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Abstract
To detect a change in the probability of a sequence of independent binomial
random variables, a variety of asymptotic and exact testing procedures have
been proposed. Whenever the sample size or the event rate is small, asymptotic
approximations of maximally selected test statistics have been shown to be inac-
curate. Although exact methods control the type I error rate, they can be overly
conservative due to the discreteness of the test statistics in these situations. We
extend approaches by Worsley and Halpern to develop a test that is less discrete
to increase the power. Building on ideas from binary segmentation, the proposed
test utilizes unused information in the binomial sequences to add a new order-
ing to test statistics that are of equal value. The exact distributions are derived
under side conditions that arise in hypothetical segmentation steps and do not
depend on the type of test statistic used (e.g., log likelihood ratio, cumulative
sum, or Fisher’s exact test). Using the proposed exact segmentation procedure,
we construct a change point test and prove that it controls the type-I-error rate
at any given nominal level. Furthermore, we prove that the new test is uniformly
at least as powerful as Worsley’s exact test. In a Monte Carlo simulation study,
the gain in power can be remarkable, especially in scenarios with small sample
size. Giving a clinical database example about pin site infections and an example
assessing publication bias in neuropsychiatric drug research,we demonstrate the
wide-ranging applicability of the test.
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1 INTRODUCTION

The problem of change point detection (also sometimes referred to as threshold, cutpoint, breakpoint, or “disorder” detec-
tion) in binomial sequences has been addressed by many authors over the past decades (see, e.g., Carlstein, 1988; Chen
& Gupta, 2011; Halpern, 1999; Hinkley & Hinkley, 1970; Lausen & Schumacher, 1992; Miller & Siegmund, 1982; Pettitt,
1979, 1980; Smith, 1975; Worsley, 1983). A distinction is usually made between the fixed sample change point problems and
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sequential (online) schemes that are frequently used in quality control. Here, we consider the former, an ordered sequence
of 𝜁 independent binomial variables, with𝑚𝑖 being the number of events occurring in 𝑛𝑖 subjects at risk.We are interested
to test the null hypothesis𝐻0 of constant event probabilities 𝑝𝑖 (𝑖 = 1, … , 𝜁) equal to 𝑝 against the alternative

𝐻1 ∶ 𝑝𝑖 =

{
𝑝, (𝑖 = 1, … , 𝜅)

𝑝′, (𝑖 = 𝜅+1,… , 𝜁)
, 𝑝 ≠ 𝑝′

for some period 𝜅 in the range 1, … , 𝜁 denoting an unknown change point. Most commonly tests to detect such a change
point in the sequence are based on taking the maximum of a test statistic 𝑇𝑘

1∶𝜁
that is designed to find differences for fixed

candidate change points 𝑘 = 1,… , 𝜁. Those statistics include the log likelihood ratio, the cumulative sum and variations
thereof (Pettitt, 1980), and the p-value of Fisher’s exact test (Halpern, 1999); but also statistics based on Doob’s martingale
decomposition (Brostrom, 1997) as well as Bayesian statistics may be used (Assareh, Smith, & Mengersen, 2015; Smith,
1975). These maximally selected test statistics 𝑇max

1∶𝜁
= max𝑘=1,..,𝜁(𝑇

𝑘
1∶𝜁
) arise not only in change point detection but also

in various other applications. A real-world problem might be the precise assessment of the probability of an unfavorable
realization in random ordering of (clusters of) binary events. Such an example might be the interest to detect manipu-
lations of fixture lists in sports, which define the order of (weak or strong) opponents to be matched against. Another
example may be the assessment of potential context effects in surveys. The context effect relates the order of questions
asked to a bias in the overall thinking and answers of survey respondents. Applications of change pointmodels in epidemi-
ology and medicine are common and have led to ongoing methodological developments. Examples include the epidemic
wave model (Boulesteix & Strobl, 2007; Siegmund, 1986), the assessment of genetic recombination (Halpern, 1999), dose-
response models (Lausen, Lerche, & Schumacher, 2002), calendar time effects in clinical registries (Friede & Henderson,
2003), and clinical trials with adaptive designs (Friede &Henderson, 2009). Maximally selected test statistics are also used
as cutpoint methods for dichotomization, although these may primarily be used when an underlying change can truly be
regarded as abrupt. Otherwise thesemethodsmay lack statistical power and alter the effect estimates in comparison to con-
tinuous regressionmethods (see, e.g., Royston, Altman, & Sauerbrei, 2006) as long as the latter are correctly specified. Still,
the simplicity of the considered change point model avoids instabilities in the parameter estimation in these scenarios.
Asymptotic distributions of maximally selected test statistics in binary sequences were derived by a number of authors

(seeMiller & Siegmund, 1982; Pettitt, 1979, 1980). For small sample sizes, however, these approximations have poor perfor-
mance and exact methods are to be preferred (Friede, Henderson, & Kao, 2006; Halpern, 1982). Exact null and alternative
distributions were given by Worsley (1983) for log likelihood ratio and cumulative sum test statistics. Halpern (1999) pro-
posed to use Fisher’s exact test and compared the different approaches with regard to their statistical power. Hirotsu (1997)
gave exact distributions in case of two-way layouts with interaction effects. While these exact methods are designed for
small sample sizes, they often lack size of the test in these scenarios. Due to the discreteness of the test statistic, the sig-
nificance level of the test cannot be used to the full extent. This adds a degree of conservativeness to the test procedure
(Ross, Tasoulis, & Adams, 2013). Several approaches have been discussed to overcome not only the implied loss in power,
but also the lack of precision as a methodological disadvantage (Zhou, Zou, Zhang, & Wang, 2009). The trivial solution
of a randomization of the test statistic is only of theoretical interest to achieve a uniformly most powerful test but cannot
be recommended for practical application because of a lack of reproducibility among other reasons. The same applies to
approaches that use Monte Carlo simulation techniques to obtain the required probabilities, see for example, Ross et al.
(2013). An unconditional version ofWorsley’s test addressing the problemwas suggested by Ellenberger and Friede (2016)
to gain power with less discrete test statistics. UnlikeWorsley’s test, this test does not condition on the observed total num-
ber of events. The nuisance parameter 𝑝 is dealt with by maximizing the p-value over the nuisance parameter. We aim at
developing a hypothesis test that uses also information in the sequences left and right of each possible change point. We
can thus define an ordering of different sequences that all yield the same Worsley’s p-value. The ordering will be based
on binary segmentation ideas and is used to create less discrete test statistics. To do this, we develop in Section 5 exact
null distributions under certain side conditions. These are used to get exact p-values on both subsequences left and right
of the potential change point 𝜅̂ = argmax𝑘(𝑇𝑘) conditional on 𝑇𝜅̂. With these conditional p-values, we will define a new
test in Section 6 by applying a combination function such that both p-values are merged to a single meaningful p-value.
The performance of the proposed test is assessed by Monte Carlo simulations in Section 7 and the test is applied to two
motivating examples introduced in Section 2. One example searches for change points in a clinical database of orthopedic
surgeries using external fixators in children; the other example is concerned with the assessment of publication bias in
neuropsychiatric drug research. We close with a brief discussion of the findings in Section 8.
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a Example: pin site infection data

b Example: publication bias

F IGURE 1 Sequence of events (1s and 0s at the top ordered by calendar time) and the according log likelihood ratio statistic (dark area
showing the rejection area at a 5% level) for the pin site infection data (a) and the publication bias in neuropsychiatric drug research (b). To the
right, the one- and two-sided p-values are displayed for both methods and various underlying statistics, indicated by the dots with x-axis giving
Worsley’s p-value and the y-axis giving the new p-value. The extent to which the new p-value is less coarse can be deduced from the vertical
distance to the diagonal line

