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Abstract

We introduce a new joint test for the order of fractional integration of a multivariate
fractionally integrated vector autoregressive [FIVAR] time series based on applying
the Lagrange multiplier principle to a feasible generalised least squares estimate of the
FIVARmodel obtained under the null hypothesis. A key feature of the test we propose
is that it is constructed using a heteroskedasticity-robust estimate of the variance
matrix. As a result, the test has a standard χ2 limiting null distribution under
considerably weaker conditions on the innovations than are permitted in the extant
literature. Specifically, we allow the innovations driving the FIVAR model to follow
a vector martingale difference sequence allowing for both serial and cross-sectional
dependence in the conditional second-order moments. We also do not constrain the
order of fractional integration of each element of the series to lie in a particular region,
thereby allowing for both stationary and non-stationary dynamics, nor do we assume
any particular distribution for the innovations. A Monte Carlo study demonstrates
that our proposed tests avoid the large over-sizing problems seen with extant tests
when conditional heteroskedasticity is present in the data. We report an empirical
case study for a sample of major U.S. stocks investigating the order of fractional
integration in trading volume and different measures of volatility in returns, including
realized variance. Our results suggest that both return volatility and trading volume
are fractionally integrated, but with the former generally found to be more persistent
(having a higher fractional exponent) than the latter, when more reliable proxies for
volatility such as the range or realized variance are used.
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1 Introduction

Long memory models have been used to model time series data in a wide range of fields

of application. The class of (multivariate) fractionally integrated autoregressive moving

average [ARFIMA] models provides a parsimonious means of simultaneously modelling the

patterns of long and short range dependence typically seen in many macroeconomic and

financial data sets; see, for example, the surveys in Baillie (1996) and Robinson (2003).

In the context of the ARFIMA class of models the long memory parameter, or fractional

exponent (vector of exponents in the multivariate case), is the key parameter driving the

behaviour of the series. Where this is zero a weakly dependent (short memory) ARMA

series obtains. If it is less than one-half the series is weakly stationary, otherwise it is non-

stationary, the familiar autoregressive unit root case occurring where the exponent is unity.

Consequently, considerable interest has been paid to developing methods of inference on the

fractional exponent both as a parameter of interest in its own right and for preliminary data

analysis. A leading example is a test of the null hypothesis of weak dependence (against

fractional alternatives); here a non-rejection would allow for the use of standard methods

for conducting, among other things, causality, structural vector autoregression, or impulse

response analyses. More generally, such tests could usefully be employed to indicate what

order of differencing of the data is required for such methods to be suitably employed.

In the univariate setting a number of hypothesis tests on the fractional exponent have

been proposed; see, among others, Robinson (1994), Tanaka (1999), Breitung and Hassler

(2002), Nielsen (2004b), Demetrescu et al. (2008), Hassler et al. (2009, 2016) and Cavaliere

et al. (2017). In the context of a vector series one could perform such univariate fractional

integration tests separately on each element of the vector. However, the overall size of such

a testing procedure would be hard to control. Moreover, multivariate testing can improve

efficiency relative to univariate testing because it explicitly acknowledges and exploits the

existence of any endogenous cross-dependencies in the vector series which can reduce the

variability in the estimation errors and, hence, improve efficiency in estimation and testing.

In this paper we develop multivariate fractional integration tests designed to test joint

null hypotheses concerning the values of the long memory parameters of the elements of

a fractionally integrated vector autoregressive [FIVAR] model. Specifically, we propose

a parametric multivariate Lagrange multiplier [LM]-type test in the time-domain which

generalises the univariate regression-based LM-type test of Demetrescu et al. (2008) to the

multivariate case. The method we propose can also be used to construct confidence sets,
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at a given asymptotic coverage level, for the true values of the long memory coefficients.

Our testing procedure is implemented in a regression-based context, based on feasi-

ble generalised least squares [FGLS] estimation of the multivariate FIVAR model under

the null hypothesis, coupled with a heteroskedasticity-robust variance matrix estimate. A

key advantage of, and motivation for, this approach is that it allows us to significantly

weaken the technical conditions needed on the innovations, relative to existing multivariate

fractional tests including, among others, Robinson (1995), Lobato and Robinson (1998),

Lobato (1999), Lobato and Velasco (2000), Marinucci and Robinson (2001), Breitung and

Hassler (2002), Shimotsu (2007), and (Nielsen, 2004b, 2005, 2011). In particular, we al-

low the driving innovations in the data generating process [DGP] to follow a vector mar-

tingale difference sequence [MDS] which is permitted to exhibit time-varying conditional

heteroskedasticity. This therefore allows for both serial and cross-sectional dependence

in the conditional second-order moments, which is of particular empirical relevance when

modelling financial data and is not, to the best of our knowledge, allowed by any extant

multivariate fractional integration test.

Like Nielsen (2004a, 2005), we work within the context of a multivariate FIVAR model.

This model allows each series within the vector process to have different fractional ex-

ponents irrespective of the parameters of the short-run component of the model. This

property is not guaranteed when using the class of vector autoregressive fractionally in-

tegrated [VARFI] models where the orders of integration of the elements of the vector

series are not constant throughout the parameter space of the model; for further details

see Nielsen (2005, pp.381-382). This is important for the empirical case study we consider

in this paper with respect to trading volume and return volatility where we aim to explic-

itly investigate whether the data support the hypothesis that these series admit a common

fractional exponent or not. For a further recent empirical application using FIVAR models,

investigating the effects of monetary policy on the economy, where it is important to allow

the elements of the vector time series to have potentially different fractional exponents,

see Lovcha and Perez-Laborda (2018). An implication of the FIVAR model, however, is

that fractional cointegration is not possible between the elements of the vector time series.

In common with the tests in Nielsen (2005) we do not restrict the fractional exponents

to lie within a particular region, thereby allowing for both stationary and non-stationary

dynamics. We also do not impose any particular distributional law on the innovations.

Under the conditionally heteroskedastic setting outlined above, our proposed test re-

tains a standard χ2 limiting null distribution (irrespective of the null values of the long
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memory parameters being tested) and exhibits non-trivial power against a sequence of lo-

cal (Pitman drift) alternatives. Moreover, where the errors are independent and identically

distributed [i.i.d.] our test statistic is asymptotically equivalent to the multivariate LM

statistic discussed in Nielsen (2004a, 2005). As a consequence, the LM-type test we pro-

pose is asymptotically (locally) efficient when the errors are i.i.d. Gaussian. Monte Carlo

simulation experiments show that our proposed multivariate fractional integration test dis-

plays good finite sample size control and power performance in the presence of empirically

relevant data features, such as short-run dependence and time-varying GARCH-type condi-

tional variances for both Gaussian and non-Gaussian innovations. In contrast, extant tests

are shown to display quite poor finite sample size control in the presence of such features.

Multivariate testing is naturally intended to address joint hypotheses involving the

degree of persistence of a set of variables. This has important practical applications. As a

leading example, there has been considerable interest in both the theoretical and empirical

finance literatures on understanding the link between trading volume and return volatility.

A number of papers have analysed if the long-run dynamics of these variables share a

common order of fractional integration, with mixed evidence; see, for example, Bollerslev

and Jubinski (1999), Lobato and Velasco (2000), Luu and Martens (2003), Fleming and

Kirby (2011) and Rossi and de Magistris (2013).

In our empirical analysis we apply our new approach to conduct joint inference on the

order of fractional integration of trading volumes and different measures of return volatility

focusing on 30 major U.S. stocks from the Dow-Jones Industrial Average Index [DJI]. We

also investigate the existence of a common order of fractional integration between volume

and these measures of return volatility. Because our tests do not require a particular dis-

tribution and, more importantly, allow for time-varying conditional second-order moments,

our results are likely to be more robust than those reported in previous studies which are

based on estimation techniques which neglect these empirically relevant data features (e.g.

Bollerslev and Jubinski (1999), Lobato and Velasco (2000) and Fleming and Kirby (2011)).

Together with daily log-volume, we consider the log-transformations of three alternative

measures of return volatility with increasing degrees of efficiency, namely: absolute-valued

returns, the range-based estimator of Garman and Klass (1980), and a measure of realised

variance constructed from 5-minute returns. An important aspect of this analysis is to

investigate the influence that measurement errors have on the conclusions drawn from the

data. Our empirical findings suggest that a common fractional exponent cannot in general

be rejected when return volatility is proxied by absolute-valued returns, but can be rejected
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when it is proxied by more accurate estimates such as the range or realised variance. These

findings are consistent with the previous literature and help us to understand the disparity

between empirical results where different proxies for volatility are used. Our empirical re-

sults indicate that return volatility tends to exhibit a larger fractional integration exponent

than trading volume, with long-term behaviour possibly driven by non-stationary dynam-

ics. Heterogeneous degrees of fractional integration, such that return volatility tends to be

more persistent than trading volume, could originate in certain types of trading strategies

associated with imitation and herding in investors and market microstructure environmen-

tal conditions; see, e.g., LeBaron and Yamamoto (2008) and Yamamoto (2011).

The remainder of the paper is organised as follows. Section 2 introduces the DGP

and the main assumptions underlying our theoretical analysis. In section 3 we detail our

new LM-type multivariate fractional integration test and derive its asymptotic distribution

under both the null hypothesis and a sequence of local alternatives. Section 4 discusses

the results of our finite sample Monte Carlo study. Section 5 analyses the empirical rela-

tionship between trading volume and return volatility for stocks from the DJI. Section 6

concludes. An on-line supplementary appendix contains mathematical proofs of the large

sample results given in section 3 together with additional material relating to the Monte

Carlo analysis in section 4 and to the empirical application in section 5.

In what follows, ⇒ and
p→ denote weak convergence and convergence in probability,

respectively, as T → ∞. I(·) is an indicator function that equals one if the condition in

parenthesis is fulfilled, and equals zero otherwise. The operators ⊗ and ⊙ correspond to

the Kronecker and Hadamard products, respectively. The quantities In and 0n×m denote

an n-dimensional identity matrix and an n × m zero matrix, respectively. The notation

A = {aij} denotes that the (i, j)th element of the matrix A is given by aij.

2 A FIVAR Model with Heteroskedasticity

We consider the observable k-dimensional time series vector {yt}Tt=1, where yt ≡ (y1,t, ..., yk,t)
′,

is generated according to the DGP:

∆d+θ (L)yt = εtI(t ≥ 1) (1)

where ∆d+θ (L) is a k × k diagonal matrix polynomial in the conventional lag opera-

tor, L, with characteristic element given by (1− L)di+θi , i ∈ {1, ..., k}. The real-valued
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fractional exponent, di + θi, is commonly referred to as the long memory or fractional

integration parameter, such that d + θ ≡ (d1 + θ1, ..., dk + θk)
′. The k-dimensional vec-

tor εt ≡ (ε1,t, ..., εk,t)
′ is a weakly-dependent (short memory or I(0)) noise process with

bounded spectral density that is bounded away from zero at the origin. Our focus is on

developing tests of the null hypothesis that d is the true order of integration of {yt}; that
is, H0 : θ = 0, against the alternative hypothesis that at least one element of θ is non-zero.

Assumption 1 details the formal properties which we will assume to hold on {εt} in (1).

Assumption 1. {εt} in (1) is generated as Π (L) εt = et ≡ (e1,t, ..., ek,t)
′, with Π (L) :=

Ip−
∑p

j=1 ΠjL
j, where Πj are k×k parameter matrices such that Π (L) has all of its roots

lying outside the unit circle and {et} satisfies the following conditions:

(A1) E (et) = 0 and E (ete
′
t) =: Σ, with Σ positive definite.

(A2) suptE (||et||4+η) < ∞ for some η > 0.

(A3) {et,Ft}∞t=−∞ is a strictly stationary and ergodic vector MDS, with respect to the

natural filtration Ft, the σ-field generated by {es : s ≤ t} .
(A4)

∑∞

i=1

∑∞

j=1,i 6=j E|eh,tes,ter,t−ieu,t−j| < ∞, for any 1 ≤ h, s, r, u ≤ k.

Remark 1. Assumption 1 allows the short memory component of {yt} to be driven by a

stationary VAR(p) process. Accordingly, (1) is a FIVAR model in which each component

{yi,t} , i = 1, ..., k, follows a Type-II ARFIMA(p, di + θi, 0) process. The choice of Type-

II fractional integration in our setting has the desirable feature that the same definition

is valid for an arbitrarily large range of admissible values of the fractional parameters,

di + θi, i = 1, ..., k; in particular, these are not restricted to lie in the interval (−0.5, 0.5),

a necessary condition for stationarity and invertibility. ♦

Remark 2. (A1) and (A2) are standard moment conditions. Unlike the existing multi-

variate fractional integration tests discussed in Section 1, (A3) allows the innovations to

exhibit time-varying conditional variances. The absolute summability condition (A4) limits

the amount of temporal and cross-sectional dependence in the second-order moments, and

is equivalent to requiring absolutely summable 4th-order joint cumulants. Our conditions

are weaker than requiring {et,Ft} to be either conditionally homoskedastic or independent,

both of which imply (A4). Finally, (A1) and A(3) imply that E (ei,tej,t+h) = 0 whenever

h 6= 0, but allows E (ei,tej,t) 6= 0 when i 6= j because Σ is not restricted to be diagonal. ♦

Remark 3. Assumption 1 imposes that the unconditional variance matrix of et, Σ, is

constant. However, the pivotal χ2 limiting null distribution of our proposed FGLS statistic,
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LMFGLS
d , defined below in (8), in Theorem 2 under the conditions of Assumption 1 remains

valid in so-called non-stationary volatility cases where E (ete
′
t) = Σt = σtσ

′
t, provided

the unconditional volatility matrix, σt, satisfies the regularity conditions detailed in, e.g.,

Assumption 2(a) of Boswijk et al. (2016).1 In particular, these entail that σt := σ (t/T ), for

all t = 1, ..., T , where σ (·) is a non-stochastic element of the space of k×k matrices of càdlàg

functions on [0, 1] equipped with the Skorokhod metric, and is such thatΣ(u) := σ (u)σ(u)′

is positive definite for all u ∈ [0, 1]. For further discussion, including a number of examples

satisfying these conditions, see Boswijk et al. (2016, p.66). ♦

Remark 4. Under Assumption 1, the model in (1) can be re-written asΠ (L)∆d+θ (L)yt =

et. Given the stationarity restriction imposed under Assumption 1, for a sufficiently large

value of p the FIVAR representation could be viewed as an approximation to the more gen-

eral class of FIVARMA models, although we treat p as fixed (independent of the sample

size) in this paper. We conjecture that it should be possible to extend our analysis to allow

p to increase with the sample size but this would considerably complicate the theoretical

analysis and is beyond the scope of this paper. ♦

Remark 5. The FIVAR model in (1) under Assumption 1 rules out the possibility of frac-

tional cointegration between the elements of {yt}; for further discussion see, among others,

Sela and Hurvich (2009) and Nielsen (2005, pp.381-382). The maintained assumption of no

fractional cointegration is also made in all of the extant multivariate fractional integration

tests cited in the Introduction. However, noting from Remark 10 below that the feasible

GLS multivariate fractional integration test we propose in section 3.2 is asymptotically

equivalent to the multivariate LM fractional test in Nielsen (2005), then for the same rea-

sons as are discussed in Nielsen (2005, pp.378-379), the LM-type test, LMFGLS
d , developed

in section 3 is also implicitly a test of the null of no fractional cointegration (in the sense

defined in Nielsen (2005, p.378)) and will diverge at rate Op(T ) under fractional cointegra-

tion.2 It therefore seems advisable to consider the tests proposed in this paper alongside

tests for fractional cointegration. We adopt this approach in the empirical application in

section 5 by also considering the procedures developed in Nielsen and Shimotsu (2007). ♦
1Numerical experiments investigating the properties of the LMFGLS

d
test for data with a one-time break

in unconditional variance are reported in the supplementary appendix. These results suggest that even
quite large variance breaks have very little impact on the finite sample size of the FGLS-based tests.

2Numerical experiments investigating rejection rates of the LMFGLS

d
test and the tests of Nielsen (2005)

and Breitung and Hassler (2002) in a fractionally cointegrated model are reported in the supplementary
appendix. These show that, as expected, all three tests display empirical rejection frequencies in excess of
the nominal level which are larger, other things equal, the larger is T or the strength of cointegration. Of
the three tests, our FGLS test tends to reject with slightly lower frequency than the other two tests.
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3 A Multivariate LM-type Fractional Integration Test

3.1 Preliminaries

Given the observable time series vector {yt} generated as in (1) and an arbitrary real-valued

vector g ≡ (g1, ..., gk)
′, define the k-dimensional stochastic processes

εt,g ≡ (ε1,t,g1 , ..., εk,t,gk)
′ := (1− L)g+ yt =

t−1∑

j=0

Λj (g)yt−j, (2)

where (1− L)g+ :=
∑t−1

j=0 Λj (g)L
j, and

z∗
t−1,g ≡

(
z∗1,t−1,g1

, ..., z∗k,t−1,gk

)′
:=

t−1∑

j=1

j−1εt−j,g, t = 2, ..., T (3)

with {Λj (g)}t−1
j=0 denoting a sequence of k× k diagonal matrices with ith diagonal element

λ0 (gi) := 1, and λj (gi) :=
j − 1− gi

j
λj−1 (gi) , j ≥ 1, (4)

corresponding to the truncated series of polynomial coefficients in the binomial expansion

(1− L)gs :=
∑∞

j=0 λj (gs)L
j. These variables are straightforward generalisations of the cor-

responding univariate processes in Breitung and Hassler (2002) to the multivariate context,

with the characteristic harmonic weighting in (3) arising from the derivative of a (Gaussian)

score function. Remark 10 below gives further insight into the key role played by these

variables in the construction of our proposed LM-type test statistic.

Let Φ denote a k× k diagonal matrix with ith diagonal element φii, i = 1, ..., k. Under

Assumption 1, testing the null hypothesis that d is the true order of integration of {yt} ,
H0 : θ = 0, is equivalent to testing H0 : Φ = 0 in the multivariate linear regression model

εt,d = Φz∗
t−1,d +

p∑

j=1

Πjεt−j,d + vt, t = p∗ + 1, ..., T (5)

where p∗ := max(1, p). This equivalence holds because, under H0 : θ = 0, (5) and (1) are

bijective with φii = 0 for all i = 1, ..., k and vt = et in (5); see also Breitung and Hassler

(2002), Demetrescu et al. (2008), and Hassler et al. (2009).

It will prove convenient to re-write (5) in matrix notation. First, corresponding to the
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time series of observations for each element of yt, we have the equivalent representation,

Yi,di = X∗
i,−1,dβi + ui, 1 ≤ i ≤ k (6)

where Yi,di := (εi,p∗+1,di , ..., εi,T,di)
′ is a (T − p∗) × 1 vector, βi := (φii,πi1, ...,πip)

′ is a

k′-dimensional parameter vector, with k′ := pk + 1, and πij denotes the i -th row of Πj,

j = 1, ..., p, ui := (vi,p∗+1, ..., vi,T )
′ is a (T − p∗) × 1 vector of innovations, and X∗

i,−1,d is

the (T − p∗)×k′ matrix of observations of the (lagged) right-hand side variables x∗
i,t−1,d :=

(
z∗i,t−1,di

, ε′t−1,d, ..., ε
′
t−p,d

)′
. With the exception of the first regressor, all other right-hand

side variables that characterise the i -th equation (6) are the same, since these always

correspond to lagged values of εt,d. Then, given T ′ := k (T − p∗), we can write the system

of equations (6) compactly as Yd = X∗
−1,d β + u, with these terms defined implicitly as:




Y1,d1

Y2,d2
...

Yk,dk



T ′×1

=




X∗
1,−1,d 0(T−p∗)×k′ · · · 0(T−p∗)×k′

0(T−p∗)×k′ X∗
2,−1,d · · · 0(T−p∗)×k′

...
...

. . .
...

0(T−p∗)×k′ 0(T−p∗)×k′ · · · X∗
k,−1,d



T ′×kk′




β1

β2

...

βk



kk′×1

+




u1

u2

...

uk



T ′×1

.

3.2 A Heteroskedasticity-Robust LM Test

Under Assumption 1 and H0 : θ = 0, it follows that E (uu′) = Σ ⊗ IT−p∗ . Equation

(5) defines a seemingly unrelated regression equation [SURE] system. Although equation-

by-equation ordinary least squares [OLS] estimation will deliver consistent estimates of β,

these estimates will not be efficient unless Σ is diagonal (recalling that the regressors differ

across the equations in the system). We will therefore consider a FGLS estimator of β

based on a preliminary consistent estimate of Σ (obtained using OLS residuals estimated

on an equation-by-equation basis). The resulting FGLS estimator of β is defined as:

β̂ :=
(
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
X∗

−1,d

)−1 (
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
Yd

)
(7)

where Σ̃ = {σ̃ij} is estimated as σ̃ij := T−1ũ′
iũj, with ũs := Ys,ds − X∗

s,−1,dβ̃s, and β̃s

denotes the equation-by-equation OLS estimate of βs, s = 1, ..., k in (6).3

3Some numerical experiments comparing the finite sample properties of the equation-by-equation OLS
estimate and the FGLS estimate in (7) of β are given in the supplementary appendix. These clearly
demonstrate the efficiency gains that can be obtained by FGLS over OLS.

8



In Theorem 1 we now characterise the asymptotic distribution of the FGLS estimate,

β̂, under Assumption 1 and H0 : θ = 0.

Theorem 1. Let yt be generated according to (1) and let β̂ be the vector of FGLS estimates

defined in (7). Under Assumption 1 and H0 : θ = 0,
√
T
(
β̂ − β0

)
⇒ N (0,Ωβ) where

β0 ≡ (β′
01, ...,β

′
0k)

′ with β0s := (0,πs1, ...,πsp)
′ , s = 1, ..., k, and Ωβ := A−1

β BβA
−1
β , with

Aβ := plim
T→∞

E
(
1
T
X ′∗

−1,d [Σ
−1 ⊗ IT−p∗ ]X

∗
−1,d

)
, Bβ := plim

T→∞

E
(
1
T
w∗

−1,dw
′∗
−1,d

)
, and w∗

−1,d

:= X ′∗
−1,d [Σ

−1 ⊗ IT−p∗ ]u.

