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ABSTRACT Online coadaptive training has been successfully employed to enable people to control
motor imagery (MI)-based brain-computer interfaces (BCIs), allowing to completely skip the lengthy and
demotivating open-loop calibration stage traditionally applied before closed-loop control. However, practical
reasons may often dictate to eventually switch off decoder adaptation and proceed with BCI control under a
fixed BCI model, a situation that remains rather unexplored. This work studies the existence and magnitude
of potential post-adaptation effects on system performance, subject learning and brain signal modulation
stability in a state-of-the-art, coadaptive training regime inspired by a game-like design. The results extracted
in a cohort of 20 able-bodied individuals reveal that ceasing classifier adaptation after three runs (approx.
30 min) of a single-session training protocol had no significant impact on any of the examined BCI control
and learning aspects in the remaining two runs (about 20 min) with a fixed classifier. Fifteen individuals
achieved accuracies that are better than chance level and allowed them to successfully execute the given
task. These findings alleviate a major concern regarding the applicability of coadaptive MI BCI training,
thus helping to further establish this training approach and allow full exploitation of its benefits.

INDEX TERMS Brain-computer interface, classifier adaptation, coadaptation, motor imagery, online
learning, user training.

I. INTRODUCTION
Brain-computer interfaces (BCI) based on the detection
and identification of electroencephalographic (EEG) senso-
rimotor rhythms (SMRs), which are elicited by imagined
or attempted movements [1], are popular for providing
the possibility of spontaneous interaction by noninvasive
means. Entering a phase of considerable technical maturity,
the applicability of the motor imagery (MI) BCI paradigm
has been demonstrated in several contexts including commu-
nication [2]–[4], games [5], [6], virtual worlds [7], prosthetic
devices [8], [9], brain-actuated wheelchairs [10], [11], mobile
robots [12], robotic arms [13] and rehabilitation [14], [15].

Intense performance fluctuations during and, especially,
across BCI sessions [16] and the inability of a large portion
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of users to get into control of a BCI have been early
identified as [17], and still remain today [18], the main
obstacles towards deploying BCI technology in real-world
scenarios [19]–[23]. SMR-based BCIs are known to be
particularly vulnerable to these issues [18], [24]–[27]. Coad-
aptive BCIs, where the decoder parameters [28] and/or–less
commonly–the features extracted from brain signals to be
processed by the decoder [29]–[31] are recalculated on-the-
fly during real-time, closed-loop BCI operation have been
proven able to reduce performance instability by tracking
and adapting to non-stationarity effects present in brain
signals [16], [27]–[30], [32]–[38].

This literature has often implied that decoder adaptation
subserving online BCI control may also pose a remedy for the
problem of non-universal accessibility (often termed ‘‘BCI
illiteracy’’ [34]), when subjects do not exhibit the desired
modulation of SMRs to be exploited by the BCI. Although
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it is still unclear and debatable whether and to what extent
an evolving decoder enhances or hinders subject learning on
the long run [6], [39], [40], fast or even immediate transition
to closed-loop training is thought to be beneficial. In that
respect, adaptive BCIs do provide a means to avoid open-
loop (i.e., without BCI feedback) calibration protocols alto-
gether. This has been so far a necessary training stage in all
modern BCI paradigms relying on machine learning, since
the employed algorithms prerequisite a supervised parameter
estimation process demanding the synchronized collection of
both brain signal data and ‘‘ground truth’’ mental task labels.
In other words, there is need of knowledge about the underly-
ing mental tasks which is not always readily available. How-
ever, ‘‘offline’’ data collection is a lengthy, tedious and dull
procedure that largely demotivates prospective BCI users.
Given compelling evidence on the importance of motiva-
tion [41], [42] and the highlighted need to take into account
psychological factors in training protocol design [43], [44],
coadaptive schemes are believed to be able to play a major
role in BCI training.

There exist several possible reasons why BCI adaptation
may need to cease and subsequent training or BCI application
control proceed with fixed decoders. One such case may
be when trained performances with a supervised adaptation
paradigm are judged adequate for application control, but
the targeted BCI device does not provide data labels to per-
mit continuing adaptation in the same supervised manner.
Of note, in spite of successful adoption in specific frame-
works and under certain valid assumptions [27], [29], [30],
[34], unsupervised re-calibration schemes are not guaranteed
to converge and can be in cases theoretically shown to fall
short of their supervised counterparts [38]. Computational
complexity during brain-actuated device operation may also
pose limitations on continuous adaptation. Most importantly,
online parameter estimation is often employed only in the
beginning of BCI sessions to address non-stationarity effects
and then deliberately switched off [39], [45] since it is widely
believed that fixed decoders may more effectively foster sub-
ject learning and fuel the associated cortical plasticity [6], [8],
[39], [40], [46]–[49].

Despite post-adaptation operation may be a practical
necessity and although this issue has been investigated with
respect to other BCI paradigms [39], [45] the literature of
adaptive SMR BCIs has so far studied performances only
during, and not after, adaptation. Faller et al. [37] is, to our
best knowledge, the only SMR BCI work that has included
closed-loop control intervals devoid of adaptivity following
coadaptive training; however, this experimental design served
to investigate a different hypothesis and an explicit compari-
son of performances in the two conditions was not attempted.
In [50], [51], the authors simulate offline the performances of
adaptive and static classification schemes arguing in favour of
the former, however, no firm conclusions can be drawn in the
absence of actual closed-loop experimentation.

In this work we set out to explicitly study the presence and
magnitude of effects in terms of system performance, subject

learning and feature stability, following the discontinuation
of adaptation in a coadaptive training regime. We maintain
an exploratory attitude in this investigation, where no spe-
cific hypotheses on the nature of potential effects are put
forward. This is due to the fact that there exist several lines
of reasoning suggesting that adaptation and its stoppage may
influence variables of interest (including the stability of brain
features, subject learning and, ultimately, the overall system
performance), but these are often contradictory. For instance,
as far as stability is concerned, most works imply that non-
stationarity is inevitable and adaptation helps reduce its neg-
ative impact on performance. However, it is also sensible
to suspect that a continuously changing (due to adaptation)
feedback may in fact enhance non-stationarity effects [6],
[38]. Similarly, as already mentioned, there is an open debate
about the impact of adaptivity on subject learning [40]: On the
one hand, higher performances thanks to adaptation translate
in more meaningful and less frustrating feedback, which
can be assumed to facilitate learning. On the other hand,
continuous adaptation leads to inconsistent feedback creat-
ing the so-called ‘‘moving target problem’’ [46], [52] where
users need to learn an ever-changing task, which should be
detrimental to their learning efforts [6], [39]. It has also been
argued that continuous adaptation may be counterproductive
for subject learning by means of over-facilitating the under-
lying task, so that ‘‘lazy’’ human learners may not achieve
the desired outcomes [38]. Consequently, the final effects
on BCI performance will depend on which of the above
positions prove to be prevalent; this calls for online, closed-
loop experimentation.

