22); the latter was chosen

empirically, by estimating the variance of the error made by the subjects when they

provide answers to the questionnaires, given the fact that they use a slider in order

to do so, and that this results in the scales being quantised at a resolution of 0.2.

The HMC sampler was set to compute Markov chains using 8 walkers working in

parallel, such that each sample corresponds to a vector θ consisting of the scalar

parameters described in Sec. 4.1.2 (i.e. a1, sx, etc). Each walker was set to create

275 samples, where the first 150 obtained samples were discarded as “burn-in”,

leaving 125 representative samples per chain. The individual chains generated from

each walker were then combined into a single larger chain, having a total of 1000

samples. Please note that the HMC for “donors” and “recievers” is identical (i.e.

number of chains, etc) with the only exception of the qbeta additional prior.

We further monitor the convergence of the chains, by computing the potential scale

reduction factor on split chains, typically referred to more concisely as the ‘split-R̂’

measure [18, Sec. 11.4]. The split-R̂ provides a measure of convergence and mixing

quality of the chains in an MCMC simulation, which can be used to gain insight into

the rate and degree of convergence, as well as in terms of detecting non-stationarity,

allowing for better evaluation of the underlying algorithms. We also obtain the

log-posterior density (denoted by the ‘lp__’ variable in Stan) and summary-statistics

for each model parameter, including means, standard deviations (SD) and various

quantiles computed from the draws. The summary also reports the Monte Carlo

Standard Errors (SEmean), and the effective sample sizes (neff). The Monte Carlo

Standard Error is the uncertainty about a statistic in the sample due to sampling

error; the smaller the standard error, the closer the mean estimate of the posterior

draws of the parameter is expected to be to the true value. The effective sample size,

neff, measures the amount by which autocorrelation in samples increases uncertainty
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(standard errors) relative to an independent sample; if the samples are independent,

the effective sample-size equals the actual sample-size. It is particularly important

in terms of gauging the reliability of the split-R̂ measure, as a small neff can lead to

unreliable values for R̂. Table 4.1 presents an indicative example of a summary for

the parameters of interest, as estimated from a collection of samples corresponding

to one of the participants in the study. The results show that all values for the

split-R̂ are approximately 1.0 (above 0.9 and below 1.1) and neff is well above the

minimum recommended value of 100 effective samples per chain [115], indicating

that chains had mixed well and the model had successfully converged.

Table 4.1: Summary of results using stan for the parameters of interest estimated by
the samples for a single participant

Parameter mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

a01 0.0863 0.0029 0.0871 -0.0770 0.0278 0.0856 0.1426 0.2599 882.9309 1.0010
a02 0.0032 0.0061 0.1497 -0.3080 -0.0944 0.0076 0.1004 0.2788 604.7551 0.9982
a03 0.1771 0.0144 0.3475 -0.5423 -0.0506 0.1996 0.4243 0.8121 585.1530 1.0006
a04 0.0006 0.0027 0.0855 -0.1759 -0.0538 0.0027 0.0603 0.1637 1019.4277 1.0004
a05 0.1319 0.0054 0.1451 -0.1602 0.0338 0.1338 0.2388 0.3981 717.8639 1.0029
a11 0.0536 0.0041 0.1454 -0.2280 -0.0340 0.0480 0.1435 0.3494 1257.8595 1.0007
a12 -0.0532 0.0079 0.2459 -0.5414 -0.2140 -0.0448 0.1095 0.4344 959.2048 1.0040
a13 0.5468 0.0124 0.3718 -0.1838 0.2800 0.5573 0.7887 1.2924 892.5546 1.0028
a14 0.5410 0.0056 0.1582 0.2074 0.4403 0.5527 0.6531 0.8261 802.2508 1.0018
a15 -0.0049 0.0079 0.2330 -0.4417 -0.1745 -0.0086 0.1596 0.4523 861.1409 1.0042
a21 0.0718 0.0046 0.1517 -0.2087 -0.0301 0.0621 0.1736 0.3867 1081.4613 1.0019
a22 -0.2019 0.0107 0.2570 -0.6839 -0.3797 -0.2204 -0.0287 0.3285 573.6596 1.0013
a23 0.3631 0.0119 0.3585 -0.3241 0.1276 0.3621 0.6134 1.0868 908.1137 0.9985
a24 -0.1932 0.0049 0.1449 -0.4598 -0.2937 -0.1999 -0.0907 0.0972 887.2103 0.9997
a25 -0.1025 0.0065 0.1899 -0.4588 -0.2386 -0.1038 0.0286 0.2722 847.3869 1.0032
Sx00 0.2353 0.0032 0.0917 0.0819 0.1731 0.2233 0.2862 0.4436 811.2320 1.0041
Sx11 1.3516 0.0138 0.4259 0.7136 1.0479 1.2784 1.5717 2.3702 949.6742 0.9984
Sx22 0.5590 0.0118 0.3038 0.0943 0.3412 0.5125 0.7272 1.3054 665.3888 1.0022
ξ1 1.0116 0.0381 1.0741 -1.5606 0.4478 1.1017 1.7275 2.8530 796.3929 1.0065
ξ2 1.2758 0.0478 1.5653 -2.1297 0.2680 1.4053 2.3020 4.2206 1073.7744 0.9990
ξ3 0.7028 0.0703 1.8407 -3.2101 -0.5245 0.7903 1.9692 4.0550 685.7082 1.0085

lp__ -262.1961 0.1446 3.0299 -268.7097 -264.1561 -261.8284 -259.9745 -257.0868 438.9218 1.0004

Note: Rows correspond to model parameters, and columns to the various summary metrics. mean denotes the posterior mean,
se_mean denotes the Monte Carlo standard error, and sd denotes the posterior standard deviation. The numbers 2.5%, 25%, 50%,
75%, and 97.5% denote quantiles. n_eff denotes the effective sample size, and Rhat denotes the split-R̂ statistic.

4.3.1 Model output
The output of the model at each timepoint is a 3-dimensional probability distribution

expressing a probabilistic prediction for the values of the three questions involved,

i.e. the Feel, Sleep, and Day scores. For a different value of the length-of-training

hyperparameter Ltr, a different model output is obtained over both the training and

forecasting period. For visualisation purposes, we graph the individual questions

independently as three separate graphs, each reporting score as a function of time t.
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Fig. 4.3 shows a typical example of the means and variances of the model’s

probabilistic outputs per timepoint as learned by our model, along with the sporadic

self-reported well-being scores for one of our participants, with Ltr=1 and Lfc=7. In

the figure, the mean prediction is represented as a dashed line, and the uncertainty

around the prediction is indicated by a shaded ±σ area around the mean. As

expected, most (but not all) reported scores fall within the shaded region, even

in the forecast phase, where, however, as expected σ grows progressively bigger

due to the absence of inputs to the LDS. The LL (see equation (3.9)) and RMSE

measures (see Sec. 3.3.2) corresponding to the model outputs over the timepoints

in Fig. 4.3 were -4.41 and 0.5447, respectively.

Figure 4.3: Example of self-reported well-being score modelling and prediction. The
dashed vertical lines mark the last time point available to the model for training and
visually separate past observations from future predictions. The solid red circles mark
the reported scores that were used by the model, while the empty ones are reported to
visually assess the prediction accuracy. The dashed black and blue lines and the associated
yellow and green shadows represent the mean and standard deviation, respectively, of the
distribution of the model outputs.
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4.4 Results

In this chapter, we will initially present the results from the comparison of the

performance of the proposed method against the competing models and the

evaluation of our method when different number of previous days are used for

training as well as when we forecast a different number of future days.

4.4.1 Comparison against competing models
We compared the performance of the Mfd method against the competing models

outlined in Sec. 4.3 in two ways: a) by analysing the distribution of performance

differences directly; b) by analysing “winning percentages” as per equation (3.10).

