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Abstract
Cognitive deficits represent a major burden of neuropsychiatric disorders and result in part from abnormal communication
within hippocampal–prefrontal circuits. While it has been hypothesized that this network dysfunction arises during
development, long before the first clinical symptoms, experimental evidence is still missing. Here, we show that pre-
juvenile mice mimicking genetic and environmental risk factors of disease (dual-hit GE mice) have poorer recognition
memory that correlates with augmented coupling by synchrony and stronger directed interactions between prefrontal
cortex and hippocampus. The network dysfunction emerges already during neonatal development, yet it initially consists in
a diminished hippocampal theta drive and consequently, a weaker and disorganized entrainment of local prefrontal circuits
in discontinuous oscillatory activity in dual-hit GE mice when compared with controls. Thus, impaired maturation of
functional communication within hippocampal–prefrontal networks switching from hypo- to hyper-coupling may represent
a mechanism underlying the pathophysiology of cognitive deficits in neuropsychiatric disorders.
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Introduction
Disruption of cognitive performance in daily life represents the
long-lasting burden of major neuropsychiatric disorders, such as

schizophrenia (Insel 2010). Any attempt of improving the dis-
ease’s outcome primarily requires the understanding of abnor-
malities within neuronal circuits that underlie mnemonic and
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executive processing. The initially hypothesized impairment of
long-range connectivity between brain areas (Wernicke 1906)
has been confirmed only recently by neuroimaging and electro-
encephalographic studies. They identified the abnormal func-
tional communication between the prefrontal cortex (PFC) and
hippocampus (HP) as a core deficit of the disease (Meyer-
Lindenberg et al. 2005; Genzel et al. 2015). The corresponding
changes in neural synchronization within and between brain
areas (Sigurdsson et al. 2010; Uhlhaas and Singer 2010) reflect
major synaptic and cellular deficits. On the one hand, profound
GABAergic dysfunction, especially in the PFC, has been related
to schizophrenia (Taylor and Tso 2014; Sauer et al. 2015;
Schmidt and Mirnics 2015). On the other hand, impairment of
glutamate signaling (Hu et al. 2014) may equally perturb the
long-range communication within hippocampal–prefrontal
networks.

Recent clinical observations in prodromal cohorts led to
the hypothesis that these neural circuit disturbances emerge
early in life, long before the clinical manifestation of psychotic
symptoms that typically occur in late adolescence and early
adulthood (Cannon et al. 2003; White et al. 2006; Woodberry
et al. 2008; Reichenberg et al. 2010; Uhlhaas and Singer 2011).
However, the onset and developmental mechanisms of per-
turbation are still largely unknown. This knowledge gap is
mainly due to the technical limitations of non-invasive
macroscopic measurements of brain activity applicable to
human infants. Animal models of neuropsychiatric disorders
may represent helpful investigative tools (Nestler and Hyman
2010; Wong and Josselyn 2015), because they enable pinpoint-
ing the neuronal interactions at fine scale even at very early
stages of development, which are not accessible in humans.
Moreover, animal models reliably mimic the combined gene–
environment etiology of the disorder and their neurobehavior-
al phenotypes at adulthood resemble aspects of mental
illness.

Among the numerous genetic variants conferring only mar-
ginally increased risk for disease, Disrupted-in–Schizophrenia-1
(DISC1) represents one of the very few examples of ultra-rare
mutations that have been strongly linked to neuropsychiatric
disorders (Song et al. 2008, 2010; Brandon and Sawa 2011).
Alone or in combination with immune challenge as environ-
mental stressor during pregnancy, which is mimicked in mice
by treatment with the viral mimetic polyriboinosinic-
polyribocytidilic acid (poly I:C) (van Os et al. 2010; Meyer and
Feldon 2012), Disc1 mutations cause network dysfunction and
cognitive deficits at adulthood (Kvajo et al. 2008; Abazyan et al.
2010; Kvajo et al. 2011; Cash-Padgett and Jaaro-Peled 2013;
Lipina et al. 2013; Sauer et al. 2015).

Here, we aim at elucidating the developmental profile of
network dysfunction and cognitive impairment in mice that
recapitulate the disease-related genetic background (Disc1
mutation), intrauterine environmental insults (poly I:C) or the
combined action of both factors. To this end, we combine
in vivo electrophysiology with behavioral assessment to
resolve the functional communication within hippocampal–
prefrontal circuits at neonatal and pre-juvenile developmental
stages—the main epochs of increased circuit plasticity that
have been hypothesized to be particularly prone to impair-
ment in mental illness. We demonstrate that the patterns of
neuronal activity, long-range synchrony and directed interac-
tions within hippocampal–prefrontal networks are impaired at
both developmental stages. The decreased coupling of the two
areas at neonatal age switches to hyper-communication in
pre-juvenile animals.

Materials and Methods
Animal Models

All experiments were performed in compliance with the
German laws and the guidelines of the European Community
for the use of animals in research and were approved by the
local ethical committee (111/12, 132/12). Heterozygous genetic-
ally engineered mutant DISC1 mice carrying a Disc1 allele
(Disc1Tm1Kara) on a C57Bl6/J background were used as one-hit
genetic model (one-hit G). Due to two termination codons and
a premature polyadenylation site, the allele produces a trun-
cated transcript (Kvajo et al. 2008). Genotypes were determined
using genomic DNA and following primer sequences: forward
primer 5′-TAGCCACTCTCATTGTCAGC-3′ and reverse primer
5′-CCTCATCCCTTCCACTCAGC-3′. The offspring of pregnant
dams injected i.v. at gestational day (G) 9 with the viral mimetic
poly I:C (5mg/kg) were used as one-hit environmental model
(one-hit E), since they showed at adulthood deficits highly remin-
iscent of schizophrenia (Meyer et al. 2005; Meyer and Feldon 2012).
The heterozygous offspring of DISC1 dams injected at G9 with
poly I:C were used as dual-hit genetic-environmental model
(dual-hit GE). Non-treated wild-type mice and the offspring of
dams injected at G9 with saline (0.9 %) were used as controls. Pups
were investigated during neonatal development at P8–10, the
time period of maximal unidirectional hippocampal–prelimbic
interactions (Brockmann et al. 2011) as well as during pre-juvenile
development (P16–24). During neonatal development, the weight
of pups was similar for all four groups (control: 4.9 ± 0.1 g, n = 15;
one-hit G: 5.2 ± 0.3 g, n = 11; one-hit E: 4.9 ± 0.2 g, n = 21; dual-hit
GE: 4.6 ± 0.1 g, n = 12, P = 0.29, one-way ANOVA). However, during
pre-juvenile development, the body weight of dual-hit GE mice
was significantly lower than that of control mice (control
10.15 ± 0.31 g; dual-hit GE 9.04 ± 0.31 g, P = 0.02).

Surgery

Mouse pups were initially anesthetized with isoflurane (induc-
tion 5% in O2) followed by i.p. administration of urethane
(1 g/kg body weight). The head of the pup was fixed into the
stereotaxic apparatus using two small metal bars fixed with
dental cement on the nasal and occipital bones, respectively.
The bone over the regions of interest (prelimbic subdivision
(PL) of the PFC, intermediate HP) was carefully removed by
drilling holes of <0.5mm in diameter. Removal of the dura
mater by drilling was avoided, since leakage of cerebrospinal
fluid or blood damps the cortical activity and neuronal firing.
The body of the animal was surrounded by cotton and kept
at a constant temperature of 37 °C by placing it on a heating
blanket. A local anesthetic (0.25% bupivacaine/1% lidocaine)
was administrated. After 20–30min recovery period, multi-site
electrodes (Neuronexus) were inserted perpendicularly to
the skull surface into PL until a depth of 1.7–2.5mm and
at 20° from the vertical plane into HP at a depth of 1.2–1.7mm.
In each experiment, the electrodes were labeled with DiI
(1,1′-dioctadecyl-3,3,3′,3′-tetramethyl indocarbocyanine, Invi-
trogen) to enable post-mortem in histological sections the
reconstruction of electrode tracks in PFC and HP (Figs 2Ai,Bi
and 4A,D). Two silver wires were inserted into cerebellum and
served as ground and reference electrodes.

Recording Protocols

Simultaneous recordings of local field potential (LFP) and multi-
unit activity (MUA) were performed from the prefrontal
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subdivision PL (0.5–0.7mm anterior to bregma and 0.3–0.5mm
from the midline) and the CA1 area of the intermediate HP (3.5–
3.7mm posterior to bregma, 3.5–3.8 from the midline) using
similar protocols as described previously (Brockmann et al. 2011).
One-shank Michigan electrodes with 16 recording sites (0.5–
3MΩ) that were separated by 50 µm (for HP) or 100 µm (for PL)
were used. The position of recording sites over the PL and CA1
area was confirmed by post-mortem histological evaluation.
Both LFP and MUA were recorded for at least 60min at a sam-
pling rate of 32 kHz using a multi-channel extracellular ampli-
fier (Digital Lynx 4 S with no gain, Neuralynx) and the Cheetah
acquisition software. During recording, the signal was band-
pass filtered between 0.1 Hz and 5 kHz.