The dependence of the asymptotic variance of the FGLS estimator on nuisance pa-

rameters arising from any weak dependence and/or cross sectional correlation in εt im-

plies that asymptotically pivotal inference on the long memory parameters will need to

be based on a heteroskedasticity-robust statistic formed using a consistent estimate of

Ωβ. This can be achieved by using the familiar Eicker-Huber-White approach building

on the preliminary OLS estimate Σ̃ and the FGLS residuals û := Yd − X∗
−1,dβ̂. In par-

ticular, a heteroskedasticity-robust estimate of the variance matrix Ωβ is given by Ω̂β :=

A∗−1
T B∗

TA
∗−1
T , where A∗

T := X ′∗
−1,d

[
Σ̃−1/2 ⊗ IT−p∗

]
X∗

−1,d/T and B∗
T := ŵ∗

−1,dŵ
′∗
−1,d/T ,

with ŵ∗
−1,d := X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
û. It is shown in the supplementary appendix that Ω̂β

is a consistent estimate of Ωβ under the conditions given in Assumption 1.

Based on the heteroskedasticity-robust estimate, Ω̂β, it is then straightforward to con-

struct a test statistic for the joint hypothesis H0 : θ = 0 using the LM testing principle.

Specifically, we can form a heteroskedasticity-robust LM-type test which rejects H0 : θ = 0

for large values of the statistic

LMFGLS
d := T

[
Rβ̂

]′ [
R Ω̂β R′

]−1 [
Rβ̂

]
(8)

where R = {rij} is a k × kk′ indicator matrix taking a value equal to one when j =

(i− 1)k′+1, i = 1, ..., k, and zero otherwise. In Theorem 2 we next derive the large sample

behaviour of LMFGLS
d under both the null hypothesis, H0 : θ = 0, and under the sequence

of local alternatives Hc : θ = c/
√
T , where c ≡ (c1, ..., ck)

′ is a k-vector of finite constants

(Pitman drifts) at least one of which is non-zero.

Theorem 2. Let yt be generated according to (1) and let Assumption 1 hold. Let LMFGLS
d

be as defined in (8). Then: (i) under the null hypothesis, H0 : θ = 0, LMFGLS
d ⇒ χ2

(k), and

(ii) under the sequence of local alternatives, Hc : θ = c/
√
T , with at least one element of

c non-zero, LMFGLS
d ⇒ χ2

(k,ξ), where χ2
(k) and χ2

(k,ξ) denote a standard χ2 distribution with
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k degrees of freedom, and a non-central χ2 distribution with k degrees of freedom and non-

centrality parameter ξ := (L′−1c)′(L′−1c), respectively, with L denoting an upper triangular

matrix such that L′L = RΩβR
′.

Remark 6. The result in part (i) of Theorem 2 shows that the limiting null distribution of

LMFGLS
d is pivotal and that a test of H0 : θ = 0 can be run using standard critical values

from the χ2
(k) distribution, where k is the dimension of yt. Part (ii) of Theorem 2 establishes

that the asymptotic distribution of LMFGLS
d displays a non-trivial positive offset under the

local alternative, Hc : θ = c/
√
T , vis-à-vis the null, H0, but that its asymptotic local power

function will, in general, depend on nuisance parameters arising from any weak dependence

or cross sectional correlation present in εt. The same is also true of the extant multivariate

fractional integration tests discussed in section 1, except that these do not, in general, have

pivotal limiting null distributions when conditional heteroskedasticity is present in et, as a

consequence of the fact that they are not based around a heteroskedasticity-robust estimate

of the variance matrix Ωβ. ♦

Remark 7. Theorem 2 provides a theoretical basis for the construction of confidence sets.

This can be achieved by inverting the non-rejection region of the test statistic; see Hassler

et al. (2009). More specifically, let LMg denote the value of the LM statistic when testing

H0 : θ = 0 for an arbitrary g ∈ R
k, and let Ψ be an arbitrary compact set in R

k. Define

Dλ :=
{
g ∈ Ψ : Pr

[
χ2
(k) > LMg

]
≤ 1− λ

}
with λ ∈ (0, 1) , i.e., the subset of Ψ for which

H0 cannot be rejected at the λ significance level. From Theorem 2, it follows that if Ψ is

large enough so as to contain the true values of the long memory parameter vector, then

the probability of the true order of integration lying within Dλ is at least (1− λ). ♦

Remark 8. Our proposed test procedure can be generalised to account for non-zero means

following the approach in Robinson (1994). To that end, consider the extended form of the

DGP in (1) given by yt = µ+∆ (L)−d−θ
εtI(t ≥ 1), where µ ≡ (µ1, ..., µk)

′ is a fixed vector.

Under H0 : θ = 0, (1− L)di+ yit = (1− L)di+ µi + εtI(t ≥ 1), 1 ≤ i ≤ k. Following Robinson

(1994), we regress the differences (1− L)di+ yit :=
∑t−1

j=0 λj (di) yit−j on ht,di :=
∑t−1

j=0 λj (di) ,

t = 2, ..., T, with {λj (di)} as defined in (4) . Denote the resulting estimates as µ̃i, i = 1, ..., k,

and the corresponding residuals as ε̃it,di := (1− L)di+ yit− µ̃iht,di . One then simply redefines

the ith element of the vector εt,d from (2) to be ε̃it,di , i = 1, ..., k, and then proceeds

as before. Let β̃ denote the FGLS estimator obtained in this way. Then, following the

approach taken in Proposition 4 of Demetrescu et al. (2008), it can be shown that Theorem

1 holds with β̂ replaced by β̃ since ‖β̃ − β̂‖ = op(T
−1/2) under the restrictions considered

10



and the additional condition that d > 0. More generally, the results can be extended to

account for, among other things, deterministic polynomial time trends and deterministic

seasonal effects; see also Nielsen (2005) and Demetrescu et al. (2008). The large sample

results given in this section are not affected by accounting for such deterministics.4 ♦

Remark 9. In practical applications of the tests, the lag order p will typically be un-

known and so could be selected using a standard consistent information criterion such as

the Bayes information criterion [BIC]. Demetrescu et al. (2008) argue that these can lead

to substantial finite-sample biases in the context of the tests considered here. As an al-

ternative, Demetrescu et al. (2008) advocate the use of a deterministic lag selection rule,

such as the popular Schwert (1989) rule which sets p = ⌊K(T/100)1/4⌋, where ⌊·⌋ denotes

the integer part of its argument and K is a finite positive constant. Provided the true lag

order p is finite, as we assume in this paper, then the limiting distribution theory given

in this section will remain apposite for tests based on a lag length determined according

to such deterministic rules. We will implement Schwert’s rule in the empirical application

considered in section 5. ♦

Remark 10. It is useful to compare the large sample properties of our proposed test with

the Gaussian LM test of Nielsen (2005) in comparable settings. To this end, consider the

case where, as required by the conditions imposed in Theorem 3 of Nielsen (2005, p.381),

Assumption 1 is restricted such that p = 0 and et is an i.i.d. innovation sequence. It is

straightforward to show that under these additional restrictions

LMFGLS
d =

(
X ′∗

−1,d

[
Σ̃

−1 ⊗ IT−1

]
Yd

)′ (
X ′∗

−1,d

[
Σ̃

−1 ⊗ IT−1

]
X∗

−1,d

)−1 (
X ′∗

−1,d

[
Σ̃

−1 ⊗ IT−1

]
Yd

)

+ op(1)

where X∗
−1,d :=diag

{
X∗

1,−1,d, ...,X
∗
k,−1,d

}
in which X∗

i,−1,d = Z∗
−1,dai, where Z∗

−1,d :=

(z∗
1,d, ..., z

∗
T−1,d)

′ and ai denotes the i -th unit k-dimensional vector. Noting, moreover,

that z∗
t−1,d :=

∑t−1
j=1 j

−1et−j,d = − ln (1− L)+ et−j,d under the null hypothesis, the vector

X ′∗
−1,d

[
Σ̃−1 ⊗ IT−1

]
Yd corresponds to the Gaussian score vector ST := J ′

kvec
(
Σ̃−1S′

10

)

given in Equation (11) of Nielsen (2005), where S10 :=
∑T

t=2 e
∗
t−1e

′
t with e∗

t−1 :=
∑t−1

j=1 j
−1et−j,

and Jk := (vec (A11) , ..., vec (Akk)) withAii := aia
′
i. Because

1
T
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−1

]
X∗

−1,d
p→ Aβ, where Aβ = π2

6
Σ ⊗ Σ−1 under the additional restrictions outlined above, it can

4Numerical experiments investigating the finite sample rejection rates of our tests when a non-zero mean
is allowed for are given in section B.3 of the supplementary appendix. These confirm the (exact) invariance
of such tests and the lack of invariance of tests which do not allow for a non-zero mean. The loss of finite
sample power from allowing for a non-zero mean appears very modest.
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be seen that LMFGLS
d is asymptotically equivalent to the Gaussian LM test proposed in

Nielsen (2005). Consequently, LMFGLS
d is asymptotically locally efficient when et is a Gaus-

sian i.i.d. sequence; see Nielsen (2004a). Where p > 0 the two tests differ crucially on how

the short-run autocorrelation is handled. While LMFGLS
d uses pth-order augmentation in

(5), Nielsen’s (2005) test relies on pre-whitening using the residuals from a VAR(p) model

in a two-stage procedure. Augmentation and pre-whitening are asymptotically equivalent

strategies but will differ in finite samples, as will be explored in the next section. ♦

4 Monte Carlo Simulations

We consider the simulation DGP,

[
(1− L)1+θ1 0

0 (1− L)1+θ2

]
yt = εtI(t ≥ 1), t = 1, ..., T, (9)

where yt ≡ (y1t, y2t)
′, Π(L)εt = et with Π(L) = diag{1 − π1L, 1 − π2L}, and (π1, π2) ∈

{(0, 0), (0.4, 0.4)}; such that the former corresponds to white noise, while the latter yields

weakly stationary VAR(1) errors. As the particular values of the long memory coefficients

play no role in our context, we set d1 = d2 = 1. We report results for T ∈ {500, 1000}.
The innovations {et} are generated to exhibit time-varying conditional second-order

moments according to the design,

et =


 σ1t 0

0 σ2t


ηt; E (ηt) = 0, E

(
ηtη

′
t

)
=: Ωρ =


 1 ρ

ρ 1




where ηt := (η1t, η2t)
′ is an i.i.d. vector drawn from either a multivariate Gaussian distribu-

tion or a (heavy-tailed) multivariate Student-t distribution with 5 degrees of freedom. The

covariance matrix Ωρ depends on the contemporaneous correlation coefficient ρ, ρ ∈ {0,
0.2, 0.4, 0.6, 0.8}. The conditional variances {σ2

it} are driven by (normalised) stationary

GARCH(1,1) processes σ2
it = (1 − α − β) + αe2i,t−1 + βσ2

i,t−1, i = 1, 2 with α, β ≥ 0 and

α + β < 1, such that E (e2it) = 1. We consider (α, β) ∈ {(0, 0), (0.1, 0.5), (0.1, 0.7), (0.1,
0.8), (0.1, 0.85)}. The case α = β = 0 corresponds to conditional homoskedasticity.

To simplify our discussion, we fix θ2 = 0 in all of the reported simulations and vary θ1

among {−0.3,−0.25, ..., 0, ..., 0.25, 0.3}. Consequently, while the true order of integration

of {y2t} is always one, the true order of integration of {y1t} is 1+θ1. The case where θ1 = 0

allows us to investigate the empirical size properties of LMFGLS
d , while the cases where
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θ1 6= 0 allow us to investigate its finite sample power against an alternative where one of

the long memory parameters deviates from the null hypothesis. For each of the parameter

configurations (α, β, ρ, π1, π2, θ1) , the two sample lengths, and the two conditional distri-

butions, we compute LMFGLS
d and determine the empirical rejection frequencies [ERFs] at

the 5% nominal (asymptotic) level over 5, 000 replications.

We also benchmark the performance of LMFGLS
d against two alternative (but related)

tests. The first is the multivariate LM test of Nielsen (2004a, 2005) discussed in Remark

10 above, denoted LMMLE
d in what follows, and the second is the multivariate trace test

of Breitung and Hassler (2002), which we denote BHd. While LMFGLS
d corrects for sta-

tionary serial correlation in εt via lag augmentation in (5), both LMMLE
d and BHd use a

pre-whitening approach. Both LMMLE
d and BHd require that {et} is i.i.d., and so neither

allows for the presence of conditional heteroskedasticity in {et}. Under these conditions,

LMMLE
d has a limiting χ2

(k) null distribution, while BHd has a limiting χ2
(k2) null distribu-

tion. Nielsen’s LMMLE
d is designed to test the same null hypotheses as LMFGLS

d and so

is the most natural candidate to benchmark our test against. In contrast, the BHd test

is for the null hypothesis of a common order of integration between the elements of the

vector time series. Our simulation DGP is such that this condition holds under the null

hypothesis, but not under the alternative, so a comparison with this test is appropriate.

4.1 ERFs with no Augmentation/Pre-whitening

Table 1 reports the empirical size properties (θ1 = θ2 = 0), for LMFGLS
d , LMMLE

d and

BHd where no short-run dynamics are present (π1 = π2 = 0), and where, accordingly, no

lag augmentation or pre-whitening is needed. This allows us to first investigate the impact

of GARCH effects, contemporaneous correlations, and the conditional distribution of the

innovations on each test.

The results show that LMFGLS
d displays ERFs close to the nominal asymptotic 5% level

in almost all cases. Some mild over-sizing is seen for the smaller sample size considered

when the innovations are conditionally Student-t distributed with relatively high GARCH

persistence, α = 0.1 and β ≥ 0.80, and significant levels of endogeneity, ρ ≥ 0.4. These

distortions are largely ameliorated as the sample size increases. Where the innovations

are i.i.d. (α = β = 0), both LMMLE
d and BHd display good finite sample size control

regardless of the conditional distribution or the degree of endogeneity. However, where

the innovations exhibit conditional heteroskedasticity a very different pattern emerges for
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both LMMLE
d and BHd. These tests display a tendency to strong over-sizing, with these

distortions being larger (other things equal): the stronger the degree of persistent of the

GARCH process; the larger the degree of endogenous correlation |ρ|; and for innovations

drawn from a heavy-tailed distribution. Moreover, these size distortions are not ameliorated

as the sample size increases. To illustrate, for T = 500 and ρ = 0.8, the ERFs of LMMLE
d

and BHd with GARCH errors driven by (α, β) = (0.10, 0.85) and Student-t innovations

are 36% and 38.8%, respectively. In contrast, the LMFGLS
d test is only slightly oversized at

7.1%. For T = 1000, the corresponding ERFs of LMMLE
d and BHd increase significantly

to 48.3% and 52.8%, respectively, while that of LMFGLS
d reduces to 6.1%.

4.2 ERFs with Augmentation/Pre-whitening

We now analyse the finite sample size and power properties of LMFGLS
d , LMMLE

d and

BHd in the case where the errors, εt, can display first-order stationary VAR dynamics.

Accordingly, we set p = 1 in (5) in relation to the LMFGLS
d test, while analogously we

use a VAR(1) for pre-whitening in connection with the LMMLE
d and BHd tests. For εt we

consider: (i) π1 = π2 = 0, so that augmentation/pre-whitening is in fact unnecessary, and

(ii) π1 = π2 = 0.4, so that the correct order of augmentation/pre-whitening is employed.

Table 2 reports ERFs of the three tests in the Gaussian homoskedastic case (α = β =

0). Results for the Student-t case are not reported as these are almost identical to the

results reported in Table 2. Also, to keep the size of the subsequent tables to manageable

proportions we will only report results for two values of the correlation coefficient, namely

ρ = 0 and ρ = 0.8. Corresponding results for ρ ∈ {0.2, 0.4, 0.6} can be obtained on request.

Consider first the results for the case where θ1 = 0 so that the null hypothesis holds.

Here we see that the ERFs of the augmented LMFGLS
d test lie close to the nominal asymp-

totic level throughout, even where the lag augmentation is unnecessary. Pre-whitening also

appears to be effective for the LMMLE
d and BHd tests, with the exception of the case where

ρ = 0.8 where these tests are somewhat oversized for T = 1000.

Turning next to the empirical power results for θ1 6= 0, we see that LMFGLS
d displays

good finite sample power properties with power increasing, other things equal, both as

|θ1| increases and as T increases, as would be expected. Power is also larger, other things

equal, for ρ = 0.8 than for ρ = 0, illustrating the efficiency benefits gained from multivariate

modelling when the variables are cross-correlated. In terms of a comparison between the

three tests, overall the finite sample power properties of LMFGLS
d and LMMLE

d seen in
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Table 2 are very similar for alternatives where θ1 < 0, as might be expected given the

asymptotic equivalence of these tests when the innovations are i.i.d.; cf. Remark 10. For

alternatives where θ1 > 0 (i.e., when the process is more persistent than posited under the

null) LMFGLS
d can display somewhat higher power than LMMLE

d , particularly in the case

where the errors are first-order autocorrelated, π1 = π2 = 0.4; for example, for π1 = π2 =

0.4, ρ = 0, T = 500, and θ1 = 0.3 the power of LMFGLS
d and LMMLE

d are 57.4% and 32.3%,

respectively. These differences are likely attributable to the use of lag augmentation rather

than pre-whitening in the construction of LMFGLS
d . Both LMFGLS

d and LMMLE
d clearly

dominate BHd on power; in the previous example the power of BHd is only 26.3%. The

power functions of all of the tests are asymmetric in the sign of θ1, for a given DGP, such

that a false null hypothesis which leads to an over-differenced series (θ1 < 0) is seen to

be more easily rejected than an incorrect null which leads to an under-differenced series

(θ1 > 0) where the magnitude of the under/over difference is the same. To illustrate,

for π1 = π2 = 0.4, ρ = 0 and T = 500, the power of LMFGLS
d to detect θ1 = 0.25 and

θ1 = −0.25 is 49.6% and 72.0%, respectively. Breitung and Hassler (2002) report a similar

asymmetry in the power properties of their univariate tests.

Finally, we turn to the case where the innovations may display GARCH effects and

excess kurtosis. Table 3 (T = 500) and Table 4 (T = 1000) report the ERFs for LMFGLS
d ,

LMMLE
d and BHd for both Gaussian and Student-t innovations for π1 = π2 = 0.4,

ρ ∈ {0, 0.8} , (α, β) ∈ {(0.10, 0.80) , (0.10, 0.85)}. The results for θ1 = 0 show that the

empirical size properties of the tests in the presence of GARCH are similar to the cor-

responding results reported previously for the serially uncorrelated case with no augmen-

tation/prewhitening in Table 1. In particular, while the empirical size of LMFGLS
d is

reasonably close to the nominal asymptotic 5% level throughout (size departures are not

greater than 1.6% for T = 500 and not greater than 0.8% for T = 1000), incorrectly assum-

ing conditional homoskedasticity causes significant over-sizing in both LMMLE
d and BHd

which is not ameliorated by increasing the sample size. To illustrate, for ρ = 0.8, and

(α, β) = (0.10, 0.85) , LMMLE
d and BHd, respectively, display ERFs of 9.2% and 8.7% for

T = 500 and 10.4% and 9.9% for T = 1000 with Gaussian innovations, increasing to 28.2%

and 32.4% for T = 500 and 40.4% and 46.2% for T = 1000 with Student-t innovations.

For non-zero values of θ1, we observe qualitatively similar patterns in relation to the

power properties of LMFGLS
d as were reported in Table 2 in the homoskedastic case, albeit

persistent GARCH-type behaviour in the innovations can be seen to clearly lower the finite

sample power of LMFGLS
d relative to the i.i.d. case, and particularly so when the conditional
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distribution of the innovations is heavy-tailed. This is of course consistent with Theorem 2

where it was shown that the asymptotic local power function of the LMFGLS
d test depends

on any nuisance parameters arising from conditional heteroskedasticity in the innovations.

To illustrate, from Table 2 for π1 = π2 = 0.4, ρ = 0, T = 500, the power of LMFGLS
d

to detect θ1 = 0.3 (θ1 = −0.3) in the i.i.d. case is 57.4% (87.5%). However, from Table

B.1, under GARCH dependence with (α, β) = (0.10, 0.85) the respective probabilities are

52.7% (75.7%) in the Gaussian case, and 37.3% (49.3%) in the Student-t case. Similarly,

for T = 1000 in the previous example power is seen from Table 3 to be 98.7% (99.9%) in the

Gaussian case, and 71.6% (81.1%) in the Student-t case. A comparison between the finite

sample power of LMFGLS
d and that of LMMLE

d and BHd is somewhat uninformative here

because of the poor size control of the latter two tests under conditional heteroskedasticity.

5 Long-run Dynamics in Volume and Volatility

Understanding the linkages between return volatility, liquidity and trading activity has

been an area of considerable research interest in the finance literature. We apply the

multivariate testing approach developed in this paper to perform joint inference on the

order of fractional integration of trading volume and return volatility for a sample of major

stocks traded in the U.S. market. As part of this, we also investigate the hypothesis that

these variables exhibit the same order of fractional integration.

A number of previous studies have investigated this hypothesis in trading volume and re-

turn volatility within a multivariate ARFIMA framework. No strong consensus has emerged

across these studies which are based on a variety of methods of estimation and inference

and employ a number of different observable variables to proxy the latent return volatility

process. Bollerslev and Jubinski (1999) and Lobato and Velasco (2000) use semiparamet-

ric multivariate periodogram-based estimators in the frequency domain, proxying return

volatility by absolute-valued returns. They conclude that, for most of the stocks analysed,

the hypothesis that trading volume and return volatility share the same order of fractional

integration cannot be rejected. However, Fleming and Kirby (2011) argue that the slow

rate of convergence of periodogram-based estimators raises concerns about estimation ef-

ficiency. Consequently, they implement a parametric Gaussian quasi-maximum likelihood

(QML) approach as in Nielsen (2004a) to estimate a bivariate FIVAR model, allowing for

short-run dependencies, but under the assumption of conditional homoskedasticity. More-

over, Fleming and Kirby (2011) proxy return volatility using intra-day data with the aim
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of improving accuracy over the use of absolute-valued returns and reject the hypothesis of

a common long memory coefficient in most cases.