Both analyses were performed using LL and RMSE measures, separately. Fur-

thermore, we used again the exact Wilcoxon Signed-Rank test-statistic [104] to

make pairwise comparisons for the methods.

A representative example of the first type of analysis can be seen in Fig. 4.4 for the LL

differences and Fig. 4.5 for the RMSE differences between models. The results were

obtained for Ltr=3 and Lfc=7, which was the most conservative choice for comparing

Mfd and Mbma (more on this in Sec. 4.4.2). The box and whisker graph plots show

the median, interquartile range, and extreme cases of LL differences between the

transfer learning model Mfd and its six competitors. It is clear that, for both

performance measures, Mfd performs better across the board. Also, among all other

competitors, Mbma is the one with the least spread in terms of pairwise differences

over all patients. Similar results were obtained with other values of Ltr and Lfc.

Figs. 4.6 and 4.7 look at the same predictions (obtained for Ltr=3 and Lfc=7)

using the second type of analysis. These results show that the Mfd model scores

significantly more wins (at the 5% level, using a one-tailed hypothesis) compared to

all of its competitors, when both the accuracy and the uncertainty of the predictions

is taken into account (i.e. when using LL as the performance measure). When

only the RMSE is used, Mfd scores significantly better than four out of the six
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Figure 4.4: Box and whisker graph plots showing median, interquartile range, and
extreme cases of LL differences when training with 3 weeks of past data and predicting 7
days ahead. Values above 0 represent cases where Mfd is better than its competitors.
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Figure 4.5: Box and whisker graph plots showing median, interquartile range, and
extreme cases of RMSE differences when training with 3 weeks of past data and predicting
7 days ahead. Values below 0 represent cases where Mfd is better than its competitors.
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competitors, but shows no significant difference compared to its Mbma and Ma

competitors. Although the winning percentages does not seem to represent a

genuine and statistically significant improvement for these two pair of competing

models, it still is on par which is something that we could expect for longer periods

of training specifically for the non-transfer methods.
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Figure 4.6: Comparison of the winning results based on LL for the Mfd against all
competing models when training with 3 weeks of past data and predicting 7 days ahead.
The * indicates statistical significance.

For shorter training period, when Ltr=1 and Lfc=7, the analysis of the ‘winning

percentages’ as presented in Figs. 4.8 and 4.9 shows that the Mfd model scores

significantly more wins (at the 5% level, using a one-tailed hypothesis) compared to

all of its competitors, when both the accuracy and the uncertainty of the predictions

is taken into account (i.e. when using LL as the performance measure). When

only the RMSE is used, Mfd scores significantly better than five out of the six

competitors, but shows no significant difference compared to its Mbma competitor.

Overall, the results are in-line with our expectation for the transfer learning methods

where we anticipate that for fewer weeks of training data when only a limited amount
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Figure 4.7: Comparison of the winning results based on RMSE for the Mfd against all
competing models when training with 3 weeks of past data and predicting 7 days ahead.
The * indicates statistical significance.

of patient-specific data are available for training, transfer learning approaches will

be significantly better than non-transfer learning methods and virtually identical, if

not still significant, when more weeks of patient-specific training data are available.

The effect of the training and testing period length on the performance of the

transfer learning methods will be further explored in the next section.

4.4.2 Effect of training / testing period length on perfor-
mance

One would generally expect that increasing training-period length would improve

performance over all models and that predictions further away from the last training

time-point would diminish in accuracy. An analysis related to our second hypothesis

(H.2) was therefore conducted to confirm this, for training periods Ltr∈{1, 3, 7} weeks

and forecasting periods Lfc∈{1, 3, 7} days. Table 4.2 shows the results obtained with

respect to the LL evaluation measure.4 The top half of the table shows the median LL

4 The corresponding table for RMSE is not shown as it was very similar.
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Figure 4.8: Comparison of the winning results based on LL for the Mfd against all
competing models when training with 1 weeks of past data and predicting 7 days ahead.
The * indicates statistical significance.
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Figure 4.9: Comparison of the winning results based on RMSE for the Mfd against all
competing models when training with 1 weeks of past data and predicting 7 days ahead.
The * indicates statistical significance.
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Table 4.2: Medians of LL (top) and of LL-differences (bottom) for various durations of
training and forecast periods.

Model
Type

Ltr = 1 Ltr = 3 Ltr = 7
Lfc=1 Lfc=3 Lfc=7 Lfc=1 Lfc=3 Lfc=7 Lfc=1 Lfc=3 Lfc=7

Mfd -0.15 -2.12 -5.07 -0.76 -2.40 -5.54 -0.72 -1.09 -3.20
Mbma -1.23 -2.63 -4.87 -2.07 -3.59 -6.66 -1.23 -2.15 -3.61
Mmap 0.49 -8.25 -26.60 -1.44 -5.80 -17.57 -1.41 -3.10 -6.32
Ma -0.98 -3.67 -8.40 -1.80 -2.60 -11.03 -1.11 -1.40 -3.45
Mp -5.97 -8.02 -14.80 -7.61 -7.93 -13.85 -2.14 -4.45 -12.80
Ml -2.07 -4.14 -10.90 -1.95 -4.11 -10.03 -1.56 -3.37 -6.59
Mr -1.33 -7.87 -33.61 -1.74 -4.13 -14.73 -1.14 -2.08 -3.76

Models
Compared

Mfd vs Mbma 0.88 0.60 0.30 0.71 0.25 0.20 0.58 0.57 0.69
Mfd vs Mmap -0.75 4.28 22.96 0.95 1.78 8.18 0.17 0.16 0.40
Mfd vs Ma 0.54 0.64 2.27 0.58 0.05 0.19 0.50 0.23 -0.12
Mfd vs Mp 5.35 4.24 8.75 5.77 4.95 7.07 1.07 2.87 4.49
Mfd vs Ml 1.66 1.83 4.70 0.89 0.50 2.01 0.73 1.56 1.32
Mfd vs Mr 1.73 6.95 26.70 0.29 0.24 3.65 0.29 0.09 0.09

participants 24 37 46 24 40 52 27 40 48

Note that there is a different number of “valid” participants per data
length because the analysis includes only participants who have data
within this period.

values, obtained over all patients for whom data was available for the corresponding

{Ltr, Lfc} pair; values closer to zero represent better performance. The bottom half

shows pairwise median differences with respect to Mfd versus competing models.

Note that because of the nature of these intervals, each {Ltr, Lfc, } pair will consist

of a different number of “valid” participants (i.e. participants who have data within

this period), and therefore it is important to note that the above medians are

calculated over different sets of patients. The last row shows the number of such

valid participants per {Ltr, Lfc} pair. Also note that, pairwise median differences

are generally not equivalent to pairwise differences between medians.

As shown in the table, some of the methods under comparison initially struggle to

make acceptable 7-day predictions, when only one week or three weeks of data is

available to them (e.g. Mmap, Mp and Mr); it is not until 7 weeks of training that
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most models can predict one or three days ahead with reasonable accuracy. By

contrast, looking at Mfd, we see that, not only is it able to make predictions from

week one, but it can even make 7-day predictions with remarkable stability for any

number of training weeks. Similarly as shown in the bottom half of Table 4.2, we

can see that Mfd is superior to most methods in most conditions (with the median

LL difference being negative only in 2 out of 54 comparisons). In fact, focusing on

the Mfd vs Mbma row, we see that the new method is also superior to its predecessor,

under all scenarios considered; the choice Ltr=3 and Lfc=7 corresponding to the

graphs shown earlier in Secs. 4.3.1 and 4.4.1 showing a relatively narrow interquartile

range between the two, was simply selected on the basis that it represented the

worst-case scenario for Mfd in relation to Mbma.