Data Analysis

Channels for analysis were selected on the basis of post-
mortem histological investigation, that is, which recording sites
of fluorescently-marked electrodes were confined to PL and
hippocampal CA1, and the presence of specific patterns of
activity. In the PL, these patterns were nested gamma spindle
bursts (NGs) and previously characterized high-frequency oscil-
lations (HFOs) (Brockmann et al. 2011), whereas in the HP the
LFP reversal over Str. pyramidale was used for the selection of
the channel with sharp waves of minimum amplitude and con-
sequently, lowest contribution to the spectral content of the sig-
nal. Data were imported and analyzed offline using custom-
written tools in Matlab software version 7.7 (Mathworks). For LFP
analysis, the signals were low-pass filtered (<1500Hz) using a
third-order Butterworth filter before reducing the sampling rate
to 3200Hz. For each pup, data analysis was performed blind,
that is, without knowledge of the group belonging of the pup.

The continuous pre-juvenile activity was analyzed in its
amplitude, power, and spectral distribution for the entire
recording. Visual inspection of spectrograms (window 10 s,
overlap 80%) revealed the dominant frequency bands. Power
spectral density estimates were calculated using the MATLAB
function “pwelch”, with a 5-s window and 50% overlap.
Amplitudes of the signal filtered in different frequency bands
according to the distribution in the power spectra were calcu-
lated by the root-mean-square of the filtered signal minus the
mean of the filtered signal.

The detection and classification of discontinuous patterns
of activity in the neonatal PL and hippocampal CA1 area
were performed using a modified version of the previously-
developed algorithm for unsupervised analysis of neonatal
oscillations (Cichon et al. 2014) and confirmed by visual inspec-
tion. Fragmented detection of oscillations was avoided by con-
sidering events with inter-event intervals <100ms for PL and
<300ms for HP as single events. Only oscillations lasting >1 s in
PL and >1.5 s in HP and containing at least three cycles were
considered for further analysis. Spindle bursts (SBs) and NGs as
well as theta bursts in HP were analyzed in their occurrence
(defined as the number of bursts per min), duration, maximum
amplitude (defined as the voltage difference between zero and
the maximal positive peak), and power distribution. The nor-
malized power spectra were computed by dividing the total
power P(f) of the signal, which was band-pass filtered on fre-
quencies f centered from 1 to 50 Hz and averaged across events
of the same type, by the average baseline power spectrum P0(f)
for all epochs without oscillatory activity. Peak maxima of the
resulting normalized average spectra were quantified.

Time-frequency plots were calculated by transforming the LFP
events using Morlet continuous wavelet. Minimal and maximal

intensities in power were normalized to values between zero and
one and displayed in dark blue and red, respectively.

As spectral measure of correlation between two signals coher-
ence was calculated from the cross-spectral density and normal-
ized by the individual power spectral density of each. The
computation was performed using the magnitude-squared coher-
ence function “mscohere” (MATLAB) based on Welch’s averaged
modified periodogram method (with zero overlap and 2 s time
window) on 1–100Hz filtered data according to the formula
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where Xi( f ) and Yi( f ) are the Fourier transforms of the signals x
and y for the i data segment at frequency f, and * indicates the
complex conjugate. The coherence coefficient is given as the
modulus of the complex-valued coherence C( f ). For the calcu-
lation of coherence spectra from neonatal data, a continuous
signal for either PL or HP was generated by concatenating mul-
tiples 2s-long segments of all co-occurring oscillatory bursts in
PL and HP into single vectors. Frequency domains with signifi-
cant coherence were determined by Monte Carlo simulation.
For this, LFP segments of 2 s from one region were shuffled and
the coherence was calculated between the shuffled LFP from
one region and the original LFP from the other region. After
100 iterations, the 95th percentile of the resulting distribution
was used as a significance threshold. For neonatal data, the
mean coherence was calculated for all frequency components
(3–8 Hz, 8–14 Hz, and 14–30 Hz) of oscillatory events that were
detected as peaks in the power spectra. For pre-juvenile data,
the mean coherence coefficients in the theta frequency range
(4–12 Hz) were quantified.

Theta–gamma cross-frequency coupling (CFC) between LFP
in PL and HP of pre-juvenile mice was calculated as previously
described (Tort et al. 2010), comparing the means of modula-
tion indices (MIs). Briefly, the signals from PL and HP were fil-
tered in both frequency bands followed by computation of
Hilbert transform to obtain the corresponding signal amplitude
and phase. Subsequently, the amplitude of the theta- or gamma-
filtered signal in one region was determined at each phase of fil-
tered signal from the other region. The phase was divided into 30
bins and the mean amplitude for each bin was calculated and
normalized to the total number of bins. The normalized MI was
calculated as the deviation between an empirical and a uniform
amplitude distribution. MI > 0 corresponds to stronger modula-
tion, whereas MI = 0 indicates a uniform distribution of phase-
amplitude values, that is, no phase-amplitude coupling. To deter-
mine whether MIs were above chance, surrogate data were gener-
ated by shifting the amplitude signal in 30 s intervals and
calculating the MIs for all frequency bands. To set the MI thresh-
old above chance level, the procedure was repeated for 100 itera-
tions and the 95th percentile of the resulting distribution was
considered as threshold.

To assess the causal interactions between PL and HP, the
cross-correlation of instantaneous amplitudes of network oscil-
lations was calculated using a modified version of a model- and
spike-independent method (Adhikari et al. 2010). For this, the
LFP in both regions was band-pass filtered according to the fre-
quency band of detected coherence between PL and HP (neo-
natal: 3–30Hz, pre-juvenile: 4–12 Hz). The instantaneous
amplitudes of the filtered signal were calculated for time win-
dows of co-occurring oscillations in the PL and HP. To deter-
mine the lag at which the cross-correlation peaks as well as the
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magnitude of this peak, the cross-correlation between these
amplitudes was calculated using a sliding-window approach
(window size 4 s, step size 0.1 s). The auto-correlation (including
volume conduction effects) corresponding to zero lag peak was
removed by applying a pre-whitening filter. Only time windows
of signal stationarity, which were above the correlation signifi-
cance threshold set as

⎜ ⎟⎛
⎝

⎞
⎠

=
( − ) +

= ( ) α =

−

r
t

n

t t n a

2 1

with , , 0.01,crit
crit

t

n

crit student

2
crit2

were considered for analysis. Only positive values were illu-
strated in the graphs.

To characterize the causal interactions between spike trains
in neonatal PL and HP, MUA was first processed as previously
described (Brockmann et al. 2011). Briefly, the raw signal was
high-pass filtered (>400 Hz) and the threshold for detection of
MUA was individually set depending on the geometry of the
recording site. For analysis of individual spikes, the stored sig-
nals were sorted into similar waveform shapes using the
Offline Sorter software (Plexon). For depicting the valid wave-
forms in 2D/3D space, a combination of features (including the
first three principal components and peak-to-peak voltage
amplitude) was chosen. Shapes of detected waveforms were
visually inspected to exclude background noise. A group of
similar waveforms was considered as being generated from a
single neuron if it defined a discrete cluster in a 2D/3D space
and exhibited a refractory period (>1ms) in the interspike inter-
val histograms. In a second step, the cross-correlation of spike
trains from PL and HP (Brillinger 1976; Halliday and Rosenberg
1999; Siapas et al. 2005) was calculated using an algorithm
modified for low firing rates and non-stationary point pro-
cesses. The spiking times of individual neurons were rendered
into spike train point processes of 1ms counting interval. Due
to selective occurrence of spike discharge during intermittent
oscillatory activity, spike trains were non-stationary. Therefore,
a sliding-window approach (window size 1 s, step size 0.1 s)
was applied to all cell pairs to ensure local stationarity. For

each time window, λ = bTf fRi Rj was calculated, where f fRi Rj is the

product of the firing rates of the two spikes trains, T is the peri-
od of observation and b is the bin size. For all time windows

with λ > 0.1, the cross-correlation histograms ( )J uij
T b, were com-

puted with a bin size of 10ms. For this, the number of spike
pairs occurring at times (τ τ,im jn) was counted to ensure that

τ τ| − − | <u b/2im jn where u is the time lag. All significant bins

of the histograms were averaged and smoothed by a 40-ms
moving window span.