In order to explore these effects, a cohort of 20 BCI naive,
able-bodied individuals have been recruited and undergone a
single-session, 5-run-long coadaptive training protocol. Each
run consisted of 40 hand MI trials. Except for the first 10
trials of the first run that were used to calibrate the initial
instance of the BCI model, users were in closed-loop control
of the interface and observing real-time feedback throughout
the training session. The users’ task was to play a version
of the ‘‘Whack-A-Mole’’ game [53] where timely, successful
and sustained MI would ‘‘hammer’’ and knock out a cartoon
ghost character leading to a ‘‘hit’’ trial and collection of
‘‘stars’’ (virtual rewards). The game-like design targeted high
levels of user motivation and engagement to facilitate coadap-
tation [54], [55]. Feedback relied on SMR feature classifica-
tion. In line with the research question addressed, after initial
calibration the classifier was recurrently adapted in a super-
vised manner during the first 3 runs. In the subsequent and
latest two runs of the session, adaptation was switched off and
users continued closed-loop training with the last classifier
resulting from the adaptive phase. At the end of each training
stage, subjects were asked to subjectively assess their feeling
of control, satisfaction with the training paradigm, level of
alertness and performance evolution. Variables related to user
effort and comfort were reported once at the end of the
session with a simplified variant of the NASA-TLXworkload
assessment tool (see supplementary material).
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The remainder of this manuscript is organized as follows:
Section II elaborates the details of the participants recruited,
the experimental apparatus, the training paradigm applied, the
BCI, evaluation and statistical methods employed, and the
data usage. Section III presents the system performance,
subject learning, stability and user experience results substan-
tiating our claim that there exist no significant post-adaptation
effects in SMR BCI training paradigms. Finally, section IV
discusses our findings with respect to related literature and
highlights their significance and anticipated impact.

II. METHODS
A. PARTICIPANTS
Twenty naïve volunteers (mean age 26 ± 3 (s.d.) years,
5 females, 2 left-handed–S8 and S15) participated in this
study. Subjects were without any known medical condition,
had normal or corrected to normal vision and entered the
study voluntarily without monetary remuneration. At the
beginning of the study, each participant was briefed about
its aim. All volunteers gave written informed consent to
participate. The study was conducted in accordance with the
relevant guidelines for ethical research set by the Declaration
of Helsinki.

B. EXPERIMENTAL APPARATUS
Recording sessions took place in a well illuminated, spacious
room shared by the subject and 2 researchers. Subjects were
seated in a comfortable chair approximately 90 centimeters
from the computer monitor. EEG signal was recorded at
512Hz sampling rate with an eegosports biosignal ampli-
fier (ANT Neuro, Enschede, Netherlands) from 15 Ag/AgCl
electrodes over locations FC3, FCC1h, FCC2h, FC4, C5,
C3, C1, Cz, C2, C4, C6, CCP1h, CCP2h, CP3, and CP4 of
the sensorimotor cortex according to the international 10-20
system (Fig. 1a). These electrodes were integrated into a cus-
tomized 64-channel cap (waveguard, ANT Neuro, Enschede,
Netherlands). All signals were referenced to electrode CPz
and kept with impedance under 20k�. The ground electrode
was placed at AFz.

C. TRAINING PARADIGM
The BCI system was presented to the user in the form of a
game, so as to maintain motivation [43], [44]. Participants
were seated in front of a computer screen with the task to
play a variant of the Whack-A-Mole game. Users were asked
to perform dominant hand MI whenever a cartoon ‘‘ghost’’
character was shown on the screen and to relax when it
disappears. The ghost would appear, play an audio cue and
stay visible for 7 seconds, which constitutes a single MI trial.
A break between 7 to 8 seconds was presented before the
next ghost appeared, which defines a single non-MI (rest/idle)
trial. The trial timeline is shown in Fig. 1b.
Prior to training, participants were given instructions on

the ideal execution of kinaesthetic hand MI tasks [56]. Each
subject was given a lemon to squeeze and to feel its texture.

Then, they were asked to mentally reproduce the motor and
haptic feeling of squeezing the lemon (not the visual image of
doing it) with their dominant hand. They were advised to pick
a strategy that feels vivid when imagined, and that they should
keep it consistent for the next hour, since the classifier works
at its best with consistent strategies. After this, subjects were
informed about EEG artifacts and how they affect the data.
By means of an EEG signal scope, subjects were able to see
for themselves how muscular contractions and eye blinking
affect the signal. Finally, participants were asked to avoid
blinking with a pattern (e.g. blinking every time the ghost
appears), but to otherwise blink naturally, as needed.

The graphical user interface (GUI) of the game and the trial
timeline are illustrated in Fig. 1b. The game GUI is composed
of several elements designed to provide rich feedback to
the user while keeping the training paradigm appealing and
straightforward. Specifically, during resting trials, a ham-
mer is depicted in a vertical, upright position (‘‘Resting’’
position). While the BCI output indicates that the user is
idling (i.e., not performing MI), a blue bar on the left of
the hammer keeps filling up (and becoming a lighter blue
color) showing the ‘‘energy’’ recovered by the user. The blue
bar reaches maximum energy after 5 s of continuous resting.
Every 20% of energy recovered earns the subject one star,
as indicated by the next ‘‘empty’’ (white) star (in the 5-start-
high column next to the energy bar) becoming blue. This
type of feedback promotes the user’s intentional-non-control
abilities [19], which are essential for self-paced BCI (i.e.,
spontaneous control interfaces where the users initiate BCI
commands at their own will and pace), as well as helps to
improve the main control abilities, since a consistent ‘‘rest-
ing’’ EEG pattern can be optimally separated from a user’s
MI pattern. Effectively, the user is learning to avoid false
positives, since intervals during a resting trial where the BCI
detects false-positive MI activity prevent the energy recovery
process and negatively affect star collection. DuringMI trials,
when the BCI infers that the user is engaging in MI for more
than 0.3 seconds continuously, the hammer increases in size
and prepares to hit the ghost (‘‘Charging state’’). No energy is
lost or recovered in this state. When continuous MI detection
exceeds 2 s, the hammer strikes and hits the ghost (‘‘Hit’’),
upon which the user capitalizes the currently available stars
and the energy resets to 20% (1 star remains blue). At the
end of MI trials (ghost disappearance), the energy would
reset to 0% (all stars are empty/white). The time counter for
charge and hit resets every time the BCI fails to detect MI
within the MI trial. Given the total duration of 7 s for MI
trials and a minimum of 2 s for a single hit, subjects have the
possibility of a maximum of 3 hits in each trial, although each
subsequent hit after the first one can only contribute one star
to the total reward count. The gameplay within MI trials is
meant to encourage the fast and persistent production of MI
EEG activity. The total number of stars collected by the user
in a training run is displayed at the bottom of the screen.

Each recording session lasted about 90min (including
EEG montage, instructions, recording and periodic pauses)
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FIGURE 1. Methods for MI BCI coadaptive training. (a) EEG channel configuration over the sensorimotor cortex according to the international
10-20 system. Electrode CPz acted as reference and AFz as ground. (b) Game graphical user interface associated to the trial structure and timeline. Image
adopted from [53]. (c) Training paradigm structure. Each MI trial is preceded by a non-MI, ‘‘resting’’ trial as shown in (b).

and consisted of 5 runs of 80 total trials each (40 MI trials,
each preceded by a rest trial). Between runs, subjects were
free to take a break to move, ask questions, drink and eat.
The duration of this pause was decided by each subject and
would take approximately 1-5min.

In the first 3 runs (240 total trials) BCI model adaptation
was enabled. The online coadaptive training was divided in
calibration and recurrent adaptation [36]. The aim of the
calibration period is to collect a minimal amount of only
10 EEG trials to compute the first set of BCI parameters.
During calibration, sham feedback is provided to the user, i.e.
the game is playing automatically with a predefined accuracy
of 75% (open-loop BCI with sham feedback). As soon as this
first version of a calibrated BCI is available, training switches
to the main recurrent adaptation stage, where the user is
in direct control of the interface (closed-loop BCI). In this

recurrent adaptation phase, a new classifier is seamlessly
trained every 10 total trials (5 MI + 5 non-MI trials) in
the background, without disrupting the flow of the training
protocol. Each such classifier is trained on the data of the
last 80 trials (or, if less than 80, all currently available trials),
in order to give recent activity patterns a higher impact. Only
data in time intervals [1,4] s within each MI trial and [−5,
−2] s within each preceding rest trial (where t = 0 the MI
trial onset, when the ghost appears) are used for the classifier
update, so as to filter out potentially bad quality data either
in the beginning (delayed reaction) or at the end (inability
to sustain MI) of an MI trial. After the end of the recurrent
adaptation stage, subjects executed another 2 runs (160 trials)
without adaptation, using the last classifier resulting from
the adaptive stage. The net recording time was about 50min
(30min for the adaptation stage and 20min for the fixed
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classifier stage). The training paradigm is graphically dis-
played in Fig. 1c.