Our testing procedure is expected to be useful here for two key reasons. First, as shown

in Theorem 1, the FGLS-based test achieves the usual
√
T rate of convergence in paramet-

ric testing, and is therefore expected to yield improved finite-sample power performance

relative to periodogram-based estimators; see, for example, Tanaka (1999). This considera-

tion addresses concerns surrounding efficiency raised by Fleming and Kirby (2011). Second,

and arguably most importantly, our testing approach is valid in the presence of stationary

conditionally time-varying second-order moments and heavy-tailed innovations, unlike the

QML approach of Nielsen (2004a) used by Fleming and Kirby (2011).

5.1 Data

Our analysis focuses on 30 major U.S. stocks from the DJI. We analyse data sampled from

02/01/2003 to 31/12/2014. Unlike trading volume, return volatility cannot be directly ob-

served. The literature has suggested a number of different estimation methods in increasing

degree of accuracy, which we implement. The simplest approach uses absolute-valued re-

turns computed from close-to-close daily prices. Unfortunately, this measure is known to

be highly inefficient and subject to large estimation errors. More accurate estimates can

be constructed building on intra-day information. Following Garman and Klass (1980), we

also proxy daily return variability as u2
t/2 − (2 ln 2− 1) c2t , where ut and ct are the differ-

ences in the natural logarithms of the high and low, and of the closing and opening prices,

respectively. Such range-based estimators produce more efficient estimates than absolute-

valued returns computed from close-to-close prices (Parkinson (1980)) and, as discussed

in Andersen and Bollerslev (1998), can be as efficient a measure of return volatility as

realised volatility computed on the basis of three to four hour returns. The last estimator

we consider is a realised variance measure computed from aggregating 5-minute squared

continuously compounded returns over the trading session. Daily share volumes and high,

low, opening and closing prices are obtained from CRSP. High-frequency prices necessary to

compute realised variances are obtained from the NYSE Trade and Quote (TAQ) database.

As is customary in this literature, we implement log-transforms in both trading volume and

return volatility variables. Standard descriptive statistics for the aforementioned variables

as well as a statistical analysis highlighting statistically significant evidence for the presence

of time-varying second order moments in the data are presented in Tables C1 and C2 of
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the supplementary appendix.

5.2 Implementation Issues

In conducting our analysis of the long memory properties of log-trading volume and log-

return volatility, hereafter denoted as (d(vlm), d(σ))′, a number of key implementation

issues arise which we now detail.

First, we construct 99%, 95%, and 90% confidence sets for (d (vlm) , d (σ))′ by inverting

the non-rejection regions of the multivariate test in a discrete grid search over the support

Ψ = [−0.2, 1.2]×[−0.2, 1.2] (see Remark 7). More specifically, we evaluate LMFGLS
d for any

pair of values d1 and d2 in the grid sequence {−0.2,−0.1, ..., 1.1, 1.2}. Point estimates of the

long memory parameter vector can also be obtained by minimising the value of LMFGLS
d

over Ψ; notice this estimate does not depend on the confidence level used. This method of

point estimation has been used in the univariate context; see, for example, Gil-Alaña and

Robinson (1997). We denote the resulting point estimates of the long memory parameter

for log-trading volume and log-volatility as d̂min (vlm) and d̂min (σ), respectively.
5

Second, to account for deterministic effects in the level of these series, we apply the

OLS-based demeaning procedure described in Remark 8. While most papers do not con-

sider deterministic trends as a stylised feature of return volatility, trading volume is widely

accepted to exhibit trending paths conformable with increasing growth in the number of

traders and trading activity; see Fleming and Kirby (2011) and references therein. Conse-

quently, for the log-volatility measures, our main analysis is carried out by including a con-

stant to capture a non-zero drift, as in Hassler et al. (2016), while in the case of log-volume

we allow for a quadratic time trend polynomial of the form µt = µ0 + µ1 (t/T ) + µ2(t/T )
2,

as advocated by, among others, Luu and Martens (2003) and Fleming and Kirby (2011).

Parameters in these functions are estimated through univariate OLS (see Remark 8), with

the multivariate fractional integration test then computed on the resultant residuals.

Third, as discussed in Remark 9, we determine the lag length according to Schwert’s

rule, p = ⌊4(T/100)1/4⌋. Given the large sample size involved, Schwert’s rule ensures a

relatively long lag length, so that the short-run component of log-volume and log-realised

variance should be well captured in the auxiliary regression. Andersen et al. (2003) also

adopt a relatively long lag length in estimating their FIVAR model for the realised volatility

5Numerical experiments investigating the finite sample accuracy (bias and MSE) of these estimates in
the context of a bivariate model are reported in section B.2 of the supplementary appendix.
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of exchange rates in order to maintain a conservative approach.6

5.3 Main Results

For each stock and for each volatility measure, Table 5 reports the resulting point es-

timates d̂min (vlm) and d̂min (σ). Table 5 also gives the upper and lower bounds of the

corresponding 95% confidence ellipsoids formed as the vertical and horizontal projections

of the confidence set onto the log-trading volume and log-volatility axes, respectively.7 The

columns headed “Common d” in Table 5 report the range of values d for which the null

hypothesis H0 : d(vlm) = d(σ) = d cannot be rejected at the asymptotic 5% nominal signif-

icance level. If this region is non-empty, it shows the set of values along the 45-degree line

contained within the 95% confidence ellipsoid; that is, those values of a common order of

fractional integration for which the null cannot be rejected. Notice that, by construction,

the resulting interval contains the true value of a common long memory parameter with an

(asymptotic) probability not smaller than 95%. In addition, given d̂min (vlm) and d̂min (σ),

we can compute the residuals from the multivariate FGLS regression and use these to esti-

mate the contemporaneous correlation between the innovations to log-volume and a given

return volatility measure; this estimate is denoted by ρ̂e in Table 5. Large values of ρ̂e are

supportive of the usefulness of the multivariate approach we advocate. And, indeed, we

see from Table 5 that this estimated correlation is generally quite large and positive.

Let us first discuss the results from the analysis of the joint dynamics of log-volume

and log absolute returns. Consistent with previous literature, we observe that for most

stocks considered our multivariate test rejects both the null hypothesis that the order of

integration of the bivariate series is I(0) (such that both variables are weakly dependent) and

the null hypothesis that it is I(1) (such that both series admit an autoregressive unit root).

The only exceptions are INTC (Intel) and MSFT (Microsoft), for which the multivariate

6We also investigated the robustness of our main conclusions to the lag augmentation order used in
the FGLS regression and to the inclusion of a deterministic time trend in connection with the return
volatility measures. To that end, as in Fleming and Kirby (2011), we also looked at the case where a
linear time trend was allowed for in return volatility and a low-order VAR(p) was fitted. Table C.3 in the
supplementary appendix reports the main results from this analysis, focusing directly on log-volume and
log-realised variance, with p = 2 and both with and without a linear time trend in return volatility. Here
we also report the related results when p is chosen according to Schwert’s rule and return volatility includes
a deterministic time trend. While the results show some sensitivity to these variations in the estimated
model, the main qualitative picture that emerges is essentially very similar to that discussed below.

7These bounds (projections) define a rectangular approximation to the true confidence interval ellipsoids,
whose area cannot be smaller than that of the true ellipsoid. However, they have the advantage that they
provide a summary measure which can easily be tabulated. The full set of confidence ellipsoids for each
stock considered can be found in sections C.2.2-C.2.4 of the supplementary appendix.
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test cannot reject the null hypothesis that log-volume is I(0) at the 5% level. Taking a

simple average of the estimates d̂min (vlm) and d̂min (σ) across all stocks considered yields

0.41 and 0.39, respectively, essentially matching the “characteristic” value of 0.40 typically

found in literature; see, Andersen et al. (2003). While for many of the stocks considered

the point estimates of the vector of fractional exponents are below the non-stationary

threshold, we note that for most of the stocks the respective confidence sets cover both the

stationary and non-stationary regions of the parameter space, preventing us from drawing

clear conclusions on the stationarity of the underlying series. This is a common finding in

the realised-volatility modelling literature; see, e.g., Kellard and Sarantis (2010).

Reflecting the strong similarities seen between the estimates of the two long memory

parameters in the bivariate system, the hypothesis that trading volume and return volatility

are driven by a FIVAR model with the same fractional exponent can be rejected for only

five of the stocks considered at the 5% level, which constitutes about 20% of the stocks in

our sample. This is, however, considerably higher than the corresponding frequency found

by Bollerslev and Jubinski (1999) who only reject for 8% of the series they considered, but is

the same as Lobato and Velasco (2000) who also reject the null hypothesis of a common long

memory parameter for 20% of the series they consider.8 In their study of log-volume and

log absolute returns, Fleming and Kirby (2011) reject the common long memory parameter

null for 100% of the series they analyse. They attribute this to estimation bias in the

QML-based inference they use yielding systematically larger parameter estimates for the

long memory coefficient for trading volume, and conjecture that departures from normality

in log absolute returns may be causing a pervasive effect on QML estimation; see Fleming

and Kirby (2011, pp.1721-1722). Our Monte Carlo simulations in section 4 accord with this

conjecture suggesting that the combination of persistent time-varying volatility and non-

Gaussian features in the data can introduce sizeable biases into the QML-based methods

of Nielsen (2004a, 2005) used by Fleming and Kirby (2011).

We now move to a discussion of the results relating to the use of the log-range and log-

realised proxies for return volatility. The overall picture that emerges here is remarkably

similar in both cases. Multivariate estimation provides even stronger support for fractional

integration in this context, with the I(0) and I(1) null hypotheses both being rejected at

8In making such comparisons it is important to note, however, that these authors use different sample
data than we do involving different stocks and different time periods. In particular, the sample lengths
considered in Lobato and Velasco (2000) are more than double those we consider and our findings of the
same frequency of rejections of a common exponent as they do may reflect the greater efficiency of the
methods used here.
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the 5% level for all of the stocks considered. For log trading volume, some changes are

seen relative to the results discussed previously relating to the use of log absolute returns.9

Overall, the average value of d̂min (vlm) taken across all of the stocks considered for the

log-range and log-realised variance estimators is 0.45, reasonably similar to the 0.41 value

reported above in connection with the use of log absolute returns. In contrast, the estimates

of the order of integration of return volatility based on either the log-range or log-realised

variance measures show a marked increase compared to log absolute returns. In both

cases, the average value of d̂min (σ) is 0.58 and the overall evidence is strongly suggestive

that return volatility displays non-stationary dynamics over the period because the lower

bounds of the confidence ellipsoids are not smaller than the 0.5 threshold for many of the

stocks considered. Evidence of non-stationary fractionally integrated dynamics in realised

volatility over this period (which includes the financial crisis) is consistent with the results

reported by Hassler et al. (2016); see also Bandi and Perron (2006). Consequently, and

because the persistence of log-realised variance tends to be greater than that of log-volume,

the hypothesis that both variables share a common fractional exponent is rejected at the

5% level for a significantly larger proportion of the stocks considered, namely, 53.33% when

using log-range and 63.33% when using log-realised variance.

It is well understood in the financial econometrics literature that measurement errors

in absolute returns can cause bias in (univariate) long memory parameter estimation. Es-

sentially, log absolute returns are subject to noisy additive measurement errors with large

variability, which will make the underlying process appear less persistent than it really is,

leading to downward-biased estimates of the true order of fractional integration; see, among

others, Bollerslev and Wright (2000), Haldrup and Nielsen (2007), and Dalla (2015). This

provides a straightforward and plausible explanation for the systematic differences seen in

the long memory estimation results for the different return volatility measures reported in

Table 5.10 According to our results, the more efficient the estimate of return volatility used

the higher the percentage of the stocks for which the null hypothesis of a common order

of integration can be rejected. Essentially, downward biases in the estimation of the long

memory parameter on absolute returns biases the tests to non-rejection of a common order

9Because we conduct joint estimation, and the innovations to the short-term component of volume and
return volatility are strongly positively correlated, as reported in the column ρ̂e in Table 5, the estimates
of the long memory parameter of log-volume would be expected to be somewhat sensitive to changes in
the variable used as a proxy for return volatility.

10An alternative explanation, put forward by a referee, is that the VAR dynamics may be misspecified
and, as a result, some of the high-frequency measurement error is picked up in the estimate of the fractional
exponent. However, the relatively long lag length used should mitigate against this and, moreover, as
discussed in footnote 6 the results appear relatively robust to the lag order specified.
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of integration. Using more accurate return volatility measures reduces this estimation bias

and leads to increased evidence that return volatility is more persistent than volume.

5.4 Fractional Cointegration

As noted in Remark 5, our FGLS-based LM test, like the LM test of Nielsen (2005), assumes

the absence of fractional cointegration between the variables, and diverges if fractional coin-

tegration is present. Given we reject the null hypothesis of a common order of integration

for trading volume and return volatility for most of the stocks considered, we now also in-

vestigate the order of fractional integration of the series using the semiparametric approach

of Nielsen and Shimotsu (2007) (NS henceforth), detailed in the supplementary appendix.

NS’s procedure allows us (under certain regularity conditions) to consistently estimate the

cointegration rank of the series and, using the approach of Robinson and Yajima (2002),

to test the null hypothesis that the elements of long memory vector, d, are equal (although

it is important to note that this is not a multivariate test as it is based on the univariate

estimates of the fractional exponents). Denoting the statistic for the latter as T0, NS show

that T0
p→ 0 when the cointegration rank, r, is greater than zero (i.e., where the variables

are cointegrated), whereas T0 ⇒ χ2
(1) when r = 0 (where the variables are not cointegrated)

and the null of an equal order of integration holds on d. NS argue that large values of

the test statistic provide evidence against the hypothesis of a common order of integration,

regardless of whether the underlying series are fractionally cointegrated or not.

Given that the highest frequency of rejections of a common fractional exponent occurred

when using log-realised variances, we only report that case here. Consistent with the

analysis in Table 5, we account for a deterministic drift in log-volatility and a polynomial

time trend in log-volume by prior detrending of the data, using the two-stage exact local

Whittle estimator in Shimotsu (2010). Following the empirical analysis in NS, we estimated

d by setting mT = ⌊T 0.6⌋ and compute T0 with sT = log T. Following NS we also use

m1T = ⌊T 0.55⌋ and vT = m−0.3
1T in the estimation of the cointegration rank. Table 6

reports the point estimates and 95% asymptotic confidence level estimates of d, the T0 test

statistic and related p-values, the values of the function L (u) used in the model selection

procedure, and the estimates of the cointegration rank, r̂T . The column r̂∗T reports the

conditional estimates of r for the cases in which the hypothesis of a common order of

integration cannot be rejected at the 5% nominal size level.

Three key features arise from this analysis. First, the results based on the NS test
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provide the same qualitative evidence as the tests based on FGLS estimation. There exists

strong evidence of fractional integration in both series which is again suggestive that realised

volatility is more persistent than trading volume. Accordingly, the hypothesis of an equal

order of integration is rejected at any of the usual significance levels for the majority of

the stocks in our sample. Second, in most cases, the FGLS and the NS tests agree on

whether to reject or not the null hypothesis of a common order of fractional integration.

In particular, all of the cases in which the FGLS test rejects at the 5% level correspond

to stocks for which the NS test also rejects at this level. There are, however, 5 stocks for

which NS rejects the null but the FGLS test does not, so the average rejection rate of the

NS test taken across all of the stocks considered is slightly higher at 76.67%. Crucially, the

p-values of the T0 test in three of these 5 cases are only slightly below the 5% threshold,

suggesting that the differences with the FGLS test are caused by only marginal differences

in significance. Finally, the estimates of the cointegration rank suggest that volume and

realised volatilty are not in general cointegrated, supporting the suitability of FIVAR-type

modelling. In particular, fractional cointegration, indicated by r̂T = 1 or r̂∗T = 1, is found

for only 13.33% of the stocks, but crucially these are all stocks for which neither the NS T0

test nor our FGLS-based tests reject the null hypothesis of a common order of integration;

that is, none of the rejections of a common order of integration seen with the FGLS-based

test in Table 5 are associated with a non-zero estimate of the cointegration rank.

It is worth pointing out in conclusion that the assumptions on which the NS approach

are based include the requirement of conditional homoskedasticity. To check how sensitive

the NS test is to violations of this assumption, we conducted a small Monte Carlo exper-

iment using the sample simulation DGP as in section 4. For samples of size T = 500 and

T = 1000, ρ = 0.8 and persistent GARCH processes with (α, β) = (0.1, 0.85), the ERFs

of the T0 test under Gaussian innovations at the 5% nominal asymptotic level were 3.10%

and 4.30%, respectively, suggesting approximately correct size. However, under Student-t

innovations with 5 degrees of freedom, the respective ERFs were 15.5% and 24.5%. Al-

though clearly oversized, these distortions are considerably smaller than those that were

seen in the corresponding results in section 4 for the QML-based test of Nielsen (2005).

These simulation results might help explain the differences seen between the results for the

FGLS and T0 tests in our empirical study whereby slightly more rejections of the null of a

common order of integration are obtained when using the T0 test, given that this test has

a tendency to be somewhat oversized when the data display conditional heteroskedastcity

and heavy-tailed behaviour, as is the case with the data in our empirical study.
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6 Conclusions

We have proposed a new test for fractional integration in the context of a quite general

FIVAR model which allows for conditional heteroskedasticity in the innovations, does not

require the order of integration of the elements of the vector time series to coincide or to lie

in a certain region (thereby allowing for both stationary and non-stationary dynamics) and

does not assume a particular distribution for the innovations. To the best of our knowl-

edge, none of the methods in the extant literature has achieved this degree of flexibility.

Our approach is based on an LM-type test statistic using a heteroskedasticity-robust es-

timate of the variance matrix, and can be readily implemented using FGLS estimation in

a regression-based context. We have demonstrated that our proposed test statistic has a

standard χ2 asymptotic null distribution, that the test exhibits non-trivial power to reject

against a sequence of local alternatives, and that in the case of i.i.d. Gaussian errors the

test is asymptotically locally efficient. Monte Carlo analysis was used to show that while

our test is approximately correctly sized in finite samples of data exhibiting conditional

heteroskedasticity and heavy-tailed features, extant tests in the literature which neglect

conditional heteroskedasticity can be severely over-sized even for very large samples.

In an empirical case study we have used our proposed testing procedure to jointly infer

the order of fractional integration of trading volume and return volatility in a sample of

major stocks traded in the U.S. market. Return volatility was proxied by three different

measures with increasing degrees of accuracy: absolute returns, a range-based estimator,

and a realised variance computed over 5-minute returns. The evidence from the analysis

based on the realised variance and range-based estimates delivered similar conclusions,

namely, that for many stocks in the sample return volatility is more persistent than trading

volume. On the other hand, the analysis based on log absolute returns showed that volume

and return volatility share the same order of fractional integration. Because long memory

estimation in absolute returns is known to be downward-biased, measurement errors in the

data would seem to be a plausible explanation for the evidence from log absolute returns.

For applied work it is of interest that our conclusions based on the realised variance

and range-based estimators of return volatility were very similar. While the former is a

more efficient estimate of conditional variability, the latter seems to provide a reasonable

enough level of accuracy such that the conclusions drawn from the data are not markedly

different. This might be a useful observation in practice because for many applications the

high-frequency intra-day data needed to construct realised variance and related measures is
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often not available, for example when considering small or illiquid markets. In the absence

of intra-day data, but when information on high and low prices are available, inference

based on range-based volatility estimates may still lead to reliable conclusions.

We finish with a suggestion for further research. Here we have proposed parametric

FGLS-based multivariate fractional integration tests which, unlike other extant parametric

tests, allow for conditionally heteroskedastic innovations. There are relatively few semi-

parametric multivariate fractional integration tests in the literature, most notably Lobato

and Robinson (1998), Lobato (1999), Marinucci and Robinson (2001) and Shimotsu (2007),

all of which assume conditionally homoskedastic innovations. Investigating whether or not

these tests remain asymptotically valid under conditional heteroskedasticity and, if so, com-

paring their finite sample performance with the tests developed in this paper is beyond the

scope of the present paper but would constitute an interesting topic for further research.
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Table 1. Empirical rejection frequencies (empirical sizes) for θ1 = θ2 = 0 at the 5% nominal asymptotic significance level of the LMFGLS
d ,

LMMLE
d and BHd tests, for different values for the contemporaneous correlation parameter ρ, the GARCH parameters (α, β) , and sample

lengths T . The innovations are drawn from either a multivariate normal distribution or a multivariate Student-t distribution with 5 degrees of

freedom.