Behavioral Experiments

Testing of Exploratory Behavior and Recognition Memory
The exploratory behavior and recognition memory of control,
one-hit E, one-hit G, and dual-hit GE mice were tested at
pre-juvenile age using previously established experimental pro-
tocols (Kruger et al. 2012). Briefly, all behavioral tests were
conducted in a circular white arena, the size of which (D: 34 cm,
H: 30 cm) maximized exploratory behavior, while minimizing
incidental contact with testing objects (Heyser and Ferris 2013).
The objects used for testing of novelty recognition were six dif-
ferently shaped, textured and colored, easy to clean items that
were provided with magnets to fix them to the bottom of the
arena. Object sizes (H: 3 cm, diameter: 1.5–3 cm) were smaller

than twice the size of the mouse and did not resemble living
stimuli (no eye spots, predator shape). The objects were posi-
tioned at 10 cm from the borders and 8 cm from the center of
the arena. After every trial, the objects and arena were cleaned
with 0.1% acetic acid to remove all odors. A black and white
CCD camera (VIDEOR TECHNICAL E. Hartig GmbH) was
mounted 100 cm above the arena and connected to a PC via PCI
interface serving as frame grabber for video tracking software
(Video Mot2 software, TSE Systems GmbH).

Exploratory Behavior in the Open Field
Pre-juvenile mice (P16) were allowed to freely explore the test-
ing arena for 10min. During this time grooming, rearing, wall
rearing, and defecation/urination were quantified in their
occurrence and duration. Additionally, the floor area of the are-
na was digitally subdivided in 8 zones (4 center zones and 4
border zones) using the zone monitor mode of the VideoMot 2
analysis software (VideoMot 2, TSE Systems GmbH). The time
spent by pups in center and border zones as well as the run-
ning distance and velocity were quantified.

Novelty Recognition Paradigms
All protocols for assessing item recognition memory in P17–18
mice consisted of familiarization and testing trials (Ennaceur and
Delacour 1988). During the familiarization trial, each mouse was
placed into the arena containing two identical objects and
released against the center of the opposite wall with the back to
the objects. After 10min of free exploration of objects, the mouse
was returned to a temporary holding cage. In the novel object
recognition (NOR) task tested in P17 mice, the first familiarization
trial was followed 5min later by a second one with identical pairs
of objects. Subsequently, the test trial was performed after a
delay of 5min post-familiarization. The mice were allowed to
investigate one familiar and one novel object with a different
shape and texture for 5min. Object interaction during the first
minute was analyzed and compared between the groups. In the
object location recognition (OLR) task, tested at P18, mice only
experienced one 10min familiarization trial with two identical
objects followed after a delay of 5min by a test trial. In the test
trial, the position of one of the objects was altered. Object inter-
action during the first minute was analyzed and compared
between the groups. In the recency recognition (RR) task, tested
at P21–23, mice experienced two 10min familiarization trials
with two different sets of identical objects that were separated
by a delay of 30min. The second familiarization trial was fol-
lowed after 5min by a test trial in which one object used in the
first and one object used in the second more recent familiariza-
tion trial were placed in the arena at the same positions as dur-
ing the familiarization trials. Object interaction during the first
minute was analyzed and compared between the groups. All
trials were video-tracked and the analysis was performed using
the Video Mot2 analysis software. The object recognition module
of the software was used and a 3-point tracking method identi-
fied the head, the rear end and the center of gravity of the
mouse. Digitally, a circular zone of 1.5 cm was created around
each object and every entry of the head point into this area was
considered as object interaction. Climbing or sitting on the object,
mirrored by the presence of both head and center of gravity
points within the circular zone, was not counted as interactions.

Statistics

Data in the text are presented as mean ± s.e.m. To facilitate the
comparison between different groups and conditions, the
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relative changes were calculated according to the formula for
mean and variance of a ratio
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and displayed as bar diagrams.
Statistical analyses were performed with IBM SPSS Statistics

version 21 (SPSS GmbH). Generally, all values were tested for
normal distribution by the Kolmogorov–Smirnov test, except
their low number (n < 10) precluded reliable testing. For nor-
mally distributed values, paired or unpaired t-test was used.
For low number of values or not normally distributed values,
the Shapiro–Wilk test was used. For statistics concerning the
phase-locking, the CircStat Toolbox was used. Significance
levels of P < 0.05 (*), P < 0.01 (**) or P < 0.001 (***) were detected.

Results
To mimic the disease-related genetic background, mice carry-
ing a human-like truncating lesion in the endogenous murine
Disc1 ortholog (Kvajo et al. 2008) (DISC1 mice) were investigated
as one-hit genetic model (one-hit G). DISC1 has been identified
through a balanced chromosomal translocation (1;11) (q42.1;
q14.3) leading to a truncation of the DISC1 gene, and segregat-
ing with schizophrenia, bipolar disorder and major depression
in a large Scottish pedigree (Millar et al. 2000; Blackwood et al.
2001). Extensive characterization of adult phenotype of DISC1
mice identified the disease-related structural, functional, and
cognitive deficits (Koike et al. 2006; Kvajo et al. 2008, 2011;
Pletnikov et al. 2008; Brandon and Sawa 2011; Lee et al. 2013).
To mimic the immune challenge during pregnancy, mice with
prenatal immune activation by the viral mimetic poly I:C (Shi
et al. 2003) were investigated as one-hit environmental model
(one-hit E). DISC1 mice prenatally treated with poly I:C recapi-
tulated the impact of both genetic and environmental risk fac-
tors and were considered as dual-hit gene–environment
models (dual-hit GE). All investigated groups of mice (non-
manipulated controls, one-hit G, one-hit E, and dual-hit GE
mice) had a similar somatic development (i.e. body weight and
body length) and reflexes during the first 2 postnatal weeks.
With the onset of the pre-juvenile period during the third post-
natal week, the weight of dual-hit GE mice decreased when
compared with controls (9.04 ± 0.31 g vs. 10.15 ± 0.31 g,
P = 0.02), suggesting that with age the combination of risk gen-
etic background and environmental stressors causes certain
physical disability.

Pre-Juvenile Dual-Hit GE Mice Have Poorer Recognition
Memory

Since adult mice with disease-related genetic background that
experienced an early environmental stressor have poorer mne-
monic and executive abilities (Abazyan et al. 2010; Ibi et al.
2010; Lipina et al. 2013), we first aimed at determining whether
these cognitive deficits are present already during develop-
ment. For this, we characterized the cognitive performance in
controls, one-hit G, one-hit E, and dual-hit GE mice at pre-
juvenile age [postnatal day (P) 16–24]. This developmental peri-
od shortly precedes the time window of adolescence that has
been extensively investigated in human prodromal cohorts

(Feinberg 1982; Keshavan et al. 2014; Selemon and Zecevic
2015). We specifically tested the four groups of mice in their
behavioral abilities relying on the functional communication
within hippocampal–prefrontal networks. Novelty detection
and recognition memory, particularly temporal order memory
(RR), have been identified to result from interactions within
complex networks, centered on the PFC and HP (Barker and
Warburton 2011; Warburton and Brown 2015), and to require
their correct maturation (Kruger et al. 2012). These cognitive
abilities are among the earliest that develop in life and can be
easily tested at pre-juvenile age, since they rely on the mouse’s
intrinsic exploratory drive to investigate novel stimuli and con-
sequently, lack overt stress components, such as food or water
deprivation and forced swimming. We tested pre-juvenile con-
trol, one-hit G, one-hit E, and dual-hit GE mice for NOR, OLR,
and RR, using a custom-designed arena and objects of different
size, texture, and color (Fig. 1A,B). In line with our previous data
(Kruger et al. 2012), we initiated the investigation after full mat-
uration of sensory and motor abilities required for processing
of novelty (P17). During the familiarization trial for NOR, all
mice spent equal time investigating the two objects placed in
the arena. During the testing trial, control animals (n = 18)
spent significantly longer time interacting with the novel
object (69.04 ± 6.74%, P = 0.02) than with the familiar one
(30.96 ± 6.74%) and the mean duration of each interaction was
also longer for the novel object (1.84 ± 0.32 s vs. 1.05 ± 0.12 s for
familiar object, P = 0.005). In contrast, dual-hit GE mice (n = 14)
did not distinguish between the two objects (familiar:
42.92 ± 9.15%; 1.83 ± 0.30 s; novel: 57.08 ± 9.15%, 1.87 ± 0.37 s,
P = 0.41 and P = 0.77, respectively) (Fig. 1C, Supplementary
Table 1). The behavioral impairment of one-hit mice did not
follow a clear pattern. While one-hit E mice (n = 9) performed
as well as controls, one-hit G mice (n = 14) were unable to rec-
ognize the novel object (Supplementary Fig. 1A). In contrast to
the poorer performance of dual-hit GE and one-hit G mice in
the NOR task, the OLR was intact in all four groups of mice
(Fig. 1D, Supplementary Fig. 1B, Supplementary Table 1). While
during the familiarization trial, they spent equal time investi-
gating the two objects placed in the arena, during the test trial
they spent significantly longer time interacting with the re-
located object (control: 64.21 ± 5.39%, n = 18, P = 0.02, dual-hit
GE: 62.94 ± 5.51%, n = 15, P = 0.04, one-hit E: 71.55 ± 6.41%,
n = 9, P = 0.01, one-hit G: 69.19 ± 4.67%, n = 15, P = 0.004) than
with the object with constant position (control: 35.78 ± 5.39%,
dual-hit GE: 37.06 ± 5.51%, one-hit E: 28.45 ± 6.41%, one-hit G:
30.8 ± 4.67%). During the RR task, the pre-juvenile mice had to
process temporal information by recognizing the object with
which they most recently interacted (Fig. 1E, Supplementary
Table 1). The control animals (n = 16) spent longer time with
the object they explored during the first familiarization trial
(recent: 36.9 ± 8.50%, old: 63.10 ± 8.50%, P = 0.04). Dual-hit GE
mice (n = 14) failed to recognize the most recently explored
object and equally investigated both objects (recent:
54.41 ± 7.4%, old: 45.59 ± 7.4%, P = 0.41). In contrast, one-hit
E mice (n = 14) spent significantly more time with the object
they explored during the first familiarization trial (recent:
39.02 ± 5.91%, old: 60.98 ± 5.91%, P = 0.014), whereas one-hit
G mice (n = 15) equally explored the two objects (recent:
49.82 ± 5.27%, old: 50.18 ± 5.27%, P = 0.96).