All subjects were asked to report their feeling of control,
satisfaction, alertness and performance improvement twice,
after the end of each training stage, as well as to declare
various overall user experience variables at the end of the
session with a simplified version of the NASA-TLX work-
load assessment tool (see supplementary material for the
exact questionnaire form used). Self-reported level of control
was assessed with the question ‘‘Did you feel in control of
the game in this stage?’’, which could be answered with an
integer number in the scale 1-10 (1: Very little - 10: Very
much). User satisfaction was evaluated through the question
‘‘What is your overall satisfaction with the system?’’, where
participants could reply again in the scale 1-10 (1:Unsatisfied
- 10:Satisfied).

D. BCI METHODS
For online MI BCI, a large Laplacian derivation [6], [7],
[38] was first applied to channels C3, Cz and C4, where the
average scalp potential of their 4 ‘‘cross’’ neighbor channels
(North-South-East-West) was subtracted from the raw EEG
signal at each time point. Subsequently, the signal of these
3 Laplacian channels was filtered throughout the 3 s-long
interval of each trial with 3 non-causal, 5th-order, bandpass
Butterworth filters setting the cutoff frequencies at 10-13,
16-24 and 24-32Hz (α, low β and high β / low γ bands,
respectively). The final features were extracted in 1 s-long
consecutive windows shifted by 125ms. A bandpower esti-
mate for each of the three filtered versions of each window
is derived by squaring the signal, averaging across time and
log-transforming the output (in order to increase normal-
ity of brain features). As a result, the final feature set the
participants were asked to modulate consisted of 9 subject-
unspecific features: 3 log-power values corresponding to the
µ, low β and high β bands on the aforementioned 3 Laplacian
channels.

These 9-dimensional feature vectors are classified by
a shrinkage-regularized [57] linear discriminant analysis
(LDA) classifier. The parameters of each version of the
LDA classifiers applied online are extracted by conven-
tional maximum-likelihood estimation of class-dependent
mean vectors and a common (regularized) covariance matrix
using the recent available data as described in the previous
section. Such parameter estimation is of low computational
complexity and was instantaneously and seamlessly imple-
mented at the specified intervals without disrupting the flow
of the training protocol, thus being a process entirely con-
cealed from the user. Prior to each classifier recalibration
step, an artifact rejection module was employed to detect
and remove from the training dataset feature vectors that
were suspected for artifact contamination. Specifically, a nor-
mal distribution was first fitted to the recalibration data of
each of the 9 features used, independently. Feature values at
any time t whose absolute z-score exceeded the threshold
3.0 (i.e., feature values whose log-power was 3 standard

deviations larger or smaller than the average feature value in
the training data) were labeled as abnormal and the overall
feature vector/data sample at time t was rejected and ignored
by the classifier retraining process. Post-experiment analysis
revealed that artifact infliction incidents in the overall study
were in fact rare, so that no artifact rejection module was
implemented for the offline analyses.

The classification was driving the hammer feedback as fol-
lows: Instead of the common ‘‘hard’’ classification approach
based on the classifier’s separation hyperplane, the current
LDA classifier estimate was used to derive for each incoming
feature vector a ‘‘soft’’ decision in the form of a probability
distribution over the two mental classes (rest, MI). When the
probability of the MI class exceeded 0.55, the sample-wise
classifier inference on the user’s current mental state was
taken to be ‘‘MI engagement’’. Sustaining this state for the
preset intervals mentioned in the previous section would lead
to the hammer’s charging and hitting actions. On the contrary,
when the MI probability was below the 0.55 threshold the
user’s state was interpreted as ‘‘Resting’’. A resting single-
sample classification decision would reset the counters for
the hammer’s charging and hitting states, so that strong and
sustained MI was key to meeting the game’s goals.

The selection of this particular threshold (instead of the
more conventional 0.5) was meant to slightly bias decision
making towards the avoidance of false positives and chal-
lenge participants to put more effort. Perfect control would
account for a total of 280 stars gained per run. A random
classifier was estimated to deliver approximately 64 stars
per run. Classification fully biased towards the resting class
would lead to 0 stars gained, whereas bias to the MI class
would only deliver 80 stars per run (thanks to the ‘‘energy
recovery’’ mechanisms during resting trials). Of note, the last
two scenarios of biased classification were practically com-
pletely avoided thanks to recurrent adaptation.

Following the 125ms window shift for feature extraction
and classification, the rate of single-sample decision making
was 8Hz, however, the subsequent evidence accumulation
approach through which single-sample decisions were driv-
ing the hammer feedback allowed for more relaxed gameplay
dynamics which were assumed to better promote learning.

E. EVALUATION METHODS
We report the online single-sample classification accuracy
metric in the conventional fashion (for the purpose of com-
parison with previous work) by pulling together and thresh-
olding the MI probabilities produced online by each subject
at 8Hz within the trial periods with a 0.5 threshold (including
samples whose rising edge of 1-s-long window precedes the
trial onset, since the resulting feature vectors were taken into
account during real-time operation). These ‘‘hard’’ (MI vs
rest) single-sample decisions are used to form standard con-
fusion matrices (row-wise, True Positives (TP): Number of
correctly classifiedMI samples, False Positives (FP): Number
of rest samples misclassified as MI, False Negatives (FN):
Number of MI samples misclassified as rest, True Negatives
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(TN): Number of correctly classified rest samples). The final
accuracy metric (Accuracy = 100 ∗ (TP+ TN )/(TP+ FP+
FN + TN )%) reflects the percentage of correctly classified
samples over the total number of samples (including both rest
and MI trials).

An online trial-based (trial-wise) accuracy metric is
derived in the same fashion considering a single final decision
per MI and rest trial. This decision is calculated by sim-
ple majority voting of single-sample decisions within each
trial (using again the 0.5 threshold for the latter). Using the
same trial-wise confusion matrix, the Hit percentage (Hits =
100 ∗ TP/(TP + TN )%) is presented to isolate performance
duringMI trials only. Similarly to the single-sample accuracy
metric, these evaluation metrics do not precisely reflect the
online performance perceived by the subjects during training
through the employed gameplay, however, they are closer
to standard practice so as to allow comparisons with the
literature. Finally, the average number of ‘‘star’’ rewards
actually collected by each participant per run is reported to
give a sense of the performance actually observed by subjects.
Of note, all accuracy indices are monitored per run, condi-
tion or session, by pulling the corresponding data together
(instead of averaging run-wise accuracy within the respective
periods), unless otherwise stated.

Event-related Desynchronization/Synchronization (ERD/
ERS) maps of MI trials are derived with the classical def-
inition [1] expressing a decrease/increase of bandpower in
a certain location, time point and frequency band over a
reference interval. The reference period is taken to be the
interval [−3,−1] s within the preceding rest trial with respect
to the onset of each MI trial (t = 0). Each trial is processed
with Laplacian spatial filtering using all existing surrounding
neighbours and DC removal prior to ERD/ERS calculation.
The EEG spectra are computed with Fast Fourier Trans-
form (FFT) with a frequency resolution of 0.125Hz in the
broad band [8, 36]Hz. Time resolution is 125ms. The final
map shown for each channel is the average spectro-temporal
ERD/ERS across all MI trials of all 5 runs. For topoplots
illustrating the spatial distribution of ERD/ERS, the signal
is shown for all available channels, further averaging across
the whole MI trial period and within the noted frequency
sub-band.