2 MOTIVATING EXAMPLES

2.1 Pediatric external fixators study

Some orthopedic surgeries require the attachment of external fixators. For this purpose, skeletal pins are cut through the
skin. A common side effect of this treatment is the occurrence of infections, so-called pin site infections. The surgeries
form a sequence in calendar time with pin site infection being regarded as an event. Analyses of the pin site infection
records have previously been carried out in Friede et al. (2006) to investigate the effectiveness of the introduction of a
new procedure for pin site care. Measures against pin site infections needed to be taken because those were frequent.
The data suggest that the introduction of the new procedure is strongly associated with a decrease in infections. We are
now interested whether this association holds for a subgroup of boys who had surgeries with external fixators to treat
fractions at their feet. This subgroup of 26 pediatric patients with a total of 20 infections shows to be homogeneous in
terms of reason of surgery and other characteristics. Since the covariates age and reason for application were found to be
noninformative in previous analyses (Friede et al., 2006), these were not considered here. The binary sequence of pin site
infection is shown as 1s and 0s in Panel A of Figure 1. The log likelihood ratio statistic is displayed for all possible change
points 𝑘.
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2.2 Publication of FDA-approved neuropsychiatric drugs

Publication bias is increasingly recognized as a major problem in scientific publishing. Several authors have addressed
the matter and investigated its extent. In clinical trials of neuropsychiatric drugs, Zou et al. (2018) have conducted an
extensive literature search and analyzed trends in time. In the past decades, regulatory authorities have taken measures
to prevent negative results from not being reported or published. The US Congress passed the FDA Modernization Act
(FDAMA) in 1997, which mandated the public registry ClinicalTrials.gov that was established 3 years later. In 2005, the
International Committee of Medical Journal Editors (ICMJE) enacted a policy requiring trial registration as a prerequisite
for publication in member journals, leading to an increase in the number of registered studies. Zou et al. (2018) point out
that FDAMA did not require registration of all studies, and the ICMJE recommendation continued to allow the publi-
cation of unregistered studies as compliance was voluntary. In 2007, the US Congress passed the FDA Amendments Act
(FDAAA), which applies to all non-phase-I studies with FDA-regulated drugs and requires sponsors and investigators
to register all such trials in ClinicalTrials.gov prior to enrolment and report the results to within 30 days post approval.
Inappropriately delayed registration and reporting of results, as well as reporting of incorrect results, can be punished by
fines and possible loss of funding. The FDAAA applies to trials initiated after September 27, 2007, and to earlier trials in
progress as of December 26, 2007. Zou et al. (2018) have studied in detail the registration, results reporting, and publishing
of clinical trials supporting FDA approval of neuropsychiatric drugs. They investigated the possible effects of the FDAAA
on the publication of negative or unequivocal findings. Regarding this publication bias, the authors found statistically
significant effects that the rate of publishing negative findings has increased from the pre-FDAA era to the post-FDAAA
era. In the latter, all trials were published, though also some recent trials were found to report inconsistent results in com-
parison to the FDA approval assessment. In contrast to investigating only this comparison with the date of the change
that is allegedly already known, it is also of interest to carry out analyses that consider all possible change points in the
chronological order of the drug approvals. We therefore carried out the respective change point analyses on the data. We
considered all drugs agents by different pharmaceutical companies that were approved by the FDA but had at least one
trial that had either negative or questionable results in the FDA’s reports. With data by Zou et al. (2018), we tested the
outcome whether all trials of the approved drug were published in a scientific journal as it should be mandatory. These
analyses will also investigate in the willingness of drug companies to publish older negative studies on an approved drug,
whose retrospective reporting did not becamemandatory by the FDAAA. Similarly, further calendar time effects in pivotal
studies for the FDA approval of new drugs are the subject of ongoing investigations (Zhang et al., 2020).

3 MODEL ANDWORSLEY’S TEST

We consider the problem of investigating the existence of a change point in a subsequence of interest starting at 𝛼 and
ending at 𝜔 with 1 ≤ 𝛼 < 𝜔 ≤ 𝜁. Let

𝑀ℎ∶𝑘 =

𝑘∑
𝑖=ℎ

𝑚𝑖, 𝑁ℎ∶𝑘 =

𝑘∑
𝑖=ℎ

𝑛𝑖

be consecutive sums (ℎ to 𝑘) of binomial distributed event numbers {𝑚𝑖 ∶ 𝑖 = 1, .., 𝜁} and the numbers of trials {𝑛𝑖 ∶ 𝑖 =
1, .., 𝜁} also called bin sizes. The indicators ℎ∶𝑘 can be dropped when the whole sequence of interest is referred to in order
to simplify the statistical notation. So, 𝑀 =̂ 𝑀𝛼∶𝜔 and 𝑁 =̂ 𝑁𝛼∶𝜔 are the total number of events and subjects within the
relevant subsequence. Common change point methods for binomial data are based on maximally selected test statistics
for 2 × 2 tables 𝑇(#{ Events

Exposed}, #{
Total

Exposed}, #{
Events

Nonexposed}, #{
Total

Nonexposed}) for subsequent 𝑘. Let

𝑇𝑘𝛼∶𝜔 = 𝑇(𝑀𝛼∶𝑘 ,𝑁𝛼∶𝑘,𝑀𝑘+1∶𝜔,𝑁𝑘+1∶𝜔) ∣ 𝑀, {𝑛𝑖 ∶ 𝑖 = 1, .., 𝜁},

and 𝑇max𝛼∶𝜔 = max𝑘 |𝑇𝑘𝛼∶𝜔| be the maximum over 𝑘 = 𝛼, .., 𝜔. Conditional on 𝑀(=𝑀𝛼∶𝑘+𝑀𝑘+1∶𝜔) and all bin sizes fixed,
𝑇𝑘𝛼∶𝜔 is dependent on 𝑀𝛼∶𝑘 only and we may simply write it as a function 𝑇𝛼∶𝜔(𝑀𝛼∶𝑘 ∣ 𝑀). Worsley (1983) gives exact
distributions of such maximally selected test statistics, which we want to generalize. All inference is made conditional on
𝑀with𝑀∕𝑁 being sufficient for the event probability𝑝 to eliminate this nuisance parameter. The only regularity assump-
tion for 𝑇𝑘𝛼∶𝜔 requires some monotonicity in𝑀𝛼∶𝑘, which is usually fulfilled for sensible choices of 𝑇( ⋅ ). While one-sided
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test statistics naturally are monotone, two-sided test statistics have to be monotone for all decreasing 𝑀𝛼∶𝑘 ≤ 𝑚0𝑘 and
for all increasing 𝑀𝛼∶𝑘 ≥ 𝑚0𝑘 separately with 𝑚0𝑘 being the argmin(𝑇) for a given 𝑇( ⋅ ). Usually, 𝑚0𝑘∕𝑁𝛼∶𝑘 is close
to 𝑀∕𝑁. With this assumption, it is guaranteed that events {𝑇𝑘𝛼∶𝜔 < 𝑡} can be expressed as a set 𝐴𝑘 being an interval
{𝑎𝑘 ≤ 𝑀𝛼∶𝑘 ≤ 𝑏𝑘} with 𝑎𝑘 = inf {𝑀𝛼∶𝑘 ∶ 𝑇