The incapacity to achieve the NOR and RR tasks may result
from poorer motor abilities and/or enhanced anxiety when
interacting with the objects. To test this hypothesis, we first ana-
lyzed the exploratory behavior of P16 mice in the open field
(Supplementary Table 2). The velocity and distance covered by
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controls (n = 17) and dual-hit GE mice (n = 14) were similar
(3.54 ± 0.35 cm/s vs. 4.22 ± 0.36 cm/s, P = 0.22; 2121.81 ± 211.85 cm
vs. 2530.44 ± 219.73 cm, P = 0.21). Animals from both groups
spent equal time in the inner and outer circles of the arena
and had similar latencies when entering the open field
(76.34 ± 26.11 s vs. 28.81 ± 6.07 s, P = 0.44), suggesting that
anxiety behavior of dual-hit GE mice was not enhanced.

Furthermore, wall rearing, jumping, and grooming were com-
parable between the groups (Supplementary Table 2).
Similarly, neither the horizontal nor the vertical locomotor activ-
ity of one-hit E or G mice was abnormal (Supplementary
Table 2). Only one-hit E mice showed increased grooming fre-
quency and decreased latency to groom versus controls.
Moreover, the speed and total distance covered during the NOR

Figure 1. Impaired recognition memory of pre-juvenile dual-hit GE mice. (A) (i) Photograph of the arena used for testing novel object and OLR. The computer gener-

ated track of the mouse pup (yellow) is displayed together with zones (red, blue) created around the objects. (ii) Photograph of the objects with different textures, col-

ors, shapes, and sizes that were used for NOR in pre-juvenile mouse pups. Scale bar: 2 cm. (B) Schematic diagrams of the protocol for (i) NOR, (ii) OLR, and (iii) RR

tasks. (C) (i) Bar diagram illustrating the relative interaction time spent by control (n = 18, black) and dual-hit GE (n = 14, magenta) mice with the objects during the

NOR test trial. The dotted line indicates chance level. (ii) Bar diagram illustrating the mean duration of a visit at the objects for control (black) and dual-hit GE

(magenta) mice during the NOR test trial. (D) Same as (C) (i) for control (n = 18, black) and dual-hit GE (n = 15, magenta) mice in the OLR test trial. (E) Same as (C) (i) for

control (n = 16, black) and dual-hit GE (n = 14, magenta) mice in the RR test trial. In (C–E) gray circles correspond to individual values. Data displayed as mean ± s.e.m.
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testing phase were similar in all four groups of mice
(Supplementary Table 1). They did not show differences in the
latency of the first contact with the objects either (Supplementary
Table 1). Taken together, these results indicate that already at
pre-juvenile age some cognitive abilities relying on hippocampal–
prefrontal networks, such as item recognition and temporal order
recognition, are impaired in dual-hit GE mice, whereas their
exploratory and anxiety behavior is not affected. Similar early
cognitive impairment is present in pre-juvenile one-hit G mice,
but not in one-hit E mice. Of note, OLR that predominantly relies
on hippocampal activation (Barker and Warburton 2011) is not
affected in any of the models, suggesting that their HP has an
intact function at pre-juvenile age.

The Oscillatory Coupling Within Hippocampal–
Prefrontal Networks Is Augmented in Pre-Juvenile
Dual-Hit GE Mice

The poorer performance in NOR task may indicate that at pre-
juvenile age the function of hippocampal–prefrontal networks
is impaired. To test this hypothesis, the behavioral investiga-
tion was succeeded by the examination of activity patterns in
the PL and CA1 area of the intermediate HP, which have previ-
ously been reported to be densely coupled by axonal afferents
and directed interactions during cognitive processing (Siapas
et al. 2005; Hyman et al. 2010; Colgin 2011; Spellman et al.
2015). For this, we performed multi-site extracellular recordings
of LFP and MUA simultaneously from PL and hippocampal CA1
area of urethane-anesthetized P22–24 controls (n = 12), dual-hit
GE (n = 11), one-hit G (n = 11), and one-hit E (n = 8) mice (Fig. 2).

All investigated mice showed similar patterns of network
activity, which correspond to the previously described sleep-
like rhythms mimicked by urethane anesthesia (Wolansky
et al. 2006; Clement et al. 2008; Pagliardini et al. 2013). Large-
amplitude slow oscillations were superimposed with oscillatory
activity in theta (4–12Hz) and gamma (30–100Hz) frequency
range (Fig. 2Aii, iii, Bii, iii). These patterns were more prominent
in the CA1 area of HP, where also sharp waves reversing over
Str. pyramidale were regularly observed (Brockmann et al.
2011). We focused our analysis on the theta and gamma-band
activity patterns, since they have been identified as a substrate
of functional communication between PFC and HP during
memory tasks (Benchenane et al. 2010; Hyman et al. 2010;
Colgin 2011; Harris and Gordon 2015; Spellman et al. 2015). The
amplitude and power of these patterns were similar in dual-hit
GE mice when compared with controls (Supplementary
Table 3). Prelimbic and hippocampal oscillatory activity in theta
and gamma frequency range had comparable amplitude and
power in control, dual-hit GE, and one-hit G mice. Only the pre-
limbic theta activity in one-hit E mice was mildly decreased
when compared with controls and dual-hit GE animals.

Next, we tested whether the communication within hippo-
campal–prefrontal networks of one-hit and dual-hit mice was
altered. First, we assessed the coupling by synchrony of both
areas and calculated the coherence between LFP in PL and HP
(Fig. 3A). Control mice showed a dominant peak in theta coher-
ence between 4 and 12Hz that was significantly larger than the
peak for time-shuffled data (0.04 ± 0.01, 0.002 ± 0.00003,
P = 0.001). Dual-hit GE mice also displayed significant hippocam-
pal–prelimbic synchrony in the theta range; however, the coher-
ence was significantly (P = 0.037) augmented (0.08 ± 0.01) when
compared with values from control (0.04 ± 0.01) and one-hit
E mice (0.03 ± 0.01, P = 0.005). In contrast, theta coherence in

one-hit G and one-hit E mice was similar to the values from control
animals (Supplementary Fig. 2A, Supplementary Table 4). Second,
we confirmed this exaggerated communication within hippocam-
pal–prefrontal networks in dual-hit GE mice by calculating the MI
of theta–gamma phase-amplitude coupling of either amplitude in
PL to hippocampal theta phase in HP or vice versa (Fig. 3B). All MIs
were above chance level. In control animals, highest phase-ampli-
tude coupling indicated by MI (original data: 5.80×
10−5 ± 1.16 × 10−5, significance threshold: 4.49 × 10−6 ± 2.18 × 10−7)
was observed for the coupling of prelimbic gamma amplitude to
hippocampal theta phase. In dual-hit GE mice, the level of CFC was
globally increased, most prominently for prelimbic gamma to hip-
pocampal theta (original data: 9.79 × 10−5 ± 1.43 × 10−5, significance
threshold: 4.91 × 10−6 ± 5.31 × 10−7, P = 0.04) as well as for theta
amplitude in HP to theta phase in PL (controls, original data: 4.92 ×
10−6 ± 7.75 × 10−7, significance threshold: 2.74 × 10−6 ± 1.29 ×
10−7, dual-hit GE, original data: 1.15 × 10−5 ± 2.20 × 10−6, sig-
nificance threshold: 2.79 × 10−6 ± 2.31 × 10−7, P = 0.008). In
contrast, theta–gamma phase-amplitude coupling between
PL and HP was similar in one-hit G, one-hit E, and control
animals (Supplementary Fig. 2B). Only one-hit G mice showed
increased coupling of theta amplitude in HP to theta phase in
PL (controls, original data: 4.92 × 10−6 ± 7.75 × 10−7, signifi-
cance threshold: 2.74 × 10−6 ± 1.29 × 10−7, one-hit G, original
data: 9.14 × 10−6 ± 1.17 × 10−6, significance threshold: 2.57 ×
10−6 ± 1.43 × 10−7, P = 0.006). These data indicate that despite
similar patterns of oscillatory activity, the PL and HP are
hyper-coupled by synchrony in dual-hit GE mice and to a cer-
tain amount also in one-hit G mice.