Several indices are extracted to assess the separability
between the subjects’ MI and resting EEG patterns and,
by extension, their learning outcome. Offline single-sample
accuracy is computed in the same manner as the online
equivalent except for the fact that single samples are classi-
fied by non-regularized LDA classifiers trained with 3-fold
cross validation. Random shuffling of data is applied, but
samples originating in the same trial remain in the same
fold to avoid overestimating accuracy due to data sample
dependence. The final reported figures refer to average across
folds testing set accuracy. The coefficient of determination
r2 [29] is computed as the square of the Pearson correlation
coefficient (assuming gaussianity of brain features) between
feature values and the corresponding ground truth mental

class labels, separately for each of the 9 features employed
online. The final figures shown are those corresponding to the
‘‘best’’ (in terms of r2) feature of each subject considering the
whole session. Similarly, Fisher Score (FS) [6] values are also
reported for the best feature session-wise using the formula in
(1), whereµ, s the mean and standard deviation of the feature
in question for the MI and resting classes. Fisher Score is an
intuitive way to assess the extent of overlapping (thus, the
proximity/similarity) between univariate normal distributions
and it is theoretically associated to the t-statistic.

FS =
|µMI − µrest |√
s2MI + s

2
rest

(1)

Finally, Kullback-Leibler divergence (KLD) separabil-
ity [38] is computed as in (2), where f , 6,µ the (assumed
normal) multivariate distribution probability density func-
tion, the covariance matrix and the mean feature vector of the
two mental classes (MI and rest) and D = 9 is the dimen-
sionality of the feature space. KLD is commonly adopted
as a measure of distance and similarity between probability
distributions.

KLD = DKL(fMI ||frest )

=
1
2
(tr(6−1rest6MI )

+(µMI − µrest)T6
−1
MI (µMI − µrest)

−D− ln
|6rest |

|6MI |
) (2)

Of note, all separability indices employed here depend
to a certain extent on the assumption of normal univariate
(for individual features as for r2 and FS) and multivariate
(for the 9-dimensional space used for offline accuracy and
KLD) distributions. Thanks to log-transforming the extracted
bandpower features the data, this assumption is sufficiently
accommodated in the case of this work for all 9 features used
online across all subjects. As already noted, all these metrics
are computed on the basis of the same feature manifold used
for online BCI.

It must be underlined that these separability metrics are
complementary in nature and each has its own pros and cons,
what motivates the inclusion of all these aspects of class dis-
criminancy in our analysis. Offline accuracy is probably the
most easily interpretable and intuitive metric, it can evaluate
the separability of multivariate patterns (without having to
average or take the maximum over features), it is numerically
bounded on both sides and enjoys clear theoretical estimates
about the expected performance in non-separable datasets.
On the downside, it is an indirect measure of separability
that relies on the classification model chosen, a large number
of hyperparameters (e.g. model-specific parameters, number
of fold for cross-validation, etc) and is prone to computation
errors like overfitting, underfitting and assumption violations
(normality, independence). Furthermore, classification accu-
racy values tend to saturate close to the chance level for little-
separable datasets and exhibit large local variability, thus
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not allowing to differentiate the aptitude of low-performing
users, which is usually the most interesting subject group
in learning studies. r2 is also bounded on both sides, but it
can only be computed per feature and it is not very intuitive
since the absolute values tend to be specific to the feature
space employed. Offline accuracy and r2 may further be con-
sidered rather ‘‘lenient’’ measures of subject learning, since
improvements may reflect slightly increased percentages of
samples lying on the ‘‘correct’’ side of the separation hyper-
plane, which however probably do not represent considerable
deviations of the feature distributions and thus, actual skill
learning. Fisher Score is a direct measure of distribution
separability, however, it is also not easily interpretable, it can
only be computed for individual features and it is unbounded
from above. Finally, KLD is the only other metric next to
accuracy that can assess multivariate datasets with a single
attribute, but, it is unbounded from above and particularly
sensitive to the number of available samples (because of the
need to estimate full, class-wise covariance matrices).

The stability of the MI distribution (equivalently, the mag-
nitude of potential non-stationarity effects) is computed by
means of the same KLD definition, where the probability
density function distance is taken between theMI distribution
estimates in two consecutive runs (rather than between theMI
and rest class distributions in the same chunk of data, as for
the KLD separability metric). Feature stability assessment is
based on the extraction of a new set of bandpower features on
higher spatial and spectral resolution so as to allow eventual
instabilities to emerge. Specifically, after spatially filtering
EEG channels with a local Laplacian derivation taking into
account all surrounding neighbours and removing their DC
component, we calculate the power spectral density (PSD)
in each of the 15 Laplacian channels between 8-30Hz with
2Hz resolution over the last second. The PSD is computed
every 62.5ms (i.e., 16 times per second) using the Welch
method (five 25%-overlapping internal Hanning windows
of 500ms) and log-transformed. The final feature vectors are
thus spectral density estimates on combinations of 15 chan-
nels and 12 frequency bands for a total of 180 features. The
features within this new manifold are ranked according to
discriminant power by means of Fisher Score (equivalent
results are obtained when using r2) for each individual run.
Finally, the feature stability index is derived by computing
the cardinality of the intersection between the best-10 feature
sets in two consecutive runs, Sk , Sk+1 (3).

FeatureStability =
|Sk ∩ Sk+1|

max{|Sk |, |Sk+1|}
=
|Sk ∩ Sk+1|

10
(3)

F. STATISTICAL TESTING
Average or median values across the specified groups are
selected as point estimates for the various metrics reported
in our analysis. Dispersion is shown either through standard
deviations (s.d.) or ranges between the 25th and 75th per-
centile (boxplots). Linear correlations are reported by means
of the Pearson correlation coefficient and its significance

at the 95% confidence interval through the corresponding
Student’s t distribution. Statistical differences between any
two populations (i.e., comparisons between adaptation condi-
tions or experimental runs) are assessed with non-parametric,
paired, two-sided Wilcoxon signed-rank tests (so as to avoid
issues with potential non-gaussianity of the underlying data)
at the 95% confidence interval. In marginal cases, the
p-values of two-sided, paired t-tests are also provided. No cor-
rection for multiple comparisons is attempted in the light
of the fact that almost all effects monitored are not statisti-
cally significant without correction. Unless otherwise stated,
in order to assess the existence of increasing or decreasing
trends in the inspected metrics between two time points t and
t ′, we opted for paired tests between the respective popu-
lations, instead of the common alternative involving testing
the hypothesis that the distribution of individual paired dif-
ferences differs from the zero-mean distribution. However,
the two processes are largely equivalent and the conclusions
reached here are not affected by this choice.

G. DATA USAGE
No participant has been removed from the analysis reported
in this manuscript. All results are based either on saved raw
EEG data or processed feature vectors and class-posterior
probabilities extracted during online operation and saved on
the fly. The rawEEGdata of subject S10were lost due to tech-
nical problems. Consequently, this subject is excluded from
any result relying on these data, namely, the ERD/ERS topo-
graphic maps and the feature stability outcomes. Four sub-
jects (S8, S10, S12, S14) executed an additional one or two
sessions with the same protocol. This additional data were not
taken into account for any analysis presented here.