𝑘
𝛼∶𝜔 < 𝑡} and 𝑏𝑘 = sup{𝑀𝛼∶𝑘 ∶ 𝑇

𝑘
𝛼∶𝜔 < 𝑡}. The test statistics given in Worsley

(1983) were the log likelihood ratio and the cumulative sum statistic. For fixed 𝑘, the log likelihood ratio statistic is

𝐿𝑘𝛼∶𝜔 = 2{𝑙(𝑁𝛼∶𝑘,𝑀𝛼∶𝑘) + 𝑙(𝑁𝑘+1∶𝜔,𝑀𝑘+1∶𝜔) − 𝑙(𝑁,𝑀)}

with 𝑙(𝑛,𝑚) = 𝑚 log(𝑚) + (𝑛−𝑚) log(𝑛−𝑚) − 𝑛 log(𝑛) being the log likelihood function. The statistic was first used by
Hinkley and Hinkley (1970). The cumulative sum statistic is

𝑄𝑘𝛼∶𝜔 =
(𝑀𝛼∶𝑘 −𝑀 ⋅ 𝑁𝛼∶𝑘∕𝑁)

(𝑁
1

2 𝜎)

with 𝑝0 = 𝑀∕𝑁 and 𝜎 =
√
𝑝0(1 − 𝑝0). 𝑄 has the same distribution as the Kolmogorov–Smirnov statistic 𝐷𝑀,𝑁 (Gibbons,

1985; Pettitt, 1979). Also briefly mentioned in Worsley (1983) is the usual Pearson 𝜒2 statistic (Miller & Siegmund, 1982)
that is

𝑃𝑘𝛼∶𝜔 =

(
𝑄𝑘𝛼∶𝜔

)2
𝑁𝛼∶𝑘

𝑁
⋅
𝑁𝑘+1∶𝜔

𝑁

for testing the equality of 𝑝 and 𝑝′. 𝑃 is equivalent to a two-sample version of the Anderson–Darling statistic (Darling,
1957; Halpern, 1999). Exact two-sided statistical inferencewith 𝑃 yields the exact same results as when using the z-statistic

𝑍𝑘𝛼∶𝜔 =

𝑀𝛼∶𝑘

𝑁𝛼∶𝑘
−

𝑀𝑘+1∶𝜔

𝑁𝑘+1∶𝜔

𝜎

√
1

𝑁𝛼∶𝑘
+

1

𝑁𝑘+1∶𝜔

,

which is by some authors referred to as z-pooled (Mehrotra, Chan, & Berger, 2003). Since 𝑍2 = 𝑃 holds, it is sufficient
to use the Pearson statistic when two-sided testing is carried out. Another statistic introduced by Halpern (1999) is the
p-value of Fisher’s exact test, that is,

𝑘
𝛼∶𝜔 =

∑
𝑗∈𝐽

P(𝑋1 = 𝑗 ∣ 𝑀) =
∑
𝑗∈𝐽

(𝑁𝛼∶𝑘
𝑗

)(𝑁𝑘+1∶𝜔
𝑀−𝑗

)
(𝑁
𝑀

)
with random𝑋1 = #{

Events
Exposed} and 𝐽 = {𝑗 ∶ 𝜌(𝑗) ≤ 𝜌(𝑀𝛼∶𝑘)}with given 𝜌(𝑢) = P(𝑋1 = 𝑢 ∣ 𝑀) such that a two-sided p-value

is obtained. Similarly, Blaker’s test is obtained with 𝜌(𝑢) = min(P(𝑋1 ≤ 𝑢 ∣ 𝑀), P(𝑋1 ≥ 𝑢 ∣ 𝑀)} (Fay, 2010). The statistics
𝐿, 𝑄, 𝑃, are the ones most prominently used in the literature, despite many more statistics for testing a change in
probability are available, for example, variations of z-pooledwith separate variance estimation, variations of the two-sided
Fisher’s exact test (Fay, 2010), rank statistics (Hothorn & Lausen, 2003; Hothorn & Zeileis, 2008; Lausen & Schumacher,
1992), martingale statistics (Brostrom, 1997), or Bayesian approaches (Smith, 1975).
Let 𝐹𝛼∶𝜔(𝑀) be the distribution function of any of the above-mentioned 𝑇max𝛼∶𝜔 under 𝐻0 conditional on the number of

events𝑀 in the (sub)sequence. Worsley (1983) gives an exact iterative procedure to calculate 𝐹𝛼∶𝜔(𝑀) as follows. For each
candidate change point 𝑘, the probability P(𝑇𝑘𝛼∶𝜔 < 𝑡) can be expressed in terms of the events 𝐴𝑘 of the form {𝑎𝑘 ≤ 𝑀𝑘 ≤
𝑏𝑘} as defined above. The events {𝑇max𝛼∶𝜔 < 𝑡} are thus equivalent to ∩𝜔

𝑖=𝛼
𝐴𝑖 . Given all 𝐴𝑖 and𝑀 = 𝑚 fixed, let

𝐹𝛼∶𝑘(𝑣) = P
(
max
𝑖=1,..,𝑘

{𝑇𝑖𝛼∶𝜔} < 𝑡 ∣ 𝑀𝛼∶𝑘 = 𝑣

)
= P

(
∩𝑘
𝑖=𝛼

𝐴𝑖 ∣ 𝑀𝛼∶𝑘 = 𝑣
)
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F IGURE 2 Exact size ofWorsley’s test and the asymptotic Brownian bridge approximation for various test statistics. The event probability
is constant 𝑝 = .15 (left), 𝑝 = .3 (center), and 𝑝 = .5 (right)

so that 𝐹𝛼(𝑣) = 1 if 𝑎𝛼 ≤ 𝑣 ≤ 𝑏𝛼 and 𝐹𝛼∶𝜔(𝑚) = P(∩𝜔
𝑖=𝛼

𝐴𝑖). If 𝑎𝑘+1 ≤ 𝑣 ≤ 𝑏𝑘+1, that probability is calculated stepwise
according to

𝐹𝛼∶𝑘+1(𝑣) =

𝑏𝑘∑
𝑢=𝑎𝑘

P(∩𝐴𝑖 ∣ 𝑀𝑘 = 𝑢,𝑀𝑘+1 = 𝑣) ⋅ P(𝑀𝑘 = 𝑢 ∣ 𝑀𝑘+1 = 𝑣)

