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Summary

We introduce a new joint test for the order of fractional integration of a multivari-
ate fractionally integrated vector autoregressive (FIVAR) time series based on
applying the Lagrange multiplier principle to a feasible generalised least squares
estimate of the FIVAR model obtained under the null hypothesis. A key feature
of the test we propose is that it is constructed using a heteroskedasticity-robust
estimate of the variance matrix. As a result, the test has a standard 𝜒2 limiting
null distribution under considerably weaker conditions on the innovations than
are permitted in the extant literature. Specifically, we allow the innovations driv-
ing the FIVAR model to follow a vector martingale difference sequence allowing
for both serial and cross-sectional dependence in the conditional second-order
moments. We also do not constrain the order of fractional integration of each
element of the series to lie in a particular region, thereby allowing for both
stationary and non-stationary dynamics, nor do we assume any particular distri-
bution for the innovations. A Monte Carlo study demonstrates that our proposed
tests avoid the large oversizing problems seen with extant tests when conditional
heteroskedasticity is present in the data. We report an empirical case study for
a sample of major US stocks investigating the order of fractional integration in
trading volume and different measures of volatility in returns, including realised
variance. Our results suggest that both return volatility and trading volume are
fractionally integrated, but with the former generally found to be more persis-
tent (having a higher fractional exponent) than the latter, when more reliable
proxies for volatility such as the range or realised variance are used.

1 INTRODUCTION

Long memory models have been used to model time series data in a wide range of fields of application. The class of
(multivariate) fractionally integrated autoregressive moving average (ARFIMA) models provides a parsimonious means
of simultaneously modelling the patterns of long and short range dependence typically seen in many macroeconomic and
financial data sets; see, for example, the surveys in Baillie (1996) and Robinson (2003). In the context of the ARFIMA
class of models, the long memory parameter, or fractional exponent (vector of exponents in the multivariate case), is the
key parameter driving the behaviour of the series. Where this is zero, a weakly dependent (short memory) ARMA series
obtains. If it is less than one half, the series is weakly stationary; otherwise, it is non-stationary, the familiar autoregressive
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unit root case occurring where the exponent is unity. Consequently, considerable interest has been paid to developing
methods of inference on the fractional exponent both as a parameter of interest in its own right and for preliminary data
analysis. A leading example is a test of the null hypothesis of weak dependence (against fractional alternatives); here
a non-rejection would allow for the use of standard methods for conducting, among other things, causality, structural
vector autoregression or impulse response analyses. More generally, such tests could usefully be employed to indicate
what order of differencing of the data is required for such methods to be suitably employed.

In the univariate setting, a number of hypothesis tests on the fractional exponent have been proposed; see, among oth-
ers, Robinson (1994), Tanaka (1999), Breitung and Hassler (2002), Nielsen (2004b), Demetrescu et al. (2008), Hassler
et al. (2009, 2016) and Cavaliere et al. (2017). In the context of a vector series, one could perform such univariate frac-
tional integration tests separately on each element of the vector. However, the overall size of such a testing procedure
would be hard to control. Moreover, multivariate testing can improve efficiency relative to univariate testing because it
explicitly acknowledges and exploits the existence of any endogenous cross dependencies in the vector series, which can
reduce the variability in the estimation errors and, hence, improve efficiency in estimation and testing. In this paper, we
develop multivariate fractional integration tests designed to test joint null hypotheses concerning the values of the long
memory parameters of the elements of a fractionally integrated vector autoregressive (FIVAR) model. Specifically, we pro-
pose a parametric multivariate Lagrange multiplier (LM)-type test in the time domain, which generalises the univariate
regression-based LM-type test of Demetrescu et al. (2008) to the multivariate case. The method we propose can also be
used to construct confidence sets, at a given asymptotic coverage level, for the true values of the long memory coefficients.

Our testing procedure is implemented in a regression-based context, based on feasible generalised least squares (FGLS)
estimation of the multivariate FIVAR model under the null hypothesis, coupled with a heteroskedasticity-robust variance
matrix estimate. A key advantage of, and motivation for, this approach is that it allows us to significantly weaken the
technical conditions needed on the innovations, relative to existing multivariate fractional tests including, among others,
Robinson (1995), Lobato and Robinson (1998), Lobato (1999), Lobato and Velasco (2000), Marinucci and Robinson (2001),
Breitung and Hassler (2002), Shimotsu (2007) and (Nielsen, 2004b, 2005, 2011). In particular, we allow the driving innova-
tions in the data generating process (DGP) to follow a vector martingale difference sequence (MDS), which is permitted to
exhibit time-varying conditional heteroskedasticity. This therefore allows for both serial and cross-sectional dependence
in the conditional second-order moments, which is of particular empirical relevance when modelling financial data and
is not, to the best of our knowledge, allowed by any extant multivariate fractional integration test.

Like Nielsen (2004a, 2005), we work within the context of a multivariate FIVAR model. This model allows each series
within the vector process to have different fractional exponents irrespective of the parameters of the short-run component
of the model. This property is not guaranteed when using the class of vector autoregressive fractionally integrated (VARFI)
models where the orders of integration of the elements of the vector series are not constant throughout the parameter
space of the model; for further details see Nielsen (2005, pp. 381–382). This is important for the empirical case study
we consider in this paper with respect to trading volume and return volatility where we aim to explicitly investigate
whether the data support the hypothesis that these series admit a common fractional exponent or not. For a further
recent empirical application using FIVAR models, investigating the effects of monetary policy on the economy, where it
is important to allow the elements of the vector time series to have potentially different fractional exponents, see Lovcha
and Perez-Laborda (2018). An implication of the FIVAR model, however, is that fractional cointegration is not possible
between the elements of the vector time series. In common with the tests in Nielsen (2005), we do not restrict the fractional
exponents to lie within a particular region, thereby allowing for both stationary and non-stationary dynamics. We also do
not impose any particular distributional law on the innovations.

Under the conditionally heteroskedastic setting outlined above, our proposed test retains a standard 𝜒2 limiting null
distribution (irrespective of the null values of the long memory parameters being tested) and exhibits non-trivial power
against a sequence of local (Pitman drift) alternatives. Moreover, where the errors are independent and identically
distributed (i.i.d.) our test statistic is asymptotically equivalent to the multivariate LM statistic discussed in Nielsen
(2004a, 2005). As a consequence, the LM-type test we propose is asymptotically (locally) efficient when the errors are
i.i.d. Gaussian. Monte Carlo simulation experiments show that our proposed multivariate fractional integration test dis-
plays good finite sample size control and power performance in the presence of empirically relevant data features, such
as short-run dependence and time-varying GARCH-type conditional variances for both Gaussian and non-Gaussian
innovations. In contrast, extant tests are shown to display quite poor finite sample size control in the presence of such
features.

Multivariate testing is naturally intended to address joint hypotheses involving the degree of persistence of a set of
variables. This has important practical applications. As a leading example, there has been considerable interest in both
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the theoretical and empirical finance literatures on understanding the link between trading volume and return volatil-
ity. A number of papers have analysed if the long-run dynamics of these variables share a common order of fractional
integration, with mixed evidence; see, for example, Bollerslev and Jubinski (1999), Lobato and Velasco (2000), Luu and
Martens (2003), Fleming and Kirby (2011) and Rossi and de Magistris (2013).

In our empirical analysis, we apply our new approach to conduct joint inference on the order of fractional integration
of trading volumes and different measures of return volatility focusing on 30 major US stocks from the Dow Jones Indus-
trial Average Index (DJI). We also investigate the existence of a common order of fractional integration between volume
and these measures of return volatility. Because our tests do not require a particular distribution and, more importantly,
allow for time-varying conditional second-order moments, our results are likely to be more robust than those reported
in previous studies, which are based on estimation techniques which neglect these empirically relevant data features
(e.g., Bollerslev & Jubinski, 1999; Lobato & Velasco, 2000; Fleming & Kirby, 2011).

Together with daily log volume, we consider the log transformations of three alternative measures of return volatil-
ity with increasing degrees of efficiency, namely, absolute-valued returns, the range-based estimator of Garman and
Klass (1980) and a measure of realised variance constructed from 5-min returns. An important aspect of this analysis
is to investigate the influence that measurement errors have on the conclusions drawn from the data. Our empirical
findings suggest that a common fractional exponent cannot in general be rejected when return volatility is proxied by
absolute-valued returns but can be rejected when it is proxied by more accurate estimates such as the range or realised
variance. These findings are consistent with the previous literature and help us to understand the disparity between
empirical results where different proxies for volatility are used. Our empirical results indicate that return volatility tends
to exhibit a larger fractional integration exponent than trading volume, with long-term behaviour possibly driven by
non-stationary dynamics. Heterogeneous degrees of fractional integration, such that return volatility tends to be more
persistent than trading volume, could originate in certain types of trading strategies associated with imitation and herd-
ing in investors and market microstructure environmental conditions; see, for example, LeBaron and Yamamoto (2008)
and Yamamoto (2011).