4.5 Discussion

In this chapter, we proposed a parametric transfer learning approach based on the

Fisher divergence in the context of HMC sampling and Bayesian inference that

deals with the challenge of building user-specific predictive models able to make

predictions in the presence of scarce, sporadic observations. This approach makes it

possible to create patient-specific models and make useful predictions of self-reported

well-being scores, even when the data available for initial training are sporadic and

limited, such that training is performed incrementally as more data become slowly

available over time. The approach allows us to make informed predictions even in

the early stages of data collection, by leveraging external information coming from

other patients, in the form of a prior used within a MCMC process.

We demonstrated this approach on data obtained by the NEVERMIND clinical

trial, and measured its performance against previous work (e.g. the BMA method

introduced in Sec. 3.2 and in [9]), and a number of baseline approaches. Our results

show that this approach yields a significant improvement over its competitors,

and is particularly useful in difficult training/forecasting scenarios, e.g. when one
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requires a distant, patient-specific forecast, with only a limited initial amount of

patient-specific data available for training. These results confirm again our first

hypothesis (H.1), that in the presence of limited person-specific data available for

training (i.e. at the early stage of data collection), the transfer learning based

prediction model performs significantly better than models which rely only on

the limited patient- specific data (i.e. the ‘target’ domain). Our results are also

supportive of the hypothesis H.2 that the effect of transfer learning on predictive

performance will be maximal when the amount of person-specific data available for

training is minimal, while as person-specific data availability increases, the relative

contribution of the transfer learning component to the overall accuracy will diminish.

This is clearly demonstrated when the models are compared on the most difficult

forecasting scenario that requires the models to predict 7 days ahead. However,

our second hypothesis (H.2) will be further tested in our next chapter.

Finally, as shown by the performance of transfer learning, the background patient

population acting as the source domain for the transfer learning component is

informative. However, a limitation of our approach is that we made no attempt to

quantify, or investigate ways in which this background knowledge could be made

more informative. Thus, in the next chapter the focus will be on investigating

whether applying preprocessing strategies that promote individuals in the population

that are known to be similar in some way to the person being modelled, enhance

transfer learning. At the same time, regarding the LDS model, we will explore a

three-state representation which will allow allow for bidirectional interaction between

the three individual states and more flexibility and expressive power to the model.



76



5
Transfer Learning modulated by similarity
This chapter introduces a similarity-based transfer learning approach mostly
incorporating highly relevant information from the source domain by biasing
population sampling towards participants having similar characteristics, based
on their emotional profiles, to the patient being modelled.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Model inputs . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.2 Model parameters . . . . . . . . . . . . . . . . . . . . . 79

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Trade-off in computational cost and accuracy . . . . . . 87
5.3.2 Comparison against uniform-sampling TL models . . . . 89
5.3.3 Comparison against competing models . . . . . . . . . . 92
5.3.4 Effect of training data availability on performance . . . 94

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Introduction

We previously discussed two TL approaches, a non-parametric transfer learning

approach based on an MCMC sampler and BMA [9] (see Chapter 3), as well as a

parametric transfer learning approach based on an HMC sampler and minimizing

the Fisher Divergence [10, 11] (see Chapter 4). These models make predictions

about a specific patient by leveraging general information available from other

patients. However, these methods are likely to encounter difficulties when transfer is

not mutually beneficial: for instance when participants are sufficiently dissimilar or
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their affective mood changes over time. This is something that a prediction method

should take into account when borrowing information from other patients.

In this section, we will present an approach that extends and complements the

work of previous chapters by modulating how much information is transferred from

the source population, based on a similarity between patients. This method not

only accounts for individual differences but also benefits from the data of similar

patients by performing a “soft” clustering (where a given patient can belong to many

clusters and also, belonging to a cluster is not binary but gradual) to identify groups

of similar individuals in order to better modulate the transfer. In the methods

mentioned above, we transferred information under the assumption of uniformly

distributed patients. Here we use self-reported personality information (which can

be consider quite stable over time) in order to assign probabilities of a patient

being used for transfer based on the similarity with the target patient. In other

words, the main idea is to use the output of a personality questionnaire to assess

the similarity between a new patient and each one of the other patients he/she

will borrow information from and transfer less or more based on this similarity.

The similarity can be transformed into a probability which can be used to weight

the information or the models we transfer.

5.1.1 Model inputs
For the purposes of this work, we used the dataset collected from 182 participants

enrolled in the NEVERMIND randomised controlled trial [8] in the period between

December 2017 and October 2019. As mentioned in previous chapters, the data

were collected in Pisa, Turin and Lisbon however, in this chapter the data are

only from Turin and Pisa, since the personality information is missing for the

other site. The experiments where approved by local ethical committees and all

participants had signed an informed consent form. Here, we again only consider

the three self-reported well-being scales that the patient is prompted to provide

on a daily basis. Patients may refuse to provide an answer, contributing to the

scarce, sporadic nature of the dataset. All participants were adults aged 18 or
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older, and had received a diagnosis of a severe somatic disease including myocardial

infarction, breast cancer, prostate cancer, kidney failure or lower limb amputation.

Participants that had no data (i.e., patients recently enrolled within the period

being considered but had not started using the system yet) were excluded from

the analysis carried out here, leaving 141 patients.

We also used data coming from a pre-enrolment personality questionnaire [116]

that all our patients in Turin answered. This was the 60-items (10 per dimension)

Davidson’s Emotional Styles Questionnaire (ESQ) [116], an earlier version of the

Davidson’s ESQ presented in [117], which aims to capture the dimensions of

Emotional Style. The questionnaire returns a score in 6 dimensions (Outlook,

Resilience, Social Intuition, Self-Awareness, Sensitivity to Context and Attention).

Davidson’s ESQ also stands on its own as an integrative measure of healthy

emotionality and can be used as an assessment tool to assess where each patient

falls with regard to each dimension. Here we use the output scores of ESQ in order

to find the similarity among patients, which then use together with our previously

proposed methods to modulate how mush information we will transfer.

5.1.2 Model parameters
In NEVERMIND, we propose to model patients and predict their self-reported

well-being scores using an LDS model (3.1) [97]. This LDS model can describe the

current state as an auto-regression of arbitrary order simply by extending the state

to include its most recent values, e.g. equation (4.1). In Chapters 3 and 4, the

latent state x was one-dimensional and the output y was a three-dimensional vector,

reflecting the three measurements used: the subjective morning mood, the subjective

sleep quality and the subjective end-of-day mood. The latent state x was assumed

to correspond to a state that represents in some manner the degree of the patient’s

underlying mental well-being. Thus, the above model effectively assumed that a

patient’s well-being depends only on the degree of their previous well-being, plus

any explicit interventions that have occurred, but not on the patient’s underlying

state of sleep quality or mood, as these are considered purely manifestations of the
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patient’s own degree of well-being, rather than factors contributing to it. While

this may be a reasonable approximation, clinical experience tells us that in the case

of underlying sleep and mood states, such a uni-directional model with respect to

depression is an over-simplistic representation of the relationship between them,

and that the relationship is more likely to be bi-directional [118]. Therefore, for

the purpose of the NEVERMIND project, a decision was made to adapt the model

slightly, so as to reflect this bi-directionality between the “mental well-being” latent

state, and the underlying “sleep” and “mood” latent states, as well as their role

in terms of producing the subjective measurements which we then obtained. Here,

the output measurements vector y remains the same as before but the new latent

state x is extended from the one-dimensional state (of arbitrary order) described in

equation (4.1), to a three-dimensional one. In the extended model each dimension

directly corresponds to collected observations of interest, such as the perceived

“waking/morning mood”, “quality of sleep” and “end-of-day stress” as subjectively

measured by the “feel”, “sleep” and “day” questionnaire. Within the NEVERMIND

project, the modified LDS model with the multi-state extension further includes a

“depression” latent state corresponding to the collected observations from the PHQ-9

score and an optional additional general “well-being” latent state which does not

assume any direct correspondence to any of the collected measurements. However,

for the purpose of this thesis, we adopted the model with one state for each of

the three observations only. The three-dimensional extension of the LDS model,

representing the three latent states can be described mathematically as follows:

x(t) ≡ [ξ0(t), ξ0(t− 1), . . . , ξ1(t), ξ1(t− 1), . . . , ξ2(t), ξ2(t− 1), . . . ]T (5.1)

where the sizes of the parameter matrices A, B, and C from equations (3.1a)

and (3.1b) are adapted appropriately.