=

𝑏𝑘∑
𝑢=𝑎𝑘

𝐹𝛼∶𝑘+1(𝑢) ⋅ ℎ𝑘(𝑢, 𝑣),

where ℎ𝑘(𝑢, 𝑣) is the probability function of the hypergeometric distribution, defined for 0 ≤ 𝑢 ≤ 𝑁𝛼∶𝑘 and 0 ≤ 𝑣 − 𝑢 ≤
𝑛𝑘+1 (=𝑁𝑘+1∶𝑘+1) as

ℎ𝑘(𝑢, 𝑣) =
(𝑁𝛼∶𝑘

𝑢

)(𝑛𝑘+1
𝑣 − 𝑢

)
∕
(𝑁𝛼∶𝑘+1

𝑣

)
and probability zero otherwise. This result can now be used iteratively for 𝑘 = 1, .., 𝑐 − 2 to find 𝐹𝛼∶𝑘(𝑣) for 𝑎𝑘 ≤ 𝑣 ≤ 𝑏𝑘,
and finally, produces the p-value 1−𝐹𝛼∶𝜔(𝑚) = P( 𝑇max𝛼∶𝜔 ≥ 𝑡).
Besides the exact approach, several approximating distributions exist. In case of large sample sizes, asymptotic pro-

cedures may be preferred since exact methods may be time-consuming in their calculation. We will use the Brownian
bridge approximation for maximally selected 𝜒2 statistics by Miller and Siegmund (1982) as a comparator. The approxi-
mating probability calculates as follows:

P(𝑇 > 𝑡) ≅ 4
𝜙(
√
𝑡)√
𝑡

+ 𝜙(
√
𝑡) ⋅

(√
𝑡 − 1∕

√
𝑡
)
⋅ log

(
𝑁𝜔∶𝜔 ⋅ 𝑁𝛼∶𝜔−1

𝑁𝛼∶𝛼 ⋅ 𝑁𝛼+1∶𝜔

)
.

The term 𝑁𝛼∶𝛼 hereby represents the first bin only. Since we have binomial data, the first bin should contain all the
𝑛𝑖 where we are not interested in seeking for a change point (or maximizing our test statistics). In applications, this is
often used to shift the change point detection mildly away from the tails of the sequence. Regarding the Brownian bridge
approximation, this is, however, a crucial parameter. In Bernoulli sequences, we restricted our search to the central 90%
of the sequence as, for example, in Friede et al. (2006).
With the described procedure by Worsley, one can calculate the exact size of a change point test using any statistic.

For all 𝑀 and all 𝑀𝛼∶𝑘, we can calculate the probability of 𝑇𝑘𝛼∶𝑘 exceeding a certain threshold, that is, the exact 95% or
99% quantile conditional on 𝑀 or quantile from an (asymptotic) approximation. With 𝑀 being drawn from a binomial
distribution under𝐻0, we can assess towhat extent the nominal significance level is actually used. For Bernoulli sequences
of small sample sizes, we see in Figure 2 a decline in size that relates to a loss in statistical power. The various test statistics
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lead to very similar exact sizes, with no clear favorite. The Brownian bridge approximation is mostly conservative for our
choices of parameters and their type I error probability is only slowly converging to the nominal level of 5%. Here, it is only
applied to the log likelihood ratio statistic 𝐿 and the Pearson statistic 𝑃 since those are “maximally selected𝜒2” distributed.
The approximation was developed by Miller and Siegmund (1982) for the latter.

4 BINARY SEGMENTATION

Binary segmentation is an iterative procedure to hierarchically split sequences (Scott & Knott, 1974) usually applied in
order to detect multiple change points. Initially, the entire data set is searched for one change point. Once a change point
is detected, the data are then split into two subsegments: one to the left of the change point and the second one to the right
of the detected change point. Subsequent change point detections are then performed on either subsegment, possibly
resulting in further splits. This iterative procedure continues until a stopping criterion is met, for example, until signifi-
cance cannot be achieved at a prespecified level. A plethora of criteria when to split and when to stop has been suggested.
The choice has complex implications for consistency. The general trade-off to be made was described by Scott and Knott
(1974): that “Choosing an appropriate value for 𝛼 is difficult. If 𝛼 is too small, the splitting process will terminate too soon,
while if 𝛼 is too large, the process will go too far and split homogeneous sets of means.” Vostrikova (1981) showed consis-
tency of binary segmentation for the number and locations of change points, with rates of convergence of the estimators
of locations, under certain technical conditions. For Gaussian processes, Venkatraman (1992) relaxed these conditions
on the number and locations of the change points. Furthermore, a simulation study was done to assess the performance
of various multiple change point detection methods specifically in small samples, proving real-world applicability. The
theory is outlined and discussed for nonnormal cases as well.
Usual descriptions of the method do not consider that the distribution of the maximized statistics in any subsegment is

now conditional on all previously found change points. For example, Scott and Knott (1974) write

This starts with the best split into two groups, based on the between groups sum of squares, and then applies
the same procedure separately to each subgroup in turn. The subdivision process is continued until the result-
ing groups are judged to be homogeneous. [509]

Fryzlewicz (2014) gives an algorithm for “standard” binary segmentation in pseudocode where the same segmentation
step is recursively called at each splitting of the data into a left and a right subinterval without any constraints implied
through previous steps. To the best of our knowledge, authors so far have not considered any impact of these constraints
throughout the repeated/iterative splitting steps, since consistency followed by asymptotic results (Vostrikova, 1981) aswell
as in simulation studies. Here, we condition on preceding steps and provide exact distributions in all steps throughout the
segmentation procedure that considers that subsequences are no longer completely random under 𝐻0 (apart from the
initial step). In contexts of developing asymptotic results for multiple change point segmentations of the data, this aspect
may be neglectable, and is proven to be asymptotically correct under some regularity constraints. Therefore, failure to
consider this aspect during subsequent steps of the procedure will not question the validity nor the usefulness of such a
“standard binary segmentation”, as we will refer to it in the following. For our purpose, however, we will need to consider
rigorous and exact distributions at all steps. Wewill show that the usage of binary segmentation steps without considering
the conditional distribution of the (pseudo) change points found beforehand can lead to conservative but also to liberal
results in some scenarios.

5 EXACT NULL DISTRIBUTIONS UNDER SIDE CONDITIONS

In this section, we extend the iterative procedure by Worsley (1983) for calculating the probability of 𝑇max𝛼∶𝜔 when side
conditions are present. Let 𝑠 be the number of side conditions that are denoted as 𝑙 , 𝑙 = 1, .., 𝑠 and for intersections, the
notation

�𝑠

𝑙=1 𝑙 is used (to distinguish them from intersections “
⋂𝜔

𝑖=𝛼
” representing possible runs within the sequence).