The remainder of the paper is organised as follows. Section 2 introduces the DGP and the main assumptions underlying
our theoretical analysis. In Section 3, we detail our new LM-type multivariate fractional integration test and derive its
asymptotic distribution under both the null hypothesis and a sequence of local alternatives. Section 4 discusses the results
of our finite sample Monte Carlo study. Section 5 analyses the empirical relationship between trading volume and return
volatility for stocks from the DJI. Section 6 concludes. Supporting information appendix contains mathematical proofs
of the large sample results given in Section 3 together with additional material relating to the Monte Carlo analysis in
Section 4 and to the empirical application in Section 5.

In what follows, ⇒ and
p
→ denote weak convergence and convergence in probability, respectively, as T→∞. I(·) is an

indicator function that equals 1 if the condition in parenthesis is fulfilled and equals 0 otherwise. The operators ⊗ and ⊙

correspond to the Kronecker and Hadamard products, respectively. The quantities In and 𝟎n×m denote an n-dimensional
identity matrix and an n×m zero matrix, respectively. The notation A = {ai𝑗} denotes that the (i, j)th element of the
matrix A is given by aij.

2 A FIVAR MODEL WITH HETEROSKEDASTICITY

We consider the observable k-dimensional time series vector
{

yt
}T

t=1, where yt ≡
(
𝑦1,t, … , 𝑦k,t

)′ is generated according
to the DGP:

Δd+𝜽 (L) yt = 𝜺tI(t ≥ 1) (1)
whereΔd+𝜽 (L) is a k× k diagonal matrix polynomial in the conventional lag operator, L, with characteristic element given
by (1 − L)di+𝜃i , i∈ {1, … , k}. The real-valued fractional exponent, di + 𝜃i, is commonly referred to as the long memory or
fractional integration parameter, such that d + 𝜽 ≡ (d1 + 𝜃1, … , dk + 𝜃k)′. The k-dimensional vector 𝜺t ≡

(
𝜀1,t, … , 𝜀k,t

)′
is a weakly dependent (short memory or I(0)) noise process with bounded spectral density that is bounded away from
zero at the origin. Our focus is on developing tests of the null hypothesis that d is the true order of integration of

{
yt
}

;
that is, H0 ∶ 𝜽 = 𝟎, against the alternative hypothesis that at least one element of 𝜽 is non-zero.

Assumption 1 details the formal properties, which we will assume to hold on {𝜺t} in (1).

Assumption 1. {𝜺t} in (1) is generated as Π (L) 𝜺t = et ≡ (e1,t, … , ek,t)′, with Π (L) ∶= Ip −
∑p

𝑗=1 Π𝑗L𝑗 , where Π𝑗 are
k × k parameter matrices such that Π (L) has all of its roots lying outside the unit circle and {et} satisfies the following
conditions:
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(A1) E (et) = 0 and E
(

ete′t
)
=∶ Σ, with Σ positive definite.

(A2) suptE
(||et||4+𝜂) < ∞ for some 𝜂 > 0.

(A3) {et,t}∞t=−∞ is a strictly stationary and ergodic vector MDS, with respect to the natural filtration t, the 𝜎-field
generated by {es ∶ s ≤ t} .

(A4)
∑∞

i=1
∑∞

𝑗=1,i≠𝑗 E|eh,tes,ter,t−ieu,t−𝑗| < ∞, for any 1≤ h, s, r, u≤ k.

Remark 1. Assumption 1 allows the short memory component of
{

yt
}

to be driven by a stationary VAR(p) pro-
cess. Accordingly, (1) is a FIVAR model in which each component

{
𝑦i,t

}
, i = 1, … , k, follows a Type-II ARFIMA

(p, di + 𝜃i, 0) process. The choice of Type-II fractional integration in our setting has the desirable feature that the same
definition is valid for an arbitrarily large range of admissible values of the fractional parameters, di + 𝜃i, i = 1, … , k;
in particular, these are not restricted to lie in the interval (−0.5, 0.5), a necessary condition for stationarity and
invertibility.

Remark 2. (A1) and (A2) are standard moment conditions. Unlike the existing multivariate fractional integration tests
discussed in Section 1, (A3) allows the innovations to exhibit time-varying conditional variances. The absolute summa-
bility condition (A4) limits the amount of temporal and cross-sectional dependence in the second-order moments
and is equivalent to requiring absolutely summable fourth-order joint cumulants. Our conditions are weaker than
requiring {et,t} to be either conditionally homoskedastic or independent, both of which imply (A4). Finally, (A1)
and (A3) imply that E

(
ei,te𝑗,t+h

)
= 0 whenever h≠ 0, but allows E

(
ei,te𝑗,t

)
≠ 0 when i≠ j because Σ is not restricted

to be diagonal.

Remark 3. Assumption 1 imposes that the unconditional variance matrix of et, Σ, is constant. However, the pivotal 𝜒2

limiting null distribution of our proposed FGLS statistic, LMFGLS
d , defined below in (8), in Theorem 2 under the condi-

tions of Assumption 1 remains valid in so-called non-stationary volatility cases where E
(

ete′t
)
= Σt = ΣtΣ′

t , provided
the unconditional volatility matrix, Σt, satisfies the regularity conditions detailed in, for example, Assumption 2(a) of
Boswijk et al. (2016).1 In particular, these entail that Σt ∶= Σ (t∕T), for all t = 1, … ,T, where Σ (·) is a non-stochastic
element of the space of k× k matrices of càdlàg functions on [0, 1] equipped with the Skorokhod metric, and is such
that Σ(u) ∶= Σ (u) Σ(u)′ is positive definite for all u∈ [0, 1]. For further discussion, including a number of examples
satisfying these conditions, see Boswijk et al. (2016, p. 66).

Remark 4. Under Assumption 1, the model in (1) can be re-written as Π (L) Δd+𝜽 (L) yt = et. Given the stationarity
restriction imposed under Assumption 1, for a sufficiently large value of p, the FIVAR representation could be viewed
as an approximation to the more general class of FIVARMA models, although we treat p as fixed (independent of the
sample size) in this paper. We conjecture that it should be possible to extend our analysis to allow p to increase with
the sample size but this would considerably complicate the theoretical analysis and is beyond the scope of this paper.

Remark 5. The FIVAR model in (1) under Assumption 1 rules out the possibility of fractional cointegration between
the elements of

{
yt
}

; for further discussion, see, among others, Sela and Hurvich (2009) and Nielsen (2005, pp.
381–382). The maintained assumption of no fractional cointegration is also made in all of the extant multivari-
ate fractional integration tests cited in the Introduction. However, noting from Remark 10 below that the feasible
GLS multivariate fractional integration test we propose in Section 3.2 is asymptotically equivalent to the multivari-
ate LM fractional test in Nielsen (2005), then for the same reasons as are discussed in Nielsen (2005, pp. 378–379),
the LM-type test, LMFGLS

d , developed in Section 3, is also implicitly a test of the null of no fractional cointegra-
tion (in the sense defined in Nielsen, 2005, p. 378) and will diverge at rate Op(T) under fractional cointegration.2 It
therefore seems advisable to consider the tests proposed in this paper alongside tests for fractional cointegration. We

1Numerical experiments investigating the properties of the LMFGLS
d test for data with a one-time break in unconditional variance are reported in the

supporting information appendix. These results suggest that even quite large variance breaks have very little impact on the finite sample size of the
FGLS-based tests.
2Numerical experiments investigating rejection rates of the LMFGLS

d test and the tests of Nielsen (2005) and Breitung and Hassler (2002) in a fraction-
ally cointegrated model are reported in the supporting information appendix. These show that, as expected, all three tests display empirical rejection
frequencies in excess of the nominal level, which are larger, other things equal, the larger is T or the strength of cointegration. Of the three tests, our
FGLS test tends to reject with slightly lower frequency than the other two tests.
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adopt this approach in the empirical application in Section 5 by also considering the procedures developed in Nielsen
and Shimotsu (2007).

3 A MULTIVARIATE LM-TYPE FRACTIONAL INTEGRATION TEST

3.1 Preliminaries
Given the observable time series vector

{
yt
}

generated as in (1) and an arbitrary real-valued vector g ≡ (g1, … , gk)′,
define the k -dimensional stochastic processes

𝜺t,g ≡
(
𝜀1,t,g1 , … , 𝜀k,t,gk

)′ ∶= (1 − L)g
+ yt =

t−1∑
𝑗=0

Λ𝑗 (g) yt−𝑗 , (2)

where (1 − L)g
+ ∶=

∑t−1
𝑗=0 Λ𝑗 (g)L𝑗 , and

z∗t−1,g ≡
(

z∗1,t−1,g1
, … , z∗k,t−1,gk

)′
∶=

t−1∑
𝑗=1

𝑗−1𝜺t−𝑗,g, t = 2, … ,T (3)

with
{
Λ𝑗 (g)

}t−1
𝑗=0 denoting a sequence of k× k diagonal matrices with ith diagonal element

𝜆0 (gi) ∶= 1, and 𝜆𝑗 (gi) ∶=
𝑗 − 1 − gi

𝑗
𝜆𝑗−1 (gi) , 𝑗 ≥ 1, (4)

corresponding to the truncated series of polynomial coefficients in the binomial expansion (1 − L)gs ∶=
∑∞

𝑗=0 𝜆𝑗 (gs)L𝑗 .
These variables are straightforward generalisations of the corresponding univariate processes in Breitung and
Hassler (2002) to the multivariate context, with the characteristic harmonic weighting in (3) arising from the derivative
of a (Gaussian) score function. Remark 10 below gives further insight into the key role played by these variables in the
construction of our proposed LM-type test statistic. Let Φ denote a k× k diagonal matrix with ith diagonal element 𝜙ii,
i = 1, … , k. Under Assumption 1, testing the null hypothesis that d is the true order of integration of

{
yt
}
, H0 ∶ 𝜽 = 𝟎,

is equivalent to testing H0 ∶ Φ = 𝟎 in the multivariate linear regression model

𝜺t,d = Φz∗t−1,d +
p∑

𝑗=1
Π𝑗𝜺t−𝑗,d + vt, t = p∗ + 1, … ,T (5)

where p∗ ∶= max(1, p). This equivalence holds because, under H0 ∶ 𝜽 = 𝟎, (5) and (1) are bijective with 𝜙ii = 0 for all
i = 1, … , k and vt = et in (5); see also Breitung and Hassler (2002), Demetrescu et al. (2008), and Hassler et al. (2009).

