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Abstract
Aim: Ecological communities that exist closer together in space are generally more 
compositionally similar than those far apart, as defined by the distance– decay of 
similarity relationship. However, recent research has revealed substantial variability 
in the distance– decay relationships of microbial communities between studies of dif-
ferent taxonomic groups, ecosystems and spatial scales and between those using dif-
ferent molecular methodologies (e.g., high- throughput sequencing versus molecular 
fingerprinting). Here, we test how these factors influence the strength of microbial 
distance– decay relationships, in order to draw generalizations about how microbial 
β- diversity scales with space.
Location: Global.
Time period: Studies published between 2005 and 2019 (inclusive).
Major taxa studied: Bacteria, Archaea and microbial Eukarya.
Methods: We conducted a meta- analysis of microbial distance– decay relationships, 
using the Mantel correlation coefficient as a measure of the strength of distance– 
decay relationships. Our final dataset consisted of 452 data points, varying in  
environmental/ecological context or methodological approaches, and we used linear 
models to test the effects of each variable.
Results: Both ecological and methodological factors had significant impacts on the 
strength of microbial distance– decay relationships. Specifically, the strength of these 
relationships varied between environments and habitats, with soils showing signifi-
cantly weaker distance– decay relationships than other habitats, whereas increasing 
spatial extents had no effect. Methodological factors, such as sequencing depth, 
were positively related to the strength of distance– decay relationships, and choice 
of dissimilarity metric was also important, with phylogenetic metrics generally giving 
weaker distance– decay relationships than binary or abundance- based indices.
Main conclusions: We conclude that widely studied microbial biogeographical pat-
terns, such as the distance– decay relationship, vary by ecological context but are pri-
marily distorted by methodological choices. Consequently, we suggest that by linking 
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1  | INTRODUC TION

The distance– decay of community similarity is one of the most 
widely studied relationships in macroecology (Nekola & White, 1999; 
Soininen et al., 2007). This relationship quantifies the decrease in 
compositional similarity (β- diversity) between communities with in-
creasing geographical distance separating them and demonstrates 
that nearby communities are more similar to each other than distant 
communities. Distance– decay relationships arise through several dif-
ferent, but often interacting, ecological and evolutionary processes; 
consequently, ecologists have debated extensively the underly-
ing mechanisms that generate such patterns (Hanson et al., 2012; 
Nekola & White, 1999; Soininen et al., 2007). Spatial structuring of 
the environment can lead to distance– decay relationships, because 
communities close together in space are likely to experience more 
similar environmental conditions, hence contain more similar com-
munities than those situated in different environmental conditions. 
Dispersal limitation can also lead to distance– decay relationships by 
limiting the connectivity between communities, meaning that com-
munities closer together in space will share more species through 
localized dispersal than those further apart.

Distance– decay relationships are well documented in a multitude 
of plant and animal communities (e.g., multiple aquatic taxa, Astorga 
et al., 2012; tropical amphibians, Basham et al., 2019; multiple taxa, 
Soininen et al., 2007; urban plants, Sorte et al., 2008). Nonetheless, 
these relationships are of particular interest to microbial ecolo-
gists, because microorganisms were assumed to have ubiquitous 
distributions for several reasons. First, their small size facilitates 
passive dispersal over large geographical distances by vectors such 
as wind, bio- aerosolization, ocean currents or migrating animals 
(Bisson et al., 2007; Favet et al., 2013; Joung et al., 2017; Vašutová 
et al., 2019), thus potentially overcoming dispersal limitation as a 
contributory factor to microbial community composition. Second, 
microorganisms often maintain high population densities in the 
environment, leading to dispersal by “mass effects”, whereby high 
dispersal rates from areas of increased population density maintain 
populations in less optimal environments (Shmida & Wilson, 1985), 
helping them to overcome the constraints of spatially structured 
environmental gradients. Third, some microorganisms are able to 
enter dormant states, whether as vegetative cells or as cysts or 
spores (Locey et al., 2020), allowing them to survive and disperse 
through suboptimal environments, simultaneously enhancing their 
dispersive abilities and reducing the influence of spatially structured 
environmental gradients (Low- Décarie et al., 2016). Combined, 
these traits theoretically lower microbial β- diversity by increasing 

the proportion of shared species between distant communities, in 
turn leading to weaker distance– decay relationships in comparison 
to macroorganisms. However, empirical studies have yielded mixed 
results on the strength of microbial distance– decay relationships, 
where strength is defined as the degree to which geographical dis-
tance and community dissimilarity are correlated. Many studies have 
detected little or no evidence of distance– decay relationships in mi-
crobial communities (Hazard et al., 2013; Kivlin et al., 2014), whereas 
others have reported relationships of varying strengths, across a 
range of spatial extents, study systems and taxa (Clark et al., 2017; 
Dumbrell et al., 2010; Martiny et al., 2011). Thus, despite hundreds 
of empirical studies, the generality of spatial patterns in microbial 
communities remains unclear, and we are no closer to understanding 
whether variability in the spatial scaling relationships of microbial  
β- diversity originates from ecological or methodological sources.

Variation in microbial distance– decay relationships could be 
attributable to different environmental or ecological contexts in 
studies. Here, we consider environmental context as the variabil-
ity in the physicochemical environment (e.g., temperature, pH,  
topology) and ecological context as the total suite of species present 
and their interactions. The study systems commonly of interest to 
microbial ecologists vary in terms of connectivity, which may facil-
itate or hinder dispersal between communities, thereby leading to 
weaker or stronger distance– decay relationships, respectively. In 
well- connected systems where dispersal is more feasible, such as 
oceanic waters, distance– decay relationships should be weaker than 
in systems in which dispersal is limited, such as host- associated sys-
tems or soil systems, where distance– decay relationships are weaker 
in deeper soil horizons (Li et al., 2020). Moreover, study systems 
differ in the spatially structured environmental gradients and het-
erogeneity they support. Sediments and soils, for example, can sup-
port strong environmental gradients over distances of a few metres 
(Dumbrell et al., 2010) and can be highly heterogeneous at the milli-
metre scale (Vos et al., 2013), strengthening the correlation between 
distance and community dissimilarity. Additionally, different study 
taxa are likely to yield variable distance– decay relationships because 
they differ in traits that are linked to dispersal efficacy. For exam-
ple, small cells disperse more efficiently over long distances (Norros 
et al., 2014; Wilkinson, 2001; Wilkinson et al., 2012), meaning that 
organisms with larger cell sizes, such as microbial Eukarya, should 
be more strongly dispersal limited than those with small cell sizes, 
such as Bacteria (although this might not be true for all taxa, e.g., 
see Kivlin, 2020). Finally, it is known that spatial extent can influence 
our perception of ecological relationships, which might contribute 
to variable distance– decay relationships (Steinbauer et al., 2012). 

methodological approaches appropriately to the ecological context of a study, we can 
progress towards generalizable biogeographical relationships in microbial ecology.
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Archaea, Bacteria, biogeography, community dissimilarity, dispersal limitation, Eukarya, 
macroecology, Mantel test



     |  3CLARK et AL.