Gaussian Innovations Student-t Innovations

LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd

GARCH ρ T = 500 T = 1000 T = 500 T = 1000
α = 0, β = 0 0.0 0.051 0.045 0.050 0.048 0.048 0.048 0.053 0.049 0.048 0.051 0.047 0.048

0.2 0.050 0.047 0.050 0.047 0.048 0.048 0.056 0.050 0.048 0.051 0.046 0.048
0.4 0.053 0.050 0.050 0.044 0.045 0.048 0.056 0.050 0.048 0.050 0.043 0.048
0.6 0.055 0.051 0.050 0.047 0.045 0.048 0.055 0.052 0.048 0.046 0.044 0.048
0.8 0.055 0.050 0.050 0.048 0.049 0.048 0.056 0.052 0.048 0.047 0.043 0.048

α = 0.1, β = 0.5 0.0 0.054 0.071 0.065 0.049 0.070 0.067 0.060 0.180 0.163 0.056 0.187 0.183
0.2 0.053 0.072 0.065 0.048 0.068 0.066 0.060 0.179 0.165 0.056 0.189 0.179
0.4 0.054 0.072 0.064 0.049 0.068 0.066 0.061 0.181 0.169 0.055 0.192 0.187
0.6 0.055 0.074 0.065 0.049 0.071 0.067 0.059 0.189 0.175 0.057 0.204 0.197
0.8 0.056 0.075 0.066 0.052 0.075 0.067 0.064 0.199 0.186 0.059 0.213 0.207

α = 0.1, β = 0.7 0.0 0.053 0.080 0.070 0.048 0.080 0.071 0.060 0.219 0.196 0.056 0.238 0.228
0.2 0.054 0.080 0.071 0.047 0.077 0.072 0.060 0.218 0.199 0.055 0.243 0.233
0.4 0.054 0.080 0.070 0.048 0.079 0.073 0.058 0.221 0.205 0.054 0.247 0.240
0.6 0.055 0.080 0.073 0.050 0.081 0.075 0.059 0.233 0.221 0.056 0.256 0.256
0.8 0.056 0.080 0.074 0.054 0.084 0.077 0.063 0.242 0.246 0.060 0.269 0.276

α = 0.1, β = 0.8 0.0 0.052 0.088 0.076 0.048 0.092 0.081 0.062 0.269 0.249 0.055 0.332 0.316
0.2 0.052 0.088 0.079 0.047 0.088 0.079 0.059 0.275 0.255 0.053 0.334 0.322
0.4 0.052 0.089 0.079 0.045 0.089 0.080 0.061 0.281 0.270 0.058 0.332 0.336
0.6 0.056 0.091 0.082 0.049 0.095 0.085 0.065 0.296 0.294 0.057 0.347 0.362
0.8 0.055 0.093 0.086 0.051 0.097 0.089 0.069 0.306 0.322 0.059 0.366 0.395

α = 0.1, β = 0.85 0 0.053 0.103 0.089 0.050 0.113 0.093 0.064 0.337 0.319 0.056 0.475 0.450
0.2 0.050 0.104 0.089 0.049 0.114 0.094 0.063 0.346 0.327 0.057 0.473 0.447
0.4 0.054 0.103 0.090 0.048 0.117 0.096 0.066 0.350 0.342 0.056 0.468 0.467
0.6 0.056 0.107 0.096 0.049 0.124 0.104 0.068 0.353 0.362 0.059 0.473 0.489
0.8 0.058 0.114 0.105 0.052 0.121 0.111 0.071 0.360 0.388 0.062 0.483 0.528
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Table 2. Empirical rejection frequencies at the 5% nominal asymptotic level for θ2 = 0 and the values θ1 = 0 (empirical size) and |θ1| > 0

(empirical power) of the LMFGLS
d , LMMLE

d and BHd tests for the correlation coefficient ρ, and sample length T . The short-run errors in

the DGP obey VAR(1) dynamics with on-diagonal coefficients π1 and π2 and off-diagonal coefficients π12= π21= 0. The LMFGLS
d statistic

is computed from an augmented auxiliary regression with one lag of the dependent variable. LMMLE
d and BHd are computed from VAR(1)

residuals. The innovations are drawn from a multivariate Gaussian distribution.

π1 = π2 = 0 π1 = π2 = 0.4
LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd

θ1 ρ T = 500 T = 1000 T = 500 T = 1000
-0.30 0.0 1.000 0.999 0.994 1.000 1.000 1.000 0.875 0.876 0.777 0.997 0.998 0.990
-0.25 0.0 0.987 0.982 0.946 1.000 1.000 0.999 0.720 0.718 0.591 0.967 0.972 0.932
-0.20 0.0 0.899 0.879 0.781 0.999 0.999 0.990 0.496 0.486 0.374 0.835 0.855 0.748
-0.15 0.0 0.644 0.626 0.493 0.941 0.934 0.868 0.289 0.288 0.214 0.558 0.590 0.465
-0.10 0.0 0.338 0.321 0.239 0.609 0.601 0.478 0.154 0.147 0.123 0.271 0.284 0.213
-0.05 0.0 0.118 0.112 0.091 0.183 0.179 0.134 0.074 0.070 0.067 0.099 0.098 0.085
0 0.0 0.057 0.051 0.054 0.052 0.050 0.049 0.053 0.045 0.053 0.050 0.048 0.046

0.05 0.0 0.121 0.112 0.091 0.179 0.174 0.142 0.080 0.079 0.069 0.100 0.097 0.083
0.10 0.0 0.321 0.311 0.243 0.584 0.569 0.472 0.145 0.143 0.119 0.267 0.270 0.205
0.15 0.0 0.600 0.581 0.498 0.888 0.876 0.814 0.272 0.254 0.198 0.479 0.454 0.360
0.20 0.0 0.812 0.788 0.701 0.983 0.978 0.957 0.392 0.321 0.265 0.674 0.597 0.507
0.25 0.0 0.926 0.895 0.831 0.998 0.996 0.988 0.496 0.358 0.296 0.793 0.652 0.576
0.30 0.0 0.969 0.942 0.902 1.000 0.999 0.997 0.574 0.323 0.263 0.859 0.613 0.546

-0.30 0.8 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.999 0.997 1.000 1.000 1.000
-0.25 0.8 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.990 0.969 1.000 1.000 1.000
-0.20 0.8 1.000 1.000 0.999 1.000 1.000 1.000 0.908 0.925 0.848 1.000 1.000 1.000
-0.15 0.8 0.983 0.981 0.945 1.000 1.000 0.999 0.678 0.705 0.572 1.000 1.000 0.999
-0.10 0.8 0.757 0.738 0.621 0.920 0.954 0.909 0.350 0.360 0.271 0.920 0.954 0.909
-0.05 0.8 0.243 0.234 0.179 0.369 0.463 0.369 0.124 0.124 0.098 0.369 0.463 0.369
0 0.8 0.058 0.050 0.054 0.053 0.088 0.080 0.057 0.056 0.053 0.053 0.088 0.080

0.05 0.8 0.245 0.233 0.180 0.372 0.448 0.370 0.117 0.125 0.100 0.372 0.448 0.370
0.10 0.8 0.712 0.700 0.596 0.906 0.929 0.884 0.324 0.339 0.253 0.906 0.929 0.884
0.15 0.8 0.951 0.943 0.904 0.996 0.997 0.995 0.567 0.559 0.464 0.996 0.997 0.995
0.20 0.8 0.994 0.993 0.982 1.000 1.000 1.000 0.743 0.692 0.594 1.000 1.000 1.000
0.25 0.8 0.999 0.998 0.997 1.000 1.000 1.000 0.845 0.774 0.691 1.000 1.000 1.000
0.30 0.8 1.000 1.000 0.999 1.000 1.000 1.000 0.898 0.756 0.679 1.000 1.000 1.000
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Table 3. Empirical rejection frequencies at the 5% nominal asymptotic level for θ2 = 0 and θ1 = 0 (empirical size) and |θ1| > 0 (empirical power)

of the LMFGLS
d , LMMLE

d and BHd tests for the correlation coefficient ρ. The short-run errors follow a VAR(1) model with π1 = π2 = 0.4 and

GARCH innovations with parameters α and β. The LMFGLS
d test statistic is computed from an augmented auxiliary regression with one lag of

the dependent variable. LMMLE
d and BHd are computed from VAR(1) residuals. The sample length is T = 500.

GARCH: α = 0.1, β = 0.8 GARCH: α = 0.1, β = 0.85
T = 500 Gaussian Student-t Gaussian Student-t

θ1 ρ LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd

-0.30 0.0 0.795 0.859 0.766 0.568 0.840 0.776 0.757 0.855 0.768 0.493 0.836 0.784
-0.25 0.0 0.625 0.718 0.599 0.419 0.724 0.644 0.591 0.716 0.612 0.365 0.730 0.673
-0.20 0.0 0.419 0.512 0.398 0.295 0.579 0.508 0.398 0.521 0.417 0.259 0.615 0.557
-0.15 0.0 0.250 0.328 0.251 0.192 0.434 0.384 0.240 0.341 0.268 0.165 0.490 0.450
-0.10 0.0 0.142 0.182 0.152 0.124 0.310 0.282 0.136 0.199 0.162 0.113 0.385 0.362
-0.05 0.0 0.076 0.102 0.084 0.073 0.218 0.207 0.074 0.121 0.098 0.074 0.294 0.291
0 0.0 0.051 0.072 0.066 0.056 0.186 0.180 0.048 0.083 0.076 0.057 0.252 0.257

0.05 0.0 0.074 0.102 0.085 0.074 0.202 0.192 0.074 0.117 0.097 0.070 0.265 0.272
0.10 0.0 0.136 0.164 0.127 0.118 0.241 0.232 0.131 0.173 0.137 0.105 0.306 0.310
0.15 0.0 0.251 0.266 0.213 0.192 0.321 0.291 0.241 0.277 0.222 0.162 0.360 0.351
0.20 0.0 0.358 0.334 0.278 0.284 0.391 0.350 0.345 0.344 0.281 0.242 0.420 0.409
0.25 0.0 0.461 0.377 0.312 0.377 0.432 0.395 0.449 0.381 0.318 0.310 0.456 0.436
0.30 0.0 0.543 0.346 0.284 0.463 0.418 0.388 0.527 0.353 0.294 0.373 0.447 0.430

-0.30 0.8 0.992 0.998 0.994 0.839 0.977 0.971 0.984 0.997 0.992 0.744 0.961 0.957
-0.25 0.8 0.954 0.981 0.961 0.729 0.931 0.916 0.928 0.973 0.950 0.614 0.902 0.896
-0.20 0.8 0.836 0.901 0.839 0.576 0.837 0.804 0.794 0.892 0.831 0.466 0.810 0.786
-0.15 0.8 0.588 0.693 0.583 0.371 0.658 0.610 0.545 0.686 0.587 0.294 0.642 0.632
-0.10 0.8 0.300 0.378 0.295 0.212 0.461 0.426 0.279 0.390 0.307 0.172 0.478 0.493
-0.05 0.8 0.121 0.159 0.128 0.096 0.271 0.276 0.112 0.176 0.150 0.086 0.325 0.367
0 0.8 0.054 0.077 0.0670 0.061 0.202 0.221 0.055 0.092 0.087 0.066 0.282 0.324

0.05 0.8 0.103 0.152 0.120 0.102 0.249 0.256 0.098 0.165 0.137 0.085 0.302 0.339
0.10 0.8 0.296 0.351 0.277 0.214 0.377 0.371 0.278 0.355 0.288 0.169 0.410 0.424
0.15 0.8 0.519 0.550 0.464 0.363 0.549 0.513 0.492 0.546 0.469 0.282 0.544 0.542
0.20 0.8 0.696 0.689 0.604 0.521 0.658 0.619 0.662 0.680 0.604 0.410 0.615 0.608
0.25 0.8 0.809 0.763 0.689 0.640 0.714 0.694 0.775 0.751 0.682 0.514 0.677 0.682
0.30 0.8 0.870 0.735 0.676 0.719 0.705 0.703 0.846 0.725 0.674 0.586 0.660 0.687
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Table 4. Empirical rejection frequencies at the 5% nominal asymptotic level for θ2 = 0 and θ1 = 0 (empirical size) and |θ1| > 0 (empirical power)

of the LMFGLS
d , LMMLE

d and BHd tests for the correlation coefficient ρ. The short-run errors follow a VAR(1) model with π1 = π2 = 0.4 and

GARCH innovations with parameters α and β. The LMFGLS
d test statistic is computed from an augmented auxiliary regression with one lag of

the dependent variable. LMMLE
d and BHd are computed from VAR(1) residuals. The sample length is T = 1000.

GARCH: α = 0.1, β = 0.8 GARCH: α = 0.1, β = 0.85
T = 1000 Gaussian Student-t Gaussian Student-t

θ1 ρ LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd LMFGLS

d
LMMLE

d
BHd

-0.30 0.0 0.983 0.993 0.983 0.753 0.961 0.949 0.967 0.991 0.979 0.603 0.947 0.930
-0.25 0.0 0.916 0.959 0.920 0.632 0.915 0.884 0.891 0.956 0.914 0.481 0.904 0.879
-0.20 0.0 0.744 0.841 0.744 0.457 0.811 0.754 0.702 0.836 0.742 0.324 0.817 0.774
-0.15 0.0 0.471 0.597 0.481 0.287 0.645 0.592 0.437 0.603 0.489 0.219 0.688 0.655
-0.10 0.0 0.237 0.316 0.248 0.155 0.457 0.415 0.220 0.332 0.269 0.135 0.550 0.524
-0.05 0.0 0.093 0.132 0.107 0.080 0.302 0.286 0.093 0.150 0.124 0.073 0.446 0.424
0 0.0 0.051 0.072 0.066 0.058 0.243 0.237 0.053 0.089 0.083 0.056 0.397 0.387

0.05 0.0 0.091 0.122 0.098 0.077 0.262 0.247 0.084 0.139 0.112 0.073 0.398 0.391
0.10 0.0 0.246 0.284 0.220 0.176 0.385 0.353 0.226 0.293 0.228 0.131 0.472 0.456
0.15 0.0 0.437 0.461 0.376 0.288 0.508 0.470 0.414 0.464 0.384 0.213 0.558 0.539
0.20 0.0 0.635 0.603 0.523 0.434 0.607 0.557 0.607 0.607 0.531 0.322 0.631 0.596
0.25 0.0 0.756 0.653 0.576 0.588 0.670 0.625 0.729 0.652 0.578 0.433 0.668 0.639
0.30 0.0 0.830 0.620 0.559 0.673 0.664 0.623 0.811 0.621 0.555 0.516 0.659 0.649

-0.30 0.8 1.000 1.000 1.000 0.929 0.998 0.999 1.000 1.000 1.000 0.811 0.991 0.994
-0.25 0.8 1.000 1.000 1.000 0.877 0.999 0.992 0.997 1.000 1.000 0.715 0.974 0.980
-0.20 0.8 0.988 0.998 0.993 0.752 0.965 0.965 0.977 0.995 0.992 0.545 0.926 0.929
-0.15 0.8 0.893 0.951 0.906 0.555 0.876 0.860 0.846 0.940 0.898 0.387 0.833 0.838
-0.10 0.8 0.535 0.658 0.554 0.295 0.670 0.635 0.491 0.655 0.560 0.203 0.665 0.679
-0.05 0.8 0.164 0.228 0.180 0.112 0.386 0.391 0.155 0.254 0.207 0.091 0.488 0.535
0 0.8 0.058 0.083 0.080 0.057 0.271 0.296 0.058 0.104 0.099 0.058 0.404 0.462

0.05 0.8 0.175 0.228 0.180 0.113 0.349 0.352 0.162 0.246 0.196 0.088 0.441 0.487
0.10 0.8 0.510 0.578 0.477 0.307 0.591 0.569 0.471 0.574 0.485 0.206 0.584 0.611
0.15 0.8 0.822 0.848 0.780 0.542 0.771 0.760 0.781 0.839 0.768 0.366 0.711 0.725
0.20 0.8 0.940 0.940 0.908 0.714 0.873 0.860 0.916 0.928 0.897 0.504 0.806 0.816
0.25 0.8 0.977 0.969 0.949 0.819 0.911 0.903 0.964 0.961 0.943 0.632 0.833 0.856
0.30 0.8 0.993 0.958 0.943 0.885 0.900 0.908 0.987 0.946 0.930 0.716 0.840 0.867
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Table 5. Results from the implementation of the FGLS multivariate test on log-volume and log-volatility (proxied by log-absolute returns,

log-range estimator, and log-realised variance) for each stock in the sample. The columns headed: ‘d̂min (vlm)’ and ‘d̂min (σ)’ denote the values

which minimise the test statistic; ‘95% CI’ denote the bounds of the 95% confidence ellipsoid for the long memory parameter; when non-empty,

‘Common d’ reports the values along the 45 degree line contained in the 95% confidence ellipsoid (if empty, no common value is detected); ‘ρ̂e’

reports the sample cross-correlation coefficient of the residuals from the FGLS auxiliary regression given the values d̂min (vlm) and d̂min (σ) .

Log Absolute Returns Log Range Log RV

Stock d̂min (vlm) 95% CIB d̂min (σ) 95% CIB Common d ρ̂e d̂min (vlm) 95% CIB d̂min (σ) 95% CIB Common d ρ̂e d̂min (vlm) 95% CIB d̂min (σ) 95% CIB Common d ρ̂e
AAPL 0.62 [0.52,0.71] 0.38 [0.31,0.45] - 0.41 0.65 [0.56,0.73] 0.59 [0.52,0.67] [0.56,0.67] 0.63 0.66 [0.57,0.74] 0.64 [0.55,0.72] [0.58,0.71] 0.62
AXP 0.49 [0.39,0.58] 0.46 [0.37,0.56] [0.40,0.55] 0.37 0.53 [0.45,0.62] 0.61 [0.53,0.69] [0.55,0.60] 0.53 0.53 [0.45,0.60] 0.61 [0.51,0.70] [0.54,0.56] 0.49
BA 0.34 [0.23,0.44] 0.30 [0.22,0.39] [0.25,0.39] 0.39 0.41 [0.30,0.50] 0.57 [0.48,0.66] - 0.52 0.40 [0.30,0.51] 0.58 [0.46,0.69] - 0.52
CAT 0.42 [0.29,0.54] 0.41 [0.32,0.50] [0.32,0.50] 0.43 0.45 [0.33,0.56] 0.56 [0.46,0.65] [0.49,0.55] 0.53 0.48 [0.37,0.59] 0.61 [0.50,0.70] - 0.58
CSCO 0.35 [0.23,0.45] 0.38 [0.29,0.49] [0.29,0.44] 0.36 0.39 [0.27,0.49] 0.57 [0.48,0.65] - 0.48 0.41 [0.31,0.51] 0.58 [0.49,0.66] - 0.53
CVX 0.52 [0.40,0.63] 0.37 [0.29,0.45] - 0.30 0.50 [0.41,0.59] 0.53 [0.43,0.64] [0.44,0.59] 0.47 0.50 [0.41,0.59] 0.57 [0.47,0.68] [0.47,0.58] 0.43
DD 0.36 [0.22,0.48] 0.40 [0.30,0.50] [0.30,0.47] 0.32 0.38 [0.26,0.50] 0.55 [0.44,0.64] - 0.47 0.39 [0.28,0.50] 0.57 [0.46,0.68] - 0.46
DIS 0.32 [0.18,0.45] 0.40 [0.30,0.52] [0.31,0.45] 0.37 0.38 [0.26,0.50] 0.62 [0.52,0.71] - 0.47 0.38 [0.27,0.49] 0.59 [0.49,0.68] - 0.42
GE 0.47 [0.37,0.58] 0.40 [0.32,0.49] [0.38,0.48] 0.42 0.52 [0.43,0.61] 0.58 [0.49,0.67] [0.49,0.61] 0.54 0.52 [0.43,0.61] 0.59 [0.48,0.68] [0.48,0.59] 0.51
GS 0.52 [0.39,0.65] 0.40 [0.31,0.48] [0.40,0.44] 0.38 0.57 [0.47,0.68] 0.62 [0.53,0.71] [0.53,0.68] 0.58 0.55 [0.46,0.65] 0.58 [0.48,0.68] [0.48,0.65] 0.58
HD 0.54 [0.44,0.63] 0.43 [0.34,0.53] [0.45,0.52] 0.35 0.57 [0.47,0.65] 0.61 [0.54,0.69] [0.54,0.65] 0.46 0.56 [0.47,0.63] 0.62 [0.52,0.70] [0.52,0.63] 0.47
IBM 0.36 [0.24,0.47] 0.30 [0.20,0.41] [0.24,0.41] 0.38 0.39 [0.29,0.48] 0.54 [0.42,0.64] - 0.47 0.41 [0.31,0.50] 0.55 [0.44,0.65] - 0.47
INTC 0.18 [-0.03,0.34] 0.41 [0.30,0.54] - 0.36 0.28 [0.10,0.42] 0.64 [0.53,0.73] - 0.46 0.29 [0.12,0.42] 0.60 [0.51,0.69] - 0.50
JNJ 0.44 [0.32,0.54] 0.35 [0.22,0.51] [0.32,0.51] 0.36 0.46 [0.37,0.56] 0.58 [0.48,0.67] - 0.49 0.46 [0.37,0.55] 0.62 [0.50,0.72] - 0.44
JPM 0.56 [0.45,0.65] 0.47 [0.37,0.56] [0.47,0.56] 0.38 0.59 [0.52,0.67] 0.62 [0.55,0.69] [0.55,0.67] 0.56 0.58 [0.51,0.66] 0.61 [0.53,0.70] [0.53,0.66] 0.56
KO 0.44 [0.30,0.57] 0.38 [0.29,0.47] [0.32,0.47] 0.38 0.44 [0.30,0.56] 0.58 [0.50,0.66] - 0.51 0.46 [0.33,0.58] 0.61 [0.52,0.69] - 0.47
MCD 0.38 [0.25,0.52] 0.44 [0.33,0.56] [0.33,0.51] 0.33 0.40 [0.29,0.52] 0.63 [0.55,0.71] - 0.49 0.42 [0.30,0.54] 0.62 [0.53,0.70] - 0.46
MMM 0.30 [0.11,0.47] 0.36 [0.25,0.46] [0.28,0.45] 0.37 0.35 [0.20,0.48] 0.52 [0.42,0.61] - 0.49 0.37 [0.24,0.50] 0.55 [0.45,0.65] - 0.47
MRK 0.35 [0.17,0.50] 0.35 [0.27,0.44] [0.27,0.44] 0.39 0.43 [0.24,0.56] 0.55 [0.46,0.64] [0.48,0.56] 0.50 0.43 [0.28,0.55] 0.55 [0.45,0.64] [0.48,0.54] 0.50
MSFT 0.16 [-0.11,0.37] 0.43 [0.35,0.54] - 0.36 0.25 [0.03,0.44] 0.58 [0.47,0.68] - 0.49 0.25 [0.06,0.43] 0.52 [0.41,0.62] - 0.50
NKE 0.41 [0.27,0.53] 0.37 [0.28,0.47] [0.30,0.47] 0.35 0.38 [0.26,0.49] 0.53 [0.44,0.62] - 0.46 0.39 [0.28,0.50] 0.55 [0.46,0.63] - 0.44
PFE 0.32 [0.04,0.52] 0.35 [0.26,0.46] [0.26,0.46] 0.36 0.39 [0.21,0.55] 0.53 [0.42,0.64] [0.48,0.54] 0.50 0.36 [0.19,0.52] 0.54 [0.42,0.66] - 0.45
PG 0.38 [0.20,0.53] 0.36 [0.27,0.46] [0.27,0.45] 0.34 0.40 [0.24,0.53] 0.47 [0.36,0.57] [0.36,0.53] 0.45 0.39 [0.24,0.52] 0.50 [0.40,0.61] [0.43,0.52] 0.43
TRV 0.40 [0.24,0.54] 0.45 [0.33,0.59] [0.34,0.53] 0.27 0.47 [0.34,0.59] 0.66 [0.52,0.80] - 0.42 0.47 [0.36,0.59] 0.62 [0.50,0.76] - 0.43
UNH 0.26 [0.06,0.42] 0.35 [0.26,0.44] [0.27,0.41] 0.37 0.39 [0.20,0.54] 0.59 [0.51,0.67] - 0.54 0.39 [0.22,0.53] 0.61 [0.52,0.70] - 0.52
UTX 0.43 [0.30,0.54] 0.37 [0.28,0.46] [0.31,0.46] 0.30 0.45 [0.34,0.55] 0.57 [0.47,0.65] - 0.46 0.44 [0.34,0.53] 0.57 [0.48,0.67] - 0.44
V 0.73 [0.62,0.83] 0.43 [0.33,0.53] - 0.30 0.71 [0.61,0.81] 0.62 [0.54,0.71] [0.62,0.69] 0.42 0.73 [0.63,0.83] 0.63 [0.55,0.72] [0.64,0.70] 0.44
VZ 0.40 [0.24,0.54] 0.41 [0.30,0.53] [0.31,0.50] 0.32 0.44 [0.27,0.58] 0.60 [0.51,0.69] - 0.48 0.46 [0.31,0.58] 0.61 [0.50,0.70] - 0.42
WMT 0.38 [0.24,0.51] 0.37 [0.29,0.47] [0.29,0.46] 0.40 0.44 [0.32,0.55] 0.54 [0.45,0.63] [0.49,0.53] 0.50 0.44 [0.30,0.55] 0.57 [0.47,0.66] - 0.51
XOM 0.48 [0.33,0.60] 0.30 [0.21,0.40] - 0.30 0.50 [0.38,0.60] 0.53 [0.41,0.64] [0.41,0.60] 0.47 0.49 [0.37,0.59] 0.52 [0.39,0.64] [0.39,0.59] 0.46
Average 0.41 0.39 0.36 0.45 0.58 0.49 0.45 0.58 0.48
Rejection rate 20.00% 53.33% 63.33%
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Table 6. Results from the the Nielsen and Shimotsu (2007)-based approach. The columns headed:

‘d̂ (vlm)’ and ‘d̂ (σ)’ report point estimates from the two-stage univariate exact local Whittle

estimator in Shimotsu and Phillips (2005); ‘T0’ and ‘p-value’ report the test statistic for the null

of a common order of integration and related p-values; ‘L(u)’, u = 0, 1, report the objective

function used to infer the cointegration rank in a model selection procedure; finally, ‘r̂T ’ reports
the estimated cointegration rank resulting from this criterion, and ‘r̂∗T ’ reports the conditional

estimates of r for the cases in which the null hypothesis of a common order of integration cannot

be rejected at 5% level.