The expressive power of the above model is increased compared to the previous

one in the following ways:



5. Transfer Learning modulated by similarity 81

• The patient’s overall mental well-being, sleep quality, and mood throughout

the day will depend on both the nature of these individual states from the day

before, as well as any (bi-directional) interactions between them (as defined

by state transition matrix A).

• The effectiveness of an intervention (as determined by the input matrix B)

can now be estimated with respect to its separate effects over all the above

states.

• The subjective answers given by patients with respect to sleep and mood are

interpreted to be a direct manifestation of their respective underlying states,

as modulated by their mutual interaction with the other states, including that

corresponding to overall mental wellness.

At the point of updating the latent states through observations (i.e. the update step

describe in equation (3.1b)), the parameter matrix C (governing how observations

adjust prior knowledge of the latent states) is constrained in such a manner that

observations relating to sleep, waking mood, and day quality only contribute to

a single state each. In this way, we ensure that the three added latent states to

the model have biological relevance, since they are made to reflect the underlying

latent states that give rise to their corresponding observations rather than some

other weighted combination of such biological states.

Here, we consider a unit-root, second-order autoregressive model, which can be

represented by the LDS model in (3.1) with:

A =
[
A11 A12
I3 03x3

]
,A11 =

a
∗
0 a01 a02
a∗1 a11 a12
a∗2 a21 a22

 ,A12 =

a03 a04 a05
a13 a14 a15
a23 a24 a25

 ,
where variables aj,k represent adjustable parameters, and a∗i represent parameters

computed via the constraint a∗i = 1 −∑n ai,n where n = 6, to ensure the model

has a unit root,

C =
[
I3 03×3

]
,
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where the effective identity matrix ensures a one-to-one relationship between the

specific latent states and their questionnaires at time t,

Sx =
[

sx 03×3
03×3 03×3

]
,

where sx=diag(sx00 , sx11 , sx22). Finally S0=diag(s00, s11, ..., s55), where the vari-

ance s00=s11=...=s55=0.04, Sy=[0.04, 0.04, 0.04]T, x(0) = [ξ1, ξ2, ξ3, 0, 0, 0]T and

µy=[3, 3, 3]T. The estimates of the unknown model matrices are again parametrised

through θ, where θ = [a01, . . . , a05, a11, . . . , a15, a21, . . . , a25, sx00 , sx11 , sx22 , ξ1, ξ3, ξ3]T.

5.2 Method

As we previoulsy described in Sec. 5.1.1, the 60-items (10 per dimension) Davidson’s

emotional style questionnaire returns a score in 6 dimensions called Outlook,

Resilience, Social Intuition, Self-Awareness, Sensitivity to Context and Attention.

Let Q ≡ {q1, q2, ..., qN} denote the set of N patients. For each patient qi ∈ Q, the

returned scores s(i)=[s(i)
1 , s

(i)
2 , · · · s

(i)
6 ]T are used in order to find a distance between

the vector of scores s(i) of, i.e., a “donor” patient from the study and the vector

scores s(j) coming from another patient qj ∈ {Q \ qi}, i.e., a new patient under

test, recently enrolled in the study. According to [117], the Outlook and Resilience

dimensions are highly correlated. Thus, for measuring the similarity between

patients, we use the Mahalanobis distance rather than Euclidean, since it takes into

account these correlations in the data. In general, the Mahalanobis distance is an

effective multivariate distance metric that measures the distance between a point

and the centre of a multivariate normal distribution. This distance measure is also

scale-invariant, i.e. does not dependent on the scale of measurements. However,

Mahalanobis distance requires the knowledge of the covariance matrix which, in our

case, is the covariance matrix of the different dimensions in the general population.

The matrix ∆ of the mutual Mahalanobis distance between two pair of score vectors
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s(i) and s(j) is the dissimilarity measure and is defined as:

∆ij =
√

(s(i) − s(j))TΣ−1(s(i) − s(j)). (5.2)

The 6× 6 covariance matrix Σ is computed by using the column vector σ and a

correlation matrix R coming from the general population1 as follow:

Σ = (σσT )�R, (5.3)

where � denotes the Hadamard product. Then, we convert the dissimilarity

into similarity by relating the distance to probability through the chi-square (χ2)

distribution. It turns out that the squared Mahalanobis distance with covariance

Σ between two multivariate normal samples with the same covariance Σ, follows

a chi-square distribution with ν degrees of freedom (in our case, based on our

sample estimates, ν = 6) as shown below:
∆2
ij = (s(i) − s(j))TΣ−1(s(i) − s(j))

= (s(i) − s(j))TΣ− 1
2 Σ− 1

2 (s(i) − s(j))

= (Σ− 1
2 (s(i) − s(j)))T (Σ− 1

2 (s(i) − s(j)))

(5.4)

where Σ−1 is the inverse of the covariance matrix Σ and Σ− 1
2 is the inverse square

root of the covariance matrix (“Mahalanobis whitening”). If we denote the whitened

vector D as Σ− 1
2 (s(i) − s(j)) then DTD = ‖D‖2 = ∑ν

k=1 D
2
k ∼ χ2

ν .

In order to define a similarity measure that can be used to cluster patients and

assign weights based on the closeness of each patient under test to other “donor”

patients, we transform the ∆2
ij values into probabilities using the χ2 cumulative

probability distribution. For a random variable X ∼ χ2
ν with ν degrees of freedom

and evaluated at x, the cumulative distribution function F denoting the probability

p(X ≤ x) when x ≥ 0 is:

Fχ2
ν
(x) = p(X ≤ x) =

∫ x

0

t
ν−2

2 e
−t
2

2 ν
2 Γ(ν2 )

dt

= 1−
Γ(ν2 ,

x
2 )

Γ(ν2 ) =
γ(ν2 ,

x
2 )

Γ(ν2 ) = P
(
ν

2 ,
x

2

) (5.5)

1We use the older yes/no version of the Davidson’s ESQ and an unpublished correlation matrix
has been provided to us by Sara Carletto and Luca Ostacoli (Department of Clinical and Biological
Sciences, Università deglistudi di Torino, Italy), our partners in the NEVERMIND project. For
the newer version of Davidson’s ESQ, the matrix of correlations can be found in [117].
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where Γ(ν/2) denotes the gamma function, Γ(ν/2, x/2) is the upper incomplete

gamma function, γ(·) is the lower incomplete gamma function and P (ν/2, x/2)

is the regularized gamma function.

For a random variable ∆2 ∼ χ2
ν , the Fχ2

ν
(∆2) acts as a dissimilarity measure taking

values in the range [0,1] and indicates the probability p(χ2
ν ≤ ∆2

ij). Suppose χ2
ν is a

chi-square distribution with ν degrees of freedom (in our case ν = 6) and ∆2
ij is the

squared Mahalanobis distance between personality scores s(i) and s(j) of the pair

of patients (qi, qj). Then the probability that these two patients are less distant

(more similar) than any two random patients (thus more likely to be originated

from the same population or belonging in the same cluster) is defined as:

p(χ2
ν > ∆2

ij) = 1− p(χ2
ν ≤ ∆2

ij) = 1− Fχ2
ν
(∆2

ij) (5.6)

Therefore, in the current approach, we can define, for any pair of patients qi ∈ Q and

qj ∈ {Q\qi}, a similarity measure wij = 1−Fχ2
ν
(∆2

ij), which can then be used within

the previous TL frameworks in order to modulate how much information we borrow

from each “donor” participant. For simplicity, when we consider predictions for a new

patient qN+1 (as denoted in Chapters 3 and 4) and we transfer from “donor” patients

qn coming from the set of N other patients, we denote the similarity measure as:

wn = 1− Fχ2
ν
(∆2

n,N+1). (5.7)

In our non-parametric TL approach based on BMA, the MCMC sampler creates S

samples for each of the N patients. This time, the K vectors of parameters used

in equation (3.5) page 35 are drawn by randomly choosing each time a “donor”

patient qn from the set of N other patients, with a probability

p(qn) = wn∑N
l=1 wl

, (5.8)

and then uniformly randomly sampling a set of parameters from this patient’s S

samples. In other words, we use the clusters previously formed from the personality

traits to place a prior on the random selection of model parameters so that models
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from subjects with similar characteristics will have a higher probability of being

selected. In this way, we allow the TL to be more or less influenced by the similarity

between the two patients and control to which extent each of the model parameters

{θk}Kk=1, which represent information coming from the other patients, will contribute.