Due to its symmetric interdependence, the coherence does
not offer reliable insights into the direction of information flow
between the PL and the HP. To assess the directed interactions
within hippocampal–prelimbic networks, we calculated the
cross-correlation of instantaneous amplitudes of theta-band
LFP in PL and HP and determined the time lag between them.
This method allows to reliably infer directed interactions inde-
pendent of spike sampling (Adhikari et al. 2010). Control mice
showed a peak of maximal cross-correlation (0.198 ± 0.027) at a
positive time lag of 16.15 ± 5.0ms (Fig. 3C), confirming the
monosynaptic drive from the CA1 area to PL (Brockmann et al.,
2011) similar to adult animals (Adhikari et al. 2010). Dual-hit GE
mice displayed maximal cross-correlation at a similar mono-
synaptic lag of 15.9 ± 2.0ms but the peak was significantly
increased when compared with control (0.32 ± 0.025, P = 0.0051)
and one-hit E mice (0.17 ± 0.021, P = 0.002). Thus, in line with
the hyper-synchrony, the directed hippocampal–prelimbic
coupling is augmented in dual-hit GE mice. The directed inter-
actions within hippocampal–prelimbic networks of one-hit G
mice were slightly, but not significantly increased in their max-
imal cross-correlation and interaction delays when compared
with controls, whereas in the one-hit E mice they remained
unaltered (Supplementary Fig. 2C, Supplementary Table 4).

These results indicate that already at pre-juvenile age the
coupling within hippocampal–prelimbic networks of dual-hit
GE and, to a milder extent also of one-hit G mice, is abnormally
augmented. To correlate the behavioral performance of each
pre-juvenile mouse with the strength of hippocampal–pre-
frontal coupling, we calculated the discrimination ratio during
the test phase (time spent at novel object minus time spent at
familiar object divided by total interaction time) in relationship
to the theta-band coherence. We found a significant anti-
correlation for the RR test (Pearson’s correlation −0.49,
P = 0.006), but not for NOR (Pearson’s correlation −0.072, P = 0.7)
(Fig. 3D). These results strengthen the conclusion that
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abnormally augmented hippocampal–prefrontal coupling cor-
relates with impaired temporal order memory.

The Patterns of Network Activity in the Neonatal PL
and HP of Dual-Hit GE, But Not One-Hit Mice
Are Disturbed Already at Neonatal Age

Since abnormal coupling by synchrony and augmented theta
drive from the HP to PL in dual-hit GE mice is present at pre-
juvenile age, it is likely that the network dysfunction resulting
from the combination of genetic and environmental risk factors
emerges prior to this late developmental period. To test this
hypothesis, we investigated the four groups of mice at neonatal
age (P8–10), the earliest developmental stage at which PL and
HP functionally interact. We previously characterized the
developmental profile of hippocampal–prelimbic interactions
under normal conditions and showed that theta activity in CA1
area starts to unidirectionally entrain the local prelimbic

circuits in beta-low gamma rhythms toward the end of the first
postnatal week, reaching the maximal coupling at P8–10
(Brockmann et al. 2011).

We first characterized the activity patterns in PL and CA1
area of the intermediate HP, which in contrast to the rather
continuous pre-juvenile discharge, are highly fragmented at
neonatal age (Hanganu et al. 2006; Brockmann et al. 2011;
Hartung et al. 2016). Extracellular recordings of LFP and MUA in
lightly-anesthetized controls (PL: n = 16 animals, HP: n = 15
animals) followed by analysis using previously-developed
unsupervised algorithm for detection and classification of oscil-
latory patterns (Cichon et al. 2014) confirmed the discontinuous
aspect of neonatal activity (Fig. 4). In the PL, two major patterns
were identified: SB with a single theta-band-confined frequency
component (3–14 Hz), and NG with two distinct theta and
beta-low gamma-confined frequency components (3–14 Hz,
14–30Hz), which were superimposed with low-amplitude
nested HFOs (100–400Hz) (Fig. 4C, Supplementary Table 5).

Figure 2. Oscillatory activity in PL and hippocampal CA1 area of pre-juvenile control mice. (A) (i) Digital photomontage reconstructing the location of the DiI-labeled

recording electrode (orange) in PFC of a 75-μm-thick coronal section from a P23 mouse. The superimposed yellow dots mark the 16 recording sites covering the pre-

frontal subdivisions, cingulate cortex (Cg) and PL. (ii) Extracellular LFP recording of the oscillatory activity in PL from a P22 mouse displayed after band-pass (4–30Hz,

30–100Hz) filtering and accompanied by the corresponding MUA after 400Hz high-pass filtering. At this age, the activity has switched to a continuous pattern of dis-

charge with predominant slow oscillations and superimposed activity in the theta and gamma frequency range. Color-coded frequency plots show the wavelet spec-

tra at identical time scale. (iii) Representative logarithmic power spectrum of an LFP recording in PL of a P23 mouse illustrating the broad power peaks in theta

(4–12Hz) and gamma (30–100Hz, gray-shaded areas) frequency ranges. (B) (i) Digital photomontage reconstructing the location of the DiI-labeled recording electrode

(orange) in the HP of a 75-μm-thick coronal section from a P23 mouse. The superimposed yellow dots mark the 16 recording sites covering stratum pyramidale (Str

Pyr) and radiatum (Str Rad). (ii) Same as (A) (ii) for hippocampal LFP and MUA. Red asterisk marks sharp wave-ripple complex. (iii) Same as (A) (iii) for a representative

hippocampal LFP recording.
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These oscillatory patterns were accompanied by MUA, the
prelimbic neurons showing the highest firing rate during
NG (Supplementary Table 5). Similarly, the CA1 area of the inter-
mediate HP was entrained in discontinuous network oscillations,
which according to their dominant frequency within theta-band
(3–14Hz) were classified as theta bursts (Supplementary Table 6).
Almost half of them (45.22 ± 5.76%) were accompanied by prom-
inent sharp waves (Fig. 4F). These discontinuous patterns of oscil-
latory activity recorded under light urethane anesthesia mirror
the network entrainment during sleep-like state (Clement et al.
2008), which represents the dominant physiological state of
neonatal rodents. Correspondingly, they were similar to the
activity patterns recorded from non-anesthetized asleep
rodents (Bitzenhofer et al. 2015).

To decide whether genetic, environmental, and combined
risk factors of neuropsychiatric disorders perturb the prelimbic
and hippocampal activity already at neonatal age, we com-
pared the network oscillations and neuronal firing in controls,
dual-hit GE as well as one-hit G and one-hit E mice. While pre-
limbic SB and NG as well as hippocampal theta bursts are
present in all investigated pups, their properties differed signifi-
cantly between groups. The most prominent changes affected
the dual-hit GE mice (PL: n = 12 animals, HP: n = 11 animals).
The augmented occurrence of their SB (5.7 ± 0.5 events/min;
controls 3.9 ± 0.5, P = 0.037) was accompanied by a strong
decrease in amplitude (69.1 ± 3.8 µV; controls 92.1 ± 7.2mV,
P = 0.001) and power, especially within the NG-characteristic
beta-low gamma frequency band (relative power: 6.7 ± 0.6;
controls 14.9 ± 2.1, P = 0.0001) (Fig. 5A,B, Supplementary
Table 5). Moreover, the firing of prelimbic neurons was signifi-
cantly (P < 0.001) increased in dual-hit GE mice (0.39 ± 0.04 Hz;
controls 0.17 ± 0.02 Hz, P < 0.0001) and less neurons were
phase-locked to a distinct phase of gamma activity. However,
the locking strength of firing did not significantly change in
the PL of dual-hit GE mice (Supplementary Fig. 3A–C). Similar
perturbation of network activity, that is, significantly higher
occurrence (6.5 ± 0.4 events/min; controls 3.8 ± 0.4 events/
min, P < 0.0001) and lower oscillatory power in theta fre-
quency (relative power 15.2 ± 2.3; controls: 25.2 ± 3.5,
P = 0.029), was found when the hippocampal theta bursts
were analyzed in dual-hit GE mice (Fig. 5C,D, Supplementary
Table 6). Moreover, the firing rate of hippocampal neurons
was increased, but despite a constant number of phase-
locked neurons, their timing by the theta rhythm was weaker
(Supplementary Fig. 3D–F, Supplementary Table 6). These
alterations in network oscillations and spiking patterns in PL
and hippocampal CA1 of dual-hit GE mice were significant
when related not only to controls, but also to one-hit mice
(Supplementary Figs 4 and 5, Supplementary Tables 5 and 6).
In contrast to the prominent changes in dual-hit GE mice, the
prelimbic and hippocampal activity of one-hit G (n = 9) and
one-hit E (PL: n = 22, HP: n = 18) mice was largely normal,
although the occurrence of hippocampal theta bursts in one-
hit E mice, their firing rates during both SB and NG in PL, as
well as firing rate of hippocampal neurons in one-hit G mice
were slightly increased when compared with controls
(Supplementary Fig. 6, Supplementary Table 6).