Nielsen-Shimotsu Testing Approach

Stock d̂ (vlm) 95% CI d̂ (σ) 95% CI T0 p-value L(0) L(1) r̂
T

r̂∗T

AAPL 0.62 [0.53,0.71] 0.48 [0.40,0.57] 5.37 0.02 -1.465 -1.337 0 -
AXP 0.52 [0.43,0.61] 0.63 [0.54,0.72] 3.90 0.05 -1.465 -1.444 0 -
BA 0.37 [0.28,0.46] 0.57 [0.48,0.66] 11.41 0.00 -1.465 -1.366 0 -
CAT 0.40 [0.31,0.48] 0.56 [0.47,0.65] 8.74 0.00 -1.465 -1.419 0 -
CSCO 0.34 [0.25,0.42] 0.52 [0.44,0.61] 10.46 0.00 -1.465 -1.416 0 -
CVX 0.52 [0.43,0.61] 0.61 [0.52,0.70] 2.78 0.10 -1.465 -1.455 0 0
DD 0.35 [0.26,0.44] 0.55 [0.46,0.64] 12.08 0.00 -1.465 -1.378 0 -
DIS 0.38 [0.29,0.47] 0.61 [0.52,0.70] 14.55 0.00 -1.465 -1.408 0 -
GE 0.55 [0.46,0.64] 0.60 [0.51,0.69] 0.90 0.34 -1.465 -1.468 1 1
GS 0.53 [0.44,0.62] 0.56 [0.47,0.65] 0.35 0.56 -1.465 -1.482 1 1
HD 0.60 [0.51,0.69] 0.57 [0.48,0.66] 0.33 0.57 -1.465 -1.380 0 0
IBM 0.39 [0.31,0.48] 0.58 [0.49,0.66] 10.83 0.00 -1.465 -1.460 0 -
INTC 0.19 [0.10,0.28] 0.54 [0.45,0.63] 33.64 0.00 -1.465 -1.301 0 -
JNJ 0.41 [0.33,0.50] 0.60 [0.51,0.69] 10.86 0.00 -1.465 -1.452 0 -
JPM 0.59 [0.50,0.68] 0.62 [0.53,0.71] 0.31 0.58 -1.465 -1.530 1 1
KO 0.40 [0.31,0.49] 0.61 [0.52,0.70] 13.03 0.00 -1.465 -1.350 0 -
MCD 0.35 [0.26,0.44] 0.60 [0.51,0.69] 16.74 0.00 -1.465 -1.258 0 -
MMM 0.36 [0.27,0.45] 0.54 [0.45,0.63] 10.87 0.00 -1.465 -1.447 0 -
MRK 0.33 [0.24,0.41] 0.52 [0.43,0.61] 11.35 0.00 -1.465 -1.368 0 -
MSFT 0.22 [0.14,0.31] 0.48 [0.39,0.56] 16.50 0.00 -1.465 -1.351 0 -
NKE 0.39 [0.30,0.48] 0.52 [0.43,0.60] 4.45 0.03 -1.465 -1.326 0 -
PFE 0.37 [0.28,0.46] 0.53 [0.44,0.62] 7.52 0.01 -1.465 -1.332 0 -
PG 0.36 [0.27,0.45] 0.48 [0.39,0.57] 3.89 0.05 -1.465 -1.323 0 -
TRV 0.41 [0.30,0.51] 0.59 [0.49,0.69] 7.34 0.01 -1.426 -1.399 0 -
UNH 0.33 [0.24,0.41] 0.56 [0.47,0.65] 16.39 0.00 -1.465 -1.338 0 -
UTX 0.41 [0.32,0.50] 0.58 [0.49,0.67] 9.01 0.00 -1.465 -1.420 0 -
VZ 0.39 [0.30,0.48] 0.57 [0.48,0.66] 8.22 0.00 -1.465 -1.248 0 -
V 0.64 [0.55,0.74] 0.62 [0.53,0.72] 0.11 0.73 -1.452 -1.305 0 0
WMT 0.40 [0.32,0.49] 0.57 [0.48,0.66] 7.82 0.01 -1.465 -1.392 0 -
XOM 0.47 [0.38,0.56] 0.53 [0.44,0.62] 1.06 0.30 -1.465 -1.493 1 1

Average 0.42 0.56 13.33% 13.33%
Rejection 95% 76.67%
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Summary of Contents

This supplement to our paper “Multivariate Fractional Integration Tests allowing for Con-

ditional Heteroskedasticity with an Application to Return Volatility and Trading Volume”

has three main parts. The first part, Appendix A, contains a number of preparatory lem-

mas and their proofs which are used to prove the main results, together with proofs of

Theorems 1 and 2 in the paper. The second part, Appendix B, contains additional Monte

Carlo results. The third part, Appendix C, includes additional data analysis related to the

empirical application in section 5 of the paper.

Equation references (A.n), (B.n) and (C.n) for n ≥ 1 refer to equations in in Appendices

A, B and C, respectively, of this supplementary appendix. Other equation references are

to the main paper. Additional references are included at the end of section A.2 of the

supplement.
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Appendix A - Technical Appendix

A.1 Preliminary Results

Before presenting the proofs of the main results in the paper, we first need to state and

prove some preparatory Lemmas. To this end, consider the following additional notation.

For an (n× 1) vector A, ||A|| denotes the Euclidean vector norm, such that ||A||2 = A′A.

For an (n×m) matrix A, ||A|| denotes the Euclidean matrix norm, ||A||2 = tr (A′A) . The

constants K and C are used throughout the proofs to refer to some generic strictly posi-

tive constant which does not depend on the sample size. The notation
a.s.→ denotes almost

surely convergence of a random sequence as the sample length is allowed to diverge to +∞.

Finally, throughout the proofs, we will use the superscripts ‘∗’ and ‘∗∗’ to denote trun-

cated processes and their non-truncated counterpart, respectively, such as the truncated

and non-truncated processes z∗s,t−1,ds
:=
∑t−1

l=1 l
−1εs,t−l,ds and z∗∗s,t−1,ds

:=
∑∞

l=1 l
−1εs,t−l,ds ,

respectively. This distinction is necessary because, while the statistics computed in the

paper are constructed from the truncated variables, the asymptotic theory is developed

with respect to the corresponding non-truncated processes. Lemmas A2 and A3 below

show that the distinction between the two is asymptotically negligible so far as the limiting

distribution theory for the statistics considered in this paper are concerned.

Lemma A1. Let x∗∗
s,t−1,d :=

(
z∗∗s,t−1,ds

, ε′t−1,d, ..., ε
′
t−p,d

)′
, with z∗∗s,t−1,ds

:=
∑∞

l=1 l
−1εs,t−l,ds ,

and εs,t,ds denoting the s-th element of εt,d, 1 ≤ s ≤ k. Let νij be the (i,j)-th element

of Σ−1. Under Assumption 1 and H0 : θ = 0, νij
(
X ′∗∗

i,−1,dX
∗∗
j,−1,d

)
/T

a.s.→ ΩAij, with

ΩAij := νijE
(
x∗∗
i,t−1,dx

′∗∗
j,t−1,d

)
bounded, and bounded away from zero if νij 6= 0.

Proof of Lemma A1. Denote λt−1,d :=
(
ε′t−1,d, ..., ε

′
t−p,d

)′
, such that for any 1 ≤ i, j ≤ k

we have

T−1 X ′∗∗
i,−1,dX

∗∗
j,−1,d =

[
T−1

∑T
t=p∗+1 z

∗∗
i,t−1,di

z∗∗j,t−1,dj
T−1

∑T
t=p∗+1 z

∗∗
i,t−1,di

λ′
t−1,d

T−1
∑T

t=p∗+1 λt−1,dz
∗∗
j,t−1,dj

T−1
∑T

t=p∗+1 λt−1,dλ
′
t−1,d

]
.

Under Assumption 1, H0 : θ = 0, and for any 1 ≤ s ≤ k,
{
X∗∗

s,−1,d

}
is a measurable

function of a strictly stationary and ergodic process and is therefore also a strictly sta-

tionary and ergodic process, and so is
{
X ′∗∗

s,−1,dX
∗∗
s,−1,d

}
. The required result then follows

from the Ergodic Theorem because x∗∗
s,t−1,d is (uniformly) L2-bounded, so the elements in{

x∗∗
s,t−1,dx

′∗∗
s,t−1,d

}
have finite absolute expected values. To see this, first note that for any

1 ≤ s ≤ k, there exists some finite K > 0 such that E
(
z2∗∗s,t−1,ds

)
=
∑∞

l=1 ω
2
slE
(
e2s,t−l

)
< K,

because ωsl = O (1/l) and {et} is uniformly L2-bounded under Assumption (A2). From

this result, it follows from the Cauchy-Swcharz inequality that E
(
|z∗∗i,t−1,di

z∗∗j,t−1,dj
|
)

≤

4



√
E
(
z2∗∗i,t−1,di

)√
E
(
z2∗∗j,t−1,dj

)
< K, 1 ≤ i, j ≤ k. Similarly, because λt−1,d is uniformly L2-

bounded under Assumption (A2), there exists some finite C > 0 for which E
∥∥λ′

t−1,dz
∗∗
s,t−1,ds

∥∥ ≤
√

E||λt−1,d||2
√
E
(
z2∗∗s,t−1,ds

)
< C and E

∥∥λt−1,dλ
′
t−1,d

∥∥ ≤ E ‖λt−1,d‖2 < C. Consequently,

the Ergodic Theorem ensures that νij
(
X ′∗

i,−1,dX
∗
j,−1,d

)
/T

a.s.→ νijE
(
x∗∗
i,t−1,dx

′∗∗
j,t−1,d

)
. Fi-

nally, due to stationarity, x∗∗
s,t−1,d =

∑∞
l=1 Γslej−l with ||Γsl|| = O (1/l) , so ΩAij =

νij
∑∞

l=1 Γil Σ Γ′
jl < ∞. Clearly, the condition Σ > 0 rules out the degenerate case

E
(
x∗∗
i,t−1,dx

′∗∗
i,t−1,d

)
= 0, from which the required results follow. Furthermore, for i = j,

ΩAij = νii
∑∞

l=1 Γil Σ Γ′
il, and so ΩAij is positive definite (Davidson, 2000, Corollary

14.2.10, p.216). �

Lemma A2. Under Assumption 1 and H0 : θ = 0, for 1≤ i, j ≤ k, it follows that,

i) T−1
∥∥X ′∗∗

i,−1,dX
∗∗
j,−1,d −X ′∗

i,−1,dX
∗
j,−1,d

∥∥ = Op

(
T−1/2

)
;

ii) T−1/2
∥∥(X ′∗∗

i,−1,d −X
′∗
i,−1,d

)
uj

∥∥ = Op

(√
log T√
T

)
.

Proof of Lemma A2. For i), we can write T−1
(
X ′∗∗

i,−1,dX
∗∗
j,−1,d −X ′∗

i,−1,dX
∗
j,−1,d

)
as


 T−1

∑T
t=p∗+1

(
z∗∗i,t−1,di

z∗∗j,t−1,dj
− z∗i,t−1,di

z∗j,t−1,dj

)
T−1

∑T
t=p∗+1 λ

′
t−1,d

(
z∗∗it−1,di

− z∗it−1,di

)

T−1
∑T

t=p∗+1 λt−1,d

(
z∗∗j,t−1,dj

− z∗j,t−1,dj

)
0kp×kp


 .

Because E
(
z∗∗s,t−1,ds

− z∗s,t−1,ds

)2
= O (1/t) (cf. Demetrescu et al. 2008, Lemma B.1.), we

have from the Cauchy-Schwarz inequality that,

E

∥∥∥∥∥T
−1

T∑

t=p∗+1

λ′
t−1,d

(
z∗∗s,t−1,ds − z∗s,t−1,ds

)
∥∥∥∥∥ ≤ T−1

T∑

t=p∗+1

√
E (||λt−1,d||2)

√
E
(
|z∗∗s,t−1,ds

− z∗s,t−1,ds
|2
)

= O

(
T−1

T∑

t=p∗+1

1√
t

)
= O

(
T−1/2

)
.

Hence, T−1
∑T

t=p∗+1 λ
′
t−1,d

(
z∗∗it−1,di

− z∗it−1,di

)
= Op

(
T−1/2

)
and T−1

∑T
t=p∗+1 λt−1,d

(
z∗∗j,t−1,dj

− z∗j,t−1,dj

)

= Op

(
T−1/2

)
by the Markov inequality. Next, write z∗∗s,t−1,ds

= z∗s,t−1,ds
+ bs,t−1, with

bs,t−1 :=
∑∞

l=t ωsles,t−l. Because ωsl = O (1/l) and bs,t−1 = Op

(
1/
√
t
)
, it follows that,

z∗∗i,t−1,di
z∗∗j,t−1,dj

=
(
z∗i,t−1,di

+ bi,t−1

) (
z∗j,t−1,dj

+ bj,t−1

)
= z∗i,t−1,di

z∗j,t−1,dj
+ rij,t−1

with rij,t−1 = Op

(
1/
√
t
)
defined implicitly. Therefore,

E

∥∥∥∥∥T
−1

T∑

t=p∗+1

(
z∗∗i,t−1,di

z∗∗j,t−1,dj
− z∗i,t−1,di

z∗j,t−1,dj

)∥∥∥∥∥ ≤ T−1

T∑

t=p∗+1

E|rij,t−1| = O
(
T−1/2

)
= o (1)
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and the required result holds from the Markov inequality. For part b), note that the first

element of the column vector
(
X ′∗∗

i,−1,di
−X ′∗

i,−1,di

)
uj is given by T−1/2

∑T
t=p∗+1 bi,t−1ej,t,

while all of the remaining elements are zero. Owing to the MDS property of {et} and

the stationarity condition in Assumption (A3), together with the moment conditions in

Assumptions (A2) and (A4) it follows that,

E

(
T−1/2

T∑

t=p∗+1

bi,t−1ej,t

)2

= T−1

T∑

t=p∗+1

E
(
b2i,t−1e

2
j,t

)

= T−1

T∑

t=p∗+1

∞∑

l1=t

∞∑

l2=t

ωil1ωil2E
(
e2j,tei,t−l1ei,t−l2

)
= O

(
log T

T

)

because

∞∑

l1=t

∞∑

l2=t

ωil1ωil2E
(
e2j,tei,t−l1ei,t−l2

)
=

∞∑

l1=t

ω2
il1
E
(
e2j,te

2
i,t−l1

)
+

∞∑

l1=t

∞∑

l2=t
l2 6=l1

ωil1ωil2E
(
e2j,tei,t−l1ei,t−l2

)

= O

( ∞∑

l1=t

1

l21

)
+ o




∑

l1=t,l2=t
l2 6=l1

1

l21l
2
2


 = O (1/t)

given that E
(
e2j,te

2
i,t−l1

)
≤
(
E
(
e4j,t
)
E
(
e4i,t
))1/2

< K for all t, and Assumption (A4) which

implies that E
(
e2j,tei,t−l1ei,t−l2

)
≤ E (|ej,tejtei,t−l1ei,t−l2 |) = o

(
1

l1l2

)
for any l1, l2 > 0, l1 6= l2

under absolute summability; see Lemmas B.1i) and B.5 in Hassler et al. (2009). The

required result then holds from the Markov inequality. �

Lemma A3. Let Σ̃ = {σ̃ij} denote the OLS estimator of Σ = {σij}, namely, σ̃ij =

T−1ũ′
iũj, ũs := Ys,ds −X∗

s,−1,dβ̃s, with β̃s denoting the OLS estimator of βs in the corre-

sponding equation. Then, under Assumption 1 and H0 : θ = 0,

i) Σ̃
p→ Σ;

ii) T−1
∥∥∥X ′∗∗

−1,d

[(
Σ̃−1 −Σ−1

)
⊗ IT−p∗

]
X∗∗

−1,d

∥∥∥ = Op

(
T−1/2

)
;

iii) T−1/2X ′∗∗
−1,d

[(
Σ̃−1 −Σ−1

)
⊗ IT−p∗

]
u

p→ 0.

Proof of Lemma A3. Part i) follows from the consistency of the equation-by-equation

OLS estimator, β̃s, under Assumption 1 and H0 : θ = 0, which can be proved along the

same lines as in Demetrescu et al. (2008). Part ii) follows from
√
T -consistency in i)

6



because X∗∗
−1,d is uniformly L2-bounded. Finally, for part iii), note that

T−1/2X ′∗∗
−1,d

[(
Σ̃−1 −Σ−1

)
⊗ IT−p∗

]
u =




∑k
s=1 T

−1/2 (ν̃1s − ν1s)
(
1
T
X ′∗∗

1,−1,dus

)
∑k

s=1 T
−1/2 (ν̃2s − ν2s)

(
1
T
X ′∗∗

2,−1,dus

)
...

∑k
s=1 T

−1/2 (ν̃ks − νks)
(
1
T
X ′∗∗

k,−1,dus

)




and the required result follows noting that T−1/2 (ν̃ij − νij) = Op (1) for all 1 ≤ i, j ≤ k

from i) above, whileX ′∗∗
i,−1,duj/T

a.s.→ 0 from the Ergodic Theorem, because
{
X ′∗∗

i,−1,dus

}
is a

strictly stationary and ergodic vector MDS, and E||X ′∗∗
i,−1,dus|| ≤

√
E||X ′∗∗

i,−1,d||2E||us||2 <
∞ under Assumption 1 and H0 : θ = 0. �

Lemma A4. Define Drsij := er,tes,tx
∗∗
i,t−1,dx

′∗∗
j,t−1,d, for all 1 ≤ r, s, i, j ≤ k. Under As-

sumption 1 and H0 : θ = 0, E||Drsij|| < ∞.

Proof of Lemma A4. The proof follows from the Cauchy-Schwarz inequality given that

ei,tx
∗∗
j,t−1,d is (uniformly) L2-bounded for any 1 ≤ i, j ≤ k.

E
∥∥ei,tx∗∗

j,t−1,d

∥∥2 = E ‖ei,tλt−1,d‖2 + E
(
e2i,tz

2∗∗
j,t−1,dj

)
< K

because for some finite C > 0,

E ‖ei,tλt−1,d‖ ≤
√
E
(
e2i,t
)
E ‖λt−1,d‖2 < C

and

E
(
e2i,tz

2∗∗
j,t−1,dj

)
=

∞∑

l1=1

∞∑

l2=1

ωjl1ωjl2E
(
e2i,tej,t−l1ej,t−l2

)

=
∞∑

l1=1

ω2
jl1
E
(
e2i,tej,t−l1ej,t−l1

)
+

∞∑

l1=1

∞∑

l2=1
l2 6=l1

ωjl1ωjl2E
(
e2i,tej,t−l1ej,t−l2

)

where E
(
e2i,tej,t−l1ej,t−l1

)
≤ E(e4i,t)

1/4 × E
(
e4j,t
)3/4

< K and, as in Lemma A2,

∞∑

l1=1

∞∑

l2=1
l2 6=l1

ωjl1ωjl2E
(
e2i,tej,t−l1ej,t−l2

)
= O

( ∞∑

l1=t

1

l21

)
+ o




∞∑

l1=1,l2=1
l2 6=l1

1

l21l
2
2




= O (1) .

Consequently, E
∥∥er,tes,tx∗∗

i,t−1,dx
′∗∗
j,t−1,d

∥∥ ≤
√
E
∥∥er,tx∗∗

i,t−1,d

∥∥2
√

E
∥∥er,tx∗∗

j,t−1,d

∥∥2 < ∞. �
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A.2 Proofs of Main Results

Proof of Theorem 1. Under Assumption 1 and H0 : θ = 0, the FGLS estimator of β

can be written as

β̂ = β0 +
(
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
X∗

−1,d

)−1 (
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
u
)
.

Using Lemmas A2 and A3, we therefore have that,

√
T
(
β̂ − β0

)
=

(
1

T
X ′∗∗

t−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗∗

−1,d

)−1(
1√
T
X ′∗∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
u

)
+op (1) .