The conditions 𝑙 shall be measurable regarding 𝑚𝑖 for 𝑖 = 1, .., 𝜁. Similarly to the definition of the 𝐴𝑘 in Section 3, we
define sets 𝐶𝑙

𝑘
of the form {𝑐𝑙

𝑘
≤ 𝑀𝛼∶𝑘 ≤ 𝑑𝑙

𝑘
}with 𝑐𝑙

𝑘
= inf {𝑀𝛼∶𝑘 ∶ P(𝑀𝛼∶𝑘 ∣ 𝑙) > 0} and 𝑑𝑙

𝑘
= sup{𝑀𝛼∶𝑘 ∶ P(𝑀𝛼∶𝑘 ∣ 𝑙) >

0}. We restrict the 𝐶𝑙
𝑘
to be intervals as we did for the 𝐴𝑘. Then intersections between them as 𝐴𝑘 � 𝐶𝑙

𝑘
for any 𝑙 = 1, .., 𝑠
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and
�
𝑙∈{1,..,𝑠} 𝐶

𝑙
𝑘
are thus also intervals. This regularity condition should always be true whenever the 𝐴𝑘 and 𝐶𝑙𝑘 arise by

meaningful test statistics. This assumption could eventually be dropped but the notation and implementation would be
more complex.
Side conditions 𝑙 naturally arise whenever tests were carried out (in a hierarchical fashion) beforehand within the

binomial sequence. We can regard 𝑙 as all information received in previous steps to condition on. When steps of a binary
segmentation are sequentially done, the conditioning should account for initial change point tests on the sequence 1, .., 𝜁
with a test statistic 𝑈𝑠 (possibly different from 𝑇1∶𝜁). The indices 𝑙 in 𝑈𝑙 will also reflect the subsequence 𝛼′∶𝜔′ (with
1 ≤ 𝛼′ ≤ 𝛼, 𝜔 ≤ 𝜔′ ≤ 𝜁) of the 𝑠−𝑙+1th step in the binary segmentation procedure. This fixes the attained maximum
value of the test statistic at the observed 𝑈max

𝑠 = max
𝜁

𝑖=1
{𝑈𝑠(𝑀1∶𝑖, 𝑁1∶𝑖,𝑀𝑖+1∶𝜁, 𝑁𝑘+1∶𝜁)} at the position of the detected

change point. Considering the number of events as random within the subsequence 𝑘 = 𝛼, .., 𝜔, the initial step 𝑙 = 𝑠 will
impose restrictions of the form

𝐶𝑠
𝑘
= {𝑀𝛼∶𝑘 ∶ 𝑈𝑠(𝑀𝛼∶𝑘+𝑀1∶𝛼−1, 𝑁1∶𝑘, 𝑀𝑘+1∶𝜔+𝑀𝜔+1∶𝜁, 𝑁𝑘+1∶𝜁) < 𝑈max

𝑠 }.

We investigate the distribution of𝑀𝛼∶𝑘 ∣ 𝑙 conditional on fixed𝑀𝛼∶𝜔, the number of events in the subsequence, asWors-
ley’s method does. Then all {𝑚𝑖 ∶ 𝑖 = 1, .., 𝛼−1, 𝜔+1, .., 𝜁} outside of the considered subsequence (𝛼∶𝜔) are fixed (thus
also𝑀1∶𝛼−1 and𝑀𝜔+1∶𝜁). Hence, 𝑈𝑙 is random only in𝑀𝛼∶𝑘. Denote 𝑈𝑘

𝑙
= 𝑈𝑙(𝑀𝛼∶𝑘).

For the hypothetical binary segmentation procedure, attention must be paid to the decision rule where to split when a
maximum is not unique, that is, is attained atmultiple possible change points 𝑘. A variety of such rulings can be considered
from preferring an early or late change point to splitting the sequence directly in multiple subsegments. The ruling we
chose picks the change point 𝑘 that is the most to the left, which corresponds to the earliest change point if the ordering is
by time. Any decision rule used will impact the 𝐶𝑙

𝑘
since the side conditions might allow the case of equality 𝑈𝑙(𝑀𝛼∶𝑘) =

𝑈max
𝑙

. When the decision rule is to take the left change point in step 𝑠−𝑙+1, this would forbid the case of equality only
on the left subsequence but would allow to attain further maxima on the right subsequence in the following steps. Let
𝛿𝑙𝛼∶𝜔 be an indicator function that is 1 when equality is allowed and 0 otherwise. We then define 𝐶

𝑙
𝑘
in the case of equality

as 𝐶𝑙
𝑘
= {𝑀𝛼∶𝑘 ∶ 𝑈𝑙(𝑀𝛼∶𝑘) ≤ 𝑈max

𝑙
if 𝛿𝑙𝛼∶𝜔 = 1} and in the case of inequality as above. We now want to calculate the

probability P(𝑇max𝛼∶𝜔 < 𝑡 ∣ 𝑀,
�𝑠

𝑙=1 𝑙) under𝐻0 conditional on the fixed, observed number of successes𝑀 of our sequence
and conditional on the additional restrictions {𝑙}𝑠

𝑙=1
arising through the hierarchical steps in binary segmentation. Similar

to Section 3, we define the probability of a partial maximum 𝛼∶𝑘 not exceeding 𝑡 as:

𝐹
𝛼∶𝑘

(𝑣) = P

(
max
𝑖=1,..,𝑘

{𝑇𝑖𝛼∶𝜔} < 𝑡 ∣ 𝑀𝛼∶𝑘 = 𝑣,

𝑠�
𝑙=1

max
𝑖=1,..,𝑘

{
𝑈𝑙(𝑀𝛼∶𝑖) < 𝑈max

𝑙
+ 𝜀 ⋅ 𝛿𝑙𝛼∶𝜔 , ∀ 𝜀>0

})

= P

(
𝑘⋂
𝑖=1

𝐴𝑖 ∣ 𝑀𝛼∶𝑘 = 𝑣,

𝑠�
𝑙=1

𝑘⋂
𝑖=1

𝐶𝑙
𝑖

)
.

For the implementation of an exact procedure, we need the following theorem.