Studies incorporating larger spatial extents would be expected to 
show exponential decay of similarity, because communities are more 
likely to originate from distinct species pools, with high dispersal lim-
itation. In contrast, studies with smaller spatial extents are gener-
ally expected to follow power- law decay, although the spatial scales 
at which the distance– decay relationship follows either of these 
forms might also depend on the size of the study organisms (Luan 
et al., 2020; Martiny et al., 2011; Nekola & McGill, 2014).

Although the context in which a study was undertaken might 
contribute to variability in microbial distance– decay relationships, 
so too could different methodologies. Technological advances have 
yielded new insight into the structure and functioning of the devel-
opment of environmental microbial communities (Clark et al., 2018). 
However, rapid turnover in molecular methodologies means that our 
perception of microbial β- diversity patterns integrates methods that 
vary substantially in both coverage (ability to detect a greater pro-
portion of the community in a given sample) and resolution (ability 
to resolve closely related taxa) (Glenn, 2011; Muyzer, 1999). Early 
methods, such as clone library sequencing and community finger-
printing methods [e.g., denaturing gradient gel electrophoresis 
(DGGE), terminal restriction fragment length polymorphism (TRFLP) 
or phospholipid fatty acid (PLFA) analysis] are limited in their abil-
ity to detect rare taxa (Bartram et al., 2011) and often miss them 
completely (Low- Décarie et al., 2016). In turn, this could reduce 
the detected β- diversity, inflating estimated community similarity 
and weakening distance– decay relationships (Hanson et al., 2012). 
In contrast, high- throughput sequencing (HTS) platforms [also fre-
quently referred to as next- generation sequencing (NGS)] can de-
liver sequencing depths of tens or even hundreds of thousands of 
sequences per sample (Caporaso et al., 2012), thereby both improv-
ing community coverage (the detected proportion of a given com-
munity) and allowing more samples to be examined in a single study 
(improving sample coverage). Consequently, variation in the ability 
of molecular methods to resolve closely related taxa and to detect 
rare taxa can be an additional source of variability in microbial β- 
diversity, which, by extension, can either weaken or strengthen mi-
crobial distance– decay relationships.

In addition to the molecular methods, the choice of analytical 
methods, such as similarity metric, can influence distance– decay 
relationships. The similarity of communities varies according to the 
identity and abundance of the species present, their phylogenetic re-
lationships and external factors, such as varying sample sizes. Thus, 
similarity metrics that vary by one or more of these characteristics 
would be likely to result in contrasting distance– decay relationships 
(Barwell et al., 2015; Chao et al., 2005). For example, phylogenetic 
indices would be expected to yield weaker distance– decay relation-
ships than other metrics, because communities that have no species 
in common can still exhibit high phylogenetic similarity if the species 
share many branches of a phylogenetic tree, thereby reducing the 
decay of similarity over geographical distance (Bryant et al., 2008). 
In contrast, quantitative indices compare not only the composition 
of species present, but also their abundance in each community, 
reflecting finer- scale changes in community structure, and should 

therefore result in stronger distance– decay relationships by provid-
ing an additional axis (species abundances) by which communities 
can differ.

Here, to disentangle the effects of both contextual (e.g., spatial 
extent, taxon or ecosystem) and methodological (e.g., means of iden-
tifying/differentiating taxa or similarity metric) variables on micro-
bial distance– decay relationships, we undertook a meta- analysis to 
test the following specific hypotheses: 

1. Bacteria and Archaea will show weaker (lower correlation 
between geographical distance and community dissimilarity) 
distance– decay relationships than micro- eukaryotic taxa owing 
to their smaller size and higher population densities in most 
environments.

2. Environments that are able to maintain steep physicochemical 
gradients, such as sediments and soils, will have stronger (higher 
correlation between geographical distance and community dis-
similarity) distance– decay relationships than those such as sea-
water or air, where environmental gradients are more diffuse.

3. Spatial extent will be related positively to the strength of the 
distance– decay relationship because, at large spatial scales, in-
creased dispersal limitation and environmental heterogeneity will 
decrease the variance in community similarity at a given spatial 
distance, resulting in stronger distance– decay relationships.

4. High- throughput sequencing methods will yield stronger 
distance– decay relationships owing to: (a) their ability to re-
solve closely related taxa; (b) their greater community coverage 
(e.g., number of sequences per sample or number of individuals 
counted per sample); and/or (c) their greater sample coverage.

5. Phylogenetic similarity metrics (e.g., Unifrac, beta nearest taxon 
index) will result in weaker distance– decay relationships than 
other metrics, because communities can be similar phylogeneti-
cally, yet different at fine taxonomic resolutions, and quantitative 
metrics (e.g., Bray– Curtis, Hellinger and Euclidean) will yield the 
strongest relationships because they reflect changes in both spe-
cies composition and abundance.

2  | METHODS

2.1 | Meta- analysis

In order to test our hypotheses, we first gathered available data on mi-
crobial distance– decay relationships via a systematic literature search. 
To do this, five search terms were selected to detect relevant stud-
ies (Table 1). All literature searches were conducted using the Web of 
Science search portal on 18 April 2020, and all results published be-
tween 1900 and 2019 (inclusive) were retained. To filter the dataset to 
studies suitable for testing our hypotheses, search results were down-
loaded and screened manually using the “metagear” (Lajeunesse, 2016) 
package in R (v.3.4.1; R Core Team, 2019). Here, suitable studies were 
those that tested the relationship between community similarity and 
geographical distance in microbial communities, and not studies of 
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“macroorganisms” or studies of strain- level genetic distance (e.g., using 
multi- locus sequence typing). Furthermore, studies that did not test 
distance– decay relationships using Mantel correlation, or that used 
only partial Mantel tests, were also discarded. We did not identify any 
potentially suitable studies that were published before 1967, the year 
the Mantel test was described (Mantel, 1967), and the earliest suitable 
study was published in 2005.