(A.1)

Recall that νij denotes the (i, j)-th element ofΣ−1, and defineA∗∗
T := 1

T
X ′∗∗

−1,d [Σ
−1 ⊗ IT−p∗ ]X

∗∗
−1,d,

noting thatA∗∗
T can be represented as a partitioned matrix with ij-blockA∗∗

T ij = νijX
′∗∗
i,−1,dX

∗∗
j,−1,d/T.

From Lemma A2, νijX
′∗∗
i,−1,dX

∗∗
j,−1,d/T

a.s.→ ΩAij for all 1 ≤ i, j ≤ k. Consequently, A∗∗
T

a.s.→
Aβ, where Aβ is a partitioned matrix with ij-th submatrix given by ΩAij. Noting that the

columns ofAβ cannot be written as linear combinations of the other elements, det(Aβ) > 0,

and consequently (
1

T
X ′∗∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗∗

−1,d

)−1
a.s.→ A−1

β

by Slutsky’s Theorem. We now discuss the asymptotic behaviour of the second term in

(A.1). To this end, define the column vector w∗∗
−1,d :=X ′∗∗

−1,d [Σ
−1 ⊗ IT−p∗ ]u, noting that

w∗∗
−1,d =

(
k∑

s=1

ν1sX
′∗∗
1,−1,dus,

k∑

s=1

ν2sX
′∗∗
2,−1,dus, ...,

k∑

s=1

νksX
′∗∗
k,−1,dus

)′

with us := (es,p+1, ..., es,T )
′ under H0 : θ = 0. Given that E

(
w∗∗

−1,d|Ft−1

)
= 0 and w∗∗

−1,d

is a measurable function of {et} ,
{
w∗∗

−1,d,Ft

}
is a strictly stationary and ergodic vector

MDS. The covariance matrix of w∗∗
−1,d is Bβ := E

(
w∗∗

−1,dw
′∗∗
−1,d

)
, which can be represented

as a partitioned matrix with ij-th block ΩBij given by

ΩBij :=
k∑

r=1

k∑

s=1

νirνisE
(
er,tes,tX

′∗∗
i,−1,dX

∗∗
j,−1,d

)
.

From Lemma A4, E||er,tes,tx∗∗
i,t−1,dx

′∗∗
j,t−1,d|| < ∞, and consequently ΩBij < ∞ for all

1 ≤ i, j ≤ k, so Bβ < ∞. Furthermore, the condition that Σ is positive definite triv-

ially rules out the degenerate case ||ΩBii|| = 0, and so Bβ is bounded away from zero.

Consequently, the Central Limit Theorem (CLT) for MDS (Davidson, 2000, Theorem 24.3)
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and the Cramér-Wold device deliver the result that

1√
T
X ′∗∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
u⇒ N (0,Bβ) ,

and so we may conclude that,

√
T
(
β̂ − β0

)
⇒ N

(
0,A−1

β BβA
−1
β

)

as required. �

Proof of Theorem 2. We first prove the stated convergence result under the null hypothe-

sis, which follows directly from Theorem 1 and the consistency of Ω̂β := A∗−1
T B∗

TA
∗−1
T , with

A∗
T := 1

T
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
X∗

−1,d andB
∗
T := 1

T
ŵ∗

−1,dŵ
′∗
−1,d, ŵ

∗
−1,d :=X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
û,

û := Yt,d − X∗
−1,dβ̂. As discussed previously, A∗∗

T
a.s.→ Aβ, and so Lemma A2 and the

Asymptotic Equivalence Lemma (AEL) allow us to conclude that A∗
T

p→ Aβ. Using the√
T -consistency result from Theorem 1, û := u + Op

(
T−1/2

)
and, therefore, ŵ∗

−1,d :=

X ′∗
−1,d

[
Σ̃−1 ⊗ IT−p∗

]
u + Op

(
T−1/2

)
. Then, after consecutive application of Lemmas A2

and A3, we can write B∗
T = B∗∗

T + op (1) , where B
∗∗
T := w∗∗

−1,dw
′∗∗
−1,d/T can be represented

as a partitioned matrix with ij-th block

B∗∗
T ij :=

k∑

r=1

k∑

s=1

νirνis

[
1

T
X ′∗∗

i,−1,duru
′
sX

∗∗
j,−1,d

]

such that

E
(
B∗∗

T ij

)
=

k∑

r=1

k∑

s=1

νirνis

(
T−1

T∑

t=p+1

E
(
er,tes,tx

∗∗
i,t−1,dx

′∗∗
j,t−1,d

)
)

= ΩBij

from the stationarity and the MDS property of {et}. Because
{
w∗∗

−1,dw
′∗∗
−1,d

}
is strictly sta-

tionary, ergodic, and L2-bounded by Lemma A6, the Ergodic Theorem ensures that B∗∗
T

a.s.→
Bβ, so the AEL implies B∗

T

p→ Bβ. By Slutsky’s Theorem,
√
TRβ̂ ⇒ N (0,RΩβR

′) , and

since RΩβR
′ is symmetric and nonnegative, there exists an upper triangular matrix L

such that RΩβR
′ = L′L. Consequently,

√
TL−1′Rβ̂ ⇒ N (0, Ik) , and, hence,

LMd = T
[
Rβ̂
]′
(RΩβR

′)
−1
[
Rβ̂
]
+Op

(
T−1/2

)

= T
[
L′−1Rβ̂

]′ [
L′−1Rβ̂

]
⇒ χ2

(k).

We now establish the corresponding asymptotic convergence result under the local al-

ternative Hc : θ = c/
√
T , where at least one element of c is non-zero. Under As-

sumption 1 and Hc, we have that Yt,d = X∗
−1,dβ0 + uθ where uθ ≡ (u′

θ1, ...,u
′
θk) ,
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uθs := us +
1√
T
X∗

s,−1,d+θψcs, and

ψcs := (cs,−πs1 ⊙ c′, ...,−πsp ⊙ c′)′

for 1 ≤ s ≤ k; see Tanaka (1999). In this context, the FGLS estimator is given by

β̂ = β0 +
(
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
X∗

−1,d

)−1 (
X ′∗

−1,d

[
Σ̃−1 ⊗ IT−p∗

]
uθ

)
+ op (1) .

Lemma A3i) applies under the alternative hypothesis because, although the OLS estimator

is no longer consistent, it still follows that ûs = us + Op

(
T−1/2

)
and, hence, ν̂ij = νij +

O
(
T−1/2

)
. Consequently,

√
T
(
β̂ − β0

)
=

(
1

T
X ′∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗

−1,d

)−1(
1√
T
X ′∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
uθ

)
+op (1) .

Define ψc := (ψ′
c1, ...,ψ

′
ck)

′ . Then,

1√
T
X ′∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
uθ =

1

T
X ′∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗

−1,d+θψc+
1√
T
X ′∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
u

where we can show that,

1

T
X ′∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗

−1,d+θψc

p→ Aβψc

which follows from the Ergodic Theorem and the AEL because

T−1
∥∥(X ′∗

−1,d −X ′∗∗
−1,d+θ

) [
Σ−1 ⊗ IT−p∗

] (
X∗

−1,d+θ −X∗∗
−1,d+θ

)∥∥ = Op

(
log T√

T

)
= op (1) .

Similarly,
1√
T
X ′∗∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
u⇒ N (0,Bβ) .

from the CLT for MDS, given that

T−1/2
∥∥(X ′∗∗

−1,d −X ′∗∗
−1,d+θ

) [
Σ−1 ⊗ IT−p∗

]
u
∥∥ = Op

(
log T√

T

)

and, finally,
1

T
X ′∗

−1,d

[
Σ−1 ⊗ IT−p∗

]
X∗

−1,d

p→ Aβ.

Consequently, under Assumption 1 and Hc : θ = c/
√
T ,

√
T
(
β̂ − β0

)
⇒ N (ψc,Ωβ) . (A.2)
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This combined with the result that A∗
T

p→ ΩA ensures that û = u + Op

(
T−1/2

)
and

B∗
T

p→ ΩB. Finally, from (A.2) we have that
√
TRβ̂ ⇒ N (c,RΩβR

′) and, hence,√
T
[
L′−1Rβ̂

]
⇒ N (L′−1c, Ik) , and so the result that Ω̂T

p→ Ωβ implies that

LMd = T
[
L′−1Rβ̂

]′ [
L′−1Rβ̂

]
+Op

(
T−1/2

)

⇒ χ2
(k,ξ)

with ξ := (L′−1c)′(L′−1c), as required. �

Additional Reference

Davidson, J. (2000) Stochastic Limit Theory (3rd Ed). Oxford University Press: Oxford.
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Appendix B - Additional Monte Carlo Results

To provide further insights into the finite sample performance of the tests we again

focus on the bivariate (k = 2) case where yt ≡ (y1t, y2t)
′, and consider the simulation DGP,

[
(1− L)d1 0

0 (1− L)d2

]
(yt − µ) = εtI(t ≥ 1), t = 1, ..., T. (B.1)

Without loss of generality we set d1 = 0.3 and d2 = 0.6, which correspond to a

(marginally) stationary and a nonstationary long-memory process, respectively, and re-

port results for samples of length T ∈ {500, 1000}. We set µ = 0 for all experiments,

except for those in Section B.3. With the exception of the results in section B.1 where un-

conditional heteroskedasticity is allowed for, the innovations {εt} are generated to exhibit

time-varying conditional second-order moments according to the design

εt =

[
σ1t 0

0 σ2t

]
ηt; E (ηt) = 0, E (ηtη

′
t) =: Ωρ =

[
1 ρ

ρ 1

]
(B.2)

where ηt ≡ (η1t, η2t)
′ is an i.i.d. vector drawn from either a multivariate Gaussian distri-

bution or a (heavy-tailed) multivariate Student-t distribution with 5 degrees of freedom.

The covariance matrix Ωρ depends on the contemporaneous correlation coefficient ρ, whose

value we vary among ρ ∈ {0, 0.2, 0.4, 0.6, 0.8}. The conditional variances {σ2
it} are driven

by (normalised) stationary GARCH(1,1) processes characterised by:

σ2
it = (1− α− β) + αe2i,t−1 + βσ2

i,t−1, i = 1, 2 (B.3)

with α, β ≥ 0 and α + β < 1, such that E (e2it) = 1. For simplicity, we impose the

same GARCH dynamics on the two series, focusing on GARCH parameter configurations

that allow for varying degrees of persistence in the conditional variances as measured by

α + β, namely, (α, β) ∈ {(0, 0), (0.1, 0.5), (0.1, 0.7), (0.1, 0.8), (0.1, 0.85)}. The case α =

β = 0 corresponds to conditional homoskedasticity. Non-zero values of these parameters

induce serial dependencies in the short-run dynamics of the process, while ρ 6= 0 introduces

cross sectional dependence in the innovations. Applied work with financial data routinely

suggests both the presence of heavy tailed behaviour in the innovations and high persistence

in the fitted GARCH model with α + β generally estimated to be relatively close to one.

All reported simulation results are based on 5000 Monte Carlo replications.
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B.1 Unconditional Heteroskedasticity

In Table B.1 we report results for the case where the innovations are homoskedastic, DGP1:

σ2
1t = σ2

2t = 1, and for the case where there is a contemporaneous one-time break of

equal magnitude in the variances of εt. Regarding the latter, two heteroskedastic cases

are considered: (i) an upward change in variance such that DGP2: σ2
1t = σ2

1t = 1I(t ≤
⌊τT ⌋) + 4I(t > ⌊(1− τ)T ⌋), and (ii) a downward change where DGP3: σ2

1t = σ2
2t = 1I(t ≤

⌊τT ⌋)+ 1
4
I(t > ⌊(1−τ)T ⌋), where in each case I(·) denotes the indicator function, taking the

value one when its argument is true and zero otherwise, and τ ∈ {1/3, 1/2, 2/3} corresponds
to the break fraction. DGP2 and DGP3 allow us to examine the impact of unconditional

heteroskedasticity, both in isolation and in its interaction with ρ, on the finite sample size

of the tests. In each of DGP2 and DGP3 a fourfold change in variance is seen which is

likely to be of considerably larger magnitude than we might expect to see in practice, but

serves to illustrate how the tests behave in the presence of large changes in unconditional

volatility.
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Table B.1: Empirical rejection frequencies of LMFGLS
d under the null hypothesis and un-

conditional variance breaks

Normal Student-t(5)
DGP ρ τ = 1/3 τ = 1/2 τ = 2/3 τ = 1/3 τ = 1/2 τ = 2/3

T = 500
DGP1 0 0.053 0.050 0.056 0.055 0.056 0.054

0.2 0.055 0.051 0.047 0.049 0.056 0.057
0.4 0.051 0.049 0.048 0.048 0.051 0.057
0.6 0.052 0.056 0.056 0.054 0.054 0.056
0.8 0.055 0.056 0.051 0.054 0.053 0.059

DGP2 0 0.056 0.053 0.054 0.048 0.054 0.052
0.2 0.057 0.054 0.055 0.058 0.058 0.046
0.4 0.056 0.062 0.054 0.060 0.053 0.054
0.6 0.053 0.054 0.050 0.059 0.052 0.053
0.8 0.056 0.063 0.056 0.053 0.049 0.058

DGP3 0 0.060 0.052 0.058 0.049 0.052 0.056
0.2 0.054 0.053 0.063 0.058 0.051 0.053
0.4 0.057 0.062 0.053 0.055 0.056 0.051
0.6 0.055 0.054 0.055 0.055 0.054 0.056
0.8 0.056 0.052 0.058 0.051 0.059 0.050

T = 1000
DGP1 0 0.047 0.048 0.052 0.056 0.052 0.050

0.2 0.049 0.049 0.051 0.057 0.054 0.057
0.4 0.050 0.053 0.053 0.049 0.055 0.051
0.6 0.049 0.051 0.053 0.050 0.049 0.056
0.8 0.057 0.055 0.047 0.047 0.053 0.049

DGP2 0 0.049 0.053 0.057 0.052 0.049 0.051
0.2 0.054 0.056 0.057 0.051 0.047 0.054
0.4 0.052 0.055 0.054 0.053 0.051 0.051
0.6 0.053 0.047 0.051 0.053 0.052 0.054
0.8 0.049 0.053 0.055 0.057 0.052 0.058

DGP3 0 0.055 0.057 0.053 0.053 0.051 0.048
0.2 0.052 0.050 0.055 0.047 0.053 0.053
0.4 0.052 0.052 0.053 0.049 0.050 0.053
0.6 0.055 0.053 0.055 0.059 0.048 0.050
0.8 0.049 0.049 0.055 0.050 0.048 0.052
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B.2 Estimation Accuracy

To illustrate the gains that can be obtained by using the FGLS approach over equation-

by-equation OLS estimation (we thank a referee for suggesting these experiments) we have

performed a detailed Monte Carlo analysis into the finite sample bias and mean squared

error [MSE] of the estimates of the fractional integration parameter vector d := (d1, d2)
′,

computed as described in section 5.2 and in Hassler et al. (2009, Remark 2.7). The

simulation DGP is as described in (B.1)-(B.3) with d1 = 0.3 and d2 = 0.6, with 5000 Monte

Carlo replications. Tables B.2 and B.3 report the empirical average (taken across the 5000

Monte Carlo replications) of the estimates of the long memory parameters, computed as

d̄ki :=
1

5000

∑5000
j=1 d̂ki,j, together with the corresponding empirical MSEs computed as,

MSEk
i :=

1

5000

5000∑

j=1

(d̂ki,j − di)
2, (B.4)

where in each case i = 1, 2 and k = FGLS,OLS, and where d̂ki,j denotes the estimate of

di in the jth, j = 1, ..., 5000, Monte Carlo replication based on either FGLS estimation

(k = FGLS) or equation-by-equation OLS estimation (k = OLS).
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Table B.2: Empirical Average and MSE of fractional exponent estimates. DGP (B.1)-(B.3),
T = 500.

ρ d̄1
FGLS

d̄1
OLS

d̄2
FGLS

d̄2
OLS

MSEFGLS
1 MSEOLS

1 MSEFGLS
2 MSEOLS

2

i.i.d. errors
0 0.2979 0.2976 0.5978 0.5978 0.0013 0.0013 0.0013 0.0013

0.2 0.2981 0.2945 0.5984 0.5998 0.0013 0.0014 0.0012 0.0012
0.4 0.2980 0.2839 0.5987 0.6043 0.0013 0.0017 0.0013 0.0012
0.6 0.2979 0.2603 0.5984 0.6121 0.0013 0.0033 0.0013 0.0013
0.8 0.2986 0.2020 0.5985 0.6336 0.0013 0.0119 0.0013 0.0022

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.2976 0.2973 0.5978 0.5979 0.0015 0.0015 0.0015 0.0015

0.2 0.2980 0.2942 0.5986 0.6002 0.0015 0.0016 0.0014 0.0014
0.4 0.2979 0.2838 0.5984 0.6038 0.0015 0.0019 0.0015 0.0014
0.6 0.2976 0.2601 0.5982 0.6119 0.0015 0.0035 0.0015 0.0014
0.8 0.2986 0.2033 0.5981 0.6328 0.0015 0.0118 0.0015 0.0023

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.2971 0.2969 0.5968 0.5968 0.0015 0.0015 0.0016 0.0016

0.2 0.2980 0.2945 0.5978 0.5990 0.0015 0.0016 0.0015 0.0015
0.4 0.2975 0.2835 0.5978 0.6035 0.0015 0.0019 0.0015 0.0015
0.6 0.2990 0.2618 0.5980 0.6119 0.0016 0.0034 0.0015 0.0015
0.8 0.2981 0.2015 0.5979 0.6323 0.0016 0.0123 0.0015 0.0023

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.2971 0.2969 0.5981 0.5982 0.0016 0.0016 0.0016 0.0016

0.2 0.2983 0.2949 0.5988 0.6003 0.0016 0.0017 0.0015 0.0015
0.4 0.2971 0.2833 0.5973 0.6028 0.0016 0.0020 0.0016 0.0015
0.6 0.2966 0.2602 0.5970 0.6110 0.0017 0.0037 0.0016 0.0015
0.8 0.2974 0.2040 0.5968 0.6311 0.0015 0.0118 0.0016 0.0023

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.2972 0.2970 0.5981 0.5981 0.0018 0.0018 0.0017 0.0017

0.2 0.2971 0.2935 0.5991 0.6002 0.0017 0.0018 0.0016 0.0016
0.4 0.2973 0.2832 0.5979 0.6031 0.0017 0.0021 0.0017 0.0016
0.6 0.2972 0.2627 0.5973 0.6105 0.0017 0.0035 0.0017 0.0016
0.8 0.2976 0.2061 0.5970 0.6301 0.0018 0.0117 0.0017 0.0024
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Table B.3: Empirical Average and MSE of fractional exponent estimates. (B.1)-(B.3),
T = 1000.

ρ d̄1
FGLS

d̄1
OLS

d̄2
FGLS

d̄2
OLS

MSEFGLS
1 MSEOLS

1 MSEFGLS
2 MSEOLS

2

i.i.d. errors
0 0.2987 0.2985 0.5987 0.5987 0.0006 0.0006 0.0006 0.0006

0.2 0.2988 0.2952 0.5990 0.6004 0.0006 0.0007 0.0006 0.0006
0.4 0.2982 0.2830 0.5994 0.6049 0.0006 0.0010 0.0006 0.0006
0.6 0.2993 0.2593 0.5991 0.6130 0.0006 0.0025 0.0006 0.0007
0.8 0.2986 0.1901 0.5991 0.6341 0.0006 0.0136 0.0006 0.0017

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.2989 0.2987 0.5986 0.5986 0.0007 0.0007 0.0007 0.0007

0.2 0.2989 0.2952 0.5996 0.6009 0.0007 0.0008 0.0007 0.0007
0.4 0.2983 0.2834 0.5990 0.6046 0.0007 0.0011 0.0007 0.0007
0.6 0.2990 0.2585 0.5990 0.6129 0.0008 0.0028 0.0007 0.0008
0.8 0.2987 0.1921 0.5986 0.6333 0.0007 0.0131 0.0007 0.0017

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.2985 0.2984 0.5986 0.5986 0.0007 0.0007 0.0008 0.0008

0.2 0.2992 0.2957 0.5988 0.6000 0.0007 0.0008 0.0008 0.0007
0.4 0.2985 0.2834 0.5992 0.6047 0.0008 0.0011 0.0008 0.0007
0.6 0.2986 0.2587 0.5996 0.6136 0.0007 0.0028 0.0008 0.0009
0.8 0.2993 0.1933 0.5988 0.6332 0.0008 0.0129 0.0008 0.0017

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.2988 0.2987 0.5984 0.5984 0.0008 0.0008 0.0008 0.0008

0.2 0.2988 0.2952 0.5995 0.6007 0.0008 0.0009 0.0008 0.0008
0.4 0.2983 0.2835 0.5991 0.6045 0.0008 0.0012 0.0008 0.0008
0.6 0.2986 0.2593 0.5987 0.6123 0.0008 0.0028 0.0008 0.0009
0.8 0.2986 0.1945 0.5985 0.6324 0.0008 0.0128 0.0008 0.0017

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.2985 0.2984 0.5982 0.5982 0.0008 0.0008 0.0009 0.0009

0.2 0.2986 0.2953 0.5994 0.6005 0.0009 0.0009 0.0009 0.0009
0.4 0.2980 0.2839 0.5989 0.6041 0.0009 0.0012 0.0009 0.0008
0.6 0.2984 0.2603 0.5987 0.6118 0.0009 0.0028 0.0009 0.0009
0.8 0.2983 0.1972 0.5987 0.6314 0.0009 0.0123 0.0009 0.0018
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We also computed the empirical MSE of the parameter estimates of βi, i = 1, 2 in (6)

resulting from a multivariate linear regression model as in (5) with p = 0, using FGLS and

equation-by-equation OLS. Notice that in this restricted framework (p = 0) the βi, i = 1, 2

can be seen as indicators of over (βi < 0) or under differencing (βi > 0) of the time series

induced by the null hypothesis, as the null hypothesis implies that φ = 0 in (5) which in

the restricted case is equivalent to βi = 0, i = 1, 2.