Theorem 5.1. Under the null hypothesis𝐻0 and for any possible change point 𝑘 = 𝛼,… , 𝜔−1

𝐹
𝛼∶𝑘+1

(𝑣) =

∑min(𝑏𝑘,𝑑
1
𝑘
,..,𝑑𝑠

𝑘
)

𝑢=max(𝑎𝑘,𝑐
1
𝑘
,..,𝑐𝑠

𝑘
)
𝐺𝛼∶𝑘(𝑢) ⋅ ℎ𝑘(𝑢, 𝑣)∑min(𝑑1

𝑘
,..,𝑑𝑠

𝑘
)

𝑢=max(𝑐1
𝑘
,..,𝑐𝑠

𝑘
)
𝐺′
𝛼∶𝑘
(𝑢) ⋅ ℎ𝑘(𝑢, 𝑣)

holds with

𝐺𝛼∶𝑘(𝑣) = P

(
𝑘⋂
𝑖=1

𝑠�
𝑙=1

{𝐴𝑖 ∩ 𝐶
𝑙
𝑖
} ∣ 𝑀𝛼∶𝑘 = 𝑣

)
,

𝐺′
𝛼∶𝑘

(𝑣) = P

(
𝑘⋂
𝑖=1

𝑠�
𝑙=1

𝐶𝑙
𝑖
∣ 𝑀𝛼∶𝑘 = 𝑣

)
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and max(𝑎𝑘+1, 𝑐
1
𝑘+1

, .., 𝑐𝑠
𝑘+1

) ≤ 𝑣 ≤ min(𝑏𝑘+1, 𝑑
1
𝑘+1

, .., 𝑑𝑠
𝑘+1

) as well as the hypergeometric probability function ℎ𝑘(𝑢, 𝑣) as
defined in Section 3.

Proof of Theorem 5.1. Initially, 𝐹
𝛼∶𝛼(𝑣) = 1 for max(𝑎1, 𝑐11, .., 𝑐

𝑠
1
) ≤ 𝑣 ≤ min(𝑏1, 𝑑

1
1
, .., 𝑑𝑠

1
) and iteratively for 𝑘+1 ≤ 𝜔, we

can write

𝐹
𝛼∶𝑘+1

(𝑣) = P

(
𝑘+1⋂
𝑖=1

𝐴𝑖 ∣ 𝑀𝛼∶𝑘+1 = 𝑣,

𝑠�
𝑙=1

𝑘+1⋂
𝑖=1

𝐶𝑙
𝑖

)

=
P
(⋂𝑘+1

𝑖=1
𝐴𝑖 ∩

�𝑠

𝑙=1

⋂𝑘+1

𝑖=1
𝐶𝑙
𝑖
∣ 𝑀𝛼∶𝑘+1 = 𝑣

)
P
(�𝑠

𝑙=1

⋂𝑘+1

𝑖=1
𝐶𝑙
𝑖
∣ 𝑀𝛼∶𝑘+1 = 𝑣

) .

Reordering the terms gives

=
P
(⋂𝑘+1

𝑖=1

�𝑠

𝑙=1 {𝐴𝑖 ∩ 𝐶
𝑙
𝑖
} ∣ 𝑀𝛼∶𝑘+1 = 𝑣

)
P
(⋂𝑘+1

𝑖=1

�𝑠

𝑙=1 𝐶
𝑙
𝑖
∣ 𝑀𝛼∶𝑘+1 = 𝑣

) =
𝐺𝛼∶𝑘+1(𝑣)

𝐺′
𝛼∶𝑘+1

(𝑣)
.

For the numerator 𝐺𝛼∶𝑘+1(𝑣) (defined similar as 𝐹𝛼∶𝑘+1(𝑣) in Section 3) we use, the distribution 𝐺𝛼∶𝑘(𝑣) for all values
𝑀𝛼∶𝑘 = 𝑢 can attain

𝐺𝛼∶𝑘+1(𝑣) =

min(𝑏𝑘,𝑑
1
𝑘
,..,𝑑𝑠

𝑘
)∑

𝑢=max(𝑎𝑘,𝑐
1
𝑘
,..,𝑐𝑠

𝑘
)

P

(
𝑘⋂
𝑖=1

𝑠�
𝑙=1

{𝐴𝑖∩ 𝐶
𝑙
𝑖
} ∣ 𝑀𝛼∶𝑘=𝑢,𝑀𝛼∶𝑘+1=𝑣

)
⋅ P(𝑀𝛼∶𝑘=𝑢 ∣ 𝑀𝛼∶𝑘+1=𝑣).

Conditional on𝑀𝛼∶𝑘+1 and𝑀,𝑀𝛼∶𝛼, ..,𝑀𝛼∶𝑘 are independent of𝑀𝛼∶𝑘+1 and hence

P

(
𝑘⋂
𝑖=1

𝑠�
𝑙=1

{𝐴𝑖∩ 𝐶
𝑙
𝑖
} ∣ 𝑀𝛼∶𝑘=𝑢,𝑀𝛼∶𝑘+1=𝑣

)
= P

(
𝑘⋂
𝑖=1

𝑠�
𝑙=1

{𝐴𝑖∩ 𝐶
𝑙
𝑖
} ∣ 𝑀𝛼∶𝑘=𝑢

)
= 𝐺𝛼∶𝑘(𝑣)

and P(𝑀𝛼∶𝑘=𝑢 ∣ 𝑀𝛼∶𝑘+1=𝑣) following a hypergeometric distribution ℎ𝑘(𝑢, 𝑣), it follows:

𝐺𝛼∶𝑘+1(𝑣) =

min(𝑏𝑘,𝑑
1
𝑘
,..,𝑑𝑠

𝑘
)∑

𝑢=max(𝑎𝑘,𝑐
1
𝑘
,..,𝑐𝑠

𝑘
)

𝐺𝛼∶𝑘(𝑢) ⋅ ℎ𝑘(𝑢, 𝑣).

The same derivations for the denominator 𝐺′
𝛼∶𝑘+1

(𝑣) complete the proof. □

With Theorem 5.1, we can use the iterative procedure as given in Section 3 to calculate𝐺𝛼∶𝜔(𝑀) and𝐺′𝛼∶𝜔(𝑀), and thus,
P(𝑇max𝛼∶𝜔 < 𝑡 ∣ 𝑀,

�𝑠

𝑙=1 𝑙) = 1−𝐹
𝛼∶𝜔(𝑀). The rigorous derivation of the conditional distributions allows the realization of

exact distributions of the steps in a (hypothetical) binary segmentation procedure. Since binary segmentation is usually
referred to as a multiple change point detection method, we use the term exact binary segmentation steps, since we do not
discuss definitions of a stopping criteria, whichwould define such a procedure, see, for example, Vostrikova (1981), Venka-
traman (1992), and Fryzlewicz (2014). Conversely, we referred to binary segmentation using unconditional distributions
as standard binary segmentation steps, since this procedure is reliant on asymptotic results. Althoughmultiple constraints
arise through change points found beforehand, the method stays a one-dimensional optimization problem in the search
for further possible change points. With the number of side conditions only increasing by the depth, going through the
exact binary segmentation steps, it stays a greedy procedure, that is solvable in polynomial time, whereas approaches that
rely on all possible 2𝑁 combinations of the input sequence are only solvable via simulation techniques, as suggested for
example by Ross et al. (2013).
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6 PROPOSED TEST UTILIZING AN ORDERING OF SEQUENCES

Let 𝑧 be an actual instance of a sequence of binomial variables we want to investigate a (single) change point test or some
other maximally selected statistic on. The sequence is defined by its bin sizes and events {𝑛𝑖}(𝑧), {𝑚𝑖}(𝑧) and the attained
maximum of the test statistic 𝑇 is 𝑡max(𝑧) whose distribution we derived is conditional on𝑀(𝑧). We have

𝑝𝑊(𝑧) = P(𝑇max𝛼∶𝜔 ≥ 𝑡max(𝑧) ∣ 𝑀(𝑧)),

𝑝−𝑊(𝑧) = P(𝑇max𝛼∶𝜔 > 𝑡max(𝑧) ∣ 𝑀(𝑧)),

𝑝𝑊 − 𝑝−𝑊 = P(𝑇max𝛼∶𝜔 = 𝑡max(𝑧) ∣ 𝑀(𝑧)).