From these studies, we extracted Mantel correlation coefficients 
(r) as an effect- size measure for each distance– decay relationship, 
which we refer to throughout as distance– decay strength. The 
Mantel test is a permutation- based method used to test for correla-
tion between two distance matrices or, in the context of this study, 
community (dis)similarity and geographical distance. The Mantel test 
statistic is an ideal measure of effect size for use in meta- analytical 
frameworks for several reasons. First, the Mantel correlation test is 
the most frequently used method for testing distance– decay relation-
ships in microbial ecology (Franklin & Mills, 2007; Ramette, 2007). 
Second, given that the Mantel coefficient is a standardized correla-
tion coefficient (i.e., it is bound by minus one and plus one), it pro-
vides an easily interpretable and comparable measure of effect size 
(Harrison, 2011).

We ensured that all Mantel correlation coefficients reflected 
correlations between geographical distance and community dissim-
ilarity, rather than similarity, by multiplying correlation coefficients 
by minus one where necessary (meaning that positive values indi-
cate a typical distance– decay relationship). Partial Mantel statistics 
(which test for correlation between two matrices whilst controlling 
for a third) were excluded because they are influenced by other vari-
ables included in the test and are, therefore, not easily comparable 
between studies. All Mantel correlation coefficients were trans-
formed to z- scores using Fisher's z transformation, as recommended 
by Rosenberg et al. (2013). All subsequent statistical analyses were 
conducted on the transformed z- scores, whereas the original Mantel 
correlation coefficients were used to make figures, for ease of 
interpretation.

In order to test our hypotheses, several variables relating to the 
context and methodology of each distance– decay relationship were 
recorded. Details of these variables are described in Box 1.

3  | Stat ist ica l  analyses

In order to determine whether distance– decay relationships var-
ied between categorical variables (as in hypotheses 1, 2, 4 and 5), 
we used ANOVAs. In tests where significant differences between 
groups were found, Tukey's honestly significant difference (HSD) 
tests were used to determine which groups were different from 
each other. Linear mixed- effect models were used to test sepa-
rately for relationships between the strength (correlation between 
geographical distance and community dissimilarity, expressed as the 
Mantel correlation coefficient) of distance– decay relationships and 
single continuous variables, such as spatial extent and community 
coverage, using a random intercept to account for heteroscedas-
ticity owing to some studies contributing multiple relationships in 
each model. The p- values and R2 values were calculated for each 
term in these models using the approach described by Nakagawa 
and Schielzeth (2013). The variables spatial extent and commu-
nity coverage were initially log10- transformed to aid model fitting,  
because they spanned several orders of magnitude. To compare 
the overall influence of ecological versus methodological factors on  
microbial distance– decay relationships, we compared two full mod-
els (including all relevant variables), using Akaike information crite-
rion (AIC) scores, on a subset of the data for which all variables were 
recorded successfully. We report the results of all null hypothesis 
tests in terms of statistical “clarity” rather than “significance”, in line 
with recommendations from Dushoff et al. (2019).

4  | RESULTS

Our Web of Science searches resulted in 2,982 unique search re-
sults. Manual screening of the abstracts yielded 951 studies that 
were deemed potentially to be suitable for use in this analysis. A 
total of 452 Mantel correlation coefficients were obtained suc-
cessfully from 187 studies represented in 61 journals (Supporting 
Information Figure S1). Reported Mantel correlation coefficients 
ranged from −.33 to .95, with a mean of .27 (SE = 0.011), and a sum-
mary of the variables collected is shown in Table 2.

Search Search term
Number 
of results

1 TS = (biogeograph*) AND TS = (bacteria* OR archaea* OR microb* OR 
microorganism*)

2,907

2 TS = (macroecolog*) AND TS = (bacteria* OR archaea* OR microb* OR 
microorganism*)

136

3 TS = ("everything is everywhere") AND TS = (bacteria* OR archaea* 
OR microb* OR microorganism*)

66

4 TS = ("geographical distance") AND TS = (bacteria* OR archaea* OR 
microb* OR microorganism*)

220

5 TS = ("distance decay") AND TS = (bacteria* OR archaea* OR microb* 
OR microorganism*)

186

TS indicates the topic search terms entered into each Web of Science search.

TA B L E  1   Details of Web of Science 
search terms and the number of results 
for each search.



     |  5CLARK et AL.

4.1 | Influence of context on the distance– decay 
relationship

In order to determine whether contextual factors can influence 
the strength of distance– decay relationships, the influence of eco-
logical factors, including study taxa, study system and spatial scale, 
were tested. Within the dataset, the most commonly studied taxa 
were Bacteria (n = 238), followed by Fungi (n = 93), other micro-
bial Eukaryotes (n = 67) and Archaea (n = 26). We found no clear 

differences in the strength of distance– decay relationships between 
these taxa (Table S2, F5,441 = 0.99, p = .43), although distance– decay 
relationships incorporating bacterial and fungal communities showed 
the weakest relationships, albeit only from six studies (Figure 1).

The distance– decay relationships in our dataset originated from 
16 different environments. Of these, five were represented by three 
or fewer distance– decay relationships and were therefore excluded 
from further analyses (marsh, n = 3; snow, n = 3; dune, mine and  
aquifer, n = 1). The most frequently studied environments were 