Table B.4: Empirical MSE of the parameter estimates of the βi, i = 1, 2 in (6), β̂i, i = 1, 2,
computed by FGLS and OLS

ρ MSEFGLS
β̂1

MSEOLS
β̂1

MSEFGLS
β̂2

MSEOLS
β̂2

MSEFGLS
β̂1

MSEOLS
β̂1

MSEFGLS
β̂2

MSEOLS
β̂2

T = 500 T = 1000

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.0027 0.0027 0.0024 0.0024 0.0013 0.0013 0.0013 0.0013

0.2 0.0026 0.0027 0.0025 0.0026 0.0013 0.0013 0.0013 0.0013
0.4 0.0024 0.0027 0.0022 0.0025 0.0012 0.0013 0.0012 0.0013
0.6 0.0021 0.0026 0.0020 0.0025 0.0010 0.0013 0.0011 0.0013
0.8 0.0017 0.0027 0.0017 0.0026 0.0008 0.0013 0.0008 0.0013

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.0029 0.0029 0.0028 0.0028 0.0016 0.0016 0.0016 0.0016

0.2 0.0029 0.0030 0.0027 0.0028 0.0015 0.0016 0.0015 0.0015
0.4 0.0027 0.0030 0.0025 0.0028 0.0015 0.0016 0.0014 0.0016
0.6 0.0023 0.0029 0.0022 0.0027 0.0013 0.0017 0.0012 0.0015
0.8 0.0020 0.0029 0.0019 0.0028 0.0011 0.0016 0.0011 0.0016

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.0036 0.0036 0.0034 0.0034 0.0021 0.0021 0.0021 0.0021

0.2 0.0034 0.0035 0.0034 0.0035 0.0021 0.0022 0.0020 0.0020
0.4 0.0034 0.0038 0.0032 0.0035 0.0019 0.0021 0.0020 0.0021
0.6 0.0029 0.0036 0.0028 0.0034 0.0018 0.0022 0.0017 0.0021
0.8 0.0024 0.0035 0.0025 0.0034 0.0016 0.0022 0.0015 0.0021

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.0042 0.0043 0.0041 0.0041 0.0029 0.0029 0.0029 0.0029

0.2 0.0042 0.0043 0.0042 0.0042 0.0031 0.0031 0.0030 0.0030
0.4 0.0039 0.0042 0.0039 0.0042 0.0030 0.0032 0.0027 0.0029
0.6 0.0036 0.0043 0.0036 0.0043 0.0027 0.0031 0.0026 0.0030
0.8 0.0032 0.0044 0.0031 0.0042 0.0023 0.0031 0.0023 0.0031

B.3 The Impact of Nonzero Means

To illustrate the impact of nonzero means on the finite sample size performance of the

test procedure, we consider the following three cases: µ = 0,5,10 which correspond to

2 × 1 vectors of common elements (0, 5 and 10, respectively), and we use three different

demeaning approaches: i) no demeaning (which we denote as µ0); ii) demeaning only (which

we denote as µ1); and iii) demeaning and detrending (which we denote as µ2).
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Specifically, to account for a non-zero deterministic mean in the level of the series we use

the demeaning process described in Robinson (1994); Demetrescu et al. (2008) and Hassler

et al. (2016). Hence, to account for the nonzero means in (B.1) we regress the differences

(1− L)di+ yit :=
∑t−1

j=0 λj (di) yit−j on the variable ht,di :=
∑t−1

j=0 λj (di) , t = 2, ..., T, with

{λj (di)} as defined in (??) of the paper. Denote the resulting estimates µ̃i, i = 1, 2, and

the corresponding residuals as ε̃it,di := (1− L)di+ yit − µ̃iht,di . One then redefines the ith

element of the vector εt,d to be ε̃it,di , i = 1, 2, and then proceeds as before to compute the

respective test statistics; see Remark 8 for further details.

Table B.5: Impact of µ on finite sample size performance. Normally distributed innova-
tions. T = 500.

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ2

LMFGLS
d,µ2

LMFGLS
d,µ2

ρ µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.057 1.000 1.000 0.059 0.059 0.059 0.065 0.065 0.065

0.2 0.068 1.000 1.000 0.060 0.060 0.060 0.069 0.069 0.069
0.4 0.058 1.000 1.000 0.060 0.060 0.060 0.069 0.069 0.069
0.6 0.059 1.000 1.000 0.062 0.062 0.062 0.067 0.067 0.067
0.8 0.058 1.000 1.000 0.066 0.066 0.066 0.066 0.066 0.066

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.056 1.000 1.000 0.060 0.060 0.060 0.066 0.066 0.066

0.2 0.055 1.000 1.000 0.060 0.060 0.060 0.068 0.068 0.068
0.4 0.056 1.000 1.000 0.061 0.061 0.061 0.069 0.069 0.069
0.6 0.058 1.000 1.000 0.061 0.061 0.061 0.065 0.065 0.065
0.8 0.059 1.000 1.000 0.066 0.066 0.066 0.069 0.069 0.069

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.054 1.000 1.000 0.058 0.058 0.058 0.067 0.067 0.067

0.2 0.056 1.000 1.000 0.060 0.060 0.060 0.067 0.067 0.067
0.4 0.058 1.000 1.000 0.064 0.064 0.064 0.070 0.070 0.070
0.6 0.058 1.000 1.000 0.066 0.066 0.066 0.069 0.069 0.069
0.8 0.059 1.000 1.000 0.066 0.066 0.066 0.069 0.069 0.069

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.055 1.000 1.000 0.057 0.057 0.057 0.066 0.066 0.066

0.2 0.059 1.000 1.000 0.063 0.063 0.063 0.069 0.069 0.069
0.4 0.062 1.000 1.000 0.065 0.065 0.065 0.072 0.072 0.072
0.6 0.059 1.000 1.000 0.066 0.066 0.066 0.071 0.071 0.071
0.8 0.060 1.000 1.000 0.068 0.068 0.068 0.071 0.071 0.071

Note: LMFGLS
d,µi

, i = 0, 1, 2 correspond to statistics computed from data which has not been de-
meaned (µ0), data that has been demeaned (µ1) and data which has been demeaned and detrended
(µ2).
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Table B.6: Impact of µ on finite sample size performance. Normally distributed innova-
tions. T = 1000.

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ2

LMFGLS
d,µ2

LMFGLS
d,µ2

ρ µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.060 1.000 1.000 0.058 0.058 0.058 0.067 0.067 0.067

0.2 0.058 1.000 1.000 0.058 0.058 0.058 0.066 0.066 0.066
0.4 0.055 1.000 1.000 0.057 0.057 0.057 0.065 0.065 0.065
0.6 0.054 1.000 1.000 0.056 0.056 0.056 0.062 0.062 0.062
0.8 0.051 1.000 1.000 0.058 0.058 0.058 0.056 0.056 0.056

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.059 1.000 1.000 0.058 0.058 0.058 0.067 0.067 0.067

0.2 0.059 1.000 1.000 0.057 0.057 0.057 0.065 0.065 0.065
0.4 0.054 1.000 1.000 0.056 0.056 0.056 0.064 0.064 0.064
0.6 0.052 1.000 1.000 0.056 0.056 0.056 0.061 0.061 0.061
0.8 0.054 1.000 1.000 0.061 0.061 0.061 0.057 0.057 0.057

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.057 1.000 1.000 0.058 0.058 0.058 0.063 0.063 0.063

0.2 0.055 1.000 1.000 0.056 0.056 0.056 0.064 0.064 0.064
0.4 0.056 1.000 1.000 0.057 0.057 0.057 0.060 0.060 0.060
0.6 0.053 1.000 1.000 0.057 0.057 0.057 0.059 0.059 0.059
0.8 0.050 1.000 1.000 0.059 0.059 0.059 0.059 0.059 0.050

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.053 1.000 1.000 0.056 0.056 0.056 0.060 0.060 0.060

0.2 0.054 1.000 1.000 0.054 0.054 0.054 0.060 0.060 0.060
0.4 0.054 1.000 1.000 0.056 0.056 0.056 0.060 0.060 0.060
0.6 0.051 1.000 1.000 0.056 0.056 0.056 0.056 0.056 0.056
0.8 0.052 1.000 1.000 0.060 0.060 0.060 0.058 0.058 0.058

Note: See note under Table B.5
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Table B.7: Impact of µ on finite sample size performance. Student-t distributed innovations
(5 degrees of freedom). T = 500.

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ2

LMFGLS
d,µ2

LMFGLS
d,µ2

ρ µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.065 1.000 1.000 0.066 0.066 0.066 0.070 0.070 0.070

0.2 0.063 1.000 1.000 0.064 0.064 0.064 0.073 0.073 0.073
0.4 0.064 1.000 1.000 0.066 0.066 0.066 0.076 0.076 0.076
0.6 0.062 1.000 1.000 0.065 0.065 0.065 0.075 0.075 0.075
0.8 0.061 1.000 1.000 0.070 0.070 0.070 0.071 0.071 0.071

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.060 0.998 1.000 0.065 0.065 0.065 0.069 0.069 0.069

0.2 0.062 0.997 1.000 0.063 0.063 0.063 0.072 0.072 0.072
0.4 0.063 0.997 1.000 0.064 0.064 0.064 0.073 0.073 0.073
0.6 0.064 0.998 1.000 0.063 0.063 0.063 0.073 0.073 0.073
0.8 0.064 0.999 1.000 0.068 0.068 0.068 0.070 0.070 0.070

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.063 0.970 0.997 0.064 0.064 0.064 0.067 0.067 0.067

0.2 0.065 0.969 0.996 0.063 0.063 0.063 0.070 0.070 0.070
0.4 0.065 0.969 0.995 0.065 0.065 0.065 0.072 0.072 0.072
0.6 0.069 0.973 0.995 0.065 0.065 0.065 0.070 0.070 0.070
0.8 0.069 0.982 0.997 0.072 0.072 0.072 0.074 0.074 0.074

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.057 0.627 0.870 0.059 0.059 0.059 0.064 0.064 0.064

0.2 0.060 0.621 0.862 0.061 0.061 0.061 0.065 0.065 0.065
0.4 0.059 0.620 0.860 0.062 0.062 0.062 0.069 0.069 0.069
0.6 0.064 0.641 0.868 0.063 0.063 0.063 0.068 0.068 0.068
0.8 0.064 0.699 0.892 0.065 0.065 0.065 0.069 0.069 0.069

Note: See note under Table B.5
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Table B.8: Impact of µ on finite sample size performance. Student-t distributed innovations
(5 degrees of freedom). T = 1000.

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ0

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ1

LMFGLS
d,µ2

LMFGLS
d,µ2

LMFGLS
d,µ2

ρ µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10 µ = 0 µ = 5 µ = 10

GARCH: θ1 = 0.1; θ2 = 0.5
0 0.052 1.000 1.000 0.056 0.056 0.056 0.059 0.059 0.059

0.2 0.053 1.000 1.000 0.056 0.056 0.056 0.057 0.057 0.057
0.4 0.057 1.000 1.000 0.058 0.058 0.058 0.059 0.059 0.059
0.6 0.056 1.000 1.000 0.058 0.058 0.058 0.056 0.056 0.056
0.8 0.051 1.000 1.000 0.059 0.059 0.059 0.053 0.053 0.053

GARCH: θ1 = 0.1; θ2 = 0.7
0 0.057 0.998 1.000 0.059 0.059 0.059 0.063 0.063 0.063

0.2 0.053 0.998 1.000 0.056 0.056 0.056 0.057 0.057 0.057
0.4 0.054 0.998 1.000 0.056 0.056 0.056 0.058 0.058 0.058
0.6 0.055 0.999 1.000 0.059 0.059 0.059 0.057 0.057 0.057
0.8 0.055 0.999 1.000 0.058 0.058 0.058 0.059 0.059 0.059

GARCH: θ1 = 0.1; θ2 = 0.8
0 0.059 0.962 0.997 0.064 0.064 0.064 0.065 0.065 0.065

0.2 0.062 0.959 0.997 0.063 0.063 0.063 0.064 0.064 0.064
0.4 0.057 0.961 0.996 0.061 0.061 0.061 0.063 0.063 0.063
0.6 0.059 0.965 0.997 0.059 0.059 0.059 0.061 0.061 0.061
0.8 0.060 0.979 0.998 0.063 0.063 0.063 0.065 0.065 0.065

GARCH: θ1 = 0.1; θ2 = 0.85
0 0.065 0.508 0.774 0.065 0.065 0.065 0.067 0.067 0.067

0.2 0.067 0.502 0.769 0.066 0.066 0.066 0.068 0.068 0.068
0.4 0.062 0.507 0.768 0.064 0.064 0.064 0.065 0.065 0.065
0.6 0.062 0.519 0.776 0.061 0.061 0.061 0.063 0.063 0.063
0.8 0.063 0.576 0.803 0.062 0.062 0.062 0.062 0.062 0.062

Note: See note under Table B.5
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B.4 Performance Under Fractional Cointegration

The data generation process (DGP) considered for investigating the impact of fractional

cointegration is the same as that used in Nielsen (2005); that is,

y1t = y2t + ut (B.5)[
(1− L)d−θ 0

0 (1− L)d

][
ut

y2t

]
= εtI(t ≥ 1) (B.6)

where

εt ∼ i.i.d. N

((
0

0

)
,

(
1 ρ

ρ 1

))
.

For ρ = 0, y2t is strictly exogenous whereas for ρ 6= 0, y2t is endogenous. We consider

ρ ∈ {0, 0.4, 0.8}.
Table B.9 reports empirical rejection frequencies for the LMFGLS

d , LMMLE
d and the

BHd tests for data generated from (B.5)–(B.6) with d = 0.6 (without loss of generality)

and for θ ∈ {0,−0.01,−0.02, ...,−0.2}. The parameter θ measures the degree of fractional

cointegration, with the case of no fractional cointegration corresponding to θ = 0. All of

the tests are run at the nominal 5% level.
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Table B.9: Empirical Rejection Frequencies under Fractional Cointegration - T = 500

θ ρ LMFGLS
d LMMLE

d BHd ρ LMFGLS
d LMMLE

d BHd ρ LMFGLS
d LMMLE

d BHd ρ LMFGLS
d LMMLE

d BHd ρ LMFGLS
d LMMLE

d BHd

0.00 0 0.052 0.049 0.051 0.20 0.052 0.048 0.048 0.40 0.051 0.048 0.046 0.60 0.054 0.051 0.047 0.80 0.055 0.045 0.044
-0.01 0 0.055 0.057 0.051 0.20 0.062 0.064 0.054 0.40 0.056 0.060 0.059 0.60 0.055 0.064 0.054 0.80 0.064 0.075 0.066
-0.02 0 0.057 0.083 0.064 0.20 0.073 0.081 0.062 0.40 0.071 0.084 0.065 0.60 0.076 0.098 0.075 0.80 0.087 0.136 0.090
-0.03 0 0.079 0.113 0.081 0.20 0.082 0.130 0.090 0.40 0.083 0.134 0.097 0.60 0.092 0.158 0.109 0.80 0.117 0.242 0.165
-0.04 0 0.095 0.178 0.125 0.20 0.095 0.165 0.109 0.40 0.096 0.191 0.124 0.60 0.119 0.246 0.155 0.80 0.172 0.391 0.271
-0.05 0 0.123 0.245 0.154 0.20 0.115 0.239 0.160 0.40 0.139 0.275 0.177 0.60 0.172 0.350 0.233 0.80 0.247 0.566 0.416
-0.06 0 0.143 0.321 0.210 0.20 0.149 0.325 0.211 0.40 0.170 0.363 0.244 0.60 0.218 0.465 0.329 0.80 0.341 0.735 0.586
-0.07 0 0.188 0.431 0.291 0.20 0.189 0.434 0.291 0.40 0.218 0.501 0.340 0.60 0.273 0.606 0.459 0.80 0.434 0.854 0.728
-0.08 0 0.219 0.513 0.355 0.20 0.235 0.548 0.386 0.40 0.258 0.603 0.433 0.60 0.332 0.722 0.561 0.80 0.545 0.930 0.838
-0.09 0 0.263 0.625 0.446 0.20 0.287 0.647 0.463 0.40 0.328 0.709 0.530 0.60 0.415 0.839 0.690 0.80 0.664 0.974 0.924
-0.10 0 0.335 0.728 0.552 0.20 0.353 0.745 0.565 0.40 0.388 0.799 0.641 0.60 0.498 0.902 0.786 0.80 0.762 0.993 0.967
-0.11 0 0.400 0.811 0.641 0.20 0.405 0.826 0.652 0.40 0.466 0.876 0.741 0.60 0.588 0.952 0.869 0.80 0.828 0.998 0.989
-0.12 0 0.459 0.871 0.729 0.20 0.465 0.886 0.741 0.40 0.521 0.924 0.809 0.60 0.660 0.978 0.924 0.80 0.898 0.999 0.997
-0.13 0 0.532 0.923 0.800 0.20 0.553 0.932 0.829 0.40 0.611 0.961 0.888 0.60 0.739 0.992 0.960 0.80 0.929 1.000 0.999
-0.14 0 0.593 0.956 0.861 0.20 0.613 0.968 0.885 0.40 0.688 0.981 0.926 0.60 0.802 0.997 0.981 0.80 0.968 1.000 1.000
-0.15 0 0.651 0.978 0.913 0.20 0.667 0.978 0.928 0.40 0.749 0.993 0.961 0.60 0.852 0.999 0.991 0.80 0.984 1.000 1.000
-0.16 0 0.723 0.987 0.944 0.20 0.738 0.993 0.956 0.40 0.805 0.996 0.977 0.60 0.899 1.000 0.997 0.80 0.994 1.000 1.000
-0.17 0 0.777 0.995 0.973 0.20 0.811 0.997 0.975 0.40 0.851 0.999 0.990 0.60 0.939 1.000 0.999 0.80 0.997 1.000 1.000
-0.18 0 0.822 0.996 0.980 0.20 0.851 0.999 0.990 0.40 0.891 1.000 0.996 0.60 0.956 1.000 0.999 0.80 0.999 1.000 1.000
-0.19 0 0.871 0.999 0.993 0.20 0.885 1.000 0.994 0.40 0.918 1.000 0.998 0.60 0.975 1.000 1.000 0.80 0.999 1.000 1.000
-0.20 0 0.906 0.999 0.995 0.20 0.914 1.000 0.998 0.40 0.945 1.000 0.999 0.60 0.984 1.000 1.000 0.80 1.000 1.000 1.000
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Appendix C - Empirical Results

C.1 Implementation of the Nielsen and Shimotsu (2007)

Procedure

For a bivariate system, the NS test statistic, T0, for testing the null hypothesis of equality
in the long memory coefficients is defined as

T0 := mT

(
S d̂T

)′(1

4
S D−1

T (GT ⊙GT )D
−1
T S

′ +
1

sT

)−1 (
S d̂T

)
(C.1)

where S := (1,−1)′ , d̂T denotes an
√
mT−consistent estimate of the long memory param-

eter vector, GT = {ĝij} , i, j ∈ {1, 2} , is a consistent estimate of the spectral density of εt
at the origin, DT := diag (ĝ11, ĝ22) , and mT and sT are positive sequences that diverge at
a suitable rate as T → ∞.

The cointegration rank can be consistently estimated through a model selection proce-
dure based on the eigenvalues δ̂∗i of the correlation matrix PT := D

∗−1/2
T G∗

TD
∗−1/2
T , with

G∗
T denoting an estimate of the spectral density of ∆d∗

T (L)yt := εt (d
∗
T ) at the origin, with

d∗
T denoting a k-vector with all entries equal to the sample mean of d̂T , and D

∗
T defined

analogously to DT . In particular, G∗
T :=

∑m1T

j=1 ℜ
[
Iεt(d∗) (λj)

]
/m1T , where Iu (λj) is the

periodogram of u evaluated at the fundamental frequencies λj := 2πj/T , m1T is a band-

width parameter, and ℜ[·] denotes the real part of the argument. Given the eigenvalues δ̂∗i
and a suitable bandwith parameter vT , the cointegration rank can be determined as

r̂T = arg min
u=0,1

L (u) , L (u) := vT (2− u)−
2−u∑

i=1

δ̂∗i . (C.2)

C.2 Additional Empirical Results

C.2.1 Descriptive statistics and robustness checks
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Table C.1. Descriptive statistics (mean, standard deviation, minimum, maximum, skewness and kurtosis) and Engle’s LM test for ARCH

effects, for the log-volume, log absolute returns, log range estimator and log-realized variance for each stock series considered.