A randomized p-value would be achieved with a uniform variable 𝑌 ∼ 𝑈[0, 1] on the unit interval by

𝑝𝑅(𝑧) = 𝑝−𝑊 + (𝑝𝑊− 𝑝
−
𝑊) ⋅ 𝑌.

Randomization yields full size and formsuniformlymost powerful test statistics.When testing a change point, we still have
unused information in the sequences. The sequences form a natural order regarding the likelihood of further separability
in a hypothetical binary segmentation procedure. Fully conditional on the initial change point test, we can use results in
Section 5 to determine a p-value of further change points as a “secondary” dimension. The sequence is split at the initial
change point 𝜅̂ into a left subsequence 𝑧left from 𝛼left = 1 to 𝜔left = 𝜅̂ and a right subsequence 𝑧right from 𝛼right = 𝜅̂+1 to
𝜔right = 𝜁. Theorem 5.1 is used to determine p-values conditional on the initial estimated change point 𝜅̂:

𝑝left = P(𝑇max𝛼left∶𝜔left
≥ 𝑡max(𝑧left) ∣ 𝑀(𝑧left), 𝑇

max
1∶𝜁

< 𝑡max(𝑧))

and 𝑝right = P(𝑇max𝛼right∶𝜔right
≥ 𝑡max(𝑧right) ∣ 𝑀(𝑧right), 𝑇

max
1∶𝜁

≤ 𝑡max(𝑧)).

To pool 𝑝left and 𝑝right, a combination function 𝐶(, ) for p-values will be considered. This approach is used in adaptive
clinical trials (Brannath, Posch, & Bauer, 2002) but also in meta-analysis. Fisher’s weighted product test (1932) is one
possibility to combine 𝑝left and 𝑝right with the function

𝐶(𝑝left, 𝑝right) = 𝑝𝑤left ⋅ 𝑝right, 𝑤 > 0.

Another popular approach is the inverse normal method (Lehmacher & Wassmer, 1999)

𝐶(𝑝left, 𝑝right) = 1−Φ
(
𝑤1 ⋅ Φ

−1(1−𝑝left) + 𝑤2 ⋅ Φ
−1(1−𝑝right)

)
also called Stouffer’smethod (1949) with possible weights 0 ≤ 𝑤𝑖 < 1 and𝑤2

1
+ 𝑤2

2
= 1. Many other combination functions

have been proposed, some also specifically for discrete p-values. Kincaid (1962) compares methods to pool discrete p-
values. Still, these methods are not easily adopted to the setting considered here, since they need full derivations of the
exact discrete distributions (which depend on the sequence). The calculations required would be of exponential order and
are therefore not considered further. If 𝐶(𝑝left, 𝑝right) is not already a valid pooled p-value, it is defined as

𝑐(𝑝left, 𝑝right) = ∫
1

0
∫

1

0

𝟏{𝐶(𝑥,𝑦)≤𝐶(𝑝left,𝑝right)}𝑑𝑥 𝑑𝑦.

It is guaranteed that under 𝐻0, 𝑐(, ) is stochastically smaller than a uniform distribution P(𝑐(𝑝left, 𝑝right) ≤ 𝑥 ∣ ) ≤
𝐹 U[0,1](𝑥) since 𝑝left(𝑧left) and 𝑝right(𝑧right) are conditionally independent.
For our purposes, we will use Fisher’s product test in the following, since it is better suited for p-values that are not

continuous. For instance, p-values need to be truly smaller than 1 for the inverse normal method. Besides the numerical
instability, the strong impact of p-values close to 1 will lead to less homogeneous pooling. Furthermore, we only pool the
left and the right p-values if both subsequences are informative. This way subsequences with no events or the maximal
number of events are not considered further by getting weight zero. If both subsequences are uninformative, the pooled
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p-value will be set to 1. With the known distribution for the Fisher’s product test, we obtain

𝑐𝐹(𝑝left, 𝑝right) = 𝐹−1
𝜒2
(−2 (log(𝑝left) + log(𝑝right))

and a new p-value

𝑝𝑁(𝑧) = 𝑝−𝑊 + (𝑝𝑊− 𝑝
−
𝑊) ⋅ 𝑐𝐹(𝑝left, 𝑝right)

since 𝑐𝐹(𝑝left, 𝑝right) is determined conditional on the initial change point test including 𝑝𝑊 and thus independent. Thus,
by construction, the test keeps prespecified significance levels and is at least as powerful as Worsley’s exact test since the
new test is less discrete and 𝑝𝑁 ≤ 𝑝𝑊 holds.
The described test operates in depth 1, but can be easily extended by applying the same approach recursively to 𝑝left and

𝑝right. This hierarchical procedure resembles binary segmentation and forms some sort of “segmentation p-value” rather
than a single change point p-value. The new test uses an exchange of information through different depths to make the
test at a given depth more precise. Also when further segmentation is not of any interest, the approach is natural since it
favors sequences with a sharp change in the empirical frequency of events. In order to focus on such local sharp changes,
it may also be advisable to change the underlying test statistic from two-sided to one-sided, such that the subsequence on
the side of the change point with a low frequency is searched for an increasing frequency the further this subsequence
goes away from the change point. Conversely, the subsequence on the side with a high frequency is searched with the
one-sided test in the opposite direction of a decreasing frequency. We refer to this procedure in the following as swapped
one-sided alternatives.

F IGURE 3 Simulated sizes of the log likelihood ratio (black) test statistics for Worsley’s test (depth 0). The new test (depth 1) is displayed
as solid gray line. Dotted lines with shaded area show the gain through deeper segmentation (depth 3+). The whiskers (red) show the difference
induced by the standard approach (depth 1). The nominal level varies 1% [top] and 5% [bottom]; the number of simulation runs is 𝑛sim = 500,000

per parameter combination
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In our definition of the test, we do not provide specific stopping criteria regarding the segmentation other than the
prespecified depth, or more precisely, the forced stop whenever the resulting subsequence consists exclusively of events
or nonevents.We point out that the stopping criteria defined this waywere chosenwith the intent to get a less discrete test.
However, it is neither a valid nor a sensible criterion for detectingmultiple change points. The latter is a separate setting for
which we refer to, for example, Scott and Knott (1974) and Vostrikova (1981), in which only a rigorous stopping criteria will
be able to obtain a binary segmentation procedure in the original sense. A variety of other methods for (direct) detection
of multiple change points exist, many of them proven to provide better results than binary segmentation procedures in
certain multiple change point applications (see, e.g., Frick, Munk, & Sieling, 2014; Zou, Yin, Feng, &Wang, 2014). We use
simply the idea of a segmentation procedure (without a stopping criteria) to obtain less discrete test statistics. The derived
exact conditional distributions, however, can be used to evaluate any given segmentation procedure (with well-defined
splitting and stopping criteria) that is based on Worsley’s test.