BOX 1 Details of the explanatory variables extracted from each study

Resolution
Each distance– decay relationship was categorized into high resolution (high- throughput or Sanger sequencing), low resolution (mo-
lecular, e.g., ARISA, TRFLP, DGGE, PhyloChip or PLFA) or low resolution (morphological), based on the ability of the method to dis-
tinguish between closely related organisms.
Community coverage
This refers to the depth of sequencing in sequencing- based studies, or the number of individuals counted in morphology- based stud-
ies, per sample. For sequencing studies, we recorded the number of sequences after rarefaction or, if this was not given, the average 
number of sequences per sample. Given that there is no comparable measure of coverage for fingerprinting studies, we excluded 
them from analyses of community coverage.
Sample coverage
Sample coverage refers to the sample size (e.g., number of communities/samples) of each distance– decay relationship.
Dissimilarity index
The dissimilarity index was used to calculate each distance– decay relationship. Recorded dissimilarity indices were then categorized 
as quantitative (Bray– Curtis, Morisita- Horn, Euclidean, Hellinger or Theta), qualitative (Jaccard, Raup– Crick, Sørensen, Simpson or 
β- sim) or phylogenetic (weighted or unweighted Unifrac, Rao, β- mean nearest taxon distance or β- mean pairwise distance).
Correlation type
Studies were categorized according to the type of correlation coefficient used in the analysis of the distance– decay relationship (e.g., 
Spearman's or Pearson's correlation coefficient). The type of correlation was recorded only if the type of correlation coefficient was 
mentioned explicitly.
Study taxon
Each distance– decay relationship was binned into the following broad taxonomic categories based on the taxonomy of the focal 
organisms: Archaea, Bacteria, Fungi or other microbial Eukarya, or a combination of these categories if a relationship was based 
on multiple taxa (for example, owing to the use of sequencing primers that detect both Archaea and Bacteria). Fungi were grouped 
separately from other micro- Eukaryotes owing to their distinct reproductive strategy (e.g., spore production) and the fact that they 
are frequently targeted using distinct molecular approaches (e.g., via taxon- specific primer sets), in contrast to most other studies 
of micro- Eukarya.
Spatial extent
This is the maximal distance separating communities (in kilometres). If this was not stated in the text or provided in the supplemen-
tary material (e.g., in a geographical distance matrix), it was calculated from the geographical coordinates given, estimated from a plot 
of the distance– decay relationship or estimated from scaled maps.
Environment
We categorized distance– decay relationships broadly, based on the type of environment (agriculture, air, aquifer, coastal wetlands/
intertidal, desert, dune, forest, glacier, grassland, lake, marine, coastal marshes, mine, river, snow or urban) within which they were 
sampled. Although these categories are not mutually exclusive, we categorized each study based on which environment best repre-
sented the environmental context in which each study was undertaken. For studies on lakes, we also recorded whether relationships 
originated from a single lake or across multiple lakes.
Habitat
Habitat was the type of environmental material that the sampled communities occupied. We categorized distance– decay relation-
ships as follows: air, host- associated, sediment, snow, soil or water.
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TA B L E  2   Summary of collected data. 

Ecological variables Methodological variables

Variable Summary Variable Summary

Study taxona  Archaea: n = 26 Resolution High: n = 345

Bacteria: n = 238 Intermediate: n = 84

Eukarya: n = 67 Low: n = 23

Fungi: n = 93

Archaea + Bacteria: n = 17

Bacteria + Eukarya: n = 3

Bacteria + Fungi: n = 6

All: n = 2

Spatial extent (km) Minimum = 0.0001 Community coverage (number of individuals/
sequences)

Minimum = 8

Mean = 1,543 Mean = 217,357

Median = 220 Median = 1,257

Maximum = 18,700 Maximum = 34,192,561

NA = 15 NA = 115

Environment type Agriculture: n = 16 Dissimilarity index b β- MNTD: n = 13

Air: n = 13 c β- MPD: n = 1

Aquifer: n = 1  β- sim: n = 4

Coastal: n = 8 Bray– Curtis: n = 218

Desert: n = 4 Bray– CurtisSim: n = 3

Dune: n = 1 Bray– CurtisNes: n = 1

Forest: n = 76 Canberra: n = 1

Glacier: n = 5 Euclidean: n = 9

Grassland: n = 96 Hellinger: n = 4

Lake: n = 76 Jaccard: n = 49

Marine: n = 88 Mash: n = 2

Marsh: n = 3 Morisita– Horn: n = 4

Mine: n = 1 Rao: n = 2

River: n = 57 Raup– Crick: n = 19

Snow: n = 3 Simpson: n = 2

Urban: n = 4 Sørensen: n = 42

Theta: n = 1

Unweighted Unifrac: n = 17

Weighted Unifrac: n = 59

NA: n = 1

Habitat type Air: n = 16 Correlation type Pearson: n = 62

Host: n = 75 Spearman: n = 86

Sediment: n = 78 NA: n = 304

Snow: n = 3 Sample coverage (number of samples) Minimum = 4

Soil: n = 141 Mean = 52.88

Water: n = 137 Median = 25

NA: n = 2 Maximum = 1,010

NA = 1

Note: For categorical variables, the number of individual distance– decay relationships in each category is shown, whereas minima, maxima, median 
and mean values are shown for continuous variables. Detailed descriptions of each variable are found in Box 1, and raw data can be found in the 
Supporting Information (Table S1).
NA = not assessed.
aThe “All” category consists of studies that incorporated all microbial taxonomic groups, whereas combined categories (e.g., Archaea + Bacteria) 
incorporate communities from multiple taxonomic groups (e.g., archaeal and bacterial communities).  
bβ mean nearest taxon distance. 
cβ mean pairwise distance. 
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grasslands (n = 96), marine (n = 88), and lakes and forests (n = 76 
for both). We found clear differences in the strength of distance– 
decay relationships between environments (Figure 2a, Table 
S2; F10,432 = 3.187, p < .001). Specifically, and perhaps counter- 
intuitively, grassland- based studies had weaker distance– decay 
relationships than those from aquatic environments, such as lakes, 
rivers or the marine environment (magnitude of coefficient |coef| 
> 0.17, p < .05 for all comparisons). Urban environments, which 
included built environments, such as sewers and indoor air, also 
produced weak distance– decay relationships, although with only 
four data points this difference was not statistically clear (p > .43 
for all comparisons). We also found no difference in the strength of 
distance– decay relationships between studies conducted in single 
lakes compared with those incorporating multiple lakes (F1,74 = 0.11, 
p = .74), despite the average spatial extent of multiple- lake studies 
being c. 32- fold greater than that of single- lake studies (Supporting 
Information Figure S2).

A more detailed analysis of the interaction between environment 
type and habitat revealed that although environments (F9,420 = 3.29, 
p < .001) and habitat (F3,420 = 6.65, p < .001) differed from each 
other, their interaction was not statistically significant (F4,420 = 1.93, 
p = .10). In fact, within environments, only marine host- associated 
and marine water- based distance– decay relationships were clearly 
different from each other (Figure 2b), with host- associated commu-
nities showing significantly stronger distance– decay relationships 
(coef = 0.35, p < .001).

The spatial extents of recorded distance– decay relationships 
ranged from 10 cm to > 18,000 km, and minimal spatial extents 

varied notably across environments and habitats, with terrestrial-  
and soil- based studies often conducted over smaller spatial scales 
(Supporting Information Figure S3). After accounting for differences 
between studies, we found no evidence of a statistically clear re-
lationship between the spatial extent of a study and the strength 
of the observed distance– decay relationship (Table S2, coef = 0.02, 
marginal R2 = .020, t = 1.58, p = .11). Finally, given that studies at a 
larger spatial scale might also incorporate greater sampling cover-
age, we tested for collinearity between the spatial scale of a study 
and the sampling coverage, but found no correlation between these 
variables (⍴ = .06, p = .19).