III. RESULTS
A. COADAPTIVE TRAINING
Showcasing that the implemented coadaptive training
paradigm can successfully bring users in control of the BCI
verifying the state-of-the-art is a necessary foundation for
investigating post-adaptation effects. Hence, we first present
BCI performances and confirm that these are accompanied
and driven by the anticipated spatiospectral SMR patterns.

1) BCI PERFORMANCES
Table 1 illustrates the single-sample classification accu-
racy, the trial-wise accuracy (considering a single yes/no
MI-detection decision per trial–including resting trials–which
is extracted through majority voting of single-sample deci-
sions within the trial), the trial hit percentage (true positives
of trial-wise confusion matrix normalized by the total number
of MI trials in the session) and the total number of collected
stars. All metrics are computed session-wise pulling all data
together. Performances are sorted in descending order by
single-sample accuracy.

Given the adequate number of trials recorded (N = 200
per class) and single-samples (at least N = 11200 per class)
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TABLE 1. Online performance throughout the training session. Accuracy: single-sample classification accuracy. Trial Accuracy: trial-wise accuracy. Hits:
True Positive percentage of trial-wise accuracy. Stars per run: collected stars averaged over runs.

FIGURE 2. Evidence of sensorimotor rhythm modulation during
coadaptive training. (a) ERD/ERS maps of best performer S1
(right-handed) throughout the session. (b) Average (across subjects)
topographical distribution of ERD/ERS within the µ (10-13 Hz), low β

(16-24 Hz) and high β (24-32 Hz) bands.

in a session, the chance level approaches 58% at the 95% con-
fidence interval assuming binomial distribution of decisions
for both single-sample and trial accuracy [58]. Therefore, 13
(sample-wise) to 15 (trial-wise) out of 20 subjects can be
said to have acquired at least a minimum necessary level
of control over the interface thanks to coadaptation, despite
directly starting with online control in a single session. Nine
subjects (S1-S9) achieved performances well above chance
level. This outcome is consistent with the corresponding lit-
erature [27]–[30], [34], [36]–[38]. The percentage of hit trials
is supportive of the same conclusion. Furthermore, strong,
significant correlations between collected stars and (both)
single-sample and trial accuracy (r = 0.94, p < 10−9, N =
20, in both cases) suggest that the game-like motivational
paradigm adopted has been successful in precisely rewarding
performance while maintaining motivation.

Fig. 2 shows that the aforementioned BCI performances
come as a result of the anticipated cortical activation elicited

by the subjects’ MI, as previously established in a large
body of literature that has studied the neurophysiology and
the EEG correlates of imagined motor tasks [1], [16], [36].
Specifically, Fig. 2a showcases the exemplary event-related
desynchronization/synchronization (ERD/ERS) [1] maps of
the best performing subject (S1) over 5 central, bilateral and
medial locations of the sensorimotor cortex. As expected, MI
manifests mainly as an ERD (drop in bandpower with respect
to the reference interval before trial onset t = [−3,−1], red
color) approximately time-locked to the onset of MI (t = 0)
and largely sustained until the end of trials. Additionally,
ERDs are particularly dominant in the µ and β bands as
previously described. Finally, given that all subjects were
instructed to use their dominant hand and that only two
participants were left-handed (S8, S15), despite the presence
of ipsilateral SMR modulation (channel C4), the evident pre-
dominance of contralateral MI correlates (channels C1,C3)
is also consistent with the literature. Fig. 2b illustrates the
scalp distribution of ERD/ERS in the three bands of interest,
averaged across trial duration and the overall subject pop-
ulation, confirming that sound SMR cortical patterns (i.e.,
bilateral ERDs in µ and β with a predominantly contralateral
component with respect to right hand imagery) were observed
throughout the recruited population. Importantly, it is not
claimed that these average ERD/ERS topographic maps rep-
resent a generic brain pattern of the MI pair used by the
participants, but, rather, that the aforementioned population
trends extracted in the literature are verified. The fact that
all subjects exhibited physiologically relevant brain patterns,
in spite of the expected subject specificity, is detailed in sup-
plementary Fig. S1 depicting the topographical distributions
of ERD/ERS individually for each participant.

The benefits of such a coadaptive training regime can-
not be limited to its effectiveness in bringing the expected
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percentage of prospective users in control of the BCI, since
it is established that this milestone can be also achieved
by conventional training protocols, i.e., those imposing a
longer open-loop calibration procedure before closed-loop
control. Hence, the real added value of coadaptation is that
closed-loop BCI is enabled, essentially, immediately (i.e.
after only 10 open-loop trials), thus directly engaging the
learning abilities of both the subject and the machine, while
maintaining the interest of human participants in the training
procedure. In that respect, it is shown (by simulation) that a
conventional calibration approach using the first 3 runs for
BCI model training and applied to the remaining two runs
would result in average single-sample classification accuracy
of 61.4 ± 7.6%, as opposed to 61.2 ± 7.7% derived online
by the proposed coadaptive training scheme. Hence, skipping
the undesired open-loop calibration comes at no detriment
whatsoever to the BCI parameter estimation procedure. The
fact that coadaptation does not seem to improve, in terms
of accuracy, over open-loop training either, is elaborately
discussed in Section IV. Furthermore, as shown in Fig. 3a,
the BCI model coming out of the 10-trial calibration with
sham feedback significantly underperforms compared to the
online accuracy for both the adaptive (p < 10−4,N = 20)
and static (non-adaptive) runs (p < 10−3,N = 20, two-sided,
paired, Wilcoxon signed-rank tests). In other words, a very
short open-loop recalibration alone is not sufficient towards
a positive training outcome; the subsequent coadaptation pro-
cess is necessary for BCI control.

2) USER EXPERIENCE
Self-reported level of control over the BCI and user satis-
faction with the training paradigm further support its effec-
tiveness (Table 2). The vast majority of subjects (17/20)
assessed their control capacity with a grade above 5 in a
scale from 1 to 10 in at least one of the two stages, a result
consistent with the number of subjects performing better than
a random classifier, whereas the average user satisfaction
taking into account both stages was 7.4 in the same scale.
Notwithstanding the inevitable subjectivity of questionnaire-
based evaluation, strong and statistically significant corre-
lations between single-sample accuracy and control in the
respective stages (r = 0.78, p < 10−4,N = 20 during
recurrent adaptation and r = 0.58, p = 0.008,N = 20
for the fixed BCI stage), as well as with satisfaction (r =
0.52, p = 0.02,N = 20 during recurrent adaptation and
r = 0.49, p = 0.0029,N = 20 for the fixed BCI
stage) substantiate the relevance of these results. The level
of control is on average slightly higher with the fixed BCI
but the difference is not significant (p = 0.1082,N = 20
with two-sided, paired, Wilcoxon signed-rank test). The table
shows that user satisfaction is also practically the same in
both stages (p = 0.8496,N = 20 with two-sided, paired,
Wilcoxon signed-rank test). The distribution of individual
subject differences in self-assessed control and satisfaction
for the two stages are not significantly different from the
zero-mean normal distribution (p = 0.1084,N = 20 for

control and p = 0.7157,N = 20 for satisfaction with two-
sided t-tests). No differences between the two conditions are
found regarding user alertness and feeling of improvement in
performance (6.6 ± 2.2 vs 6.4 ± 2.0, p = 0.3819,N = 20
and 6.0± 2.1 vs 6.0± 1.8, p = 0.7927,N = 20 respectively,
with two-sided, paired, Wilcoxon signed-rank tests).