It will prove convenient to re-write (5) in matrix notation. First, corresponding to the time series of observations for
each element of yt, we have the equivalent representation:

Y i,di = X∗
i,−1,d𝜷 i + ui, 1 ≤ i ≤ k (6)

where Y i,di ∶=
(
𝜀i,p∗+1,di , … , 𝜀i,T,di

)′ is a (T − p∗) × 1 vector, 𝜷 i ∶=
(
𝜙ii,Πi1, … ,Πip

)′ is a k′ -dimensional parameter
vector, with k′:= pk+ 1, and Πi𝑗 denotes the i-th row of Π𝑗 , 𝑗 = 1, … , p, ui ∶=

(
vi,p∗+1, … , vi,T

)′ is a (T − p∗) × 1 vector
of innovations and X∗

i,−1,d is the (T − p∗) × k′ matrix of observations of the (lagged) right-hand side variables x∗
i,t−1,d ∶=(

z∗i,t−1,di
, 𝜺′t−1,d, … , 𝜺′t−p,d

)′
. With the exception of the first regressor, all other right-hand side variables that characterise

the ith equation (6) are the same, because these always correspond to lagged values of 𝜺t,d. Then, given T′ ∶= k (T − p∗),
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we can write the system of equations (6) compactly as Y d = X∗
−1,d𝜷 + u, with these terms defined implicitly as

⎡⎢⎢⎢⎣
Y 1,d1
Y 2,d2
⋮

Y k,dk

⎤⎥⎥⎥⎦T′×1

=
⎡⎢⎢⎢⎣

X∗
1,−1,d 𝟎(T−p∗)×k′ … 𝟎(T−p∗)×k′

𝟎(T−p∗)×k′ X∗
2,−1,d … 𝟎(T−p∗)×k′

⋮ ⋮ ⋱ ⋮
𝟎(T−p∗)×k′ 𝟎(T−p∗)×k′ … X∗

k,−1,d

⎤⎥⎥⎥⎦T′×kk′

⎡⎢⎢⎢⎣
𝜷1
𝜷2
⋮
𝜷k

⎤⎥⎥⎥⎦kk′×1

+
⎡⎢⎢⎢⎣

u1
u2
⋮

uk

⎤⎥⎥⎥⎦T′×1

.

3.2 A heteroskedasticity-robust LM test
Under Assumption 1 and H0 ∶ 𝜽 = 𝟎, it follows that E

(
uu′) = Σ ⊗ IT−p∗ . Equation (5) defines a seemingly unrelated

regression equation (SURE) system. Although equation-by-equation ordinary least squares [OLS] estimation will deliver
consistent estimates of 𝜷, these estimates will not be efficient unless Σ is diagonal (recalling that the regressors differ
across the equations in the system). We will therefore consider a FGLS estimator of 𝜷 based on a preliminary consistent
estimate of Σ (obtained using OLS residuals estimated on an equation-by-equation basis). The resulting FGLS estimator
of 𝜷 is defined as follows:

𝜷 ∶=
(

X ′∗
−1,d

[
Σ̃−1 ⊗ IT−p∗

]
X∗

−1,d

)−1 (
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
Y d

)
(7)

where Σ̃ =
{
𝜎i𝑗

}
is estimated as 𝜎i𝑗 ∶= T−1ũ′

i ũ𝑗 , with ũs ∶= Y s,ds − X∗
s,−1,d𝜷s and 𝜷s denotes the equation-by-equation

OLS estimate of 𝜷s, s = 1, … , k in (6).3
In Theorem 1, we now characterise the asymptotic distribution of the FGLS estimate, 𝜷, under Assumption 1 and

H0 ∶ 𝜽 = 𝟎.

Theorem 1. Let yt be generated according to (1) and let 𝜷 be the vector of FGLS estimates defined in (7). Under
Assumption 1 and H0 ∶ 𝜽 = 𝟎,

√
T
(
𝜷 − 𝜷0

)
⇒ 

(
𝟎,Ω𝜷

)
where 𝜷0 ≡

(
𝜷′

01, … , 𝜷′
0k
)′ with 𝜷0s ∶=(

0,𝛱s1, … ,𝛱sp
)′
, s = 1, … , k, and Ω𝜷 ∶= A−1

𝜷
B𝜷A−1

𝜷
, with A𝜷 ∶= plim

T→∞
E
(

1
T

X′∗
−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗
−1,d

)
, B𝜷 ∶=

plim
T→∞

E
(

1
T

w∗
−1,dw′∗

−1,d

)
, and w∗

−1,d ∶= X′∗
−1,d

[
Σ−1 ⊗ IT−p∗

]
u.

The dependence of the asymptotic variance of the FGLS estimator on nuisance parameters arising from any weak
dependence and/or cross sectional correlation in 𝜺t implies that asymptotically pivotal inference on the long memory
parameters will need to be based on a heteroskedasticity-robust statistic formed using a consistent estimate of Ω𝜷 . This
can be achieved by using the familiar Eicker–Huber–White approach building on the preliminary OLS estimate Σ̃ and
the FGLS residuals û ∶= Y d − X∗

−1,d𝜷. In particular, a heteroskedasticity-robust estimate of the variance matrix Ω𝜷 is

given by Ω̂𝜷 ∶= A∗−1
T B∗

TA∗−1
T , where A∗

T ∶= X ′∗
−1,d

[
Σ̃−1∕2 ⊗ IT−p∗

]
X∗

−1,d∕T and B∗
T ∶= ŵ∗

−1,dŵ′∗
−1,d∕T, with ŵ∗

−1,d ∶=

X ′∗
−1,d

[
Σ̃−1 ⊗ IT−p∗

]
û. It is shown in the supporting information appendix that Ω̂𝜷 is a consistent estimate of Ω𝜷 under

the conditions given in Assumption 1.
Based on the heteroskedasticity-robust estimate, Ω̂𝜷 , it is then straightforward to construct a test statistic for the joint

hypothesis H0 ∶ 𝜽 = 𝟎 using the LM testing principle. Specifically, we can form a heteroskedasticity-robust LM-type test
which rejects H0 ∶ 𝜽 = 𝟎 for large values of the statistic

LMFGLS
d ∶= T

[
R𝜷

]′[
RΩ̂𝜷 R′

]−1 [
R𝜷

]
(8)

where R =
{

ri𝑗
}

is a k× kk′ indicator matrix taking a value equal to one when 𝑗 = (i − 1)k′ + 1, i = 1, … , k, and zero
otherwise. In Theorem 2, we next derive the large sample behaviour of LMFGLS

d under both the null hypothesis, H0 ∶ 𝜽 = 𝟎,
and under the sequence of local alternatives Hc ∶ 𝜽 = c∕

√
T, where c ≡ (c1, … , ck)′ is a k vector of finite constants

(Pitman drifts) at least one of which is non-zero.

3Some numerical experiments comparing the finite sample properties of the equation-by-equation OLS estimate and the FGLS estimate in (7) of 𝜷 are
given in the supporting information appendix. These clearly demonstrate the efficiency gains that can be obtained by FGLS over OLS.
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Theorem 2. Let yt be generated according to (1), and let Assumption 1 hold. Let LMFGLS
d be as defined in (8). Then, (i)

under the null hypothesis, H0 ∶ 𝜽 = 𝟎, LMFGLS
d ⇒ 𝜒2

(k), and (ii) under the sequence of local alternatives, Hc ∶ 𝜽 = c∕
√

T,
with at least one element of c non-zero, LMFGLS

d ⇒ 𝜒2
(k,𝜉), where 𝜒2

(k) and 𝜒2
(k,𝜉) denote a standard 𝜒2 distribution with

k degrees of freedom, and a non-central 𝜒2 distribution with k degrees of freedom and non-centrality parameter 𝜉 ∶=
(L′−1c)′(L′−1c), respectively, with L denoting an upper triangular matrix such that L′L = RΩ𝜷R′.