4.2 | Influence of methodological factors on the 
distance– decay relationship

We grouped community characterization methods according to their 
ability to distinguish between closely related taxa. There were no 
clear differences in the strength of distance– decay relationships 
between different resolution methods (Table S2, F2,449 = 0.562, 
p = .57), nor were there clear differences between different mo-
lecular methods (Supporting Information Figure S4; F7,437 = 1.97, 
p = .06), considering only those methods that had more than four 
distance– decay relationships across the entire dataset (excluding Ion 
Torrent, n = 4; PhyloChip, n = 2; and Pac- Bio, n = 1; Figure 3).

Although we observed no differences in distance– decay rela-
tionships between different resolution methods, after accounting 
for study- dependent differences we found a positive relationship 
between (log10) community coverage and the strength of microbial 
distance– decay relationships (Figure 4a, Table S2; n = 337, condi-
tional R2 = .57, coef = 0.06, t = 2.73, p < .01), although the marginal 
effect of community coverage was weak (marginal R2 = .04).

The logistics of multiplexing samples on high- throughput se-
quencing runs means that there is often a trade- off between the 
community coverage and sampling coverage of a study. However, 
we found no evidence of negative correlation between these two 
factors (Pearson's ρ = −.03, p = .54), nor did we detect any clear 
relationship between the number of samples (log10 sample cover-
age) and the strength of distance– decay relationships, even after 
accounting for study- specific differences with a mixed effects 
model (Figure 4b, Table S2; n = 451, coef = −0.06, marginal R2 = .01,  
t = −1.40, p = .16).

Choice of similarity index also had a clear impact on the strength 
of microbial distance– decay relationships. In addition to recording 
the specific similarity index used, we categorized indices into types 
(binary, abundance or phylogenetic) to test for broad differences in 
distance– decay relationships. We analysed the nested interaction 
between similarity index and index type and found no clear dif-
ferences between different index types (Figure 5a; F2,424 = 1.48, 
p = .23). However, the interaction between index type and similarity 
index was significant (F7,424 = 7.20, p < .001). Post hoc analysis re-
vealed differences between similarity indices within and between 
index types (Figure 5b). Distance– decay relationships based on the 

F I G U R E  1   The strength (Mantelr) of distance– decay 
relationships based on different study taxa. A larger Mantelr value 
indicates a stronger distance– decay relationship. The “All” category 
consists of studies that incorporated all microbial taxonomic 
groups, whereas combined categories (e.g., Bacteria/Archaea) 
incorporate communities from multiple taxonomic groups (e.g., 
bacterial and archaeal communities)
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Raup– Crick index were weaker than those based on either Sørensen 
(coef = −0.38, p < .01) or unweighted Unifrac indices (coef = −0.44, 
p < .01), and those based on weighted Unifrac were weaker than 
both Sørensen (coef = −0.29, p < .001) and unweighted Unifrac (coef 
= −0.35 p < .05). Finally, most studies did not state explicitly the 
type of correlation used to generate each Mantel test (n = 304), 
but of those that did, Spearman's correlation coefficient was more 

frequently used (n = 86) than Pearson's (n = 62). We found no clear 
difference in the strength of microbial distance– decay relationships 
using these two methods (Table S2, F1,146 = 2.47, p = .12).

4.3 | Comparison of contextual and 
methodological variables

In order to determine whether eco- environmental context or meth-
odological factors better explain the strength of microbial distance– 
decay relationships, we specified two models, with variables from 
these two categories, using a subset of the original data for which 
values were obtained for all variables (n = 323). Each model had 
four variables and used similar degrees of freedom (context model 
d.f. = 26; methodological model d.f. = 27). The methodological 
model outperformed the contextual model in terms of both AIC and 
R2 measures of model performance (Table 3). Notably, neither model 
explained a high proportion of the variance, although both AIC and 
likelihood ratio tests supported both models over a null (intercept- 
only) model.

5  | DISCUSSION

Previous research into the spatial ecology of microbial communities 
has not yielded a consistent distance– decay relationship. Our meta- 
analysis of 452 microbial distance– decay relationships suggests that 
the reasons for this lack of consistency are twofold. First, the dif-
fering contexts within which studies are conducted contribute vari-
ability to reported distance– decay relationships. In particular, we 
found that differing study systems were associated with variation 
in microbial distance– decay relationships. Second, methodological 

F I G U R E  2   Variation in Mantel correlation coefficients of distance– decay relationships (a) between different environments, and (b) 
between types of habitats. Environment categories are arranged from strongest to weakest mean distance– decay relationship

(a) (b)

F I G U R E  3   The relationship between spatial extent and the 
Mantel correlation coefficient of microbial distance– decay 
relationships. The dashed line represents the fit of a mixed- effects 
model between the log10 of spatial extent and Mantel correlation 
coefficient, with a study- dependent random intercept
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differences between studies, including dissimilarity index, data reso-
lution and sample coverage, all significantly affected the observed 
distance– decay relationships. A central tenet of macroecology is the 
search for universal patterns and relationships; our results suggest 
that generalizable relationships might emerge only when methodo-
logical approaches are coupled appropriately to ecological context.

Our comparison of distance– decay relationships between dif-
ferent study systems revealed that agricultural studies, especially 
grassland- based studies, had weaker relationships than studies of 
other environments. Within these environments, soils were by far 
the most frequently studied habitat, and we initially expected, given 
that soils maintain strong physicochemical gradients over small 
vertical and horizontal spatial scales (e.g., Dumbrell et al., 2010), 
that these distance– decay relationships would be stronger than in 
other environments or habitats. It is possible that the environmental 
gradients present in soils do not change linearly over geographical 

distance, for example, if similar environmental conditions are dis-
tributed patchily. Alternatively, soil microorganisms might be able 
to disperse more effectively than previously thought, perhaps via 
association with other soil organisms (e.g., bacterial migration along 
fungal hyphae; Warmink et al., 2011), migratory species such as birds 
(Bisson et al., 2007), wind- blown soil particles (Favet et al., 2013) or 
bio- aerosols (Joung et al., 2017). The depth profile over which soil 
samples integrate might also play a role in obscuring distance– decay 
relationships, because surface soils show stronger distance– decay 
relationships than deeper ones, probably owing to the greater in-
tensity of dispersing propagules entering and leaving the surface (Li 
et al., 2020). Furthermore, soils harbour extensive microbial “seed 
banks” of dormant organisms and/or relic DNA that could weaken 
the distance– decay relationship (Carini et al., 2016; Lennon & 
Jones, 2011; Lennon et al., 2018). Dormant cells and relic DNA are 
not subject to environmental selection, yet they are routinely de-
tected in molecular community assays, which is likely to diminish the 
perceived effects of spatially structured environmental selection on 
microbial communities (Locey et al., 2020). Thus, in habitats such as 
soils, distinguishing dormant from active cells could result in stron-
ger distance– decay relationships than those recorded previously, 
although evidence of the same effect on distance– decay slopes is 
mixed (Locey et al., 2020; Meyer et al., 2018). The extent to which 
this phenomenon plays a role in other environments is also unclear.