Fig. 5.1 shows a graphical overview of the non-parametric transfer learning approach

based on an MCMC sample and BMA, modulated by similarity.

HMC sampler

𝑝(𝜃|𝑦𝑁)

… …

LDS
(Kalman filters)

𝑦𝑁

𝜃

𝑝(𝑦𝑁|𝜃)

K samples 
model 

parameters

M 
samples

M 
samples

PatientN+1

LDS
(Kalman filters)

LDS
(Kalman filters)

𝑝(𝑦𝑁+1|𝜃1)

𝑝(𝑦𝑁+1|𝜃𝑘)

𝑝( ෤𝑦𝑁+1|𝑦𝑁+1, 𝜃1)

𝑝( ෤𝑦𝑁+1|𝑦𝑁+1, 𝜃𝑘)

Bayesian Model Averaging (BMA)

New patient under test

PatientN

Patient1

…

HMC sampler

𝑝(𝜃|𝑦1)LDS
(Kalman filters)

𝑦1

𝜃

𝑝(𝑦1|𝜃)

𝑝(𝜃)

𝑝(𝜃)

𝒘𝟏 = 𝟏 − 𝑭𝒙𝒗𝟐(∆𝟏,𝑵+𝟏
𝟐 )

Other patients 
(‘donors’)

Figure 5.1: Pipeline of the proposed non-parametric TL method modulated by similarity.

Regarding the parametric TL approach based on minimizing the Fisher divergence,

as we showed in Sec. 4.2.2, the best approximation to the mixture distribution can

be computed by minimising a weighted sum of the individual divergences from

qβ(θ) p(θ) to the mixture components. However, this time we are not assuming

a uniform mixture and therefore the mixture components do not have the same

weights as in equation (4.11) thus, we now obtain an optimal value β∗ by solving

the following constrained optimisation problem:

β∗ = arg min
β

N∑
n=1

wnFn(β), (5.9)

where the weight wn corresponds to the similarity measure between a “donor” patient

qn and the patient under test. This means that we use the similarity to weight the
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different divergences produced in this process (when we try to find the optimal

parameter for the model) and this introduces a transfer learning component that it

is biased towards more similar patients in the cohort to the patient of interest.

Fig. 5.2 shows a graphical overview of the version of the parametric transfer learning

approach based on the Fisher divergence modulated by similarity.
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Figure 5.2: Pipeline of the proposed parametric TL method modulated by similarity.

5.3 Results

The predictive performance of the current TL method, that based on the approach

modulated by similarity as opposed to the uniform-sampling approach presented in

Chapters 3 and 4, was evaluated on the NEVERMIND dataset (see Sec. 5.1.1). To

assess whether TL provides significant performance benefits and whether clustering

patients by similarity improves the predictions, we compared the proposed TL

methods against a number of competing models. These models are the maximum a

posteriori (MAP) set of parameters denoted as Mmap and presented in Sec. 4.3, a

non-transfer learning Bayesian model (MNo), which utilizes parameters from the
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S samples created for each patient using the HMC sampler and the four baseline

models Ma, Mp, Ml, and Mr previously presented in Sec. 3.3.2. As per the current

method, the version of the non-parametric TL approach based on BMA modulated

by similarity, is denoted here as Mbmam , while the version of the parametric TL

approach based on the FD modulated by similarity is referred as Mfdm henceforth.

The corresponding uniform-sampling versions will be referred as Mbmau and Mfdu ,

respectively. We further consider a modified form ofMfd, which borrows information

only from patients with at least 3 weeks of valid data. This selection made based on

finding from previous studies reviewed in Sec. 2. The uniform sampling approach

of this model is denoted as Mfd3
u
, while the corresponding approach modulated by

similarity is referred as Mfd3
m
. Finally, the chains for all models are created using

the HMC sampler while the selection of the priors for the model parameters remains

the same as in Sec. 4.3. For the output of the models see Sec. 4.3.1.

5.3.1 Trade-off in computational cost and accuracy
In Chapter 3 we evaluated the proposed non-parametric TL method for K = 1000

candidate models per participant since the non-parametric methods work better

when we have many data-points. However, this high number of models make this

approach computationally very expensive. Therefore, for the parametric TL method

presented in Chapter 4, we made a decision to set K = 1000 models in total.

In this section, we want to evaluate and compare non-parametric with parametric

TL approaches and so we need to examine the trade-off in computational cost and

accuracy for these two classes of methods. In order to find the best trade-off between

the number of candidate models, K, and accuracy, we evaluate the non-parametric

Mbmau and Mbmam approaches using different K values. Based on these results, we

will then select the number of candidate models for the rest of our experiments.

The analysis was conducted for three equally spaced snapshots over the training

periods, namely Ltr∈{1, 6, 11} weeks and forecasting periods Lfc∈{1, 3, 7} days.

Assuming N is the number of “donor” patients and K = 1000 is the number
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of candidate models, then the performance of the non-parametric approach was

evaluated using Kmin(Mbmau) = K candidate models for transfer, sampled uniformly

at random with replacement and Kmax(Mbmau) = K×N models sampled uniformly

at random without replacement. For the modulated by similarity version, we

set Kmin(Mbmam) = ∑N
n=1 Kp(qn) models sampled at random with replacement,

where the probability for each “donor” patient to be selected is determined by its

relative weight according to equation (5.8). In addition, we have Kmax(Mbmam) =∑N
n=1 Kwn weighted random samples without replacement, which is a fraction of

the Kmax(Mbmau) models. In this latest approach, the “donor” patients are selected

based on the probability according to equation (5.7).

The performance of models was evaluated using the RMSE while statistical sig-

nificance of differences between the models was tested using the Wilcoxon Signed-

Rank test. We used this test for pairwise comparisons in order to evaluate

the null hypothesis that the Mbmau using Kmin(Mbmau) models and Mbmau using

Kmax(Mbmau) models will have equal distribution of prediction errors as well as

that the comparison of these predictive models will not show a significant difference.

We followed the same analysis for the Mbmam but this time using Kmin(Mbmam)

and Kmax(Mbmam) donor sampling schemes.

Table 5.1 shows the average RMSE and the medians of RMSE-differences obtained

over all patients for whom data were available for the corresponding (Ltr, Lfc)

pair. In most cases, both our approaches show a lower error when the number of

candidate models is high. However, significant differences were found only for the

uniform-sampling approach with training period Ltr=11 and forecasting periods

Lfc∈{3, 7}. This represents the case where the relative contribution of the transfer

learning component to the overall accuracy reduces or even becomes negligible.

For the approach modulated by similarity there is no statistical evidence to prefer

Kmax(Mbmam) over Kmin(Mbmam) models. Therefore, for the rest of our experiments

we will consider K = 1000 candidate models in total since both methods work
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Table 5.1: Average RMSE and medians of RMSE-differences for various durations of
training and forecast periods, as well as the number of “valid” participants within each
period.