Remark 6. The result in Part (i) of Theorem 2 shows that the limiting null distribution of LMFGLS
d is pivotal and that

a test of H0 ∶ 𝜽 = 𝟎 can be run using standard critical values from the 𝜒2
(k) distribution, where k is the dimension of

yt. Part (ii) of Theorem 2 establishes that the asymptotic distribution of LMFGLS
d displays a non-trivial positive offset

under the local alternative, Hc ∶ 𝜽 = c∕
√

T, vis-à-vis the null, H0, but that its asymptotic local power function will, in
general, depend on nuisance parameters arising from any weak dependence or cross sectional correlation present in
𝜺t. The same is also true of the extant multivariate fractional integration tests discussed in Section 1, except that these
do not, in general, have pivotal limiting null distributions when conditional heteroskedasticity is present in et, as a
consequence of the fact that they are not based around a heteroskedasticity-robust estimate of the variance matrix Ω𝜷 .

Remark 7. Theorem 2 provides a theoretical basis for the construction of confidence sets. This can be achieved by
inverting the non-rejection region of the test statistic; see Hassler et al. (2009). More specifically, let LMg denote the
value of the LM statistic when testing H0 ∶ 𝜽 = 𝟎 for an arbitrary g∈Rk, and let Ψ be an arbitrary compact set in
Rk. Define 𝜆 ∶=

{
g ∈ Ψ ∶ Pr

[
𝜒2
(k) > LMg

]
≤ 1 − 𝜆

}
with 𝜆 ∈ (0, 1), that is, the subset of Ψ for which H0 cannot

be rejected at the 𝜆 significance level. From Theorem 2, it follows that if Ψ is large enough so as to contain the true
values of the long memory parameter vector, then the probability of the true order of integration lying within 𝜆 is at
least (1 − 𝜆).

Remark 8. Our proposed test procedure can be generalised to account for non-zero means following the approach in
Robinson (1994). To that end, consider the extended form of the DGP in (1) given by yt = 𝝁 + Δ(L)−d−𝜽𝜺tI(t ≥ 1),
where 𝝁 ≡ (𝜇1, … , 𝜇k)′ is a fixed vector. Under H0 ∶ 𝜽 = 0, (1 − L)di

+ 𝑦it = (1 − L)di
+ 𝜇i + 𝜀tI(t ≥ 1), 1≤ i≤ k. Following

Robinson (1994), we regress the differences (1 − L)di
+ 𝑦it ∶=

∑t−1
𝑗=0 𝜆𝑗 (di) 𝑦it−𝑗 on ht,di ∶=

∑t−1
𝑗=0 𝜆𝑗 (di) , t = 2, … ,T,

with
{
𝜆𝑗 (di)

}
as defined in (4). Denote the resulting estimates as 𝜇i, i = 1, … , k, and the corresponding residuals as

�̃�it,di ∶= (1 − L)di
+ 𝑦it−𝜇iht,di . One then simply redefines the ith element of the vector 𝜺t,d from (2) to be �̃�it,di , i = 1, … , k,

and then proceeds as before. Let �̃� denote the FGLS estimator obtained in this way. Then, following the approach
taken in Proposition 4 of Demetrescu et al. (2008), it can be shown that Theorem 1 holds with 𝜷 replaced by �̃� because||�̃� − 𝜷|| = op(T−1∕2) under the restrictions considered and the additional condition that d > 0. More generally, the
results can be extended to account for, among other things, deterministic polynomial time trends and deterministic
seasonal effects; see also Nielsen (2005) and Demetrescu et al. (2008). The large sample results given in this section
are not affected by accounting for such deterministics.4

Remark 9. In practical applications of the tests, the lag order p will typically be unknown and so could be selected using
a standard consistent information criterion such as the Bayes information criterion (BIC). Demetrescu et al. (2008)
argue that these can lead to substantial finite-sample biases in the context of the tests considered here. As an alterna-
tive, Demetrescu et al. (2008) advocate the use of a deterministic lag selection rule, such as the popular Schwert (1989)
rule, which sets p = ⌊K(T∕100)1∕4⌋, where ⌊·⌋ denotes the integer part of its argument and K is a finite positive con-
stant. Provided that the true lag order p is finite, as we assume in this paper, then the limiting distribution theory
given in this section will remain apposite for tests based on a lag length determined according to such deterministic
rules. We will implement Schwert's rule in the empirical application considered in Section 5.

Remark 10. It is useful to compare the large sample properties of our proposed test with the Gaussian LM test of
Nielsen (2005) in comparable settings. To this end, consider the case where, as required by the conditions imposed in
Theorem 3 of Nielsen (2005, p. 381), Assumption 1 is restricted such that p = 0 and et is an i.i.d. innovation sequence.

4Numerical experiments investigating the finite sample rejection rates of our tests when a non-zero mean is allowed for are given in section B.3 of the
supporting information appendix. These confirm the (exact) invariance of such tests and the lack of invariance of tests which do not allow for a non-zero
mean. The loss of finite sample power from allowing for a non-zero mean appears very modest.
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It is straightforward to show that under these additional restrictions

LMFGLS
d =

(
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−1

]
Y d

)′(
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−1

]
X∗

−1,d

)−1 (
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−1

]
Y d

)
+ op(1)

where X∗
−1,d ∶=diag

{
X∗

1,−1,d, … ,X∗
k,−1,d

}
in which X∗

i,−1,d = Z∗
−1,dai, where Z∗

−1,d ∶= (z∗1,d, … , z∗T−1,d)
′ and ai denotes

the i-th unit k-dimensional vector. Noting, moreover, that z∗t−1,d ∶=
∑t−1

𝑗=1 𝑗
−1et−𝑗,d = − ln (1 − L)+et−𝑗,d under the null

hypothesis, the vector X ′∗
−1,d

[
Σ̃−1 ⊗ IT−1

]
Y d corresponds to the Gaussian score vector ST ∶= J′

kvec
(
Σ̃−1S′

10

)
given

in eq. (11) of Nielsen (2005), where S10 ∶=
∑T

t=2 e∗t−1e′t with e∗t−1 ∶=
∑t−1

𝑗=1 𝑗
−1et−𝑗 , and Jk ∶= (vec (A11) , … , vec (Akk))

with Aii ∶= aia′
i . Because 1

T
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−1

]
X∗

−1,d
p
→ A𝜷 , where A𝜷 = 𝜋2

6
Σ ⊗ Σ− 1 under the additional restric-

tions outlined above, it can be seen that LMFGLS
d is asymptotically equivalent to the Gaussian LM test proposed in

Nielsen (2005). Consequently, LMFGLS
d is asymptotically locally efficient when et is a Gaussian i.i.d. sequence; see

Nielsen (2004a). Where p> 0, the two tests differ crucially on how the short-run autocorrelation is handled. While
LMFGLS

d uses pth-order augmentation in (5), Nielsen's (2005) test relies on prewhitening using the residuals from a
VAR(p) model in a two-stage procedure. Augmentation and prewhitening are asymptotically equivalent strategies but
will differ in finite samples, as will be explored in the next section.

4 MONTE CARLO SIMULATIONS

We consider the simulation DGP[
(1 − L)1+𝜃1 0

0 (1 − L)1+𝜃2

]
yt = 𝜺tI(t ≥ 1), t = 1, … ,T, (9)

where yt ≡ (𝑦1t, 𝑦2t)′, Π(L)𝜺t = et with 𝛱(L) = diag{1−𝜋1L, 1−𝜋2L}, and (𝜋1,𝜋2)∈ {(0, 0), (0.4, 0.4)}; such that the former
corresponds to white noise, while the latter yields weakly stationary VAR(1) errors. As the particular values of the long
memory coefficients play no role in our context, we set d1 = d2 = 1. We report results for T∈ {500, 1000}.

The innovations {et} are generated to exhibit time-varying conditional second-order moments according to the design:

et =
[
𝜎1t 0
0 𝜎2t

]
𝜼t; E

(
𝜼t
)
= 0; E

(
𝜼t𝜼

′
t
)
=∶ Ω𝜌 =

[
1 𝜌
𝜌 1

]

where 𝜼t ∶= (𝜂1t, 𝜂2t)′ is an i.i.d. vector drawn from either a multivariate Gaussian distribution or a (heavy-tailed) mul-
tivariate Student-t distribution with 5 degrees of freedom. The covariance matrix Ω𝜌 depends on the contemporaneous
correlation coefficient 𝜌, 𝜌∈ {0, 0.2, 0.4, 0.6, 0.8}. The conditional variances

{
𝜎2

it

}
are driven by (normalised) stationary

GARCH(1,1) processes 𝜎2
it = (1 − 𝛼 − 𝛽) + 𝛼e2

i,t−1 + 𝛽𝜎2
i,t−1, i = 1, 2 with 𝛼, 𝛽 ≥ 0 and 𝛼 + 𝛽 < 1, such that E

(
e2

it

)
= 1.

We consider (𝛼, 𝛽)∈ {(0, 0), (0.1, 0.5), (0.1, 0.7), (0.1, 0.8), (0.1, 0.85)}. The case 𝛼 = 𝛽 = 0 corresponds to conditional
homoskedasticity.