As anticipated, in the scale from 1 to 10, subjects reported
that the overall training paradigm exerted low physical (2.9±
2.0) but high mental effort (8.9±1.3). The gamified approach
and relatively relaxed game dynamics should probably be
credited with lower than in conventional training approaches
levels of frustration (4.5 ± 1.9) and time pressure perceived
(4.2± 2.6), although these figures remain considerably high.
Adverse effects like headaches were negligible (1.4 ± 0.9)
whereas eye (4.1 ± 2.5) and muscle (2.6 ± 2.0) fatigue
manifested in acceptable levels. The overall user comfort was
marked as above average (3.6± 2.3, where 1 denotes a com-
fortable and 10 a very uncomfortable training experience),
however, these results suggest that additional work is needed
towards improving user experience in MI BCI training. Out
of 20 participants, 15 declared they would be willing to
continue training with this protocol in additional sessions.

3) EVOLUTION OF BCI PERFORMANCE
Having established the soundness of the implemented coad-
aptive training paradigm, Fig. 3 illustrates the results address-
ing the main question posed, i.e., whether adaptation affects
the evolution of single-sample BCI accuracy, the main vari-
able of interest. Fig. 3b shows that the accuracy per run
achieved by subjects individually tends to fluctuate around
each subject’s average performance with no clear increasing
or decreasing trend for the majority of participants. Con-
sequently, the average population performance is flat and
does not resemble a learning curve. The biggest difference
between two consecutive runs is that between the first two
runs and it is still marginal (1.8%). There is no statistical
significance between accuracy distributions extracted for any
pair of (consecutive or not) runs, even without correcting for
multiple comparisons (p > 0.15,N = 20 in all cases with
two-sided, pairedWilcoxon signed-rank tests). Following this
outcome, no significant differences in single-sample accuracy
are denoted when pulling together runs executed with (runs
1-3) and without (runs 4-5) adaptation (Online, red boxplots,
Fig. 3a), despite a negligible increase in the non-adaptive
condition (median of 58.7% versus 60.9%, average 61.2 ±
7.6(s.d .)% versus 60.6 ± 7.6(s.d .)%, p = 0.455,N = 20
with two-sided, paired Wilcoxon signed-rank test). Overall,
these findings determine that switching off the adaptation had
no impact whatsoever (neither positive nor negative) on the
subjects’ BCI performance.

B. SUBJECT LEARNING
Shedding further light on potential learning outcomes,
we examine complementary aspects of separability between
the EEG patterns of resting and MI, namely, their ‘‘offline’’,
cross-validated single-sample classification accuracy, the
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TABLE 2. Control and user satisfaction self-assessment (scale 1-10).

FIGURE 3. Single-sample accuracy. (a) Boxplots with median, 25th and
75th percentiles of single-sample classification accuracy per condition
(Adaptive, Stable). Orange boxplots correspond to online accuracy derived
with the proposed coadaptive training (‘‘Online’’) and green boxplots
correspond to simulated accuracy derived by applying the BCI classifier
resulting from the initial 10-trial calibration to the adaptive and stable
runs (‘‘Default’’). Diamonds denote statistical significance (a = 0.99) of
the corresponding pair Online vs Default pair with two-sided, paired,
Wilcoxon signed-rank tests. (b) Individual subject and average (across
subjects) single-sample classification accuracy with standard deviation
per run. Adaptive runs (1-3) shown in red and stable runs (4-5) in blue.

Kullback-Leibler Divergence (KLD) between these two dis-
tributions, the r2 coefficient of determination between each
subject’s most discriminant SMR feature and the class labels
and, lastly, the Fisher Score discriminancy (again, for each
subject’s most discriminant feature). Unlike online BCI clas-
sification accuracy, thesemetrics can assess a subject’s ability
to successfully modulate SMRs through MI, unconfounded
by the machine learning aspects of the training paradigm
(i.e., the optimality of the classifier’s fit to the data), so that
any improvement can be attributed to subject learning alone.
Evidently, they remain good predictors of BCI performance,
as revealed by the correlation with online single-sample accu-
racy in supplementary Fig. S2 (Offline accuracy: r = 0.99,

p < 10−17, KLD: r = 0.80, p < 10−4, r2: r = 0.81,
p < 10−5, Fisher Score: r = 0.98, p < 10−12, N = 20
in all cases, separability values are extracted per run and then
averaged over the session). Importantly, the illustrations in
supplementary Fig. S2 also serve to qualitatively assess the
significance of a certain decrease/increase in some separa-
bility index by revealing its approximate expected impact on
classification accuracy.

Fig. 4 demonstrates that the evidence provided by these
indices of subject learning converges to the fact that the
subjects’ MI BCI aptitude is not significantly affected (p >
0.22,N = 20 with two-sided, paired Wilcoxon signed-rank
test for offline accuracy, r2 and Fisher Score) by the mode
of adaptation, despite a very slight increase denoted in all
the metrics tested for the later, non-adaptive condition. This
difference is marginally significant only in terms of KLD sep-
arability (p = 0.025,N = 20 with the non-parametric two-
sided, paired Wilcoxon signed-rank test, p = 0.068,N =
20 with paired, two-sided t-test). However, this significance
seems to be driven by only four ‘‘outlier responders’’ (S2, S4,
S9, S12). Removing any two of those yields non-significant
difference (p > 0.707,N = 18 in all cases with the non-
parametric test). The absence of an important population
trend comes as a result of the fact that the majority of subjects
exhibit similar performances throughout the session and irre-
spective of the existence or not of online classifier recalibra-
tion. Furthermore, a small number of subjects who achieved
better SMRs when adaptation is switched off counterbalance
another as much that exhibit a performance drop. Supplemen-
tary Fig. S3 verifies that there do not seem to be clear effects
of subject learning across time, by monitoring the run-wise
separability of each subject and the corresponding population
averages.
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FIGURE 4. Individual subject and boxplots with median, 25th and 75th

percentiles of separability between resting and motor imagery classes
expressed as (a) offline single-sample classification accuracy, (b) Fisher
Score of (assumed normal) mental class distributions for the most
discriminant feature of each subject, (c) Kullback-Leibler Divergence of
(assumed normal) mental class distributions in the 9-dimensional feature
space used for online control and (d) r2 coefficient of determination
between the most discriminant (across the session) feature of each
subject and the mental class labels. Boxplot whiskers extend to 1.5 times
the respective 25th-75th percentile range.

C. STABILITY
As already noted, adaptation has been also previously impli-
cated in potential stability loss of EEG MI correlates.
To investigate this issue, we examine two different aspects
of stability. First, the KLD between the MI class distributions
of every pair of consecutive runs in the 9-dimensional feature
space the subjects were asked to control. This metric evalu-
ates potential non-stationarity effects during online operation.
Second, by extracting offline another set of spatiospectral
Power Spectral Density (PSD) features on all monitored
channels with finer frequency resolution (2Hz), we derive the
overlapping index between the sets of 10-best (in terms of r2)
features in every pair of consecutive runs. This index assesses
the feature stability exhibited by the participants.

Fig. 5a shows that the vast majority of subjects suffered
no major non-stationarity events, with the single exception
of subject S14. The population’s run distributions are not
statistically different for any pair of runs (p > 0.19,N = 20
in all cases with non-parametric two-sided, paired Wilcoxon
signed-rank tests) and the average curve remains flat. Sim-
ilar observations are made with regard to feature stability
(Fig. 5b), despite in this case a slight, increasing tendency
over the session is more evident (marginally significant,
p ∼ 0.051,N = 20 for all run pairs with two-sided,
pairedWilcoxon signed-rank tests). Following the absence of
strong effects, neither KLD non-stationarity of the MI feature
distribution nor feature stability are significantly different
when averaging runs within the two adaptation conditions
(Fig. S4, p = 0.5,N = 20 for non-stationarity and p =
0.16,N = 20 for feature stability with two-sided, paired
Wilcoxon signed-rank tests).