Mbmau Mbmam

average
RMSE
(Kmin)

average
RMSE
(Kmax)

median of
differences

average
RMSE
(Kmin)

average
RMSE
(Kmax)

median of
differences

sample
size

T
ra

in
1 Predict 1 0.7001 0.7152 -0.0002 0.6928 0.7045 -0.0033 55

Predict 3 0.8012 0.8052 0.0051 0.8049 0.8033 0.0010 82
Predict 7 0.8181 0.8150 0.0045 0.8211 0.8250 -0.0019 99

T
ra

in
6 Predict 1 0.4230 0.3831 0.0103 0.4447 0.4341 0.0019 34

Predict 3 0.5744 0.5629 -0.0020 0.5916 0.5774 -0.0016 55
Predict 7 0.5713 0.5671 -0.0022 0.5848 0.5788 0.0028 65

T
ra

in
11 Predict 1 0.5004 0.4558 -0.0001 0.4294 0.4667 -0.0093 28

Predict 3 0.5300 0.4933 0.0085 0.4898 0.4911 -0.0002 36
Predict 7 0.5322 0.5032 0.0103 0.5063 0.5011 0.0013 42

Bold values indicate statistical significance (p < .05). Also
note that there is a different number of “valid” participants
per data length because the analysis includes only partici-
pants who have data within this period.

reasonable well with this K and it is a less costly alternative compared with

Kmax(Mbmau) and Kmax(Mbmam).

5.3.2 Comparison against uniform-sampling TL models
In order to examine whether transferring from patients’ groups with similar

characteristics has any further benefit to the learning process, we compared the

models modulated by similarity (Mbmam and Mfdm) against the model Mbmau and

Mfdu . In this comparison, we also included the models which borrow information

only from patients with at least 3 weeks of valid data (Mfd3
m
and Mfd3

u
).

Our models were trained for all combinations of training data length and forecasting

periods. Here we show a representative subset from these results that includes

the combinations of training periods Ltr∈{1, 2, 3} and and predict for all Lfc. This

subset represents the most difficult scenarios where the amount of available historical

training data for each individual is less than a month worth. Again, note that

the number of participants for which it is possible to obtain predictions depends
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on the choice of Ltr and Lfc. The statistical significance of differences between

the models were again tested using the Wilcoxon Signed-Rank test (a one-tailed

hypothesis, at the 5% level).

Table 5.2 shows the results obtained with respect to the LL evaluation measure

calculated over different sets of patients. The last row of the table shows the number

of such valid participants per (Ltr, Lfc) pair. The top half shows the average LL values

for each pair of models, the models giving a better probabilistic prediction being the

ones having the higher (less negative) value. The bottom half shows pairwise median

differences (the median of the differences) between the uniform-sampling version

and the version modulated by similarity of the models. In addition, the bottom half

of the table, compares the models borrowing from “donors” with at least 3 weeks of

valid data with the corresponding unrestricted version of the same models.

As seen in the table, the Mbmam performs better than its uniform-sampling version

(Mbmau) and makes, on average, better probabilistic predictions in all (Ltr, Lfc) pairs

except for Ltr=3 where the uniform-sampling versions starts to become better.

However, even though Mbmau scores better than Mbmam , the differences between

the models were not significant. On the other hand, when training with only 1

weeks of past data (Ltr=1) and forecasting for Lfc∈{1, 3, 7} days, the Mfdm and

Mfd3
m
models score significantly better compared to their uniform-sampling versions.

Finally, for the training periods Ltr∈{1, 2} and forecasting periods Lfc∈{1, 3, 7},

the models that borrow information only from patients with at least 3 weeks of

valid data (Mfd3
u
and Mfd3

m
) perform better than their counterpart version without

this restriction (Mfdu and Mfdm). Notably, when the training is performed with the

minimum training period (one week), these differences are significant. In addition,

the model modulated by similarity that borrows information only from patients with

at least 3 weeks of valid data (Mfd3
m
) performs slightly better that its unrestricted

version (Mfdm) when Ltr = 3 and Lfc = 7.
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Table 5.2: Performance comparison of different pair of models based on average LL
(top) and the median of LL-differences (bottom) for various durations of training and
forecast periods.

Model
Type

Ltr = 1 Ltr = 2 Ltr = 3
Lfc=1 Lfc=3 Lfc=7 Lfc=1 Lfc=3 Lfc=7 Lfc=1 Lfc=3 Lfc=7

Mbmam -1.821 -4.538 -8.614 -2.038 -3.910 -7.097 -1.710 -3.755 -7.749
Mbmau -2.086 -4.818 -9.123 -2.156 -4.217 -7.340 -1.640 -3.546 -7.456

Mfdm -2.175 -4.770 -8.976 -2.204 -4.209 -7.306 -2.137 -3.844 -7.468
Mfdu -2.271 -4.875 -9.174 -2.182 -4.176 -7.290 -2.058 -3.827 -7.480

Mfd3
m

-2.014 -4.551 -8.781 -2.088 -4.111 -7.224 -2.196 -3.865 -7.462
Mfd3

u
-2.106 -4.651 -8.894 -2.091 -4.096 -7.220 -2.086 -3.860 -7.530

Models
Compared

Mbmau vs Mbmam -0.065 -0.024 -0.004 0.044 -0.114 -0.124 0.025 0.005 -0.029
Mfdu vs Mfdm -0.031 -0.026 -0.061 0.008 -0.010 -0.023 0.006 -0.003 0.000
Mfd3

u
vs Mfd3

m
-0.008 -0.057 -0.037 -0.023 -0.012 0.020 -0.000 0.002 -0.011

Mfdu vs Mfd3
u

-0.048 -0.051 -0.058 0.001 0.002 0.003 0.031 0.053 0.076
Mfdm vs Mfd3

m
-0.060 -0.077 -0.046 -0.004 -0.009 0.003 0.028 0.052 0.056

participants 55 82 99 54 75 92 41 74 94

Bold values indicate statistical significance (p < .05). Also note
that there is a different number of “valid” participants per data
length because the analysis includes only participants who have
data within this period.

The training period Ltr=1 represents the early stage of data collection when limited

person-specific data are available which is the period where the benefit of transfer

learning on predictive performance will be greater. In reference to our research

question RQ.3 (H.3), the results offer support to the idea that a transfer learning

model biasing population sampling towards participants having similar characteristics

to the patient being modelled will perform significantly better than a model sampling

the population with equal probability over all other participants. This is particularly

clear for the Mfd model, which incorporates a modified prior that accounts for the

knowledge available from all other participants, where it is beneficial to transfer

from patients’ groups with similar characteristics to the patient in question rather

than transferring equally from the entire-population.
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5.3.3 Comparison against competing models
In this section, we compare the performance of the transfer learning approaches

modulated by similarity against the competing models listed in Sec. 5.3. To do

this, we analyse “winning percentages” defined in equation (3.10). The analyses

was performed for the early stage of data collection which includes training periods

Ltr∈{1, 2, 3} and predicting one week ahead (Lfc = 7). We used again the exact

Wilcoxon Signed-Rank test-statistic [104] to make pairwise comparisons between

methods but this time, we have multiple comparisons which means that some

results may have p-values less than the 5% significant level, even if the null

hypotheses is really true. Thus, we adjusted the false discovery rate by using

the Benjamini-Hochberg procedure [119].

Table 5.3: Winning results based on LL for each transfer learning method against the
competing models for Lfc=7.

MNo Mmap Ma Mp Ml Mr part.

L
tr

=
1 Mbmam 60.61% 86.87% 67.68% 60.61% 64.65% 85.57%b

Mfdm 62.63% 88.89% 57.58% 55.56% 60.61% 82.47% 99
Mfd3

m
66.67% 88.89% 56.57% 57.58% 64.65% 83.51%

L
tr

=
2 Mbmam 58.70% 82.61% 55.43% 58.70% 65.22% 74.73%

Mfdm 61.96% 82.61% 59.78% 57.61% 58.70% 75.82% 92
Mfd3

m
56.52% 82.61% 56.52% 57.61% 63.04% 75.82%

L
tr

=
3 Mbmam 53.19% 76.60% 44.68% 68.09% 70.21% 66.67%

Mfdm 55.32% 78.72% 48.94% 62.77% 62.77% 67.74% 94
Mfd3

m
47.87% 80.85% 45.74% 64.89% 63.83% 69.89%

Bold values indicate statistical significance using Benjamini-
Hochberg procedure (p < .05). Also note that there is a
different number of “valid” participants [part.] per data
length because the analysis includes only participants who
have data within this period.