To simplify our discussion, we fix 𝜃2 = 0 in all of the reported simulations and vary 𝜃1 among
{− 0.3,− 0.25, … , 0, … , 0.25, 0.3}. Consequently, while the true order of integration of {𝑦2t} is always one, the true order
of integration of {𝑦1t} is 1+ 𝜃1. The case where 𝜃1 = 0 allows us to investigate the empirical size properties of LMFGLS

d ,
while the cases where 𝜃1 ≠ 0 allow us to investigate its finite sample power against an alternative where one of the long
memory parameters deviates from the null hypothesis. For each of the parameter configurations (𝛼, 𝛽, 𝜌, 𝜋1, 𝜋2, 𝜃1), the
two sample lengths, and the two conditional distributions, we compute LMFGLS

d and determine the empirical rejection
frequencies [ERFs] at the 5% nominal (asymptotic) level over 5000 replications.

We also benchmark the performance of LMFGLS
d against two alternative (but related) tests. The first is the multivariate

LM test of Nielsen (2004a, 2005) discussed in Remark 10 above, denoted LMMLE
d in what follows, and the second is the

multivariate trace test of Breitung and Hassler (2002), which we denote BHd. While LMFGLS
d corrects for stationary serial

correlation in 𝜺t via lag augmentation in (5), both LMMLE
d and BHd use a prewhitening approach. Both LMMLE

d and BHd
require that {et} is i.i.d., and so neither allows for the presence of conditional heteroskedasticity in {et}. Under these
conditions, LMMLE

d has a limiting 𝜒2
(k) null distribution, while BHd has a limiting 𝜒2

(k2) null distribution. Nielsen's LMMLE
d is
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designed to test the same null hypotheses as LMFGLS
d and so is the most natural candidate to benchmark our test against.

In contrast, the BHd test is for the null hypothesis of a common order of integration between the elements of the vector
time series. Our simulation DGP is such that this condition holds under the null hypothesis, but not under the alternative,
so a comparison with this test is appropriate.

4.1 ERFs with no augmentation/prewhitening
Table 1 reports the empirical size properties (𝜃1 = 𝜃2 = 0), for LMFGLS

d , LMMLE
d and BHd where no short-run dynamics

are present (𝜋1 = 𝜋2 = 0), and where, accordingly, no lag augmentation or prewhitening is needed. This allows us
to first investigate the impact of GARCH effects, contemporaneous correlations, and the conditional distribution of the
innovations on each test.

The results show that LMFGLS
d displays ERFs close to the nominal asymptotic 5% level in almost all cases. Some mild

oversizing is seen for the smaller sample size considered when the innovations are conditionally Student-t distributed with
relatively high GARCH persistence, 𝛼 = 0.1 and 𝛽 ≥ 0.80, and significant levels of endogeneity, 𝜌≥ 0.4. These distortions
are largely ameliorated as the sample size increases. Where the innovations are i.i.d. (𝛼 = 𝛽 = 0), both LMMLE

d and BHd
display good finite sample size control regardless of the conditional distribution or the degree of endogeneity. However,
where the innovations exhibit conditional heteroskedasticity, a very different pattern emerges for both LMMLE

d and BHd.
These tests display a tendency to strong oversizing, with these distortions being larger (other things equal): The stronger
the degree of persistence of the GARCH process, the larger the degree of endogenous correlation |𝜌|, and for innovations
drawn from a heavy-tailed distribution. Moreover, these size distortions are not ameliorated as the sample size increases.
To illustrate, for T = 500 and 𝜌 = 0.8, the ERFs of LMMLE

d and BHd with GARCH errors driven by (𝛼, 𝛽) = (0.10, 0.85) and
Student-t innovations are 36% and 38.8%, respectively. In contrast, the LMFGLS

d test is only slightly oversized at 7.1%. For
T = 1000, the corresponding ERFs of LMMLE

d and BHd increase significantly to 48.3% and 52.8%, respectively, while that
of LMFGLS

d reduces to 6.1%.

4.2 ERFs with augmentation/prewhitening
We now analyse the finite sample size and power properties of LMFGLS

d , LMMLE
d and BHd in the case where the errors, 𝜺t,

can display first-order stationary VAR dynamics. Accordingly, we set p = 1 in (5) in relation to the LMFGLS
d test, while

analogously, we use a VAR(1) for prewhitening in connection with the LMMLE
d and BHd tests. For 𝜺t we consider (i) 𝜋1 =

𝜋2 = 0, so that augmentation/prewhitening is in fact unnecessary, and (ii) 𝜋1 = 𝜋2 = 0.4, so that the correct order of
augmentation/prewhitening is employed.

Table 2 reports ERFs of the three tests in the Gaussian homoskedastic case (𝛼 = 𝛽 = 0). Results for the Student-t case
are not reported as these are almost identical to the results reported in Table 2. Also, to keep the size of the subsequent
tables to manageable proportions, we will only report results for two values of the correlation coefficient, namely, 𝜌 = 0
and 𝜌 = 0.8. Corresponding results for 𝜌∈ {0.2, 0.4, 0.6} can be obtained on request.

Consider first the results for the case where 𝜃1 = 0 so that the null hypothesis holds. Here, we see that the ERFs of
the augmented LMFGLS

d test lie close to the nominal asymptotic level throughout, even where the lag augmentation is
unnecessary. Prewhitening also appears to be effective for the LMMLE

d and BHd tests, with the exception of the case where
𝜌 = 0.8 where these tests are somewhat oversized for T = 1000. Turning next to the empirical power results for 𝜃1 ≠ 0,
we see that LMFGLS

d displays good finite sample power properties with power increasing, other things equal, both as |𝜃1|
increases and as T increases, as would be expected. Power is also larger, other things equal, for 𝜌 = 0.8 than for 𝜌 = 0,
illustrating the efficiency benefits gained from multivariate modelling when the variables are cross-correlated. In terms
of a comparison between the three tests, overall the finite sample power properties of LMFGLS

d and LMMLE
d seen in Table 2

are very similar for alternatives where 𝜃1 < 0, as might be expected given the asymptotic equivalence of these tests when
the innovations are i.i.d.; compare Remark 10. For alternatives where 𝜃1 > 0 (i.e., when the process is more persistent
than posited under the null) LMFGLS

d can display somewhat higher power than LMMLE
d , particularly in the case where the

errors are first-order autocorrelated, 𝜋1 = 𝜋2 = 0.4; for example, for 𝜋1 = 𝜋2 = 0.4, 𝜌 = 0,T = 500 and 𝜃1 = 0.3 the
power of LMFGLS

d and LMMLE
d are 57.4% and 32.3%, respectively. These differences are likely attributable to the use of lag

augmentation rather than prewhitening in the construction of LMFGLS
d . Both LMFGLS

d and LMMLE
d clearly dominate BHd on

power; in the previous example, the power of BHd is only 26.3%. The power functions of all of the tests are asymmetric in
the sign of 𝜃1, for a given DGP, such that a false null hypothesis which leads to an over-differenced series (𝜃1 < 0) is seen
to be more easily rejected than an incorrect null, which leads to an under-differenced series (𝜃1 > 0) where the magnitude
of the under/over difference is the same. To illustrate, for 𝜋1 = 𝜋2 = 0.4, 𝜌 = 0 and T = 500, the power of LMFGLS

d to detect
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𝜃1 = 0.25 and 𝜃1 = −0.25 is 49.6% and 72.0%, respectively. Breitung and Hassler (2002) report a similar asymmetry in the
power properties of their univariate tests.

Finally, we turn to the case where the innovations may display GARCH effects and excess kurtosis. Table 3 (T = 500) and
Table 4 (T = 1000) report the ERFs for LMFGLS

d , LMMLE
d and BHd for both Gaussian and Student-t innovations for 𝜋1 = 𝜋2 =

0.4, 𝜌 ∈ {0, 0.8} , (𝛼, 𝛽) ∈ {(0.10, 0.80) , (0.10, 0.85)}. The results for 𝜃1 = 0 show that the empirical size properties of the
tests in the presence of GARCH are similar to the corresponding results reported previously for the serially uncorrelated
case with no augmentation/prewhitening in Table 1. In particular, while the empirical size of LMFGLS

d is reasonably close
to the nominal asymptotic 5% level throughout (size departures are not greater than 1.6% for T = 500 and not greater than
0.8% for T = 1000), incorrectly assuming conditional homoskedasticity causes significant oversizing in both LMMLE

d and
BHd which is not ameliorated by increasing the sample size. To illustrate, for 𝜌 = 0.8, and (𝛼, 𝛽) = (0.10, 0.85) ,LMMLE

d and
BHd, respectively, display ERFs of 9.2% and 8.7% for T = 500 and 10.4% and 9.9% for T = 1000 with Gaussian innovations,
increasing to 28.2% and 32.4% for T = 500 and 40.4% and 46.2% for T = 1000 with Student-t innovations.