IV. DISCUSSION
This work applied a single-session, coadaptive MI BCI train-
ing protocol to a group of 20 able-bodied individuals aiming
to assess potential post-adaptation effects once online BCI
classifier adaptation is switched off. The main finding is that
stopping machine adaptation has no significant consequences

FIGURE 5. SMR pattern stability. (a) Individual subject and average
(across subjects) Kullback-Leibler Divergence between the MI class
distributions of each pair of consecutive runs. (b) Individual subject and
average (across subjects) feature stability as the overlapping index
between the sets of 10-best spatiospectral features of each pair of
consecutive runs. Pairs where the second run is adaptive are shown in
red, otherwise in blue.

for any of the variables of interest examined, namely, BCI
performance, the ability of subjects to elicit the anticipated
EEG activity through MI, or the stability of SMR modula-
tion. The evidence provided here is significant for relaxing
certain concerns regarding the applicability of coadaptation
as a training approach raised by several reasons in real-world
scenarios where eventually or intermittently stopping decoder
adaptation is either desired or imposed by the circumstances.

Our results confirm the ensemble of previous coadaptive
MI BCI literature which has found that these protocols are
able to bring prospective users into control of the BCI within
one or a few sessions, avoiding the offline decoder cali-
bration training stage which entails tedious and demotivat-
ing data collection [16], [27]–[30], [32]–[38]. Specifically,
we have shown that the majority of participants exhibited
BCI performances exceeding those of a random classifier
(Table 1, Fig. 3), neurophysiologically sound EEG correlates
of MI (Fig. 2, Supplementary Fig. S1) and consistent self-
assessment of satisfaction and feeling of control (Table 2).
The conclusions regarding BCI aptitude in the studied popu-
lation do not change when considering the performances of
the last adaptive run or the last run overall (Fig. 3) instead
of the session-wise performance, or when testing for signif-
icant accuracy changes in the 10- and 5-lowest performers
with respect to the first run. The percentage of users that
did not reach adequate performance levels is also largely
in agreement with previous works [27]. Establishing that
the implemented protocol delivers the previously identified
benefits of coadaptation has been a necessary prerequisite for
studying the effects of stopping decoder adaptation, since any
findings on the main question we set out to address would be
meaningless out of this context.

What mainly characterizes our findings is a general lack
of significant impact of training time and adaptation mode
on the variables of interest. In other words, the population
trends in the evolution of BCI performance, mental class
separability and non-stationarity of brain patterns are not con-
siderably affected across the executed training runs, including
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the transition from an adaptive to a fixed decoder. On the
one hand, from a technological perspective, this should be
regarded as a positive finding: as already stated, seamless
BCI control and EEG SMR modulation, despite disabling
decoder adaptation, enables the employment of this training
paradigm in realistic BCI applications. On the other hand,
some of these findings may seem to be at odds with opin-
ions that have been popular in the field. We postulate that
the mechanism of short-term coadaptation emerging from
our results suggests that coadaptive training efficiently tunes
the BCI model to best decode any discriminant SMR EEG
activity that subjects are already able to elicit through MI
at the onset of training. While the conventional open-loop
calibration is also able to do that, coadaptive protocols are
superior for establishing a working BCI model much faster
and for engaging the user’s active involvement (thus, also
subject learning) up front. However, early onset of subject
learning and the additional element of machine adaptivity do
not imply, as proved by the results offered here, that pro-
found subject learning (i.e., improved SMR modulation) or
continuous BCI accuracy increase should be expected within
such short timescales. Below, we elaborate why, in spite
of dominant views, the relevant literature in fact does not
contradict our conclusions.

Specifically, first, there seems to be a widespread
belief that coadaptation, unlike what our results suggest
(Fig. 3), should yield significant, persistent BCI perfor-
mance increase. However, this expectation likely stems
from over-interpretation of previous findings in this line of
research. To begin with, most previous works only found sig-
nificant increasing trends when isolating and testing subsets
of low-performers of the studied BCI user samples [27], [29],
[30], [34], [36], [37]. In the largest study [27] (and only one
so far that can be said to be strongly powered) no population
effect could be established and only subjects with, on average,
chance performances significantly improved in the last two
runs. Perdikis et al. [38] also observed a consistently increas-
ing trend only for novice users within a MI BCI spelling
session. Similar to our findings, Faller et al. [37] claim no
within-session improvement in a cohort of 22 severely dis-
abled end-users, but point out that the majority of partici-
pants were in control of the BCI by the end of the session
thanks to recurrent adaptation and auto-calibration. Impor-
tantly, many works that did find performance boost thanks to
coadaptation in certain user categories within a single session,
obtain this outcome in a very limited number of individ-
uals [29], [30], [34]. Furthermore, some articles reporting
population effects [28] or, at least, strong individual sub-
ject effects [36] are spread over 2-3 training sessions [28],
[36], [37], the extended training time being a critical factor.
Hence, the existence of a general effect (i.e., anticipated for
every prospective user) of coadaptive training on performance
seems to still be largely debatable.

In addition to this, although we think the different methods
and models that have been used in this literature should not
constitute a critical factor regarding the observed general

effects of coadaptive training, certain methodological choices
may in fact bias the evaluation of performance evolution in
a coadaptive setting. Reporting ‘‘peak’’ classification accu-
racy [36], [37]may tend to overestimate a subject’s self-paced
BCI aptitude and, therefore, also the assessment of perfor-
mance evolution. The initial point of adaptation could also
be a crucial factor. Most works employ pre-trained subject-
unspecific classifiers [27]–[30], [34], [38], potentially pro-
viding a ‘‘worse’’ starting point in comparison to methods
that employ a short subject-specific calibration period [36],
[37] as also applied here. Starting from a lower level of
control arguably provides a larger margin for improvement
through classifier adaptation, what could manifest as larger
performance increases in this type of protocols. The use of
different learning rates of adaptation could also be influen-
tial to performance evolution; this aspect is very difficult to
compare across the literature.

In our study, a population-wise increasing accuracy trend
can be established within the first run, as implied by Fig. 3a.
However, apparently, this should only reflect gradual decoder
improvements as more data are received and allow to fine-
tune the initial decoder (which relied on only 10 trials)
to better represent the subject’s EEG correlates. In other
words, this trend only regards the machine learning com-
ponent and should not be misinterpreted as indication of
subject learning effects. Additionally, it is noted that five
subjects (S7-S9, S13, S15) started with below-chance single-
sample classification performance in the first run to end-
up with adequate performance in the last run, showcasing
fairly smooth learning curves in-between. In this subgroup,
the performance increase at the end of training is marginally
significant (p = 0.0625,N = 5 with a non-parametric two-
sided, paired Wilcoxon signed-rank test, p = 0.0022,N = 5
with paired, two-sided, t-test). Still, given the small sample
sizes and the fact that there are conventionally users who start
as and remain low-performers throughout a single-session
coadaptive training, we believe that these results should be
interpreted with caution. In general, despite clear evidence
of responders in all these works, a definite and general
effect of coadaptation on BCI performance, even within
low-performers or ‘‘BCI illiterate’’ subjects needs further
corroboration.

Similarly to the overall BCI performance, no strong effect
of training or adaptation mode could be found with respect to
various separability metrics accompanying potential subject
learning, notwithstanding a marginally significant difference
between KLD before and after adaptation is switched off
(Fig. 4). Of note, the latter seems to be driven by only a few
subjects. This result may also be regarded as controversial
given a prevalent viewpoint that coadaptation should assist
subject learning [34].