Table 5.3 shows the winning percentage of each TL approach and training period

against the competing models, under the most challenging scenario of training the

models with limited past observations and predicting for a full week ahead. The

winning percentage values are based on the LL performance measure for this analysis.
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So, they take into account both the accuracy and the uncertainty of the predictions.

Results indicate that overall the modulated by similarity transfer learning methods

score more “wins” than their competitors in 50 out of 54 comparisons (92.6%).

The winning percentages range from 44.68% to 89.90% with all of the proposed

transfer learning models scoring significantly more wins (at the 5% level, using a

one-tailed hypothesis) compared to the Maximum A Posteriori model (Mmap), the

ordinary least squares regression model (Mr) and the last-datapoint model (Ml).

Mmap and Mr are less accurate models compared to our approach and they struggle

to make acceptable 7-day predictions, at least in this initial stage where the data

available for training are sporadic and limited. Ml, which does not incorporate

training since we simply choose the last observed value as the prediction for the

sequence of next-week’s observations, is not informative because it does not reflect

any changes in the mood. As for Mp, our methods score better more than it 50% of

the time, in all three scenarios, with most of the results being statistically significant.

This method appears to be also suboptimal since the population-based estimate is

too generalized and it does not take into account, for example, the variability in

behavioural patterns of the patient. These results corroborate our previous finding

presented in Sec. 4.4.2 (Table 4.2). Regarding the patient-average prediction model

(Ma) when we train with 3 weeks of past data, the accuracy increases and it turns

out that the average over a long period of time is actually a good predictor. We

have previously observed similar results in Sec. 3.3.2 (Table 3.2) where based on the

actual error for the predictions (RMSE), when we trained with 3 weeks of past data

on the ICU dataset, the model was superior to all its competitors. However, the

transfer learning models modulated by similarity score significantly more wins than

the Ma when minimal data are available for training and they are on par when more

weeks of data are available for training. Finally, the non-transfer learning Bayesian

model (MNo) follows closely our transfer learning methods. However, under the

most challenging scenario of training the models with only one or two weeks of past

observations and predicting the following week, the transfer learning approaches

modulated by similarity perform significantly better. It is worth mentioning that
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the version modulated by similarity of the non-parametric TL approach based on

BMA (Mbmam) scores significantly more wins compared to all six competing models

when only one week or two weeks of data are available for training. This result also

confirms the superiority of the modulated by similarity TL approach and emphasizes

that during the TL process, it is beneficial to transfer samples coming from similar

patients in the cohort more than patients that are dissimilar.

Moreover, the above results support our previous findings presented in Sec. 3.3.2

(Fig. 3.5), Sec. 3.3.3 (Figs. 3.7) and Sec. 4.4.1 (Figs. 4.8) where the transfer learning

approaches were significantly better than non-transfer learning methods when only

a limited amount of patient-specific data were available for training. In reference

to our research question RQ.1 (H.1), the results further support the idea that in

the presence of limited person-specific data available for training (e.g., at the early

stage of data collection), a prediction model leveraging both patient-specific data

(i.e., the ‘target’ domain) and knowledge gained from other patients (i.e., a different

but related ‘source’ domain) will perform significantly better than a model which

relies on the target domain alone for training.

5.3.4 Effect of training data availability on performance
In this section, we investigate the effects of data availability on the model perfor-

mance by training the models with different amount of historical data. Naturally

the expectation is that when using less data, the prediction error will increase but

the extent of this is unknown. In relation to second hypothesis (H.2), we further

believe that the benefit of transfer learning on predictive performance will be greater

when the amount of person-specific data available for training is small and that as

person-specific data availability increases, the relative contribution of the transfer

learning component to the overall accuracy will diminish, until it becomes negligible.

The performance of the proposed TL methods modulated by similarity against

reference estimation approaches was assessed for a different number of observations

used for training to predict one week (Lfc=7 ) of well-being scores. The analysis
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was conducted for training periods Ltr∈{1, 2, ..., 12} (regardless of the number of

actual observations that happen to be contained within each period).
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Figure 5.3: The median RMSE values for a transfer learning and a standard estimation
approach, obtained over all patients for whom data was available for the corresponding
training periods when predicting next week’s scores.

A representative example of this analysis can be seen in Fig. 5.3, which shows the

median forecasting error for the predictions of each individual obtained from one

of our modulated by similarity TL methods (Mfd3
m
) and the standard estimation

approach (Mmap). The other transfer learning models perform very similarly and, so,

have been omitted here. The figure displays the changes in median RMSE over time.

Based on these results, we observe that Mmap initially struggles to make acceptable

7-day predictions and it is the less accurate method. However, predictions improve

with the amount of data available for training. At the same time, we observe

that for shorter training periods, our transfer learning method outperforms Mmap,

whereas it is on par for longer training periods. Initially, when we have less data,

the prior dominates the posterior distribution. Our approach is able to use models

all around the posterior while the MAP estimation uses only the maximum point,

which makes our approach more robust. However, as the data availability increase,
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the likelihood term increases until it dominates over the prior and the posterior

distribution becomes almost identical to the likelihood (Fig. 5.4). This makes our

method to gradually and automatically become virtually identical to Mmap. Finally,

it is important to note that the median RMSE obtained with our algorithm training

with only one-week worth of data is matched by the competing state of the art

algorithm only when more than four-weeks worth of data are used for training. This

result demonstrates the effect of transfer learning in bootstrapping the learning

process and allowing us to achieve a better accuracy much earlier.

The above results further support our previous findings presented in Sec. 4.4.2 (Ta-

ble 4.2) and Sec. 5.3.3 (Table 5.3) where the transfer learning methods were superior

to other approaches and our method was not only able too make predictions from

week one, but showed also a remarkable stability for any number of training weeks.

0.00

0.01

0.02

0.03

0.04
Likelihood Distribution

0.00

0.02

0.04

0.06

0.08
Prior Distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

Posterior Distribution

(a) With less data, the prior dominates
the posterior distribution

0.0

0.5

1.0

1.5

2.0

2.5
1e−265 Likelihood Distribution

0.00

0.02

0.04

0.06

0.08
Prior Distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

Posterior Distribution

(b) With more data, the likelihood dom-
inates the posterior distribution

Figure 5.4: Posterior distribution dominated by prior or the data.

5.4 Discussion

In this chapter, we presented a modified version of the methods presented in

Chapters 3 and 4, which controls how much information we borrow for the transfer
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learning process according to a measure of similarity in emotional profiles between

the patients under test and “donor” patients. More specifically, we use a measure of

distance between the personalities of the patients in order to weight the samples that

come from similar “donor” patients in the cohort more than the samples coming

from dissimilar “donor” patients. In this way, we modulate the transfer learning

slightly to effectively get more information from the patients in the cohort that

are more suitable for the transfer. Similarly, in our parametric transfer learning

approach, we use the similarity to weight the different divergences produced in this

process when we try to find the optimal parameter for the model and this introduces

a transfer learning component that is biased towards more similar patients in the

cohort with the patient of interest.

Our analysis suggests that applying preprocessing strategies that promote individuals

in the population which are known to be similar, in some way, to the person being

modelled, enhances the transfer learning. We demonstrated that a “soft” clustering

which splits the population into subsets of patients that exhibit similar relationships

between their personality traits improves the accuracy of our algorithms. The

proposed approaches modulated by similarity outperform the uniform-sampling

version of these methods and in the early stages of data collection, when the data

available for initial training are sporadic and limited, they also predict better

than a number of competing models.