Figure 3. Hyper-coupling by synchrony and directed interactions within hippo-

campal–prelimbic networks of pre-juvenile dual-hit GE mice. (A) Averaged

coherence spectra for simultaneously occurring oscillations in HP and PL of

control (n = 12, black) and dual-hit GE mice (n = 11, magenta) for original

(straight line) and time-shuffled (dotted line) data. (B) (i) Color-coded plots dis-

playing the mean MI for the CFC of oscillation amplitudes in PL to the hippo-

campal phase in control (n = 12, left) and dual-hit GE (n = 11, right) mice. (ii)

Same as (i) for CFC of amplitudes in the HP to the prelimbic phase. (C) Cross-

correlations of the amplitudes of theta-filtered LFP recorded from PL and HP

averaged for all investigated control (n = 12, black) and dual-hit GE mice (n = 11,

magenta). Positive time lags correspond to HP leading the PL. (D) Diagram dis-

playing the relationship between hippocampal–prefrontal coherence and

behavioral performance in NOR (n = 40, gray) and RR task (n = 32, black)

assessed as discrimination ratio between the two objects (i.e. difference

between the time with novel object and the time with familiar object divided

by total time of object exploration). The regression lines are plotted in the cor-

responding colors (black for RR, gray for NOR). In (A) and (C), the transparent

areas correspond to s.e.m. *P < 0.05 and **P < 0.01.
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These findings demonstrate that the combination of genetic
and environmental risk factors of major neuropsychiatric disor-
ders profoundly disturbs and disorganizes the network activity
of the neonatal PL and hippocampal CA1, whereas the oscilla-
tory patterns are largely unaffected when the two risk factors
do not converge.

The Synchrony Within Neonatal Hippocampal-
Prelimbic Networks Is Impaired in Dual-Hit GE,
But Not in One-Hit Mice

To test whether genetic and environmental risk factors affect
the coupling between neonatal PL and HP, we first examined
the hippocampal–prelimbic synchrony for simultaneously
recorded network oscillations and spikes in the PL and CA1
area of all four groups of mice. While at adulthood, coupling of
brain areas by synchrony is necessary for behavioral perform-
ance (Jones and Wilson 2005), during development it seems to
represent the pre-requisite for correct network wiring
(Brockmann et al. 2011; Minlebaev et al. 2011). The fraction of co-
occurring prelimbic and hippocampal events was significantly
decreased in dual-hit GE mice (83 ± 1.6%, n = 15, P = 0.039) and
one-hit E mice (76.4 ± 3.6%, n = 17, P = 0.034), but similar in one-
hit G mice (87.3 ± 1.9%, n = 6, P = 0.91) when compared with con-
trols (86.6 ± 1.3%, n = 16). Calculation of the coherence in differ-
ent frequency bands (3–8Hz, 8–14Hz, and 14–30Hz) showed
tight synchrony within hippocampal–prelimbic networks of con-
trol pups already at this immature age (Supplementary Table 7).
This was a genuine feature of hippocampal–prelimbic interac-
tions and not the result of non-specific/volume-conducted

synchrony, since the values of the imaginary part of coher-
ence within 8–14 Hz and 14–30 Hz were similar (S Bitzenhofer,
C Lindemann, IL Hanganu-Opatz, unpublished data) and time
shuffling significantly decreased the coherence of prelimbic
and hippocampal oscillations (Fig. 6A) as well as the coher-
ence between prelimbic LFP and individual hippocampal
spikes (Fig. 6B) (Soteropoulos and Baker 2006).

In dual-hit GE mice, the hippocampal–prelimbic coherence
was significantly lower (8–14 Hz: 0.04 ± 0.01; 14–30 Hz:
0.06 ± 0.01) when compared with controls (8–14 Hz: 0.09 ± 0.02,
P = 0.013; 14–30 Hz: 0.1 ± 0.02, P = 0.04) (Fig. 6C,D,
Supplementary Table 7), one-hit E mice (8–14 Hz: 0.09 ± 0.01,
P < 0.0001; 14–30 Hz: 0.11 ± 0.02, P = 0.014) (Supplementary
Fig. 5E,F), and one-hit G mice (8–14 Hz: 0.11 ± 0.03, P = 0.005)
(Supplementary Fig. 4E,F). The changes principally affected
the frequency range of hippocampal theta bursts (3–14 Hz),
which have been previously identified as functional drive for
the oscillatory entrainment of local prelimbic networks
(Brockmann et al. 2011). The synchrony deficits of dual-hit GE
mice were confirmed by the decrease in coherence between
prelimbic oscillations and hippocampal spikes (Fig. 6E). In con-
trast, the coupling by synchrony of hippocampal–prelimbic
networks in mice mimicking either the genetic or environ-
mental risk factors was not perturbed. The coherence over the
entire frequency spectrum was similar in one-hit G, one-hit E,
and control mice (Supplementary Fig. 7A,B, Supplementary
Table 7).

These data indicate that the combination of genetic and
environmental risk factors diminishes theta synchrony
between the neonatal PL and hippocampal CA1, whereas the

Figure 4. Patterns of oscillatory activity in PL and hippocampal CA1 area of neonatal control mice. (A) Digital photomontage reconstructing the location of the DiI-

labeled recording electrode (orange) in PFC of a Nissl-stained 75-µm-thick coronal section from a P10 mouse. The superimposed yellow dots mark the 16 recording

sites covering the prefrontal subdivisions, cingulate cortex (Cg) and PL. (B) Extracellular LFP recording of discontinuous oscillatory activity in PL from a P10 mouse dis-

played after band-pass (4–100Hz, 200–400Hz) filtering. Traces are accompanied by the color-coded wavelet spectra of the LFP at identical time scale. The red-dotted

line indicates the lower border of the gamma frequency range (30 Hz). NG characterized by a wide frequency distribution and superimposed HFOs (200–400Hz) are

marked by hashes. (C) Left: Characteristic SB displayed after band-pass (4–40 Hz and 200–400Hz) filtering and the corresponding MUA after 400Hz high-pass filtering.

Color-coded frequency plots show the wavelet spectra at identical time scale. Right: Characteristic NG displayed after band-pass (4–40 Hz and 200–400Hz) filtering

and the corresponding MUA after 400Hz high-pass filtering. Color-coded frequency plots show the wavelet spectra at identical time scale. Note the presence of prom-

inent beta-low gamma episodes with nested HFOs that are accompanied by strong spike discharge. (D) Same as (A) for recording electrode in hippocampal CA1. The

superimposed yellow dots mark the 16 recording sites covering stratum pyramidale (Str Pyr) and radiatum (Str Rad). (E) Same as (B) for hippocampal LFP. (F) Left:

Characteristic theta burst displayed after band-pass (4–100Hz) filtering accompanied by the corresponding MUA after 400Hz high-pass filtering and the color-coded

frequency plot at identical time scale. Right: Characteristic theta burst with sharp wave (red asterisk) displayed after band-pass (4–100Hz) filtering accompanied by

the corresponding MUA after 400Hz high-pass filtering and the color-coded frequency plot at identical time scale. Inset, sharp wave reversing between Str Pyr and Str

Rad and displayed at a larger time scale. Scale bars for inset correspond to 200 µV and 0.1 s.
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oscillatory coupling between the two areas is not modified
when the risk factors do not converge.