7 NUMERICAL STUDIES

In the following, wewill explore the properties of the proposedmethods bymeans of a simulation study and by application
of motivating examples introduced in Section 2.

7.1 Simulation studies

First, we look at Monte-Carlo simulations to compare the new test with Worsley’s test and approaches based on standard
binary segmentation steps. To investigate to which extent the use of the new ordering can lead to a gain in size, a simulation

F IGURE 4 Simulated sizes of the cumulative sum (purple) as underlying test statistics for Worsley’s test, as in Figure 3
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F IGURE 5 Simulated sizes of Fisher’s exact test (blue) with swapped one-sided alternatives as underlying test statistics for Worsley’s test,
as in Figure 3

study on randomly generated Bernoulli sequences under 𝐻0 was done. Figure 3 shows the results for various depths in
the creation of the sequential ordering. A higher depth always leads to a less discrete and therefore smaller p-value and
thus a higher size of the test. The log likelihood ratio test and cumulative sum test as underlying test statistics as proposed
in Worsley (1983) were used. Also, Fisher’s exact test is used with the two-sided version for the initial test but for higher
depth swapped one-sided versions as described in Section 6. All test statistics show about equally large size irrespective
of the depth, the nominal level (1% or 5%), and the true event probability (𝑝 = .3 or 𝑝 = .5). The lowest line shows the
performance of the original Worsley’s test that can be referred to as having depth zero. The new approach leads to a strong
increase in the size already with depth 1. Even for sample sizes up to 25, this increase can be above one-fifth of the nominal
level. Only when the event probability is very small (or high), the effect diminishes since many randomly generated data
sets become rather trivial. When the search depth is further increased, the size slightly improves for depth 2 and very little
for depth 3. Search depths beyond three only very occasionally undiscretize a p-values and then to an almost unnoticeable
extent. Therefore, the gain in size beyond depth 3 is close to zero. Exact calculations of the size (as displayed in Figure 2)
are no longer feasible for depths greater zero, since the number of distinguishable sequences is of exponential order (2𝑁).
When the p-value is achieved by steps of standard binary segmentation, the statistical test becomes predominantly liberal
in the case of swapped one-sided alternatives, while otherwise it is often conservative (see Figures 3–5).
The power of the test statistics is displayed in Figures 6,7. The gain in power depends strongly on the simulation scenario

and the test statistics used. Scenarios with alternatives consisting of one change point only are displayed in the upper tier.
In the bottom row, two change points were used and the newmethod based on segmentation can benefit even more from
such an alternative to reject the null hypothesis of no change point. The gain in power can be substantial as shown for
the log likelihood ratio statistic that has a large statistical power in the tails of the sequence, as well as for the cumulative
sum statistic having a large statistical power in the center of the sequence.
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F IGURE 6 Simulated power of log likelihood ratio statistic 𝐿 and cumulative sum statistic 𝑄 comparing depth 0 (solid bottom line) and
the gain through depth 3 (area above the line) for different change points 𝜅 on a sample of length𝑁 = 20with probabilities 𝑝 = .2 fixed and 𝑝′

varying (x-axis). The bottom tier represents scenarios with a second change point with additional parameters 𝜅′ and subsequent probabilities
𝑝′′ for {𝑚𝑖 ∶ 𝑖 = 𝜅′, … , 20}. The tiny dotted red lines indicate the power of the randomized test version of Worsley’s test for comparison. Per
parameter combination, 𝑛sim = 100,000 simulation runs were done

F IGURE 7 Simulated power for different lengths of the sample 𝑁 and change points 𝜅, as in Figure 6

7.2 Motivating examples revisited

In the clinical data example about the likelihood of pin site infections in orthopedic surgeries, the estimated change point
is located before observation 12 that is before the introduction of the new procedure after observation 17, as displayed in
Panel A in Figure 1. Worsley’s test gives a p-value of 𝑝𝐿0 = .0707 for the log likelihood ratio statistic and 𝑝𝑄0 = .0819 for
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the cumulative sum statistic. With the new approach of depth 3, respective p-values are undiscretized to 𝑝𝐿3 = .0565 and
𝑝𝑄3 = .0702. The data indicate no change at the timepoint when the new procedure was introduced, but rather suggest
multiple changes in care prior to observation 17. It is plausible that the new procedure in care was in part tested and used
beforehand. Also, the preference of hospital based (and community practice) versus ambulant pin site care was changed
in this period.
In publication bias example based on data from Zou et al. (2018), we found an estimated change point after observa-

tion 10 that was the drug viibryd approved on January 21, 2011, and observation 11 that is the drug aubagio approved on
September 12, 2012 when using the likelihood ratio statistic, as displayed in Panel B in Figure 1. In contrast, the cumulative
sum test statistic achieves the maximum after observation 7. We found only a small gain regarding the coarseness of the
p-value from 𝑝𝐿0 = .234 to 𝑝𝐿3 = .216 for the two-sided likelihood ratio test statistic. However, if the one-sided likelihood
ratio test is used for detection of an increasing event probability, the new test achieves a p-value of 𝑝𝐿1s3 = .083, whileWors-
ley’s p-value is 𝑝𝐿1s0 = .117. The delay of the change point since the FDAAA in 2007 is not implausible, because the drug
approval process usually includes multiple trials, and thus, a delay of over 3 years is likely. Especially, negative findings in
the development process will possibly lead to a longer delay.

8 DISCUSSION

In this paper, we extended the proposal by Worsley by considering a sequential ordering to augment test statistics that
compare “before” versus “after” by means to analyze 2 × 2 contingency tables. The ordering we defined originates from
binary segmentation procedures, and to achieve an exact test, we first needed to derive the exact null distributions of the
single steps of such procedures. With the “standard” approach not accounting for the conditional distributions, the type I
error can be inflated. With the derived exact binary segmentation steps, however, a new test could be defined that is often
able to attain a statistical power that is much closer to the randomized version of Worsley’s test.
Another promising application of the described exact methods would be the usage in building decision or regression

trees with binomial outcomes. When selecting input features, different variables repeatedly compete in being best suited
to partition the predictor space into various strata. Here, the p-value can serve as a criterion for selection and the absence
of statistical significance subsequently as a possible stopping criterion. In this context, the developed exact methods for
binary segmentation steps are promising as they are rigorous. First, current methods do not adjust for any data splits
(referred to as internal nodes) that have taken place in advance as standard binary segmentation steps do neither. Exact
methodswould increase validity and objectivity of the procedure. Second,when the explanatory variables are continuously
split to create amultitude of strata (so-called tree branches), the sample sizes naturally get small. Increases in power similar
to the test developed in Section 6 would be desirable. The simultaneous handling of many covariates in building decision
trees is, however, not straightforward but will need some assumptions regarding their dependence structure.
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