Our results highlight the value of transfer learning and verify the effectiveness of

the proposed method. They further corroborate our previous findings in relation to

our first and second hypothesis (H.1 and H.2) and are also supportive of the third

hypothesis (H.3). Overall, the experiments suggest that the proposed approach

constitutes a good transfer learning strategy.
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6
Conclusions and future research

This chapter summarizes the main contributions of this thesis, discusses the
limitations of the work and looks at promising avenues for future research.

Contents
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Limitations and future work . . . . . . . . . . . . . . . . 103

6.1 Summary

The use of smart-phones and wearable sensors for quantifying and providing

personalised predictions of well-being states is an actively growing field, with

potential applications in the prevention and self-management of depression and

other disorders. Personalisation refers to the ability to learn a model, which is

specifically tuned to its intended user. However, a major obstacle in this endeavour

so far has been that traditional forms of machine learning (which typically require

the availability of large datasets of uniformly sampled data) are generally not

applicable to solve this problem. There are two main reasons for this: firstly the

kind of data provided by patients through smart-phones and wearable sensors tend

to be sporadic and/or intermittently available; secondly, realistically, for such a

personalised system to be useful, users need predictions virtually from day one,

whereas in a typical situation the data available to the system for personalisation
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will initially be very limited, and acquired incrementally over time. As demonstrated

in previous studies and in this thesis, it could take weeks before a sufficient amount

of data has accumulated that guarantees reliable predictions.

6.2 Contributions

The present research focused on providing reliable personalised predictions in the

early stage of data collection when insufficient personal data of suitable nature

are available for training. In this thesis, I proposed novel approaches with the

aim of addressing the challenges on creating subject-specific models and making

predictions in real world health-related applications when training is performed

incrementally on scarce sporadic biomedical data.

To tackle the challenges and overcome the limitations of traditional ML algorithms,

Bayesian transfer learning techniques were proposed that allow to make informed

predictions by leveraging information coming from other patients in our study.

These algorithms are probabilistic and allow not only to make predictions about

future trends (a sequence of future moods) but also to provide an associated measure

of uncertainty around the predictions allowing to know how much we can trust the

predictions themselves. The approach I follow further allows for a seamless transition

from generalised to highly personalised models, as data become gradually available.

The proposed methods are the following:

(i) a non-parametric transfer learning approach based on Bayesian Model Aver-

aging, which allows to make predictions about a specific patient with limited

sparse training data by combining models trained on other “donor” patients

according to how well these models fit the specific patient’s past observations

and performing BMA on the candidate model.
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(ii) a parametric transfer-learning approach based on the Fisher divergence,

which expresses external information coming from “donor” patients as a prior

probability distribution used within a Hamiltonian Monte Carlo framework.

(iii) a modified version of the methods in (1) and (2), which is a similarity-based

transfer learning approach, that controls how much information is borrowed

for transfer according to a measure of similarity in emotional profiles between

the patients under test and “donor” patients.

These approaches make it possible to create patient-specific models and make useful

predictions of self-reported well-being scores, even when the data available for initial

training are sporadic and limited, such that training is performed incrementally as

more data become slowly available over time. The application of transfer learning

allows each patient to have a model tailored for them but still benefit from other

patients data. In this way, someone can start making predictions that are neither

too general, nor unreliably specific, until there is sufficient data to converge to a

small representative pool of models that are highly personalised to the patient.

We demonstrated the proposed approaches on data obtained by the NEVERMIND

pilot and clinical trial, and measured their performance against each other and

also against a number of competing models. We analysed the effectiveness of the

proposed transfer learning approaches for predicting personalised well-being scores

utilizing individual’s data alongside with external information coming from other

patients. The effectiveness of these methods was examined by conducting a range

of experiments on the real world datasets collected from individual patients. Our

results showed that these approaches, in most cases, yield a significant improvement

over their competitors, and are particularly useful in difficult training/forecasting

scenarios, e.g., when one requires a distant, patient-specific forecast, with only a

limited initial amount of patient-specific data available for training.

This study further demonstrated the importance of transferring more information

from patients in a cohort who closely resemble each other than from patients
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that are dissimilar. In these approaches, transfer learning was enhanced by using

personality trait information in order to assign weights to each “donor” patient in

the population based on the similarity in personality traits to the target patient.

In this way, well-being predictions for the target patient are based mostly on the

observed well-being scores from the similar patients and this speeds up the learning

process and the accuracy of the algorithms.

Regarding the research questions:

? The results presented in Chapters 3, 4, 5 support the hypothesis that:

in the presence of limited person-specific data available for training (e.g. at the

early stage of data collection), a prediction model leveraging both patient-specific

data (i.e. the “target” domain), and knowledge gained from other patients (i.e.

a different but related “source” domain), will perform significantly better than

a model which relies on the target domain alone for training.

? The results presented in Chapters 4, 5 support the hypothesis that:

the benefit of transfer learning on predictive performance will be greater when

the amount of person-specific data available for training is small; as person-

specific data availability increases, the relative contribution of the transfer

learning component to the overall accuracy will diminish, until it becomes

negligible.

? The results presented in Chapters 5 support the hypothesis that:

a transfer learning model mostly incorporating highly relevant information from

a source domain (i.e. biasing population sampling towards participants having

similar characteristics to the patient being modelled) will perform significantly

better than a model which utilizes the source domain in a general manner (i.e.

sampling the population with equal probability over all other participants)



6. Conclusions and future research 103

6.3 Limitations and future work

One limitation of this study is that the Linear Dynamical System model used

was limited to training and prediction on observations that reflected questionnaire

responses only. Furthermore, the LDS model was initially limited to a single “general”

latent state reflecting well-being in a general sense. This was later extended to three

“observation-specific” states for the reason that a single latent-state model did not

seem to be expressive enough to capture the underlying complexity of depressive

states. The three-state model provided a richer representation of the underlying

biological states by allowing linking latent states to observations directly and by

allowing individual states to interact with each other. However, in this work, I have

not explored the differences between the single state and three state model in much

detail or the particular manner in which modelling observations with specific latent

states improves prediction compared to when using such observations to simply

update the prior probability of more general states. Future work will therefore

focus on establishing the best combination of “modelled-as-state” vs “update-only”

observations, as well as considering richer observation vectors, e.g., by also including

information coming from physiological signals or the addition of PHQ9 questionnaire

information, which could potentially strengthen the model’s predictive abilities

further, as well as the clinical utility. In this case, it will be interesting to investigate

the effect that such extensions might have on transfer learning, as well as whether

this is worth the increased complexity of the model.

In this study, I found that the background patient population acting as the source

domain for the transfer learning component was informative as shown by the

performance of transfer learning. Therefore, I applied a preprocessing strategy that

promote individuals in the population that are known to be similar in personality

to the person being modelled and this enhanced transfer learning. However, a

limitation is that I made no attempt to quantify or investigate ways in which

other background knowledge like the primary disease, could be exploited which

could potentially provide even better results.
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According to very recent studies, high fluctuations in well-being label were associated

with larger error in the predictive models [90] while mood variability, personality

traits and day of the week played an important role in model performance [89].

This is something that ought to be further examined for the proposed transfer

learning algorithms through a post-hoc analysis since based on the results transfer

learning appeared to be more robust to this situation.

Finally, I recognise that this method has wider applicability to other domains,

such as finance, recommender systems, training initiatives, etc, and generally any

scenario where limited or sporadic data arrive in a sequential manner, and a seamless

transition from generalised to personalised models is required. Therefore, future

work will also need to focus on verifying the performance and generality of this

approach, both on the complete NEVERMIND dataset (including data coming

from both physiological and questionnaire-based sources), as well as other known

external datasets (such as the MIMIC-III critical care database [120] used also in

the beginning of this thesis). During the verification, the analysis should further

include all of the methods described in the Background chapter.
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