The Directed Interactions Within Neonatal
Hippocampal–Prelimbic Networks Are Weaker
in Dual-Hit GE, But Not in One-Hit Mice

To assess the directed interactions within neonatal hippocam-
pal–prelimbic networks, we used two different approaches. In a
first step, we calculated the cross-correlation of instantaneous
amplitudes of filtered LFP in the PL and HP of P8–10 mice. For
control mice (n = 21), the maximal cross-correlation (0.164 ± 0.013)
was obtained at a positive time lag of 15.6 ± 2.2ms (Fig. 7A), con-
firming the monosynaptic drive from the CA1 area to PL, which
has been previously identified in neonatal rats (Brockmann et al.
2011). This first cross-correlation peak was followed by a second
one at longer positive lag of ~46ms, suggesting that polysynaptic
interactions complemented the monosynaptic influence of the HP
on PL. Additionally, feedback coupling seems to indirectly relay
information from PL back to HP, because a small, but significant
peak of cross-correlation (0.015 ± 0.006) was detected in controls
at a negative time lag of −62.5 ± 2.5ms. In dual-hit GE mice
(n = 12), the prominent monosynaptic drive from HP to PL strongly
decreased, as shown by the significant (P = 0.004) reduction of the
cross-correlation peak at 15.6 ± 3.4 ms to 0.089 ± 0.019 ms. In con-
trast, the peaks corresponding to polysynaptic and feedback inter-
actions were similar or even augmented (e.g. peak at ~78ms)
when compared with controls. Moreover, the positive values of
cross-correlation corresponding to directed interactions from HP
to PL had a broader distribution. The diminishment and loss of

precision of directed interactions within neonatal hippocampal–
prelimbic networks were exclusively present when the genetic
and environmental risk factors converged as confirmed also by
the significantly decreased cross-correlation in dual-hit GE mice
when compared with one-hit E mice (n = 18) (Supplementary Fig.
5G). Neither the monosynaptic drive from the HP to PL nor the
polysynaptic feedback interactions were modified in the neonatal
one-hit G (n = 6) and one-hit E mice (Supplementary Fig. 8A,B,
Supplementary Table 7).

In a second step, we confirmed the disruption of directed
interactions within neonatal hippocampal–prelimbic networks
in dual-hit GE mice by assessing the temporal relationship
between hippocampal and prelimbic firing. For this, we calcu-
lated the cross-correlation of spike trains recorded in PL and HP
(Brillinger 1976; Halliday and Rosenberg 1999; Siapas et al. 2005)
(Fig. 7B). If the HP directly drives the PL, then the prelimbic neu-
rons will fire shortly (i.e. at the lag of monosynaptic projec-
tions) after the hippocampal ones. Despite the fact that the low
firing rates and number of recorded neurons, which are charac-
teristic for the immature PL and HP at neonatal age, hampered
the analysis, a small but reliable peak of cross-correlation
between the spike trains has been detected at a positive lag of
~20ms (n = 325 cell pairs from 13 mice, Fig. 7C). This indicates
that in control mice, the HP indeed directly drives the PL. The
same peak was present also in dual-hit GE mice (n = 72 cell
pairs from 11 mice); however, its magnitude was decreased.
These data confirm the causality analysis of LFP oscillations
and suggest that the timing of prelimbic firing by the hippo-
campal discharge via monosynaptic projections is disturbed in
dual-hit GE mice.

Thus, a combination of genetic and environmental risk fac-
tors of neuropsychiatric disorders causes a major decrease in
neonatal theta drive from the CA1 area to the PL. In contrast,
the early directed interactions remain intact when the risk fac-
tors do not converge.

Discussion
Disrupted synchrony and abnormal oscillatory entrainment
within adult hippocampal–prefrontal networks have been pro-
posed as underlying mechanism of cognitive impairment in
neurodevelopmental psychiatric disorders, such as schizophre-
nia (Meyer-Lindenberg et al. 2005; Sigurdsson et al. 2010; Godsil
et al. 2013). In the present study, we combined multi-site
recordings from neonatal and pre-juvenile mice modeling the
disorder etiology with their behavioral investigation to eluci-
date at which developmental time point and by which mechan-
isms the maturation of hippocampal–prefrontal networks is
impaired. We demonstrate here that 1) at neonatal and pre-
juvenile age the functional interactions within hippocampal–
prefrontal networks are disturbed when genetic and environ-
mental risk factors of disease converge and to a lesser extent
when they act separately; 2) already at neonatal age the net-
work activity is temporally uncoordinated and the initial inter-
actions between PL and HP are weaker in dual-hit GE mice; 3)
the neonatal hypo-coupling in these mice switches during pre-
juvenile development to an augmented communication within
hippocampal–prelimbic networks; similar, but milder effects
can also be observed in one-hit G mice; 4) dual-hit GE and one-
hit G mice have already at pre-juvenile age poorer cognitive
abilities that correlate with the degree of abnormal interactions
between PL and HP (Fig. 8). These data identify the de-coupling
of hippocampal–prefrontal networks during early development
followed by their exaggerated communication at pre-juvenile

Figure 5. Abnormal patterns of discontinuous oscillatory activity in PL and HP

of neonatal dual-hit GE mice. (A) Bar diagrams displaying the relative changes

in the occurrence, amplitude, and power in different frequency bands of pre-

limbic SB (gray) and NG (black) from dual-hit GE mice (n = 12) when related to

values of controls (n = 16). (B) Averaged power spectra P(f) of discontinuous

oscillations (NG) normalized by the baseline power P0(f) of time windows lack-

ing activity when displayed for controls (black) and dual-hit GE mice (magenta).

(C) Same as (A) for theta bursts recorded in the CA1 area of the intermediate HP

(controls: n = 15, dual-hit GE mice: n = 11). (D) Same as (B) for hippocampal theta

bursts. In (A) and (C), only significant differences were displayed and positive

values indicate an increase, whereas negative values indicate a decrease when

compared with controls. *P < 0.05, **P < 0.01, ***P < 0.001. Data shown as

mean ± s.e.m.
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age as a potential mechanism of adult disease-related circuit
dysfunction and cognitive impairment.

Animal Models of Major Neuropsychiatric Disorders

Understanding mental illness has been mainly hampered by
the difficulties of generating animal models that capture all
features of an extremely heterogeneous group of disorders,
including schizophrenia and major depression. However, when
scaling such ambitious goals down and focusing on one or few
features, mouse models represent valuable tools, especially for
elucidating the circuit dysfunction as neurobiological substrate
of these diseases (Arguello and Gogos 2006; Nestler and Hyman
2010; Wong and Josselyn 2015). The most widely used models
mimic the human etiology of disease, the susceptibility of gen-
etic modifications, and the action of environmental stressors.
While disease-relevant phenotypes have been identified for
these factors acting alone, their combination has been pro-
posed as reflecting more accurately the human pathology (van
Os and Kapur 2009; Insel 2010; van Os et al. 2010).

In the present study, we used mouse models that have been
extensively characterized at adulthood. They have been con-
firmed to mimic certain cognitive deficits and/or the dysfunc-
tion of hippocampal–prefrontal networks reported for mental
disorders, yet their deficits are rather mild. On the one hand,
the one-hit G mouse model carries one of the few well-defined

DISC1 risk alleles, which has been linked in a large human
pedigree not only to schizophrenia (Millar et al. 2000; Koike
et al. 2006), but also more broadly to mental illness (Farrell
et al. 2015). DISC1 is critically involved in neurogenesis, migra-
tion of pyramidal neurons and interneurons as well as circuit
formation (Kamiya et al. 2005; Mao et al. 2009; Lipina and Roder
2014). Its mutation affects in a highly selective fashion synaptic
plasticity and causes social, sensory-motor, and cognitive defi-
cits at adulthood (Kvajo et al. 2008). Our data showed that
already at pre-juvenile age one-hit G mice had poorer recogni-
tion and temporal order memory and mild alterations of net-
work interactions. However, the dysfunction seems to emerge
quite late during development, since at neonatal age one-hit
G mice were almost indistinguishable from controls in their
activity patterns, coupling by synchrony or directed communi-
cation within hippocampal–prefrontal networks.

On the other hand, we used prenatal immune challenge
induced by poly (I:C) treatment as environmental stressor.
Adult one-hit E mice showed decreased hippocampal–prefrontal
synchrony and abnormal related cognitive behavior (Dickerson
et al. 2010). In line with previous reports (Meyer and Feldon
2012), we observed that functional and behavioral deficits are
not present at early stages of development, neither the patterns
of activity and coupling within hippocampal–prefrontal net-
works nor the behavior being altered in one-hit E mice during
neonatal and pre-juvenile development.