Originally, we expected the weakest distance– decay relation-
ships to occur in connected aquatic environments, such as rivers and 
oceans, or within single lakes, because the movement of water might 
provide an effective dispersal mechanism, homogenizing microbial 
communities over larger spatial and environmental distances. In con-
trast, we found that aquatic communities showed stronger distance– 
decay relationships than terrestrial systems. Soininen et al. (2007) 
recorded similar distance– decay rates between terrestrial, marine 
and aquatic ecosystems, showing that context- dependent distance– 
decay relationships might be a feature of microbial communities. We 
also found that the strength of distance– decay relationships was 
not different in studies based on single or multiple lakes, despite 
the difference in spatial extents of these studies. Lakes act as habi-
tat islands within a terrestrial matrix; therefore, dispersal limitation 
and environmental heterogeneity should be greater across multi-
ple lakes than within a single lake, resulting in stronger distance– 
decay relationships in multi- lake studies. One explanation is that 
catchment- scale environmental parameters, such as geology, might 
homogenize environmental conditions across multiple lakes, mean-
ing that environmental distances are similar within and between 
lakes. Alternatively, other biogeographical processes, such as mass 
effects, might homogenize communities between hydrologically 
connected lakes (Lindström & Bergström, 2004), especially where 
lakes are of different sizes (Reche et al., 2005). Host- associated 
communities showed relatively strong but variable distance– decay 
relationships. We suggest that this is caused jointly by the ecol-
ogy of the host species, and the degree of host specificity with the  
associated microbiome. For example, if the host is not dispersal 
limited and associates with a large variety of microorganisms, then 

F I G U R E  4   The relationship between the strength of microbial 
distance– decay relationships (Mantelr) and (a) community coverage, 
quantified as the number of sequences or individuals counted 
per sample, and (b) sample coverage, quantified as the number of 
individual samples used to construct distance– decay relationships. 
Points are individual Mantel correlation coefficients, coloured 
according to the molecular technique used to characterize the 
microbial community. Continuous lines indicate statistically 
significant relationships (p < .05), whereas dashed lines indicate 
non- significant relationships (p > .05), and shaded grey ribbons 
represent 95% confidence intervals. Abbreviated molecular 
methods in the legend are defined as follows: ARISA = automated 
ribosomal intergenic spacer analysis; DGGE = denaturing gradient 
gel electrophoresis; PLFA = phospholipid fatty acid analysis; 
Sanger = Sanger sequencing of cloned phylogenetically informative 
genes; TRFLP = terminal restriction fragment length polymorphism
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the distance– decay relationship might be relatively weaker than 
those of either dispersal- limited hosts or highly specific associated 
microbiomes.

The scale dependence of various biogeographical relation-
ships is well studied (Bissett et al., 2010; Hillebrand, 2004; Martiny 
et al., 2011; Soininen et al., 2011), albeit with contrasting results. 
Soininen et al. (2011) reported that distance– decay relationships of 
various microbial communities were generally steeper over greater 
spatial extents, whereas our results suggest that increasing spatial 
extent does not significantly increase the strength of distance– 
decay relationships. Given that we analysed distance– decay 
strength rather than steepness, our results are not necessarily con-
tradictory. A strong distance– decay relationship occurs when, at a 
given spatial distance, all pairs of communities are equally dissimilar 
to one another, whereas a steep distance– decay relationship oc-
curs when communities separated by different distances are highly 
dissimilar to each other. We expected initially that spatial extent 
might alter the strength of distance– decay relationships because, at 
greater distances, decreased dispersal and increased environmental 
heterogeneity should reduce the variance in compositional similarity 
between pairs of communities (at a given distance). Instead, it could 
be that the spatial configuration or connectivity of the communities 
could be more important than spatial extent per se. For example, at 

a given spatial distance, some pairs of communities could be linked 
by dispersal and others not, increasing the variation in community 
similarity at each distance and weakening the distance– decay re-
lationship. In practice, this could occur in lake systems where, at a 
certain geographical distance, some pairs of communities fall within 
the same lake and some in different lakes, or when long- distance 
dispersal vectors link some pairs of communities separated by large 
distances, but not others, as has been proposed for halophilic micro-
bial communities dispersing on migratory birds, for example (Clark 
et al., 2017; Kemp et al., 2018). Furthermore, we observed that the 
minimum spatial extents differed according to the environment in 
which they were conducted. Studies from terrestrial environments 
(e.g., grasslands and forests) or those based on soils generally in-
corporated smaller spatial extents than those based on aquatic sys-
tems (with the exception of some host- associated marine studies) 
or on habitats such as water or air. This could be attributable to the 
logistics of sampling at small scales. For example, sampling plank-
tonic microbial communities at small (centimetres to metres) scales 
could be confounded by mixing caused by the sampling process or 
by tidal movements of water. Additionally, given that many studies 
analysing microbial distance– decay relationships aimed to discern 
between environmental and spatial effects on microbial communi-
ties, it might be widely assumed that aquatic environments are more 

F I G U R E  5   Variation in the strength of microbial distance– decay relationships (Mantelr) calculated with: (a) different similarity index types, 
or (b) individual indices. Only indices with four or more distance– decay relationships were plotted, for clarity. β- MNTD, β- Mean Nearest 
Taxon Distance.

(a)
(b)

Model AIC Adj- R2

Likelihood ratio comparison to null (intercept- 
only) model

ΔAIC
Sum of 
squares F (d.f.)

p- 
value

Contextual 146.89 .11 −13.69 5.34 2.61 < .001

Methodological 134.11 .14 −26.46 6.47 3.17 (25) < .001

Note: The Akaike information criterion (AIC) and adjusted R2 (Adj- R2) quantify the likelihood and fit 
of a model relative to the number of predictor variables, respectively.

TA B L E  3   Comparison of models 
specified using either contextual or 
methodological variables
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homogeneous and/or that microorganisms are not dispersal limited 
at these scales compared with more physically stable environments, 
such as soils or sediments.