Log Trading Volume Log Absolute Returns
Ticker Company Mean StdDev Max Min Skew. Kurt. LM(1) LM(5) Mean StdDev Max Min Skew. Kurt. LM(1) LM(5)

AAPL Apple 16.70 0.74 19.06 14.14 -0.44 3.00 18.91∗∗∗ 32.79∗∗∗ -4.62 1.16 -1.72 -10.98 -1.01 4.73 0.06 0.95
AXP Amex 15.65 0.62 18.32 13.70 0.63 3.32 16.92∗∗∗ 17.89∗∗∗ -4.87 1.23 -1.58 -9.15 -0.56 3.51 0.58 1.14
BA Boeing Co 15.32 0.45 17.61 13.13 0.34 3.67 2.56 5.22 -4.83 1.11 -1.87 -10.20 -0.90 4.24 0.20 7.65
CAT Caterpillar 15.47 0.64 18.03 12.87 -0.14 2.90 1.06 3.88 -4.78 1.17 -1.92 -9.34 -0.87 4.05 1.82 3.60
CSCO Cisco Systems 17.69 0.41 20.15 15.78 0.25 4.92 76.00∗∗∗ 82.54∗∗∗ -4.81 1.11 -1.82 -9.76 -0.69 3.55 0.01 1.53
CVX Chevron 15.79 0.56 17.69 13.52 -0.35 3.00 34.83∗∗∗ 36.16∗∗∗ -4.97 1.10 -1.57 -9.47 -0.91 4.35 3.56∗ 4.05
DD DuPont Co. 15.41 0.47 17.26 13.35 0.19 3.04 6.01 8.18 -4.96 1.13 -2.17 -8.81 -0.74 3.64 0.21 3.27
DIS Walt Disney Co. 16.01 0.44 18.56 14.20 0.44 4.05 20.03∗∗∗ 20.68∗∗∗ -4.91 1.10 -1.83 -9.11 -0.66 3.48 0.00 1.16
GE General Electrics 17.45 0.65 20.44 15.44 0.56 3.24 13.85∗∗∗ 15.61∗∗∗ -4.97 1.11 -1.62 -9.02 -0.45 3.30 0.11 4.97
GS Goldman Sachs 15.51 0.70 18.56 13.46 0.73 3.54 8.78∗∗∗ 9.59∗ -4.77 1.21 -1.33 -9.97 -0.85 4.25 1.79 2.52
HD Home Depot 16.16 0.53 18.36 14.41 0.29 2.89 22.61∗∗∗ 29.70∗∗∗ -4.92 1.12 -1.96 -9.00 -0.66 3.39 0.02 3.96
IBM IBM 15.55 0.44 17.24 14.16 0.29 3.29 31.17∗∗∗ 40.61∗∗∗ -5.16 1.12 -2.16 -9.92 -0.84 4.18 1.81 4.91
INTC Intel Corporation 17.79 0.43 19.55 16.26 -0.21 3.59 65.84∗∗∗ 68.98∗∗∗ -4.74 1.08 -2.09 -12.43 -0.86 4.52 0.20 4.22
JNJ Johnson & Johnson 16.06 0.42 18.40 14.06 0.33 3.85 39.50∗∗∗ 41.20∗∗∗ -5.45 1.14 -2.10 -9.29 -0.73 3.58 0.06 2.69
JPM JPMorgan Chase & Co. 16.81 0.75 19.20 14.11 0.30 2.51 6.41∗∗ 7.74 -4.80 1.22 -1.38 -8.73 -0.50 3.41 3.43∗ 5.99
KO The Coca-Cola Co. 15.97 0.49 18.41 13.89 0.16 3.07 12.08∗∗∗ 15.27∗∗∗ -5.30 1.07 -1.97 -8.90 -0.61 3.40 0.03 3.06
MCD McDonald’s Corporation 15.63 0.44 18.28 13.96 0.47 4.00 22.89∗∗∗ 26.32∗∗∗ -5.15 1.12 -2.37 -10.35 -0.84 3.92 0.43 2.73
MMM 3M Co. 14.97 0.43 17.01 13.39 0.52 3.88 3.72∗ 15.75∗∗∗ -5.18 1.15 -2.31 -9.69 -0.75 3.81 1.64 2.46
MRK Merck & Co., Inc. 16.25 0.51 18.79 14.45 0.38 3.62 8.65∗∗∗ 10.84∗ -4.99 1.09 -1.32 -8.70 -0.63 3.61 1.15 4.19
MSFT Microsoft Corporation 17.83 0.42 20.20 16.22 0.11 4.08 18.08∗∗∗ 20.07∗∗∗ -4.98 1.11 -1.68 -9.19 -0.63 3.42 0.10 5.40
NKE Nike 14.67 0.57 16.89 12.74 0.03 3.14 24.61∗∗∗ 43.40∗∗∗ -4.98 1.12 -2.07 -9.19 -0.70 3.81 1.21 4.27
PFE Pfizer Inc. 17.31 0.50 19.49 15.18 0.26 3.23 16.91∗∗∗ 26.21∗∗∗ -5.02 1.04 -2.19 -8.44 -0.58 3.25 0.07 3.31
PG Procter & Gamble Co. 15.93 0.55 18.09 13.15 -0.26 3.51 30.12∗∗∗ 34.28∗∗∗ -5.37 1.09 -2.28 -9.86 -0.69 3.65 0.35 0.83
TRV Travelers Companies Inc 14.97 0.53 17.14 13.15 0.12 2.79 8.92∗∗∗ 9.56∗ -5.01 1.21 -1.36 -9.25 -0.57 3.55 1.57 7.19
UNH UnitedHealth Group Inc 15.56 0.63 17.76 13.38 -0.01 2.85 5.62∗∗ 8.59 -4.84 1.16 -1.06 -9.18 -0.79 3.95 0.01 2.94
UTX United Technologies Corporation 15.10 0.49 16.86 12.82 0.03 3.14 8.73∗∗∗ 11.46∗∗ -5.06 1.15 -1.99 -9.34 -0.82 3.80 4.34∗∗ 7.80
VZ Verizon Communications Inc. 16.31 0.50 20.24 14.47 0.37 4.67 16.11∗∗∗ 29.33∗∗∗ -5.09 1.08 -1.92 -8.52 -0.66 3.36 3.42∗ 4.73
V Visa Inc 14.39 1.47 18.25 10.52 -0.45 2.10 52.43∗∗∗ 65.75∗∗∗ -4.75 1.13 -1.90 -10.01 -0.84 4.20 0.77 4.49
WMT Wal-Mart Stores Inc 16.23 0.52 18.39 14.56 0.23 2.92 15.58∗∗∗ 15.88∗∗∗ -5.23 1.09 -2.20 -9.32 -0.78 3.78 0.76 1.56
XOM Exxon Mobil Corporation 16.69 0.47 18.59 15.24 0.34 3.04 23.21∗∗∗ 24.30∗∗∗ -5.05 1.12 -1.76 -9.15 -0.90 4.20 0.91 1.30

Note: ***, ** and * indicate significance at the 1%, 5% and 10% significance level, respectively; and LM(1) and LM(5), correspond to Engle’s
LM test results for ARCH effects using 1 and 5 lags of the squared residuals of an ARFIMA, respectively.
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Table C.2. Descriptive statistics (mean, standard deviation, minimum, maximum, skewness and kurtosis) and Engle’s LM test for ARCH

effects, for the log-volume, log absolute returns, log range estimator and log-realized variance for each stock series considered.

Log Range Log Realised Variance
Ticker Company Mean StdDev Max Min Skew. Kurt. LM(1) LM(5) Mean StdDev Max Min Skew. Kurt. LM(1) LM(5) Obs.
AAPL Apple -8.51 1.06 -3.40 -12.65 0.15 3.35 5.69∗∗ 7.92 -8.01 1.04 -3.78 -11.34 0.39 3.61 27.76∗∗∗ 27.87∗∗∗ 3008
AXP Amex -8.91 1.29 -3.35 -12.81 0.69 3.55 2.70∗ 3.35 -8.33 1.25 -2.75 -11.41 0.77 3.49 9.46∗∗∗ 16.26∗∗∗ 3000
BA Boeing Co -8.89 0.96 -4.65 -11.69 0.45 3.59 0.04 2.74 -8.33 0.95 -3.18 -10.75 0.84 4.32 5.81∗∗ 8.34 3013
CAT Caterpillar -8.71 1.00 -3.81 -11.23 0.55 3.68 8.26∗∗∗ 10.25∗ -8.14 1.01 -4.14 -10.77 0.80 3.83 29.20∗∗∗ 30.47∗∗∗ 3009
CSCO Cisco Systems -8.73 0.94 -4.61 -12.35 0.26 3.61 1.22 11.94∗∗ -8.12 0.92 -3.79 -10.92 0.74 4.27 110.06∗∗∗ 110.81∗∗∗ 2976
CVX Chevron -9.15 0.97 -4.50 -11.94 0.62 4.36 25.95∗∗∗ 30.13∗∗∗ -8.54 0.96 -4.02 -11.37 0.66 3.95 16.64∗∗∗ 24.03∗∗∗ 3009
DD DuPont Co. -8.99 1.00 -4.65 -11.91 0.59 3.71 4.87∗∗ 11.68∗∗ -8.43 0.98 -4.21 -11.04 0.77 3.80 11.22∗∗∗ 11.69∗∗ 2998
DIS Walt Disney Co. -9.00 1.00 -4.65 -12.09 0.54 3.85 0.93 3.01 -8.40 0.98 -2.74 -10.82 0.90 4.37 35.89∗∗∗ 39.85∗∗∗ 2988
GE General Electrics -9.13 1.17 -3.67 -12.36 0.80 4.15 3.46∗ 22.30∗∗∗ -8.47 1.12 -3.18 -11.11 1.04 4.56 38.61∗∗∗ 43.33∗∗∗ 2968
GS Goldman Sachs -8.68 1.10 -2.89 -11.77 0.94 4.81 33.66∗∗∗ 39.78∗∗∗ -8.15 1.06 -2.81 -10.68 1.04 4.59 24.55∗∗∗ 37.32∗∗∗ 3013
HD Home Depot -8.87 1.03 -3.74 -12.13 0.57 3.73 1.32 6.04 -8.28 1.00 -3.63 -10.84 0.80 3.93 26.33∗∗∗ 24.40∗∗∗ 2994
IBM IBM -9.44 0.95 -5.27 -12.90 0.67 4.37 9.22∗∗∗ 17.09∗∗∗ -8.80 0.94 -3.64 -11.22 0.94 4.52 14.19∗∗∗ 20.07∗∗∗ 3011
INTC Intel Corporation -8.71 0.90 -5.03 -11.77 0.31 3.49 3.08∗∗ 19.55∗∗∗ -8.08 0.90 -3.96 -10.77 0.69 3.83 36.79∗∗∗ 39.49∗∗∗ 2982
JNJ Johnson & Johnson -9.83 0.96 -4.85 -12.98 0.54 3.82 2.51 19.80∗∗∗ -9.18 0.92 -4.75 -11.68 0.81 4.21 9.99∗∗∗ 18.23∗∗∗ 2991
JPM JPMorgan Chase & Co. -8.73 1.21 -3.80 -12.10 0.69 3.67 5.84∗∗ 10.67∗ -8.17 1.18 -3.65 -10.96 0.82 3.60 22.66∗∗∗ 29.72∗∗∗ 3001
KO The Coca-Cola Co. -9.62 0.92 -5.09 -13.29 0.64 4.31 3.42∗ 15.68∗∗∗ -9.00 0.91 -4.09 -11.64 1.00 4.98 6.90∗∗∗ 8.38 2980
MCD McDonald’s Corporation -9.38 1.03 -3.67 -12.52 0.36 3.44 5.26∗∗ 13.32∗∗ -8.75 1.00 -3.30 -11.59 0.68 4.12 14.50∗∗∗ 17.97∗∗∗ 2998
MMM 3M Co. -9.39 0.96 -3.20 -12.20 0.58 4.31 1.07 4.38 -8.79 0.96 -4.17 -11.28 0.82 4.26 6.91∗∗∗ 9.67∗ 2999
MRK Merck & Co., Inc. -9.02 1.02 -4.15 -12.13 0.58 3.99 1.56 2.25 -8.45 0.95 -3.79 -10.82 0.92 4.51 5.63∗∗ 6.48 2999
MSFT Microsoft Corporation -9.06 0.95 -4.29 -12.01 0.62 3.98 4.81∗∗ 7.50 -8.46 0.92 -4.25 -10.88 0.84 4.13 25.01∗∗∗ 25.26∗∗∗ 2978
NKE Nike -9.02 0.99 -4.47 -11.59 0.63 3.81 3.06 4.08 -8.48 0.96 -3.93 -10.86 0.97 4.34 53.62∗∗∗ 63.74∗∗∗ 3004
PFE Pfizer Inc. -9.10 0.92 -4.31 -11.91 0.60 4.25 1.03 2.99 -8.44 0.87 -3.42 -10.77 0.90 4.83 2.12 5.37 2976
PG Procter & Gamble Co. -9.72 0.95 -2.23 -12.88 0.78 5.62 2.82∗ 16.19∗∗∗ -9.07 0.88 -4.66 -11.39 0.99 4.86 4.87∗∗ 7.02 2989
TRV Travelers Companies Inc -9.08 1.27 -3.47 -11.98 0.86 3.88 13.77∗∗∗ 20.93∗∗∗ -8.47 1.25 -3.40 -11.26 0.81 3.63 39.47∗∗∗ 44.31∗∗∗ 1963
UNH UnitedHealth Group Inc -8.68 1.07 -3.33 -12.01 0.69 3.83 7.45∗∗∗ 10.43∗∗ -8.16 1.03 -3.69 -10.63 0.88 3.96 8.23∗∗∗ 8.87 3002
UTX United Technologies Corporation -9.21 0.95 -4.50 -12.02 0.46 3.91 1.94 4.79 -8.61 0.94 -3.74 -11.01 0.93 4.65 28.97∗∗∗ 37.35∗∗∗ 3008
VZ Verizon Communications Inc. -9.20 0.99 -4.17 -11.99 0.58 3.78 0.45 3.33 -8.61 0.95 -3.99 -11.28 0.75 4.09 21.79∗∗∗ 33.75∗∗∗ 2595
V Visa Inc -8.97 1.14 -4.67 -12.26 0.63 3.48 17.82∗∗∗ 23.87∗∗∗ -8.26 1.05 -4.04 -11.37 0.68 3.30 12.72∗∗∗ 19.08∗∗∗ 2990
WMT Wal-Mart Stores Inc -9.46 0.93 -4.64 -12.74 0.46 4.04 5.04 7.43 -8.83 0.93 -3.82 -11.33 0.84 4.21 12.36∗∗∗ 28.28∗∗∗ 3000
XOM Exxon Mobil Corporation -9.28 0.96 -4.43 -12.04 0.58 4.34 1.80 10.45∗ -8.64 0.92 -4.05 -11.10 0.85 4.67 132.51∗∗∗ 141.60∗∗∗ 3001

Note: ***, ** and * indicate significance at the 1%, 5% and 10% significance level, respectively; and LM(1) and LM(5), correspond to Engle’s
LM test results for ARCH effects using 1 and 5 lags of the squared residuals of an ARFIMA, respectively.
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Table C.3. Robustness checks in the joint analysis on log-volume and log-realised variance against the choice of p and the inclusion of a time

trend in volatility. Auxiliary regressions are augmented with p lags, with either p=2 or p determined according to Schwert’s rule.

p = 2, no linear trend p = 2, linear trend Schwert’s rule, linear trend
Stock 95 % CI VLM 95 % CIB RV Common d ρ̂e 95 % CIB VLM 95 % CIB RV Common d ρ̂e 95 % CIB 95 % CIB Common d ρ̂e
AAPL [0.49,0.57] [0.45,0.53] [0.49,0.53] 0.62 [0.49,0.57] [0.43,0.51] - 0.62 [0.56,0.73] [0.51,0.70] [0.56,0.70] 0.62
AXP [0.38,0.47] [0.44,0.52] [0.45,0.47] 0.48 [0.38,0.47] [0.44,0.51] [0.45,0.47] 0.48 [0.45,0.60] [0.50,0.70] [0.52,0.57] 0.49
BA [0.27,0.40] [0.40,0.49] - 0.52 [0.27,0.39] [0.39,0.48] - 0.52 [0.29,0.49] [0.43,0.67] - 0.52
CAT [0.34,0.46] [0.41,0.48] [0.42,0.46] 0.58 [0.34,0.45] [0.41,0.48] [0.42,0.45] 0.58 [0.36,0.59] [0.50,0.69] - 0.58
CSCO [0.28,0.40] [0.38,0.46] - 0.53 [0.27,0.39] [0.36,0.44] [0.38,0.39] 0.53 [0.30,0.49] [0.45,0.63] - 0.53
CVX [0.38,0.48] [0.43,0.51] [0.43,0.48] 0.43 [0.38,0.48] [0.42,0.51] [0.43,0.48] 0.43 [0.41,0.59] [0.47,0.68] [0.47,0.58] 0.43
DD [0.39,0.47] [0.30,0.41] - 0.45 [0.30,0.41] [0.39,0.47] - 0.45 [0.29,0.49] [0.45,0.66] - 0.46
DIS [0.28,0.39] [0.40,0.49] - 0.42 [0.27,0.39] [0.39,0.48] - 0.42 [0.26,0.48] [0.46,0.67] - 0.42
GE [0.38,0.47] [0.43,0.52] [0.45,0.46] 0.50 [0.37,0.47] [0.43,0.52] [0.44,0.46] 0.50 [0.42,0.60] [0.46,0.67] [0.46,0.59] 0.51
GS [0.41,0.51] [0.43,0.50] [0.43,0.50] 0.58 [0.41,0.51] [0.42,0.50] [0.42,0.49] 0.58 [0.46,0.64] [0.47,0.67] [0.48,0.64] 0.58
HD [0.36,0.47] [0.42,0.49] [0.43,0.47] 0.46 [0.35,0.46] [0.40,0.48] [0.41,0.46] 0.47 [0.45,0.62] [0.48,0.68] [0.49,0.62] 0.47
IBM [0.31,0.41] [0.39,0.47] - 0.46 [0.30,0.41] [0.38,0.47] - 0.46 [0.30,0.49] [0.42,0.64] - 0.47
INTC [0.23,0.38] [0.38,0.46] - 0.50 [0.23,0.38] [0.37,0.45] - 0.50 [0.12,0.40] [0.47,0.66] - 0.50
JNJ [0.31,0.42] [0.41,0.50] - 0.44 [0.30,0.42] [0.40,0.49] - 0.44 [0.35,0.54] [0.45,0.71] - 0.44
JPM [0.41,0.49] [0.44,0.51] [0.44,0.49] 0.55 [0.40,0.49] [0.43,0.51] [0.44,0.49] 0.55 [0.50,0.65] [0.51,0.69] [0.51,0.65] 0.56
KO [0.32,0.44] [0.40,0.48] [0.41,0.44] 0.46 [0.32,0.44] [0.39,0.47] [0.40,0.44] 0.46 [0.33,0.57] [0.51,0.68] - 0.47
MCD [0.28,0.41] [0.38,0.46] - 0.45 [0.26,0.40] [0.34,0.42] [0.36,0.40] 0.45 [0.28,0.53] [0.45,0.67] - 0.46
MMM [0.26,0.40] [0.37,0.45] - 0.46 [0.26,0.40] [0.37,0.45] - 0.46 [0.23,0.50] [0.44,0.65] - 0.47
MRK [0.31,0.44] [0.38,0.46] [0.38,0.44] 0.50 [0.31,0.44] [0.37,0.45] [0.37,0.44] 0.50 [0.27,0.55] [0.44,0.63] [0.46,0.54] 0.50
MSFT [0.22,0.39] [0.39,0.47] - 0.50 [0.22,0.39] [0.39,0.46] - 0.50 [0.41,0.61] [0.05,0.43] - 0.50
NKE [0.28,0.39] [0.38,0.46] - 0.43 [0.28,0.39] [0.38,0.46] - 0.43 [0.28,0.50] [0.45,0.63] - 0.44
PFE [0.30,0.43] [0.39,0.48] [0.42,0.43] 0.45 [0.30,0.43] [0.39,0.48] [0.41,0.43] 0.45 [0.19,0.51] [0.40,0.66] - 0.45
PG [0.28,0.42] [0.38,0.47] [0.40,0.41] 0.43 [0.28,0.42] [0.38,0.47] [0.39,0.41] 0.43 [0.24,0.52] [0.39,0.60] [0.41,0.52] 0.43
TRV [0.35,0.49] [0.45,0.56] - 0.43 [0.34,0.48] [0.41,0.54] [0.43,0.47] 0.43 [0.38,0.73] [0.33,0.50] [0.59,0.70] 0.43
UNH [0.28,0.42] [0.40,0.48] - 0.52 [0.28,0.42] [0.40,0.48] - 0.52 [0.22,0.53] [0.52,0.70] - 0.52
UTX [0.31,0.42] [0.41,0.49] - 0.44 [0.31,0.42] [0.40,0.49] - 0.44 [0.34,0.53] [0.46,0.66] - 0.44
V [0.51,0.60] [0.43,0.51] - 0.44 [0.50,0.59] [0.41,0.49] - 0.44 [0.61,0.82] [0.49,0.70] - 0.44
VZ [0.32,0.46] [0.44,0.52] - 0.41 [0.32,0.46] [0.42,0.51] - 0.42 [0.31,0.58] [0.47,0.68] [0.48,0.57] 0.42
WMT [0.28,0.40] [0.36,0.44] - 0.51 [0.27,0.39] [0.34,0.42] [0.36,0.39] 0.51 [0.29,0.54] [0.42,0.62] [0.44,0.53] 0.51
XOM [0.33,0.45] [0.38,0.48] [0.39,0.45] 0.45 [0.33,0.45] [0.38,0.48] [0.38,0.45] 0.45 [0.36,0.59] [0.37,0.64] [0.38,0.59] 0.46
Average 0.48 0.48 0.48
Rejection Rate 56.67% 46.67% 56.67%
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C.2.2 Confidence ellipsoids long memory coefficients for volatility and 

trading volume. Volatility proxy (𝜎): absolute returns. 

The figures that follow present 90%, 95%, and 99% confidence sets for the long memory 

parameters of log-trading volume and log-volatility of the stocks under analysis. The confidence 

sets are obtained from empirical level curves of the 𝐿𝑀𝒅
"#$% test statistic evaluated at different 

values given the sample observations, for level curves corresponding to the 90%, 95%, and 99% 

percentiles of 𝜒(')
' , namely, 4.61, 5.99, and 9.21, respectively. The central point denotes the 

coordinates given by 𝑑%)*+(𝑣𝑙𝑚) and 𝑑%)*+(𝜎). The red dashed line represents the 45-degree line. 
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C.2.3 Confidence ellipsoids long memory coefficients for volatility and 

trading volume. Volatility proxy (𝜎): GK measure. 

The figures that follow present 90%, 95%, and 99% confidence sets for the long memory 

parameters of log-trading volume and log-volatility of the stocks under analysis. The confidence 

sets are obtained from empirical level curves of the 𝐿𝑀𝒅
"#$% test statistic evaluated at different 

values given the sample observations, for level curves corresponding to the 90%, 95%, and 99% 

percentiles of 𝜒(')
' , namely, 4.61, 5.99, and 9.21, respectively. The central point denotes the 

coordinates given by 𝑑%)*+(𝑣𝑙𝑚) and 𝑑%)*+(𝜎). The red dashed line represents the 45-degree line. 
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C.2.4 Confidence ellipsoids long memory coefficients for volatility and 

trading volume. Volatility proxy (𝜎): realized variance. 

The figures that follow present 90%, 95%, and 99% confidence sets for the long memory 

parameters of log-trading volume and log-volatility of the stocks under analysis. The confidence 

sets are obtained from empirical level curves of the 𝐿𝑀𝒅
"#$% test statistic evaluated at different 

values given the sample observations, for level curves corresponding to the 90%, 95%, and 99% 

percentiles of 𝜒(')
' , namely, 4.61, 5.99, and 9.21, respectively. The central point denotes the 

coordinates given by 𝑑%)*+(𝑣𝑙𝑚) and 𝑑%)*+(𝜎). The red dashed line represents the 45-degree line. 
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