For non-zero values of 𝜃1, we observe qualitatively similar patterns in relation to the power properties of LMFGLS
d as

were reported in Table 2 in the homoskedastic case, albeit persistent GARCH-type behaviour in the innovations can be
seen to clearly lower the finite sample power of LMFGLS

d relative to the i.i.d. case, and particularly so when the conditional
distribution of the innovations is heavy tailed. This is of course consistent with Theorem 2 where it was shown that
the asymptotic local power function of the LMFGLS

d test depends on any nuisance parameters arising from conditional
heteroskedasticity in the innovations. To illustrate, from Table 2 for 𝜋1 = 𝜋2 = 0.4, 𝜌 = 0,T = 500, the power of LMFGLS

d
to detect 𝜃1 = 0.3 (𝜃1 = −0.3) in the i.i.d. case is 57.4% (87.5%). However, from Table B.1, under GARCH dependence
with (𝛼, 𝛽) = (0.10, 0.85) the respective probabilities are 52.7% (75.7%) in the Gaussian case, and 37.3% (49.3%) in the
Student-t case. Similarly, for T = 1000 in the previous example power is seen from Table 3 to be 98.7% (99.9%) in the
Gaussian case and 71.6% (81.1%) in the Student-t case. A comparison between the finite sample power of LMFGLS

d and
that of LMMLE

d and BHd is somewhat uninformative here because of the poor size control of the latter two tests under
conditional heteroskedasticity.

5 LONG-RUN DYNAMICS IN VOLUME AND VOLATILITY

Understanding the linkages between return volatility, liquidity and trading activity has been an area of considerable
research interest in the finance literature. We apply the multivariate testing approach developed in this paper to perform
joint inference on the order of fractional integration of trading volume and return volatility for a sample of major stocks
traded in the US market. As part of this, we also investigate the hypothesis that these variables exhibit the same order of
fractional integration.

A number of previous studies have investigated this hypothesis in trading volume and return volatility within a mul-
tivariate ARFIMA framework. No strong consensus has emerged across these studies, which are based on a variety
of methods of estimation and inference and employ a number of different observable variables to proxy the latent
return volatility process. Bollerslev and Jubinski (1999) and Lobato and Velasco (2000) use semiparametric multivari-
ate periodogram-based estimators in the frequency domain, proxying return volatility by absolute-valued returns. They
conclude that, for most of the stocks analysed, the hypothesis that trading volume and return volatility share the same
order of fractional integration cannot be rejected. However, Fleming and Kirby (2011) argue that the slow rate of con-
vergence of periodogram-based estimators raises concerns about estimation efficiency. Consequently, they implement a
parametric Gaussian quasi-maximum likelihood (QML) approach as in Nielsen (2004a) to estimate a bivariate FIVAR
model, allowing for short-run dependencies, but under the assumption of conditional homoskedasticity. Moreover,
Fleming and Kirby (2011) proxy return volatility using intra-day data with the aim of improving accuracy over the use of
absolute-valued returns and reject the hypothesis of a common long memory coefficient in most cases.

Our testing procedure is expected to be useful here for two key reasons. First, as shown in Theorem 1, the FGLS-based
test achieves the usual

√
T rate of convergence in parametric testing and is therefore expected to yield improved

finite-sample power performance relative to periodogram-based estimators; see, for example, Tanaka (1999). This con-
sideration addresses concerns surrounding efficiency raised by Fleming and Kirby (2011). Second, and arguably most
importantly, our testing approach is valid in the presence of stationary conditionally time-varying second-order moments
and heavy-tailed innovations, unlike the QML approach of Nielsen (2004a) used by Fleming and Kirby (2011).
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5.1 Data

Our analysis focuses on 30 major US stocks from the DJI. We analyse data sampled from 2 January 2003 to 31 Decem-
ber 2014. Unlike trading volume, return volatility cannot be directly observed. The literature has suggested a number
of different estimation methods in increasing degree of accuracy, which we implement. The simplest approach uses
absolute-valued returns computed from close-to-close daily prices. Unfortunately, this measure is known to be highly
inefficient and subject to large estimation errors. More accurate estimates can be constructed building on intra-day infor-
mation. Following Garman and Klass (1980), we also proxy daily return variability as u2

t ∕2 − (2 ln 2 − 1) c2
t , where ut and

ct are the differences in the natural logarithms of the high and low and of the closing and opening prices, respectively.
Such range-based estimators produce more efficient estimates than absolute-valued returns computed from close-to-close
prices (Parkinson, 1980) and, as discussed in Andersen and Bollerslev (1998), can be as efficient a measure of return
volatility as realised volatility computed on the basis of 3- to 4-h returns. The last estimator we consider is a realised vari-
ance measure computed from aggregating 5-min squared continuously compounded returns over the trading session.
Daily share volumes and high, low, opening and closing prices are obtained from CRSP. High-frequency prices necessary
to compute realised variances are obtained from the NYSE Trade and Quote (TAQ) database. As is customary in this liter-
ature, we implement log transforms in both trading volume and return volatility variables. Standard descriptive statistics
for the aforementioned variables as well as a statistical analysis highlighting statistically significant evidence for the pres-
ence of time-varying second order moments in the data are presented in Tables C1 and C2 of the supporting information
appendix.

5.2 Implementation issues

In conducting our analysis of the long memory properties of log-trading volume and log-return volatility, hereafter
denoted as (d(vlm), d(𝜎 ))′, a number of key implementation issues arise, which we now detail.

First, we construct 99%, 95% and 90% confidence sets for (d (vlm) , d (𝜎))′ by inverting the non-rejection regions of the
multivariate test in a discrete grid search over the support Ψ = [−0.2, 1.2] × [−0.2, 1.2] (see Remark 7). More specifically,
we evaluate LMFGLS

d for any pair of values d1 and d2 in the grid sequence {−0.2,−0.1, … , 1.1, 1.2}. Point estimates of the
long memory parameter vector can also be obtained by minimising the value of LMFGLS

d over Ψ; notice that this estimate
does not depend on the confidence level used. This method of point estimation has been used in the univariate context;
see, for example, Gil-Alaña and Robinson (1997). We denote the resulting point estimates of the long memory parameter
for log trading volume and log volatility as d̂min (vlm) and d̂min (𝜎), respectively.5

Second, to account for deterministic effects in the level of these series, we apply the OLS-based demeaning procedure
described in Remark 8. While most papers do not consider deterministic trends as a stylised feature of return volatility,
trading volume is widely accepted to exhibit trending paths conformable with increasing growth in the number of traders
and trading activity; see Fleming and Kirby (2011) and references therein. Consequently, for the log volatility measures,
our main analysis is carried out by including a constant to capture a non-zero drift, as in Hassler et al. (2016), while in the
case of log volume we allow for a quadratic time trend polynomial of the form 𝜇t = 𝜇0 +𝜇1 (t∕T) +𝜇2(t∕T)2, as advocated
by, among others, Luu and Martens (2003) and Fleming and Kirby (2011). Parameters in these functions are estimated
through univariate OLS (see Remark 8), with the multivariate fractional integration test then computed on the resultant
residuals.

Third, as discussed in Remark 9, we determine the lag length according to Schwert's rule, p = ⌊4(T∕100)1∕4⌋. Given
the large sample size involved, Schwert's rule ensures a relatively long lag length, so that the short-run component of log
volume and log realised variance should be well captured in the auxiliary regression. Andersen et al. (2003) also adopt a

5Numerical experiments investigating the finite sample accuracy (bias and MSE) of these estimates in the context of a bivariate model are reported in
Section B.2 of the supporting information appendix.
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relatively long lag length in estimating their FIVAR model for the realised volatility of exchange rates in order to maintain
a conservative approach.6

5.3 Main results
For each stock and for each volatility measure, Table 5 reports the resulting point estimates d̂min (vlm) and d̂min (𝜎). Table 5
also gives the upper and lower bounds of the corresponding 95% confidence ellipsoids formed as the vertical and hori-
zontal projections of the confidence set onto the log-trading volume and log-volatility axes, respectively.7 The columns
headed ‘Common d’ in Table 5 report the range of values d for which the null hypothesis H0 ∶ d(vlm) = d(𝜎) = d cannot
be rejected at the asymptotic 5% nominal significance level. If this region is non-empty, it shows the set of values along
the 45-degree line contained within the 95% confidence ellipsoid; that is, those values of a common order of fractional
integration for which the null cannot be rejected. Notice that, by construction, the resulting interval contains the true
value of a common long memory parameter with an (asymptotic) probability not smaller than 95%. In addition, given
d̂min (vlm) and d̂min (𝜎), we can compute the residuals from the multivariate FGLS regression and use these to estimate the
contemporaneous correlation between the innovations to log-volume and a given return volatility measure; this estimate
is denoted by 𝜌e in Table 5. Large values of 𝜌e are supportive of the usefulness of the multivariate approach we advocate.
And, indeed, we see from Table 5 that this estimated correlation is generally quite large and positive.

Let us first discuss the results from the analysis of the joint dynamics of log volume and log absolute returns. Consistent
with previous literature, we observe that for most stocks considered our multivariate test rejects both the null hypothesis
that the order of integration of the bivariate series is I(0) (such that both variables are weakly dependent) and the null
hypothesis that it is I(1) (such that both series admit an autoregressive unit root). The only exceptions are INTC (Intel) and
MSFT (Microsoft), for which the multivariate test cannot reject the null hypothesis that log-volume is I(0) at the 5% level.
Taking a simple average of the estimates d̂min (vlm) and d̂min (𝜎) across all stocks considered yields 0.41 and 0.39, respec-
tively, essentially matching the ‘characteristic’ value of 0.40 typically found in literature; see, Andersen et al. (2003). While
for many of the stocks considered the point estimates of the vector of fractional exponents are below the non-stationary
threshold, we note that for most of the stocks the respective confidence sets cover both the stationary and non-stationary
regions of the parameter space, preventing us from drawing clear conclusions on the stationarity of the underlying series.
This is a common finding in the realised-volatility modelling literature; see, for example, Kellard and Sarantis (2010).