Distance– decay relationships are frequently interpreted as evi-
dence for neutral community assembly processes, such as dispersal 
limitation, in the microbial literature. Across microbial taxa, cell size 
is a trait thought to influence dispersal efficacy (Wilkinson, 2001; 
Wilkinson et al., 2012; Zinger et al., 2019); therefore, larger micro-
organisms, such as micro- Eukarya, should show stronger distance– 
decay relationships than smaller microorganisms, such as Bacteria or 
Archaea. However, we found no evidence for this, suggesting that 
phylogenetically structured traits, such as cell size, might be less im-
portant than other contextual and methodological factors or that 
the broad domain- level classification used here does not capture 
different microbial cell sizes sufficiently. As discussed previously, 
distance– decay relationships can arise from spatially autocorrelated 
environmental gradients and from dispersal limitation (Nekola & 
White, 1999). Therefore, the lack of differences in biogeographi-
cal patterns observed at the domain level might be the result of a 
trade- off between dispersal- related processes and environmental 
filtering. For instance, bacterial distance– decay relationships might 
be less strongly influenced by dispersal than environmental filtering, 
and vice versa for Eukarya. Consequently, these influences might 
balance out at broad taxonomic levels, resulting in similar biogeo-
graphical patterns at the domain level.

In comparison to contextual factors, methodological factors 
were found to have a greater influence on microbial distance– decay 
relationships. The development of molecular methods, including 
high- throughput sequencing platforms, has vastly improved our 
ability to characterize microbial communities (Caporaso et al., 2012; 
Roesch et al., 2007). However, these methods differ in their resolu-
tion, community coverage, and ability to multiplex large numbers of 
samples, all of which we hypothesized could strengthen or weaken 
distance– decay relationships by altering our estimation of microbial 
β- diversity. In contrast, we observed only a weak relationship be-
tween the strength of distance– decay relationships and community 
coverage, and no clear effects of different resolution methods or the 
number of samples, suggesting that molecular methodology might 
not play as large a role in determining microbial biogeographical pat-
terns as previously thought.

The ability to resolve closely related taxa has previously been 
found to be an important determinant of our ability to detect biogeo-
graphical patterns, because such patterns may emerge only when 
taxa are defined at sufficiently high resolution (Hanson et al., 2012). 
Yet, other studies show that bioinformatically altering taxonomic 
resolution frequently has little effect on microbial biogeographical 
patterns. For example, increasing the similarity threshold at which 
operational taxonomic units are defined is thought to be equiva-
lent to increasing the taxonomic resolution (Callahan et al., 2017). 
Nevertheless, empirical biogeographical relationships often appear 
robust to such manipulation, in a variety of taxa and ecosystems 
(Clark et al., 2017; Glassman & Martiny, 2018; Meyer et al., 2018), 
supporting our finding that resolution might not be important. 

Perhaps most molecular methodologies operate above resolutions 
at which biogeographical patterns begin to change or, more worry-
ingly, perhaps we are still studying microbial biogeography at too low 
a resolution.

Aside from resolution, another important variable related to 
molecular methodology is community coverage. One of the few 
universal patterns that appears to hold true for most microbial 
communities is the “long- tailed” species abundance distribution 
(Dumbrell et al., 2010; Maček et al., 2019; Shoemaker et al., 2017), 
which is caused by the majority of microorganisms in a community 
being rare. The rarer taxa in microbial communities also tend to be 
the least widespread (Clark et al., 2017; Lindh et al., 2017; Meyer 
et al., 2018; Shade & Stopnisek, 2019); therefore, detecting only the 
more abundant, widespread organisms would overestimate compo-
sitional similarity across communities and, consequently, weaken 
distance– decay relationships owing to the lower rate of turnover 
(Meyer et al., 2018). Perhaps of more concern is that even with ex-
isting sequencing platforms, our surveys of environmental microbial 
communities still miss taxa that are vanishingly rare in the environ-
ment, such as extremophiles that persist in non- extreme habitats 
(Low- Décarie et al., 2016). The ability of common species to reflect 
ecological patterns of the wider community is debated (van Dorst 
et al., 2014; Galand et al., 2009; Heino & Soininen, 2010) and is linked 
to a wider debate on the ecological importance of rare species that is 
far beyond the scope of this work (e.g., Gaston, 2012). However, rare 
microorganisms are well known to be of crucial importance in the 
context of environmental perturbations (Low- Décarie et al., 2016; 
Shade et al., 2014) and in providing ecosystem processes (e.g., sul-
fate reduction in peat soils, Hausmann et al., 2016; and anaerobic 
ammonia oxidation in river sediments, Lansdown et al., 2016), and 
as a result, ignoring them might further disconnect biogeographical 
patterns from ecosystem- level processes.

Against expectation, we observed no clear differences in 
distance– decay relationships using different types of similarity 
metrics, and differences between specific metrics were minimal. 
Distance– decay relationships based on the weighted Unifrac dis-
tance and the Raup– Crick index were weaker than those based 
on other metrics. The Raup– Crick index is less influenced by con-
current changes in species richness between communities, and as 
such, is a purer reflection of shifts in β- diversity (Chase et al., 2011). 
Consequently, by removing the potentially confounding effects of 
differences in richness, the Raup– Crick index is likely to result in 
more variable estimates of similarity between communities, which 
would lead to weaker distance– decay relationships.

Phylogenetic metrics, such as Unifrac, cluster communities at a 
lower resolution, because two communities can be closely related 
genetically, yet distinct at fine taxonomic resolutions (e.g., species or 
strain level). For example, Bryant et al. (2008) found that Unifrac sim-
ilarity was approximately three times higher than the compositional 
similarity of the same set of bacterial communities. Furthermore, 
phylogenetic metrics might be inappropriate in less phylogenetically 
diverse environments (e.g., extreme systems), where phylogenetic di-
versity can be constrained largely to one taxon (e.g., the Haloarchaea 
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in hypersaline environments), leaving few “phylogenetic degrees of 
freedom” left to separate communities (Fukuyama, 2019). However, 
this does not account for the observed difference between weighted 
and unweighted versions of the Unifrac index, the former of which 
accounts for relative abundance data of species, whereas the lat-
ter is binary (presence/absence based). A criticism of the weighted 
Unifrac index is that too much weight is placed on abundant taxa 
(Chen et al., 2012). Given that abundant species are generally more 
widespread, placing too much weight on them would have the  effect 
of making communities appear artificially similar, exacerbating the 
effects of using a phylogenetic metric. Given that we observed no 
difference between binary and abundance- based compositional  
indices, the differences observed with weighted Unifrac appear to 
be the result of combining phylogenetic and weighted indices. We 
suggest, therefore, that weighted phylogenetic metrics might un-
derestimate microbial biogeographical patterns, unless appropriate 
weight is given to rare and abundant taxa (Chen et al., 2012).