Taking a critical standpoint, it must be underlined that these
claims are mostly grounded on the aforementioned increase
of classification accuracy often observed in coadaptation.
However, this measure is a suboptimal index of subject learn-
ing [6], [40]. This is especially true in adaptive protocols
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where parallel, online machine learning strongly confounds
classification accuracy in a way that extracted performance
boost may solely be attributed to improving decoders, rather
than subject learning [38].Manyworks avoid reporting on the
evolution of metrics defined at the feature level, as a result
of which SMR modulation cannot be directly and reliably
assessed [32]–[34]. Furthermore, even when such measures
of subject learning are provided, the existence and magnitude
of subject learning during coadaptation may remain obscure.

In coadaptive studies involving a single session, evidence
of subject learning can be particularly limited. Recent arti-
cles have reported average ERD/ERS, r2 topographic and
Fisher Score maps [27], [37], but no subject learning was
observed or claimed on these grounds. In some cases, evi-
dence of improved SMR modulability is shown only for
certain subjects in the studied population [30]. Another
study [29] provided the most elaborate evidence of separa-
bility increase in single-session training, demonstrating r2

improvements for the vast majority of subjects between the
first and last runs. However, the magnitude and statistical
significance of these improvements (i.e. their relevance for
BCI performance) is not entirely clear. Another study [38]
showcased negative trends of KLD separability in spite of
increase in BCI and application performances, what was
shown to be solely due to decoders gradually better fitting
the data through adaptive BCI spelling.

In coadaptive training protocols spreading throughout
2-3 sessions, proof of subject learning has been better sub-
stantiated, though the extent of such effects remains rather
inconclusive. Vidaurre et al. [28] show increasing mutual
information that seems to correlate with increasing classifica-
tion accuracy across the population, but no formal statistical
assessment is attempted and these results are extracted across
a longer training paradigm of three sessions. Faller et al. [36]
presented spectra and bandpower maps where separability
increase is evident for two subjects, but, again, there is no
statistical assessment of subject learning throughout the pop-
ulation, with many subjects failing to exhibit a clear enhance-
ment of SMR patterns through training. ‘‘Ceiling effects’’
cannot fully account for the absence of an overall learning
effect, since many low performers remain unable to control
the BCI at the end of the training, and the single-sample
accuracy of even the best performers rarely approaches the
saturation point (100%). Clearer evidence of SMR learning
during coadaptation has been extracted in truly longitudinal
training approaches [35], what has been also the case in works
that applied intermittent, periodic (rather than simultaneous)
decoder adaptation [6], [8], [46] or other types of self-paced
BCIs [39], [45], [47].

In light of this discussion, we believe that the absence of
a universally strong subject learning outcome in this work,
given the short training time imposed, should be anticipated.
Considering the existence of several ‘‘responders’’ in the
recruited cohort, our findings are highly congruous with
those of other coadaptive studies. The tendency for higher
separability in the later, non-adaptive condition–even if not

statistically significant in most cases, the slight increase in
classification accuracy that is more pronounced between the
first and second run, as well as the aforementioned subgroup
of people that exhibited accuracy enhancement, show that,
like in relevant works, also in this study some sort of learning
effects did take place; however, we find it more sensible
that those reflect the gradual habituation of certain subjects
to the interface rather than the kind of consolidated BCI
skill learning that has been shown in longitudinal MI BCI
studies [6], [8], [35], [46].

Concerning the impact of adaptation on brain pattern
stability, our investigation revealed no significant non-
stationarity of the MI brain patterns except for a single
subject (Fig. 5a) and no major changes in feature stability
(Fig. 5b), although in the latter case a borderline significant
trend for greater stability was observed (increase between
first and last run pair, p = 0.0506,N = 20 with a non-
parametric two-sided, paired Wilcoxon signed-rank test and
p = 0.0581,N = 20 with paired, two-sided, t-test). These
results are in line with several other studies proposing that,
although non-stationarity may manifest at any time during
BCI operation, the phenomenon tends to be far more fre-
quent and intense at the transition from one session to the
next [16], [28], [38]. Consequently, non-stationarity and fea-
ture stability are not significantly different between the two
adaptation modes examined, either (supplementary Fig. S4).
Still, the (marginally significant) higher feature stability at
the end of the session may suggest that fixed decoders help
subjects to produce more consistent SMRs, as has been often
hypothesized [6], [40]. However, a more careful inspection
reveals that this stability boost happened incrementally within
both the adaptive (from the 2nd to the 3rd run) and the non-
adaptive (from the 4th to the 5th run) phase of this experiment,
while also the individual subject curves exhibit large variabil-
ity in this respect. Hence, no safe conclusions can be reached
on this point.

Summarizing the main conclusions of this discussion,
we posit that the basic merit of coadaptive training is its
ability to gradually (re)-calibrate on-the-fly suitable decoders
able to exploit the subjects’ spontaneous and pre-existing
(rather than concurrently learned) SMR modulation skills.
This enables users to control an MI BCI after only short
training, alleviating potential major non-stationarities in the
process. This result has been reproduced in all relevant studies
and has rendered offline (re-)calibration redundant. The slight
increase of population average BCI accuracy between the first
and second run (Fig. 3b) which does not seem to be accompa-
nied by a corresponding increase of separability in the same
interval (supplementary Fig. S3) supports this claim. In other
words, it seems that, in the case of the training paradigm
proposed here, one adaptive run has been enough to produce
a good decoder able to adequately interpret each subject’s MI
activity up to the extent to which the latter has been separable.
On the contrary, despite frequent implications, a significant
role of decoder adaptation on subject learning or on the
stability of SMR patterns cannot be established, neither in
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this work nor in the literature, especially in a short training
period, as imposed here. The absence of a profound interac-
tion between the simultaneous machine learning and SMR
modulation processes also explains the main finding of this
study: stopping decoder adaptation leaves BCI performance
unaffected.

The main limitation of our study is the short training time
(single-session protocol). As already noted, this interval is,
in all evidence, too short to allow actual subject learning
effects to unfold, therefore, also the extent of the influence
of adaptation on subject learning remains rather unclear.
Furthermore, since non-stationarity tends to kick in mostly
between BCI sessions, the full impact of adaptation on this
issue cannot be studied in depth here, either. A longitudinal
format should naturally follow as future work to more elabo-
rately tap on the findings extracted here. Still, given that the
main goal of implementing coadaptive training approaches is
to bring people in control of the BCI the soonest possible and
that single-session coadaptive paradigms have been shown to
be successful in this respect, experimentally verifying post-
adaptation effects after short-term coadaptation is a critical
issue that had not been so far investigated.

Another problem is that the fixed order of executing the
two adaptation modes confounds the experimental conditions
with the training time. In other words, it cannot be safely
delineated whether the observed trends of slightly increased
accuracy, separability, feature stability and self-reported level
of control (even though most are not statistically significant)
are due to switching off the adaptation or because of the addi-
tional training effort. Clearly, the nature of our investigation
(studying short-term post-adaptation effects) has dictated this
order. However, cross-over designs involving several transi-
tions between adaptive and fixed decoders could be employed
in the future to disentangle the effects of these two factors.

Furthermore, although recruitment of 20 subjects is beyond
the field’s usual standards, the power of the study and, espe-
cially, the fact that these users are able-bodied and thus
do not constitute the final end-users of BCI technology,
are additional limitations that should be addressed in future
work. Lastly, as far as the adaptation algorithm is concerned,
the choices of using subject-unspecific bands and the focus on
sustained ERD/ERS, though common in the literature, may
not be optimal to maximize each user’s individual perfor-
mance potential.

Concluding, we have shown that switching-off the adap-
tation of the decoder in a single-session, MI BCI training
regime has no significant impact on the subjects’ BCI perfor-
mance, the quality of SMR brain patterns and their stability.
This finding paves the way for applying a coadaptive training
methodology in real-world scenarios, where BCI adaptation
may need to intermittently or definitely cease.
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