Reflecting the strong similarities seen between the estimates of the two long memory parameters in the bivariate sys-
tem, the hypothesis that trading volume and return volatility are driven by a FIVAR model with the same fractional
exponent can be rejected for only five of the stocks considered at the 5% level, which constitutes about 20% of the
stocks in our sample. This is, however, considerably higher than the corresponding frequency found by Bollerslev and
Jubinski (1999) who only reject for 8% of the series they considered but is the same as Lobato and Velasco (2000) who
also reject the null hypothesis of a common long memory parameter for 20% of the series they consider.8 In their study of
log-volume and log absolute returns, Fleming and Kirby (2011) reject the common long memory parameter null for 100%
of the series they analyse. They attribute this to estimation bias in the QML-based inference they use yielding system-
atically larger parameter estimates for the long memory coefficient for trading volume, and conjecture that departures
from normality in log absolute returns may be causing a pervasive effect on QML estimation; see Fleming and Kirby
(2011, pp. 1721–1722). Our Monte Carlo simulations in Section 4 accord with this conjecture suggesting that the combi-
nation of persistent time-varying volatility and non-Gaussian features in the data can introduce sizeable biases into the
QML-based methods of Nielsen (2004a, 2005) used by Fleming and Kirby (2011).

6We also investigated the robustness of our main conclusions to the lag augmentation order used in the FGLS regression and to the inclusion of a
deterministic time trend in connection with the return volatility measures. To that end, as in Fleming and Kirby (2011), we also looked at the case where
a linear time trend was allowed for in return volatility and a low-order VAR(p) was fitted. Table C.3 in the supporting information appendix reports the
main results from this analysis, focusing directly on log volume and log realised variance, with p = 2 and both with and without a linear time trend in
return volatility. Here, we also report the related results when p is chosen according to Schwert's rule and return volatility includes a deterministic time
trend. While the results show some sensitivity to these variations in the estimated model, the main qualitative picture that emerges is essentially very
similar to that discussed below.
7These bounds (projections) define a rectangular approximation to the true confidence interval ellipsoids, whose area cannot be smaller than that of
the true ellipsoid. However, they have the advantage that they provide a summary measure which can easily be tabulated. The full set of confidence
ellipsoids for each stock considered can be found in Sections C.2.2–C.2.4 of the supporting information appendix.
8In making such comparisons, it is important to note, however, that these authors use different sample data than we do involving different stocks and
different time periods. In particular, the sample lengths considered in Lobato and Velasco (2000) are more than double those we consider and our
findings of the same frequency of rejections of a common exponent as they do may reflect the greater efficiency of the methods used here.
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We now move to a discussion of the results relating to the use of the log range and log realised proxies for return
volatility. The overall picture that emerges here is remarkably similar in both cases. Multivariate estimation provides even
stronger support for fractional integration in this context, with the I(0) and I(1) null hypotheses both being rejected at the
5% level for all of the stocks considered. For log trading volume, some changes are seen relative to the results discussed
previously relating to the use of log absolute returns.9 Overall, the average value of d̂min (vlm) taken across all of the stocks
considered for the log range and log realised variance estimators is 0.45, reasonably similar to the 0.41 value reported above
in connection with the use of log absolute returns. In contrast, the estimates of the order of integration of return volatility
based on either the log-range or log realised variance measures show a marked increase compared to log absolute returns.
In both cases, the average value of d̂min (𝜎) is 0.58, and the overall evidence is strongly suggestive that return volatility
displays non-stationary dynamics over the period because the lower bounds of the confidence ellipsoids are not smaller
than the 0.5 threshold for many of the stocks considered. Evidence of non-stationary fractionally integrated dynamics in
realised volatility over this period (which includes the financial crisis) is consistent with the results reported by Hassler
et al. (2016); see also Bandi and Perron (2006). Consequently, and because the persistence of log realised variance tends
to be greater than that of log volume, the hypothesis that both variables share a common fractional exponent is rejected
at the 5% level for a significantly larger proportion of the stocks considered, namely, 53.33% when using log range and
63.33% when using log realised variance.

It is well understood in the financial econometrics literature that measurement errors in absolute returns can cause
bias in (univariate) long memory parameter estimation. Essentially, log absolute returns are subject to noisy additive
measurement errors with large variability, which will make the underlying process appear less persistent than it really
is, leading to downward-biased estimates of the true order of fractional integration; see, among others, Bollerslev and
Wright (2000), Haldrup and Nielsen (2007) and Dalla (2015). This provides a straightforward and plausible explanation for
the systematic differences seen in the long memory estimation results for the different return volatility measures reported
in Table 5.10 According to our results, the more efficient the estimate of return volatility used the higher the percentage of
the stocks for which the null hypothesis of a common order of integration can be rejected. Essentially, downward biases in
the estimation of the long memory parameter on absolute returns biases the tests to non-rejection of a common order of
integration. Using more accurate return volatility measures reduces this estimation bias and leads to increased evidence
that return volatility is more persistent than volume.

5.4 Fractional cointegration
As noted in Remark 5, our FGLS-based LM test, like the LM test of Nielsen (2005), assumes the absence of fractional
cointegration between the variables, and diverges if fractional cointegration is present. Given that we reject the null
hypothesis of a common order of integration for trading volume and return volatility for most of the stocks considered,
we now also investigate the order of fractional integration of the series using the semiparametric approach of Nielsen and
Shimotsu (2007) (NS henceforth), detailed in the supporting information appendix. NS's procedure allows us (under
certain regularity conditions) to consistently estimate the cointegration rank of the series and, using the approach of
Robinson and Yajima (2002), to test the null hypothesis that the elements of long memory vector, d, are equal (although
it is important to note that this is not a multivariate test as it is based on the univariate estimates of the fractional expo-
nents). Denoting the statistic for the latter as T0, NS show that T0

p
→ 0 when the cointegration rank, r, is greater than zero

(i.e., where the variables are cointegrated), whereas T0 ⇒ 𝜒2
(1) when r = 0 (where the variables are not cointegrated) and

the null of an equal order of integration holds on d. NS argue that large values of the test statistic provide evidence against
the hypothesis of a common order of integration, regardless of whether the underlying series are fractionally cointegrated
or not.

Given that the highest frequency of rejections of a common fractional exponent occurred when using log realised vari-
ances, we only report that case here. Consistent with the analysis in Table 5, we account for a deterministic drift in log
volatility and a polynomial time trend in log volume by prior detrending of the data, using the two-stage exact local
Whittle estimator in Shimotsu (2010). Following the empirical analysis in NS, we estimated d by setting mT = ⌊T0.6⌋
9Because we conduct joint estimation, and the innovations to the short-term component of volume and return volatility are strongly positively correlated,
as reported in the column 𝜌e in Table 5, the estimates of the long memory parameter of log volume would be expected to be somewhat sensitive to
changes in the variable used as a proxy for return volatility.
10An alternative explanation, put forward by a referee, is that the VAR dynamics may be misspecified and, as a result, some of the high-frequency
measurement error is picked up in the estimate of the fractional exponent. However, the relatively long lag length used should mitigate against this
and, moreover, as discussed in footnote 6, the results appear relatively robust to the lag order specified.
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TABLE 6 Results from the the Nielsen and Shimotsu (2007)-based approach

Nielsen–Shimotsu testing approach
Stock d̂ (vlm) 95% CI d̂ (𝝈) 95% CI T0 p value L(0) L(1) r̂