Our analysis of 452 microbial distance– decay relationships also 
revealed the overwhelming preference of microbial ecologists to 
use classic dissimilarity indices, such as the Bray– Curtis (n = 218), 
Jaccard (n = 49) and Sørensen (n = 42) indices. These choices un-
doubtedly reflect a wider trend in ecology as a whole; however, it 
is pertinent to draw attention to more recently developed metrics 
that might be more appropriate given the properties of microbial 
datasets and the hypotheses being tested. Biotic interactions are 
drivers of microbial β- diversity (Hanson et al., 2012), yet classic 
dissimilarity metrics do not account for co- occurrence information 
in communities. To this end, a new family of metrics described by 
Schmidt et al. (2017) include information on the average interactions 
of the taxa present, thereby providing a new approach to integrating 
co- occurrence data into distance– decay relationships. Microbiome 
sequencing data also have several characteristics that can be prob-
lematic in the analysis of community (dis)similarities. For example, 
the non- biological variance of sample sizes in sequence datasets can 
result in statistical artefacts that confound biogeographical relation-
ships (Baselga, 2007). Here, modifications made to some classic in-
dices by Chao et al. (2005) reduce the sensitivity of these indices to 
variable sample sizes by accounting for unobserved species, thereby 
reducing the need for post- sequencing normalization of sample 
sizes (McMurdie & Holmes, 2014). Furthermore, “fuzzy logic”- based 
similarity indices are able to reduce the impact of false absences or 
false presences on estimates of β- diversity, which is beneficial for 
microbial ecology studies, where rarefaction can induce false ab-
sences and taxonomic assignment errors or contamination can lead 
to false presences. Additionally, most high- throughput sequence 
datasets are compositional. Compositionality occurs as the arbitrary 
total number of sequences per sample imposed by the sequencing 
machine causes species counts (abundances) to be dependent on 
each other (e.g., if species A increases in abundance, species B and 
C will appear relatively less abundant, even if their absolute abun-
dance has not changed). Binary indices should be suitable, because 
occurrences (presence/absences) are not affected by compositional-
ity, unless increases in the abundance of one or more species cause 

others to drop below the detection limit, in which case fuzzy indices 
might be appropriate. Alternatively, metrics such as the Aitchison 
distance perform well when appropriate (centred log- ratio) transfor-
mations are applied to counts (Gloor et al., 2017), or recently devel-
oped metrics, such as the rank bias overlap index, show promise for 
analysing similarity between communities based on species abun-
dance ranks (Webber et al., 2010). Finally, many similarity metrics 
have been shown to merge compositional turnover (replacement of 
species) and nestedness (whereby communities are subsets of one 
another), thereby blurring the contribution of distinct ecological 
processes to total community (dis)similarity. To combat this, modi-
fied versions of classic indices, such as Jaccard, Sørensen and Bray– 
Curtis, have been developed, allowing the partitioning of community 
similarity metrics into their turnover and nestedness components 
(Baselga, 2010; Podani & Schmera, 2011). We echo the call of Green 
and Bohannan (2006) for microbial ecologists to exercise more care 
in their choice of dissimilarity metrics, especially given that many of 
these new metrics are implemented in popular and freely accessible 
software, such as R (e.g., Baselga & Orme, 2012).

Overall, our analyses revealed that methodological factors ex-
plain more variation in microbial distance– decay relationships than 
ecological context, but that both sets of factors alter our perception 
of this biogeographical pattern. Given the importance of method-
ological factors in determining the strength of microbial biogeo-
graphical patterns, it is intuitive to recommend standardization of 
approaches across studies in order to minimize the statistical signals 
associated with methodological variance. However, our results show 
that variance attributable to differing ecological contexts would still 
hinder the drawing of generalizable relationships across studies. 
Instead, we suggest that tailoring methodological choices towards 
specific ecological contexts might clarify generalizable relation-
ships in microbial ecology. For instance, in searching for consistent 
relationships between ocean waters and terrestrial soils, it would 
be unrealistic to sample both at the same spatial grain and extent, 
because the heterogeneity in the physicochemical environment and 
the dispersal processes of their microbial communities are funda-
mentally different. Likewise, we should not necessarily expect the 
relationships between soils and river sediments to be comparable, 
because microorganisms in soils can disperse feasibly in any direc-
tion, whereas in rivers or streams dispersal would be constrained 
largely by the direction of flow. Consequently, tailoring methodolog-
ical approaches, such as the sampling design and/or (geographical) 
distance measure, to reflect the environmental heterogeneity and 
dispersal dynamics better between contrasting ecological contexts 
might enable us to negotiate the hierarchy of interacting factors that 
obscure macroecological patterns in microbial communities.

5.1 | Conclusions

Our meta- analysis of > 450 microbial distance– decay relationships 
revealed that factors related to the eco- environmental context 
within which a study was conducted, in addition to the methodology 
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of the study, jointly influence quantification of this classic biogeo-
graphical pattern. Against expectation, factors related to molec-
ular methodology had relatively little effect on distance– decay 
relationships, whereas the choice of dissimilarity metric was more 
important, highlighting that even after using robust, modern mo-
lecular methods, analytical choices have the power to obscure or 
enhance biogeographical patterns. We detected clear relation-
ships between microbial distance– decay relationships and vari-
ous contextual and methodological variables, yet combining these 
variables explained only a modest amount of variation in our data-
set. This lack of explanatory power indicates that microbial bio-
geographical patterns depend on a number of contextual variables 
beyond those analysed here. In future, we suggest that microbial 
ecologists should place greater emphasis on quantifying habitat 
connectivity to gain a better understanding of the dispersal pro-
cesses that lead to spatial patterns, such as the distance– decay re-
lationship. Additionally, we recommend that experimental designs 
and data- collection strategies should be replicated spatially, taxo-
nomically, temporally or any combination thereof where possible 
(e.g., Alzarhani et al., 2019; Meyer et al., 2018; Zinger et al., 2019), 
facilitating a more generalized understanding of the variation in 
spatial microbial community patterns. The question of whether mi-
crobial communities show spatial patterns such as distance– decay 
relationships should be laid to rest; disentangling the web of eco-
logical and environmental drivers that shape these patterns is the 
next challenge in microbial biogeography.
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