Figure 6. Reduced coupling by synchrony within hippocampal–prelimbic networks of neonatal dual-hit GE mice. (A) Mean coherence spectra for original (solid

line) and time-shuffled (dotted line) network oscillations simultaneously recorded in neonatal PL and HP of controls (n = 16, black), one-hit G (n = 6, violet), one-

hit E (n = 17, gray), and dual-hit GE mice (n = 15, magenta). (B) Bar diagram displaying the mean coherence in different frequency bands for LFP oscillations in PL

and original and time-shuffled spikes in HP of controls (n = 14). (C) Coherence spectra for co-occurring network oscillations in neonatal PL and HP when averaged

for all controls (black) and dual-hit GE mice (magenta). (D) Bar diagram displaying the relative changes in the coherence for co-occurring prelimbic and hippocam-

pal oscillations in dual-hit GE mice when related to coherence values of controls. (E) Same as (D) for coherence of prelimbic LFP and hippocampal spikes. In (D)

and (E), positive values indicate an increase, whereas negative values indicate a decrease when compared with controls. *P < 0.05 and ***P < 0.001. Data shown as

mean ± s.e.m.
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Given the fact that, differently from the adult phenotype,
neither the genetic nor the environmental risk factors alone
impaired the network communication at neonatal age, it is sur-
prising that their combination leads to a profound diminish-
ment of coupling by synchrony and reduction of theta
hippocampal drive to PL. One possibility is that Disc1 mutation
may induce perturbation of immune-relevant signaling path-
ways early in life (Beurel et al. 2010). The resulting structural,
cellular, and behavioral deficits might persist and even aug-
ment throughout the life span, altered cognitive and social

behavior, anxiety, and hyperactivity being detected at adult age
(Abazyan et al. 2010; Ibi et al. 2010; Lipina et al. 2013).

Periods of High Vulnerability in Major Neuropsychiatric
Disorders

Identification of developmental periods of vulnerability to func-
tional and behavioral dysfunctions in neuropsychiatric disor-
ders represents one major aim, but also challenge of research
(van Os et al. 2010). Clinical studies proposed two time win-
dows of structural and functional organization of neuronal
maturation as critical for mental illness. First, the middle-late
stage of pregnancy in humans, which corresponds to neonatal
age in rodents (Clancy et al. 2001), has been associated with an
increased risk of major neuropsychiatric disorders (Cannon and
Murray 1998; Lewis and Levitt 2002; Jones et al. 2014), because
the developing neuronal networks undergoing substantial
refinement at this age are particularly prone to several environ-
mental risk factors. However, the early development has been
largely factored out from experimental investigations of the
cellular and circuit substrate of neuropsychiatric disorders,
mainly due to major ethical concerns and technical limitations.
Our previous studies revealed that the emergence of first long-
range coupling within the brain takes place during neonatal
development (Brockmann et al. 2011). At the end of the first
postnatal week, the functional entrainment of neonatal PL in
discontinuous oscillatory rhythms is initiated by the hippocam-
pal theta-timed activity. The directed communication within
neonatal hippocampal–prefrontal networks is necessary for the
later ontogeny of cognitive processing (Kruger et al. 2012).
Consequently, its dysfunction as a result of co-acting genetic
and environmental risk factors might lead to abnormal/delayed
wiring of PL and HP that persists until adulthood and underlie
the poorer mnemonic and executive performance.

The disease-relevant dysfunction of neuronal networks dur-
ing the neonatal development might be potentiated during the
second time window with critical relevance for mental illness.
Disturbances in brain maturation during adolescence have
been proposed to contribute to the pathophysiology of schizo-
phrenia (Feinberg 1982; Weinberger 1987; Keshavan et al. 1994).
During this late developmental stage, profound re-organization
of neural circuits as a result of connectivity pruning and excita-
tion/inhibition changes takes place during physiological condi-
tions. The power and phase synchrony over a wide range of
frequencies decrease (Srinivasan 1999; Whitford et al. 2007). In
the mouse models analyzed here, combination of genetic and
environmental risk factors and to a lesser extent also the
abnormal genetic background alone appear to perturb this

Figure 7. Abnormal directed interactions between PL and HP of neonatal dual-

hit GE mice. (A) Amplitude cross-correlation of prelimbic and hippocampal

network oscillations averaged for all investigated controls (n = 21, black) and

dual-hit GE mice (n = 12, magenta). Positive time lags correspond to HP leading

PL. *P < 0.05, **P < 0.01. Data shown as mean ± s.e.m. (B) Examples of spike

trains from 3 prelimbic (blue) and 4 hippocampal (red) neurons simultaneously

recorded from a P8 control. Inset, close-up of the spike trains displayed together

with the corresponding LFP reveals the confinement of spikes to time windows

of network oscillations. (C) Cross-correlation histograms of hippocampal–pre-

limbic spike trains recorded from controls (n = 325 cell pairs from 13 mice,

black) and dual-hit GE mice (n = 72 cell pairs from 11 mice, magenta). Positive

time lags correspond to HP leading PL.

Figure 8. Schematic diagram of age-dependent hippocampal–prelimbic interac-

tions in control, dual-hit GE, one-hit G, and one-hit E mice.
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process of maturation. Shortly before the onset of adolescence,
the theta-band coupling between PL and HP is augmented in
dual-hit GE mice. The exaggerated entrainment might result
from aberrant pruning of connectivity. The present data con-
firm the critical role of pre-juvenile/adolescent age for mental
illness and give first insights into the mechanisms by which
the peri- and prenatal risk factors impact the developing long-
range circuitry.

Mechanisms and Physiological Relevance of Abnormal
Hippocampal-Prelimbic Communication During
Development for Mental Illness

The present results reveal that the network dysfunction in
neuropsychiatric disorders, while occurring during the entire
development, has distinct age-dependent patterns. At neonatal
age reduced theta synchrony and directed interactions caused
de-coupling of prefrontal and hippocampal activity in dual-hit
GE, but not in one-hit mice (Fig. 8). Assessment of functional
communication at comparable age in humans (for example,
second-third gestational trimester) is ethically and technically
not feasible, yet future investigations of other mouse models
might reveal whether the de-coupling between PFC and HP is a
“finger print” of disease. Most likely, these alterations in net-
work activity in theta-band reflected a global perturbation of
brain activity due to the combined action of genetic and envir-
onmental factors on cortical migration and differentiation.
Structural changes, such as a decrease in spine density or lower
number of axonal terminals, might lead to augmentation of the
firing of pyramidal neurons in the hippocampal CA1 area, but
also to loss of theta-timed precision of firing, as reflected by the
weaker strength of theta-spike coupling. The disorganized acti-
vation of HP and the weaker drive to PL might be accompanied
by a reduction in axonal projections between the two areas.
These structural and functional deficits may perturb the pre-
limbic activity and initial wiring of local circuits. Activation of
neonatal prelimbic interneurons by glutamatergic inputs, most
likely from pyramidal CA1 neurons, has been identified as a
cellular substrate for the entrainment of local circuits in
gamma-band oscillatory rhythms (Bitzenhofer et al. 2015).
Consequently, disease-specific alterations in glutamatergic-
GABAergic interplay may decrease the power of local gamma
oscillations in the PL and the timing precision of prelimbic fir-
ing by gamma activity.

In contrast, at pre-juvenile age, an augmented theta-band
synchrony and driving force was identified to exaggeratedly
entrain the PL and HP of dual-hit GE mice (Fig. 8). The increase
in hippocampal–prefrontal coupling goes far beyond a normal
compensation of directionality strength between the two areas.
Moreover, it is not related to a memory task as reported in
adults (Jones and Wilson 2005; Sigurdsson et al. 2010), since it
has been detected in anesthetized pre-juvenile mice. However,
the general degree of hyper-coupling though correlates well
with the behavioral impairment of individual animals in tem-
poral order memory, suggesting that even impaired coupling at
baseline affects cognitive task performance. Around the onset
of clinical symptoms, both at resting state and during cognitive
tasks hippocampal–prefrontal hypoconnectivity and decreased
beta-gamma synchrony have been identified as the major
disease-related markers in patients (Meyer-Lindenberg et al.
2005; Uhlhaas and Singer 2011; Benetti et al. 2015; Cui et al.
2015). Correspondingly, the cognitive abilities relying on hippo-
campal–prefrontal coupling such as object-in-place recognition
are impaired in dual-hit GE mice of comparable age

(adolescent–young adult) (C Lindemann, IL Hanganu-Opatz,
unpublished observations). These functional deficits have been
proposed to result from myelination defects, modification of
GABAergic neurotransmission and alteration in the expression
of specific genes (Salami et al. 2003; Harris et al. 2009;
Hashimoto et al. 2009). Since the fast-spiking parvalbumin-
positive interneurons are the driving force of gamma-band
activity (Cardin et al. 2009; Sohal et al. 2009), their hypofunction
may account for the observed diminishment of gamma syn-
chrony in prodromal cohorts and first-episode patients. Further
investigations are warranted to monitor in detail the transition
from pre-juvenile hyper-coupling to the adolescent/adult hypo-
coupling. Another key question that needs to be addressed con-
cerns the exact identity of cellular elements and interactions
that account for disease-relevant dysfunction of hippocampal–
prefrontal networks during neonatal and pre-juvenile develop-
ment. Manipulation of specific neuronal populations in the
immature circuits will provide first insights into the cellular
mechanisms of disease’s ontogeny.

Identification of a developmental switch from hypo- to
hyper-coupling within neuronal networks as a new patho-
physiological mechanism of neuropsychiatric disorders may
open new therapeutic perspectives that, when initiated before
the onset of clinical symptoms, may improve the devastating
cognitive outcome of disease (Dawson et al. 2015).
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