T
r̂∗T

AAPL 0.62 [0.53,0.71] 0.48 [0.40,0.57] 5.37 0.02 −1.465 −1.337 0 -
AXP 0.52 [0.43,0.61] 0.63 [0.54,0.72] 3.90 0.05 −1.465 −1.444 0 -
BA 0.37 [0.28,0.46] 0.57 [0.48,0.66] 11.41 0.00 −1.465 −1.366 0 -
CAT 0.40 [0.31,0.48] 0.56 [0.47,0.65] 8.74 0.00 −1.465 −1.419 0 -
CSCO 0.34 [0.25,0.42] 0.52 [0.44,0.61] 10.46 0.00 −1.465 −1.416 0 -
CVX 0.52 [0.43,0.61] 0.61 [0.52,0.70] 2.78 0.10 −1.465 −1.455 0 0
DD 0.35 [0.26,0.44] 0.55 [0.46,0.64] 12.08 0.00 −1.465 −1.378 0 -
DIS 0.38 [0.29,0.47] 0.61 [0.52,0.70] 14.55 0.00 −1.465 −1.408 0 -
GE 0.55 [0.46,0.64] 0.60 [0.51,0.69] 0.90 0.34 −1.465 −1.468 1 1
GS 0.53 [0.44,0.62] 0.56 [0.47,0.65] 0.35 0.56 −1.465 −1.482 1 1
HD 0.60 [0.51,0.69] 0.57 [0.48,0.66] 0.33 0.57 −1.465 −1.380 0 0
IBM 0.39 [0.31,0.48] 0.58 [0.49,0.66] 10.83 0.00 −1.465 −1.460 0 -
INTC 0.19 [0.10,0.28] 0.54 [0.45,0.63] 33.64 0.00 −1.465 −1.301 0 -
JNJ 0.41 [0.33,0.50] 0.60 [0.51,0.69] 10.86 0.00 −1.465 −1.452 0 -
JPM 0.59 [0.50,0.68] 0.62 [0.53,0.71] 0.31 0.58 −1.465 −1.530 1 1
KO 0.40 [0.31,0.49] 0.61 [0.52,0.70] 13.03 0.00 −1.465 −1.350 0 -
MCD 0.35 [0.26,0.44] 0.60 [0.51,0.69] 16.74 0.00 −1.465 −1.258 0 -
MMM 0.36 [0.27,0.45] 0.54 [0.45,0.63] 10.87 0.00 −1.465 −1.447 0 -
MRK 0.33 [0.24,0.41] 0.52 [0.43,0.61] 11.35 0.00 −1.465 −1.368 0 -
MSFT 0.22 [0.14,0.31] 0.48 [0.39,0.56] 16.50 0.00 −1.465 −1.351 0 -
NKE 0.39 [0.30,0.48] 0.52 [0.43,0.60] 4.45 0.03 −1.465 −1.326 0 -
PFE 0.37 [0.28,0.46] 0.53 [0.44,0.62] 7.52 0.01 −1.465 −1.332 0 -
PG 0.36 [0.27,0.45] 0.48 [0.39,0.57] 3.89 0.05 −1.465 −1.323 0 -
TRV 0.41 [0.30,0.51] 0.59 [0.49,0.69] 7.34 0.01 −1.426 −1.399 0 -
UNH 0.33 [0.24,0.41] 0.56 [0.47,0.65] 16.39 0.00 −1.465 −1.338 0 -
UTX 0.41 [0.32,0.50] 0.58 [0.49,0.67] 9.01 0.00 −1.465 −1.420 0 -
VZ 0.39 [0.30,0.48] 0.57 [0.48,0.66] 8.22 0.00 −1.465 −1.248 0 -
V 0.64 [0.55,0.74] 0.62 [0.53,0.72] 0.11 0.73 −1.452 −1.305 0 0
WMT 0.40 [0.32,0.49] 0.57 [0.48,0.66] 7.82 0.01 −1.465 −1.392 0 -
XOM 0.47 [0.38,0.56] 0.53 [0.44,0.62] 1.06 0.30 −1.465 −1.493 1 1
Average 0.42 0.56 13.33% 13.33%
Rejection 95% 76.67%

Note: The columns headed: ‘d̂ (vlm)’ and ‘d̂ (𝜎)’ report point estimates from the two-stage univariate exact local Whittle estimator in
Shimotsu and Phillips (2005); ‘T0’ and ‘p value’ report the test statistic for the null of a common order of integration and related p values;
‘L(u)’, u = 0, 1, report the objective function used to infer the cointegration rank in a model selection procedure; finally, ‘̂rT ’ reports the
estimated cointegration rank resulting from this criterion, and ‘̂r∗T ’ reports the conditional estimates of r for the cases in which the null
hypothesis of a common order of integration cannot be rejected at 5% level.

and compute T0 with sT = log T. Following NS, we also use m1T = ⌊T0.55⌋ and vT = m−0.3
1T in the estimation of the

cointegration rank. Table 6 reports the point estimates and 95% asymptotic confidence level estimates of d , the T0 test
statistic and related p values, the values of the function L (u) used in the model selection procedure, and the estimates of
the cointegration rank, r̂T . The column r̂∗T reports the conditional estimates of r for the cases in which the hypothesis of
a common order of integration cannot be rejected at the 5% nominal size level.

Three key features arise from this analysis. First, the results based on the NS test provide the same qualitative evidence
as the tests based on FGLS estimation. There exists strong evidence of fractional integration in both series, which is again
suggestive that realised volatility is more persistent than trading volume. Accordingly, the hypothesis of an equal order of
integration is rejected at any of the usual significance levels for the majority of the stocks in our sample. Second, in most
cases, the FGLS and the NS tests agree on whether to reject or not the null hypothesis of a common order of fractional
integration. In particular, all of the cases in which the FGLS test rejects at the 5% level correspond to stocks for which the
NS test also rejects at this level. There are, however, five stocks for which NS rejects the null but the FGLS test does not, so
the average rejection rate of the NS test taken across all of the stocks considered is slightly higher at 76.67%. Crucially, the
p values of the T0 test in three of these five cases are only slightly below the 5% threshold, suggesting that the differences
with the FGLS test are caused by only marginal differences in significance. Finally, the estimates of the cointegration
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rank suggests that volume and realised volatilty are not in general cointegrated, supporting the suitability of FIVAR-type
modelling. In particular, fractional cointegration, indicated by r̂T = 1 or r̂∗T = 1, is found for only 13.33% of the stocks,
but crucially, these are all stocks for which neither the NS T0 test nor our FGLS-based tests reject the null hypothesis of a
common order of integration; that is, none of the rejections of a common order of integration seen with the FGLS-based
test in Table 5 are associated with a non-zero estimate of the cointegration rank.

It is worth pointing out in conclusion that the assumptions on which the NS approach are based include the requirement
of conditional homoskedasticity. To check how sensitive the NS test is to violations of this assumption, we conducted a
small Monte Carlo experiment using the sample simulation DGP as in Section 4. For samples of size T = 500 and T = 1000,
𝜌 = 0.8 and persistent GARCH processes with (𝛼, 𝛽) = (0.1, 0.85), the ERFs of the T0 test under Gaussian innovations
at the 5% nominal asymptotic level were 3.10% and 4.30%, respectively, suggesting approximately correct size. However,
under Student-t innovations with 5 degrees of freedom, the respective ERFs were 15.5% and 24.5%. Although clearly
oversized, these distortions are considerably smaller than those that were seen in the corresponding results in Section 4
for the QML-based test of Nielsen (2005). These simulation results might help explain the differences seen between the
results for the FGLS and T0 tests in our empirical study whereby slightly more rejections of the null of a common order
of integration are obtained when using the T0 test, given that this test has a tendency to be somewhat oversized when the
data display conditional heteroskedastcity and heavy-tailed behaviour, as is the case with the data in our empirical study.

6 CONCLUSIONS

We have proposed that a new test for fractional integration in the context of a quite general FIVAR model, which allows
for conditional heteroskedasticity in the innovations, does not require the order of integration of the elements of the vec-
tor time series to coincide or to lie in a certain region (thereby allowing for both stationary and non-stationary dynamics)
and does not assume a particular distribution for the innovations. To the best of our knowledge, none of the methods
in the extant literature has achieved this degree of flexibility. Our approach is based on an LM-type test statistic using
a heteroskedasticity-robust estimate of the variance matrix and can be readily implemented using FGLS estimation in a
regression-based context. We have demonstrated that our proposed test statistic has a standard 𝜒2 asymptotic null dis-
tribution, that the test exhibits non-trivial power to reject against a sequence of local alternatives and that in the case of
i.i.d. Gaussian errors the test is asymptotically locally efficient. Monte Carlo analysis was used to show that while our
test is approximately correctly sized in finite samples of data exhibiting conditional heteroskedasticity and heavy-tailed
features, extant tests in the literature that neglect conditional heteroskedasticity can be severely oversized even for very
large samples.

In an empirical case study, we have used our proposed testing procedure to jointly infer the order of fractional integration
of trading volume and return volatility in a sample of major stocks traded in the US market. Return volatility was proxied
by three different measures with increasing degrees of accuracy: absolute returns, a range-based estimator and a realised
variance computed over 5-min returns. The evidence from the analysis based on the realised variance and range-based
estimates delivered similar conclusions, namely, that for many stocks in the sample return volatility is more persistent
than trading volume. On the other hand, the analysis based on log absolute returns showed that volume and return
volatility share the same order of fractional integration. Because long memory estimation in absolute returns is known to
be downward biased, measurement errors in the data would seem to be a plausible explanation for the evidence from log
absolute returns.

For applied work, it is of interest that our conclusions based on the realised variance and range-based estimators of
return volatility were very similar. While the former is a more efficient estimate of conditional variability, the latter seems
to provide a reasonable enough level of accuracy such that the conclusions drawn from the data are not markedly different.
This might be a useful observation in practice because for many applications the high-frequency intra-day data needed to
construct realised variance and related measures is often not available, for example, when considering small or illiquid
markets. In the absence of intra-day data, but when information on high and low prices are available, inference based on
range-based volatility estimates may still lead to reliable conclusions.

We finish with a suggestion for further research. Here, we have proposed parametric FGLS-based multivariate frac-
tional integration tests which, unlike other extant parametric tests, allow for conditionally heteroskedastic innovations.
There are relatively few semiparametric multivariate fractional integration tests in the literature, most notably Lobato and
Robinson (1998), Lobato (1999), Marinucci and Robinson (2001) and Shimotsu (2007), all of which assume conditionally
homoskedastic innovations. Investigating whether or not these tests remain asymptotically valid under conditional het-
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eroskedasticity and, if so, comparing their finite sample performance with the tests developed in this paper is beyond the
scope of the present paper but would constitute an interesting topic for further research.
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